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Automated Verification of Cyber-Physical Systems is an
elective course for the Master Degree in Computer Science

Lecturer: Igor Melatti

Where to find these slides and more:

o https://igormelatti.github.io/aut_ver_cps/
20222023/index_eng.html

o also on MS Teams: “DT0759: Automated Verification of
Cyber-Physical Systems (2022/23)", code 11xu0gi

2 classes every week, 2 hours per class
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https://igormelatti.github.io/aut_ver_cps/20222023/index_eng.html
https://igormelatti.github.io/aut_ver_cps/20222023/index_eng.html

o Each exam has a written part (50% of mark) and a
project/paper (50% of mark)
o each student may choose if making a project or reviewing a
paper
o teams of at most 2 students are allowed for projects
o Written exam will be a mix of open and closed questions on
the whole exam program
o Project/paper may be discussed only after having passed the
written exam
o however, pre-evaluation is possible
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o Project: perform verification of a given cyber-physical system
o each team may choose one among the ones selected by lecturer
o or may propose one (but wait for lecturer approvall)
o each team will have to discuss its project with slides

o Paper: read a conference or journal paper and present it with

slides
o each student may choose one among the ones selected by
lecturer

o or may propose one (but wait for lecturer approvall!)
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o Input: a system S and (at least) a property ¢

o more precisely, a model of S must be provided
o that is, § must be described in some suitable language

o Output:

S satisfies ¢, i.e., S |E ¢
o the system S is correct w.r.t. the property ¢
o mathematical certification, much better than,
e.g., testing
S does not satisfy ¢, i.e., S £ ¢

o the system S is buggy w.r.t. the property ¢
o a counterexample providing evidence of the

error is also returned
\ B ‘



o Model checking is fully automatic
o a model checker only needs the description of & and the
property ¢
o “press button and go”
o this is not true for other verification tools such as proof
checkers, which require human intervention in the process
o Model checking is correct for both PASS and FAIL
o unless the description of S, or the property , are wrong
o this is not true for other verification techniques such as testing,
which only guarantees the FAIL result
o a buggy system may pass all tests, because the error is in some

corner case
\ DELL'AQUILA :



o Only works for finite-state systems

o typical example: you may verify a system with 3, 4 or 5
processes, but not with n processes, for a generic n

o Requires skilled personnel to write descriptions (and
properties)

o must know both the model checker language and the system

o however, less skilled than a proof checker user

o very few exceptions in which the model is automatically
extracted from the system

o also direct translations from digital circuits to NuSMV are
available

o Very resource demanding

o besides PASS and FAIL, also OutOfMem and OutOfTime are
expected results...

o bounded model checking: PASS is limited t mtimm um ‘
given number of steps 2 ‘ ‘



Two main categories:

visit the graph induced by the description of S
o very good for invariants and LTL model
checking of communication protocols
o on-the-fly generation of the graph: only the
reachable states are stored, the adjacency matrix
is implicitly given by the description of S

o Murphi, SPIN
represent sets of states and transition relations as
OBDDs

o very good for LTL and CTL model checking of
hardware-like systems
o all translated into a boolean formula

o also SAT tools may be used (b%gﬁ'\gmpdm ‘
checking) “



o A Cyber-Physical System (CPS) is a system where a physical
system is controlled and/or monitored by a software
o They are either partially or fully autonomous
o we will mainly deal with fully autonomous CPSs
o Examples are everywhere:

Internet of Things devices
Unmanned Autonomous Vehicles
Drones

Medical Devices

Embedded Systems

© ©6 06 06 o0 o
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Control

Software DA Plant -

microcontroller

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ / DELL'AQUILA
bty /



P
1]
T
o
>
c
o
O
O
o
~
O
o
x
8]
=
m




Buck DC/DC Converter

+ Uy i .
U L
Ty L +vo T C
V, L q
TUp %D ?(_jl rc

+v0)




Continuous time dynamics

i = ai1iL+ai2vo +ai3vp (1)
Vo = ao1ip+ax2vo+ax3vp (2)
g — Vvp=Ruip (3) g — vp=Rgip (7)
— ip>0 (4) g — w<0 (8)
— vy = Roniy (5) i — vy=Regiy (9)
vo = v,—V, (6) ip = ip—1I, (10)

where:
o iy, vp are state variables
o u € {0,1} is the action
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Discrete time dynamics with sampling time T

i' = (1+ Tana)iL + Taravo + Taravp (11)
VO/ = T32,1iL + (1 + Ta272)V0 + T8273VD. (12)
g — vp=Ruip(13) g — vp=Regip (17)
g — ip=0 (14) g — vwp<o0 (18)
U = Vo= Roiy (15) i = ve= R, (19)
vo = vu—Vip (16) ip = QL= (20)
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o Goal: keep vp in a desired safe interval
o typically, 5—-0.01V <vp >5+0.01V

o Notwithstanding the input voltage V; and the resistance R
may vary in some given interval

o typically, R =5+ 25%Q, V; = 15 + 25%V

o Effectively used in laptops: from battery voltage (V;) to
laptop processor voltage (vo)
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Inverted Pendulum
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Inverted Pendulum
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Continuous time dynamics

s 8 . 1
9:75|n9—|—mFu

where:
o 0 is the state variable
o u € {0,1} is the action

o m, I, F are system parameters
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Continuous time dynamics

).<1 = X2 (21)
1
Xy = %sin x1 + WFU (22)

Discrete time dynamics with sampling time T

X1 =x1+ Tx (23)
1
Xh = xp + T% sinx; + TWFU (24)
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To deal with cyber-physical systems:
o Probabilistic Model Checking
o rather than “are there errors?”, it is “is the error probability

low enough?"”
o the system is probabilistic, i.e., a Markov Chain

o System Level Formal Verification
o directly use a simulator instead of describing the system within
the model checker
o this will also need some background on systems simulation



To deal with cyber-physical systems:

o Statistical Model Checking

o rather than “are there errors?”, it is “is the error probability
low enough?”

o the system is a non-probabilistic simulator
o the answer is given with some statistical confidence

o Automatic Synthesis of Controllers
o rather than “are there errors in this system?”, it is “generate a

controller so that errors are avoided”
\  Beci sTunt 2



There are two macro-categories:

o [Interactive methods

o as the name suggests, not (fully) automatic
o human intervention is typically required
o in this course, we do not deal with such techniques

o Automatic methods
o only human intervention is to model the system
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There are two macro-categories:

o [Interactive methods

o as the name suggests, not (fully) automatic
o human intervention is typically required
o in this course, we do not deal with such techniques

o Automatic methods
o only human intervention is to model the system

o There also exist hybridations among the two categories
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Also called proof checkers, proof assistants or high-order
theorem provers

©

Tools which helps in building a mathematical proof of
correctness for the given system and property
o Pros

o virtually no limitation to the type of system and property to be
verified
o Cons

o highly skilled personnel is needed
o both in mathematical logic and in deductive reasoning
o needed to “help” tools in building the proof
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o Used for projects with high budgets
o For which the automatic methods limitations are not

acceptable
o used, e.g., to prove correctness of microprocessor circuits or
OS microkernels

o Some tools in this category (see
https://en.wikipedia.org/wiki/Proof _assistant):

o HOL
o PVS
o Coq
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https://en.wikipedia.org/wiki/Proof_assistant

Commonly dubbed Model Checking
Model Checking software tools are called model checkers

There are some tens model checkers developed; the most
important ones are listed in https://en.wikipedia.org/
wiki/List_of_model_checking_tools

Many are freely downloadable and modifiable for research and
study purposes

Research area with many achievements in over 30 years
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https://en.wikipedia.org/wiki/List_of_model_checking_tools
https://en.wikipedia.org/wiki/List_of_model_checking_tools

Perfect verification of
arbitrary properties by
logical proof or
exhaustive testing
(infinite effort)

Theorem proving:
Unbounded effort to
verify general properties

Model Checking:
Decidable but possibly
intractable checking of

simple temporal properties

Typical
testing
technique

Precise analysis of
simple syntactic
properties

Simplified Optimistic

properties inaccuracy 2|
E| universiTa DISIM
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Pessimistic 4 ’

inaccuracy



T
(VHDL, Verilog, C, C++ ) (
Java, MathLab, Simulink, ...) / \\

~— — ~

BAD

Model Checker

(Equivalent to
Exhaustive testing)

v Counlerelemple
Ie. sequence of events
(states) leading to an
undesired state.

-
FAIL ~_|
// .

PASS

Le. no sequence of
events (states) can
possibly lead to an
undesired state.

—
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System Req uirements Verification fest
& Case Studies of Case Studies

Software Integration
& Testing

—
Model Checker

Automated test generation

ﬂ - ‘ High Value Activities
oisit

Less design errors
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o In order to have this computationally feasible, we need a
strong assumption on the system under verification (SUV)
o l.e., it must have a finite number of states
o Finite State System (FSS)

o In this way, model checkers “simply” have to implement
reachability-related algorithms on graphs

o Such finite state assumption, though strong, is applicable to
many interesting systems

o that is: many systems are actually FSSs
o or they may be approximated as such
o or a part of them may be approximated as such
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There are many notions of “state” in computer science

Model checking states are not the ones in UML-like state
diagrams

Model checking states are similar to operational semantics
states
That is: suppose that a system is “described” by n variables

Then, a state is an assignment to all n variables

o given Dy, ..., D, as our n variables domains, then a state is
NS X;’:ID,'



o We have two identical processes accessing to a shared resource

o in the figure below, i, denote the two processes
o the well-known Peterson algorithm is used

0Oi] := trae; frn =1 W lorluem =

Lan
release il)

Qfjland luen =i

0[] := false;
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o The 5 “states” in the preceding figure are actually modalities

o From a model checking point of view, they correspond to
multiple states

o To see which are the actual states, let us model this system
with the following variables:
o mj, with i = 1,2: the modality for process i
o Q;, with j =1,2: Q; is a boolean which holds iff process i
wants to access the shared resource
o turn: shared variable
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o Thus, the resulting model checking states are the following:

it VERSITA DISIM
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o There are 25 reachable states
o assuming state (L0, LO, f,f,1) as the starting one
o All possible states are 200

o there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 x 52 overall assignments

o The LO modality for the first process encloses 6 (reachable)
states
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There are 25 reachable states
o assuming state (L0, LO, f,f,1) as the starting one

All possible states are 200
o there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 x 52 overall assignments
The LO modality for the first process encloses 6 (reachable)
states
No need of guards on transitions!
o guards will be needed for systems with external inputs
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o The UML-like state diagram is often useful to write the model

o as we will see, this will depend on the model checker input
language

o It is the model checker task to extract the global (reachable)
graph as seen before

o And then analyze it
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o Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

boolean flag [2];
int turn;
void P0() Peterson’s Algorithm

while (true) {
flag [0] true;
turn = 1;
while (flag [1] && turn == 1) /* do nothing */;
/* critical section */;
flag [0] = false;
/* remainder */;

}

void P1()

while (true) {
flag [1] = true;
turn = 0;
while (flag [0] && turn == 0) /* do nothing */;
/* critical section */;
flag (1] = false;
/* remainder */

}
void main()
flag (0] = false;

flag [1] = false;
parbegin (PO, P1); | b
DI

NIVERSITA DISIM



o Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

o UML-like state diagram: this is the first process; the second
may be obtained exchanging 1's with 2's and viceversa
Q[1] := true;

turn :=1; !Q[2] or turn =2

‘ UNIVERSITA DIsIM
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Q[2] and turn = 1

QI[1] := false;



o Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

o two identical processes

o each applies Peterson protocol to access to the critical section
L3

o the first issuing the request enters L3
o Q is a global variable, defined as an array of two integers
o each process i may modify QL[i1 and read Q[(i + 1) mod 2]
o turn is another global variable, which may be both read and
modified by both processes



o Murphi description for Peterson protocol: let's start with the
variables

o of course turn and Q, but also two variables P for the modality
(“states” in the UML-like state diagram)

o see 01.2_peterson.no_rulesets.no_parametric.m

o to this aim, we define constants and types

o the N constant (number of processes) is here fictious: only 2
processes, not more

o this version of Peterson protocol only works for 2 processes

o thus, the state space is
S = label t2 x {true, false}? x {1,2}
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P v e {L0,L1,12, 13,14} v e {L0,L1,12, 13,14}

Q v € {true, false} v € {true, false}

turn v € {1..N}




o Hence, |S| = 52 x 22 x 2 = 200 (there are 200 possible states)

o as a matter of comparison, the “state” LO in the UML-like
state diagram actually contains 5% x 22 x 2 = 40 states...

o However, as we will see, reachable states are about 10 times
less

o 2 initial states: turn may be initialied with any value in its
domain

o Note that 01.2_peterson.no_rulesets.no_parametric.m
we have rules repeated 2 times in a nearly equal fashion

o This can be done in this very simple model, but in general

descriptions must be parametric -
j» “ UNIVERSITA DISIM
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o If we want to check Peterson with 3 processi, currently we
would have to add one more rule in the desciprion

o Instead, it must be possible to only change the value of N
from 2 to 3

o To write parametric descriptions in Murphi, rules are grouped
with rulesets
o an index will allow to describe the behavior of the generic

process |
o see 02.2 _peterson.with rulesets.no_parametric.m



o Invariant: of course, at any execution instant, there must be
only one state in L3 (mutual exclusion)

o In a first order logic, it would be something like:

Vk e {1,...,N}. VK" € {1,...,N}. (k # K'AP[k] = L3) = P[k] # L3
o Or, as a reverse:

-3k € {1,...,N}. IK' € {1,...,N}. k # K'AP[k] = L3AP[K'] = L3)

o In the first version, it is stated what is correct to happen
o In the first version, it is stated what is wrong to happen
o In both 00.2_peterson.with rulesets.no_parametric.m
and 02.2 peterson.no_rulesets.no parametric.m
invariant is not parametric 1 }‘x;‘\g;‘u‘m)\‘ @ -

o See 03.2 peterson.with rulesets.parametric.m



o Let AP be a set of “atomic propositions”

o in the sense of first-order logic: each atomic proposition is
either true or false
o tipically identified with lower case letters p,q,. ..

o A Kripke Structure (KS) over AP is a 4-tuple (S, I, R, L)

S is a finite set, its elements are called states
| C S is a set of initial states

R C S x S is a transition relation

L:S — 24P is a labeling function

© © 0 o
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o A Labeled Transition System (LTS) is a 4-tuple (S, I, A\, d)

S is a finite set of states as before

| C S'is a set of initial states as before (not always included)
A is a finite set of labels

6 C S x A\ xS isa labeled transition relation

© © 0 o
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o S = {(p17p27 qi, g2, t) ‘ P1, P2 S {LO)L17L27L3>L4}, q1, g2 c
{0,1},t € {1,2}} = {L0,L1,1L2,L3,L4}2 x {0,1}? x {1,2}

o I ={L0}2 x {0} x {1,2}

o R: see next slide

© AP = {(P1=v) | v € {LO.LLL2 L3, LA} U{(P = v) | v €
{LO,L1, 12,13, L4}} U{(Q1 = v) | v € {0,1}} U{(@;
V) v e {01} U {(turn = v) | v € {1,2}}
o eg. L(L0,L0O,0,0,1)) = {(P, = LO), (P, = L0),(Q1 =

0), (Q2 = 0), (turn = 1)}
% puversiy o



(LIL
m

E.g.: ((L0,L0,0,0,1),(L1,L0,1,0,1)) € R, whilst
((L0,L0,0,0,1),(L2,L0,0,0,1)) ¢ R
Of course, |R| = number of arrows in figure above

UNIVERSITA DISIM
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o KSs have atomic propositions on states, LTSs have labels on
transitions
o In model checking, atomic propositions are mandatory
o to specify the formula to be verified, as we will see
o a first example was the invariant in Murphi
o Instead, it is not required to have a label on transitions

o Murphi allows to do so, but it is optional
o may be easily added automatically, if needed
o Labels are typically needed when:
o we deal with macrostates, as in UML state diagrams
o when we are describing a complex system by specifying

sub-components, so labels are used for synchronization
R ‘\
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o In many cases, the transition relation R is required to be total
oVseS3s'eS:(s,s)eR

o this of course allows also s = s’ (self loop)
o In the Peterson’s example, the relation is actually total

o Murphi allows also non-total relations, by using option -ndl

o note however that not giving option -ndl is stronger:
VseS3s'eS:s#s AN(s,s')eR

o otherwise, if siss.t. Vs'. s ="V (s,s’) ¢ R, Murphi calls s a
deadlock state

o that is, you cannot go anywhere, except possibly self looping
ons

o By deleting any rule, we will obtain a non-total transition

relation s |
| | UNIVERSITA DISIM
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The transition relation is, as the name suggests, a relation

©

Thus, starting from a given state, it is possible to go to many
different states

o in a deterministic system,

Vsi, 5,5 € S. (51752) ERA (51,53) ER— =353

o this does not hold for KSs
This means that, starting from state s;, the system may
non-deterministically go either to s, or to s3

o or many other states

©

©

Motivations for non-determinism: modeling choices!
o underspecified subsystems
o unpredictable interleaving
o interactions with an uncontrollable environmepnt

‘l\l\l]?\”\ DIsIM
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o Given a KS § = (5,1, R, L), we can define:
o the predecessor function Preg : S — 2°
o defined as Pres(s) = {s' € S| (s',s) € R}
o we will write simply Pre(s) when S is understood
o the successor function Post : S — 2°
o defined as Post(s) = {s' € S| (s,s') € R}

o Note that, if S is deterministic, Vs € S. |Post(s)| <1
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o A path (or execution) on a KS § = (5,1, R, L) is a sequence

T = 59515> . .. such that:
o Vi>0.s; €5 (itis composed by states)
o Vi >0.(s;,si+1) € R (it only uses valid transitions)

o We will denote i-th state of a path as (i) = s;
o Note that paths in LTSs also have actions: m = spagsiaz . . .

s.t. (S,', aj, Si+1 € 5)
% P -



o The length of a path m is the number of states in 7
o paths can be either finite 7 = sgs1 ... s, in which case

7| =n+1
o or infinite T = spsy ..., in which case |7| = co

o We will denote the prefix of a path uptojas7|; =sp...s;
o a prefix of a path is always a finite path

o A path 7 is maximal iff one of the following holds
o || =00
o || = n+1 and |Post(n(n))] =0

o thatis, Vs € S. (n(n),s) ¢ R
o i.e., the last state of the path has no successors

o often called terminal state

o If R is total, maximal paths are always infinite
o for many model checking algorithms, this is‘%iﬁdm m ‘



o The set of paths of § starting from s € S is denoted by
Path(S,s) = {n | m is a path in S A 7(0) = s}
o The set of paths of § is denoted by
Path(S) = Use/Path(S, s)
o that is, they must start from an initial state
o A state s € S is reachable iff
dr € Path(S), k < |r|: w(k)=s
o i.e., there exists a path from an initial state leading to s
through valid transitions

o The set of reachable states is defined by
Reach(S) = {n(i) | 7 € Path(S),i < |r|}

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA ]



o Verification of invariants: nothing bad happens
o The property is a formula ¢ : S — {0,1}
o built using boolean combinations of atomic propositions in
p € AP
o i.e., the syntax is

O (D) [PAD[DVD[-d|p

o The KS S satisfies ¢ iff ¢ holds on all reachable states
o Vs € Reach(S). ¢(s) =1
o Note that it may happen that ¢(s) = 0 for some s € S: never

mind, if s ¢ Reach(S)
B/ Biih e
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Theoretically, extract KS S and property ¢ from M as
described above

o for a given invariant / in M, ¢(s) =¢(/,s) forall s € S
Then, KS S satisfies ¢ iff ¢ holds on all reachable states
o Vs € Reach(S). ¢(s) =1
Thus, consider KS as a graph and perform a visit
o states are nodes, transitions are edges
If a state e s.t. p(e) =0 is found, then we have an error

Otherwise, all is ok
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o From a practical point of view, many optimization may be
done, but let us stick to the previous scheme

o The worst case time complexity for a DFS or a BFS is
O(|V| + |E|) (and same for space complexity)

o For KSs, this means O(|S| + |R|), thus it is linear in the size
of the KS

o Is this good? NO! Because of the state space explosion
problem

o Assuming that B bits are needed to encode each state

o ie, B= 27:1 b;, being b; the number of bits to encode
domain D;

o We have that |S| = O(2B) %



The “practical” input dimension is B, rather than |S| or |R|
Typically, for a system with N components, we have O(N)
variables, thus O(B) encoding bits

It is very common to verify a system with N components, and
then (if N is ok) also for N 4+ 1 components

o verifying a system with a generic number N of components is a
typically proof checker task...

This entails an esponential increase in the size of |S]|
Thus we need “clever” versions of BFS/DFS
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o Assumes that all graph nodes are in RAM

o For KSs, graph nodes are states, and we now there are too
many

o state space explosion

o You also need a full representation of the graph, thus also
edges must be in RAM

o using adjacency matrices or lists does not change much
o for real-world systems, you may easily need TB of RAM

o Even if you have all the needed RAM, there is a huge
preprocessing time needed to build the graph from the Murphi
specification

o Then, also BFS itself may take a long time .
AR/ Bl rd



o We need a definition inbetween the model and the KS: NFSS
(Nondeterministic Finite State System)
o N = (S, 1, Post), plus the invariant ¢

o S is the set of states, | C S the set of initial states
o Post : S — 25 is the successor function as defined before

o given a state s, it returns T sit. t€ T — (s,t) € R
o no labeling, we already have ¢
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o KSs and NFSSs differ on having Post instead of R
o Post may easily be defined from the Murphi specification
o Such definition is implicit, as programming code, thus
avoiding to store adjacency matrices or lists
o t € Post(s) iff there is a rule T; € T s.t. T; guard is true in s
and T; body changes s to t
o see above for using 1 and ¢

o Essentially, if the current state is s, it is sufficient to inspect all
(flattened) rules in the Murphi specification M

o for all guards which are enabled in s, execute the body so as
to obtain t, and add t to next(s)

o This is done “on the fly", only for those states s which must

be explored e



void Make_a_run(NFSS A, invariant ¢)
{
let N =(S,/,Post);
s_curr = pick_a_state(/);
if (l¢(s_curr))
return with error message;
while (1) { /* loop forever */

s_next = pick_a_state (Post(s_curr));
if ('¢(s_next))

return with error message;
s_curr = s_next;

}
}
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void Make_a_run(NFSS N,
{

invariant ¢)
let N =(S,[,Post);
s_curr = pick_a_state(/);
if (l¢(s_curr))
return with error message;
while (1) { /* loop forever */
if (Post(s_curr)=9)
return with deadlock message;

s_next = pick_a_state (Post(s_curr));
if ('y(s_next))

return with error message;
s_curr = s_next;

}
}

‘ UNIVERSITA DIsIM
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Similar to testing
If an error is found, the system is bugged

o or the model is not faithful
o actually, Murphi simulation is used to understand if the model
itself contains errors

If an error is not found, we cannot conclude anything

The error state may lurk somewhere, out of reach for the
random choice in pick_a_state

‘ UNIVERSITA DIsIM
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BFSIG. 5)
I for ogni vertice u € V]G] - {5]

2 do color{u] & WHITE
3 dftt] &= e
4 afu] +— niL
5 color{s] « Gray
6 dis]«0
T mix] e~
8 Q5]
9 whileQ=z@
10 do u & head[Q]
11 for ogni v & Adj{u]
12 do if color{v] = wHITE
13 then color[v] « crav
14 ‘ d[v] e dllwe] + 1
I35 Avl—u
16 - Expuere(@. v)
17 Degueve(() e
| | UNIVERSITA Disim
18 calorit] & nLack % BEGHLSTLPL e,



FIFO_Queue Q;
HashTable T;

bool BFS(NFSS N, AP ¢)

{

let N =(S,/,Post);
foreach s in [ {
if (le(s))
return false;

}

foreach s in |/
Enqueue(Q, s);

foreach s in |/
HashInsert (T, s);
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while (Q # 0) {
s = Dequeue(Q);
foreach s_next in Post(s) {
if ('p(s_next))
return false;
if (s_next is not in T) {
Enqueue (Q, s_next);
HashInsert (T, s_next);
Yy /% <f x/ } /* foreach */ } /* while */

return true;
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Edges are never stored in memory

(Reachable) states are stored in memory only at the end of
the visit

o inside hashtable T
This is called on-the-fly verification

States are marked as visited by putting them inside an
hashtable

o rather than coloring them as gray or black
o which needs the graph to be already in memory
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o State space explosion hits in the FIFO queue Q and in the
hashtable T

o and of course in running time...
o However, Q is not really a problem

o it is accessed sequentially
o always in the front for extraction, always in the rear for
insertion

o can be efficiently stored using disk, much more capable of
RAM

o T is the real problem

o random access, not suitable for a file
o what to do?

o before answering, let's have a look at Murphi«code
. R i



o As for all explicit model checker, a Murphi verification has the
following steps:
Q compile Murph source code and write a Murphi model
model.m
Q invoke Murphi compiler on model.m: this generates a file
model.cpp
o mu options model.m
o see mu -h for available options
Q invoke C++ compiler on model.cpp: this generates an
executable file
o g++ -Ipath_to_include model.cpp -o model
o path_to_include is the include directory inside Murphi
distribution
Q invoke the executable file

o ./model options <iz
o see ./model -h for available options \ J BECEASUILY e



¢ZZ:p|¢1/\¢2‘ﬁ¢‘(¢)’X¢”¢1U¢2

o Other derived operators:

o of course true, false, OR and other propositional logic
connectors
future (or eventually): F® = true U ¢
globally: G = —(true U —®)
release: ®; R &5 = —(—P; U —d,)

o weak until: &1 W &, = (d; U d,) vV G,
o Other notations:

o next: X¢ =(Od

o GO =09

o Fo =30

o We are dropping past operators, thus this isj‘»% uittire :

© © o
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Goal: formally defining when S |= ¢, being S a KS and ¢ an
LTL formula

o we say that S satisfies ¢, or ¢ holds in S

This is true when, for all paths 7 of S, 7 satisfies ¢
o i.e, Vr € Path(S). 7 = ¢
o symbol = is overloaded...
Fora given 7, m = @ iff 1,0 = ¢
Finally, to define when 7,/ |= ¢, a recursive definition over the
recursive syntax of LTL is provided

o 7€ Path(S),i € N
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Vr € Path(S),i € N. m,/ |= true

m, i = piff p e L(m(i))

i EPI NG Iff i P AT, i E Py

mi = iff i P

m i XOiffm i+l

TG UGy iff 3k > m k= Ga AV <j < ko) = &
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o It is easy to prove that:

Tl GOffYj > i m )= ®

i EFOIffIj>imjEo

Tl O ROV >0 (Vk<jom k=) =)=,
TG W iff (Vj>imjEd)Vv(@k>i: mkE
¢2/\Vi§j<k.7‘(‘,_j):<b1)

o For many formulas, it is silently required that paths are infinite

© © 0 o

o That's why transition relations in KSs must be total
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Given an LTL formula ¢, ¢ is a safety formula iff
VS. (3m € Path(S) : m i) = 3k: 7l fE @
Given an LTL formula ¢, ¢ is a liveness formula iff
VS. (3m € Path(S) : 7 £ ) — |7] = o0
All LTL formulas are either safety, liveness, or the AND of a
safety and a liveness
o being defined on paths, the counterexample is always a path

Safety properties are those involving only G, X, true and
atomic propositions

Liveness are all those involving an F, or a U where the first
formula is not the constant true

| UNIVERSITA

and so on \ g / BECEAQUILA

Some formulas are both safety and liveness, like true, G trm
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S E Fp since p holds in the
first state

For full: let 7 € Path(S)

m,0 = Fp with j =0

/Sz\] recall: 71'7/' ): Fo iff
A injEd
- m,i | piff p € L(n(i))
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¢/§T\J S [~ Fa since sp is not reach-
able from sp
counterexample: s =
S055S0ss5 . . .

For full: 7,0 £ Fa as, for all

jﬂ
»
Y
—
V
o
QL
R
=
3
S

Counterexample is infinite,
thus this is a liveness property
6\] Any finite prefix of 7 is not a

N counterexamples- '
% N @ -
\ DELL'AQUILA Sy

o

a



2)
J

S = Gp since there are many
counterexamples, here is one:
T = 50555055 - - -

For full: 7,0 = Gp with j =1

/s‘\] recall: mi = G iff
YT jE®
p.r m, i = piff p e L(w(i))

N

a rﬂsﬁ\] Safety  property, actually
7|2 is enough

Every path hagipe 7/> as73y,..
prefix is a coungerexample S



2)
J

S E G-a since s is not
reachable from s

For full: let @ € Path(S)
7,0 = G—a as the only state
s with a € L(s) is s, which is
3\] not reachable from s

N

N
Pt f recall. 7 € Path(S) im-
plies 7(0) € I, thus w(0) = sp
a r/Sﬁ\] here
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S E p U g since p € L(sp),
next(sp) = {si,s5} and g €
L(Sl) NqgE L(S5)

)
=

(72
HT
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S = p U r, a counterexample
is ™ = sps1(s25354)

Again this is a liveness formula,
even if m|; would have been
enough

/53\] In fact, you have to consider all
\__/ possible KSs...

2)
J

N
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J

S = —(p U r), a counterexam-
ple is m = (sos5)
Thus it may happen that S [~
® and S = ()
Instead, it is impossible that

_/
“
il
©
QO
=}
o
“
-
A
2
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S - FGp, a counterexample is
T = s051(525351)
Again this is a liveness formula

)
=

f%
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(72

S = GFp

All lassos are spss or sps35s

In both such lassos, there are
states in which p holds
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S = GFpV FGp
Consequence of the two previ-
ous slides

)
=

(72
HT
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(72

S = G(p U q), a counterexam-
ple is m = sps1(525351)

(p U g) must hold at any
reachable state

Ok in sp, s1, Sp, but not in s3
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o Recall the Peterson's protocol: checking mutual exclusion is
G(p A q), being p=P[1] =13,9g =P[2] =L3
o all invariants are of the form GP, where P does not contain
modal operators X, U or F
o Checking that both processes access to the critical section
infinitely often is GF P[1] = L3 A GF P[2] = L3
o liveness property: no process is infinitely banned to access the
critical section
o Even better: G (P[1] = L2 — F P[1] = L3)
o the same for the other process
o since it is simmetric, this is actually enough
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o Definition of equivalence between LTL properties:
pr1=pr ff VS.8Epi&SE @
o equivalent: Vo...
o ldempotency:
o FFp=Fp
o GGp=Gp
o pU(pUqg)=(pUq)Ug=pUgq
o Absorption:
o GFGp =FGp
o FGFp = GFp
o Expansion (used by LTL Model Checking algorithms!):

o pUqg=qV(pAX(pUq)
o Fp=pV XFp .

o Gp=pAXGp ¥\ N -



du=p| Py ADy | D | (®) | EXD | EGD | ED; U b,

o Other derived operators (besides true, false, OR, etc):
o EF® = Etrue U ¢
o cannot be defined using E-G—®, as this is not a CTL formula
o actually, it is a CTL* formula (see later)
o AFd = -EG—¢, AG® = -EF—-$, AXD = -EX-d
o APy U dy = (mE-D, U (P A =d1)) A "EG-D,
o ©;AUP, = AD,UD,, d;EUD, = ED,UD,
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O u=true|p| P1 APy | P | (D) | XD | D; U Dy

o Essentially, all temporal operators are preceded by either E or
G

o with some care for U
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o Goal: formally defining when S |= ¢, being S a KS and ¢ a
CTL formula
o This is true when, for all initial states s € | of S, smp

o thus, CTL is made of state formulas
o LTL has path formulas

o To define when s |= ¢, a recursive definition over the recursive
syntax of CTL is provided
o no need of an additional integer as for LTL syntax
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Vs € S.s,i = true

s Epiff pe L(s)
SEPIADiffsE P AsE Dy

sE P iff s = d

s = EX® iff 37 € Path(S,s). n(1) = ¢

s = EG® iff 37 € Path(S,s). V). n(j) = ¢

S ): E‘Dl U ¢2 iff
dr € Path(S,s)3k : w(k) = P2 AVj < k. w(j) =1
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o It is easy to prove that:

s E AG9 iff Vi € Path(S,s). Vj. 7(j) E ¢
s E AF® iff Vi € Path(S,s). 3j. n(j) E ¢
analogously for AU, AR, AW

just replace V with 3 for EF, ER, EW

o As for CTL, for many formulas, it is silently required that
paths are infinite

© © 0 o

o So again transition relations in KSs must be total
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Some CTL formulas may be neither safety nor liveness

o being defined on states, the counterexample may be an entire
computation tree

Safety properties are those involving only AG, AX, true and
atomic propositions

Some formulas are both safety and liveness, like true, G true
and so on

Liveness are formulas like AF, AFAG, AU

EF or EG are neither liveness nor safety

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA ]



S = AFp since p holds in the
first state

For full: sy = Fp since p €
L(sp), thus, for all paths start-
ing in sp, p holds in the first

e /2
"f
)
(73]
—+
[9)
—+
o
(2]
(@]
o
0
o
o
(V3]
(]
<
(0]
>
—+
c
L
<
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S = EFp for the same reason
as above

If it holds for all paths, then it
holds for one path

AF® — EF®

/53\] The same holds for the other
\__/ temporal operators G, U etc

2)
J

N
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S [~ EFa since sg is not reach-
able

Note that the counterexample
cannot be a single path

Since it would not enough to
. disprove existence

The full reachable graph must
be provided

One could also show the tree of

2)
J

f%

a /S\, all paths

v Neither safety I|veness '
‘l‘\[\‘l‘ll‘\ll;\‘ [\SM . .




2)
J

S E A(p U q) since p € L(sp),
next(sp) = {si,s5} and g €
L(Sl) NqgE L(S5)
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S [~ A(p U r), a counterexam-
ple is m = sps1(525351)

)
=

(72
HT
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(72
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(72
HT

S [~ —E(p U r), a counterex-
ample is ™ = (spss)

In fact, S j= @ iff S = —(P)
No hidden quantifier...
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S [~ AFAGp, a counterexam-
ple is m = sps1(525351)
This is a liveness formula

)
=

f%
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J

S [~ EFEGp, a counterexam-
ple is again a computation tree
All lassos are spss or spS354

In both such lassos, there are
states in which p does not hold

f%
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S = AFEGp, a counterexam-
ple is again a computation tree
Since S ~ EFEGp...

2)
J

(72
HT
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S = EFAGp, a counterexam-
ple is again a computation tree
Since S ~ EFEGp...

2)
J

(72
HT
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o Recall the Peterson’s protocol: checking mutual exclusion is
AG(p A q), being p=P[1] =L3,qg =P[2] =L3
o equivalent to LTL Gp

o It is always possible to restart:
AGEF P[1] = LO A AGEF P[2] = LO
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o Recall that p1 = ¢o iff VS.SE 1< SE ¢
o also holds (w.l.g.) when q is LTL and ¢, is CTL
o Of course, some CTL formulas cannot be expressed in LTL

o it is enough to put an E, since LTL always universally
quantifies paths
o so, there is not an LTL ¢ s.t. ¢ = EGp

o no, F—p is not the same, why?
o So, one might think: LTL is contained in CTL
o simply replace each temporal operator O with AQ, that'’s it

let T be a translator doing this
U/ BEt i

for any LTL formula ¢, ¢ = T(p)
actually, Gp = T(Gp) = AGp

© © o



o Theorem. Let ¢ be an LTL formula. Then, either i) ¢ = T(¢)
or ii) there does not exist a CTL formula ¢ s.t. ¢ =
o idea of proof: replacing with E is of course not correct, and
temporal operators on paths are the same

o Corollary. There exists an LTL formula ¢ s.t., for all CTL

formulas ¢, ¢ Z 9
o Proof of corollary:
o by the theorem above and the definitions, we need to find

Q an LTL formula ¢
Q aKSs

o where S = ¢ and S £ T ()

o viceversa is not possible
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For example, as for the LTL formula, we may take ¢ = FGp
o note instead that GFp = AGAFp

For example, as for the KS S, we may take

@)

s0 s1 s2

We have that S = FGp, but S [~ AFAGp
Thus, CTL requires “more” than the corresponding LTL
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o S [~ AFAGp means that
—(Vr € Path(S). 3j : Vp € Path(S,n(j)). V
= Jr € Path(S). Vj : Jp € Path(S,7())). 3
o the path 7 is a loop on s...
o § = FGp means that V7 € Path(S). 3j: Vk > j. p € m(k)
o Thus, there is not a CTL formula equivalent to FGp

k. p € p(k))
k. p & p(k)

o Furthermore, there is not an LTL formula equnzalent to

AFAG | duovesse
\ DELL'AQUILA ]
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CTL* introduced in 1986 (Emerson, Halpern) to include both
CTL and LTL

No restrictions on path quantifiers to be 1-1 with temporal
operators, as in CTL

State formulas: @ ::=true | p| 1 APy | =P | AV | EV
Path formulas: W = ® [ W1 AW [ W | WUV, | FV | GV

| UNIVERSITA
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o The intersection between CTL and LTL is both syntactic and
“semantic”

o Some formulas are both CTL and LTL in syntax: all those
involving only boolean combinations of atomic propositions

o “Semantic” intersection: some LTL formulas may be
expressed in CTL and vice versa, using different syntax

o AGAFp and GFp

° AGp and Gp she o -
o etc \ ; | BECEAGUILA o



bool turn, flag([2];
byte ncrit;

active [2] proctype user ()
{

assert(_pid == 0 || _pid == 1)
again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid]l == 0 || turn == 1 - _pid);
ncrit++;

assert (ncrit == 1); /* critical section */
ncrit--;

flag[_pid] = 0;

goto again e
| | onrversir oo
} BB Bl e



#define p 0
#define v 1
chan sema = [0] of { bit }; /* rendez-vous */

proctype dijkstra()
{ byte count = 1; /* local wariable */
do
(count == 1) -> semal!p; count = 0
/* send 0 and blocks, unless some other
proc ts already blocked in reception */
(count == 0) -> sema?v; count = 1
/* receive 1, same as above */
od
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proctype user ()

{ do
sema?p;
/* critical section */
semalv;
/* mon-critical section */
od
}
init

{ run dijkstra();
run user (); run user(); run user ()
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Almost equal to Murphi one

void Make_a_run(NFSS N)
{
let N =(S,{sp},Post);

s_curr = Sy;

if (some assertion fail in s_curr))
return with error message;
while (1) { /* loop forever */
if (Post(s_curr)=9)
return with deadlock message;
s_next = pick_a_state (Post(s_curr));
if (some assertion fail in s_curr))
return with error message;
s_curr = s_next;

}
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o Able to answer to the following questions:
o is there a deadlock (invalid end state)?
o are there reachable assertions which fail (safety)?
o is a given LTL formula (safety or liveness) ok in the current
system?
o is a given neverclaim (safety or liveness) ok in the current
system?
o It is possible to specify some side behaviours:
o is sending to a full channel blocking, or the message is dropped
without blocking?
o It may report unreachable code
o Promela statements in the model which are never executed
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o Similar to Murphi:

Q the SPIN compiler (SrcXXX/spin -a) is invoked on
model .prm and outputs 5 files:

o pan.c, pan.h, pan.m, pan.b, pan.t (unless there are errors...)
Q the 5 files given above are compiled with a C compiler

o it is sufficient to compile pan.c, which includes all other files
o in this way, an executable file model is obtained

O just execute model
o option --help gives an overview of all possible options



HashTable Visited = @;

DFS(graph G =(V,E), node v)

{
Visited := Visited U v;
foreach v eV t.c. (v,v)eE {
if (v ¢ Visited)
DFS(G, v');
}
¥
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DFS (graph G = (V,E))

{
§ := init; i := 1; depth := 0;
push(s, 1);
Down:
if (s € Visited)
goto Up;
Visited := Visited U s;

let §'={s'|(s,s') € E};
if (IS >= 1) {
s := i-th element in §’;
increment i1 on the top of the stack;
push(s, 1);
depth := depth + 1;

goto Down; o
| ) uxaversrra —
} \ f BEcHSIE! o



Up:
(s, i) := pop();
depth := depth - 1;
if (depth > 0)
goto Down;
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Represented function: f(a, b, c,d) = ab + acd + abcd
o recall that + is OR, - is AND, ~ is negation
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Taken from examples/smv-dist/short.smv

MODULE main
VAR
request : {Tr, Fa}; -- same as saying boolean
-- (stand for True and False)
state : {ready, busy};
ASSIGN
init(state)
next(state)

ready;

case
state = ready & (request = Tr): busy;
1 : {ready,busy};

esac;

SPEC

AG((request = Tr) -> AF state = busy) % e



Crd, Tr rd, Fa :>

Cbs, Tr bs, Fa :>
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Straight lines are then-edges
Dashed lines are else-edges Trans
Dotted lines are complemented-else-edges

request.0

state.O

next(state.0)




state.0

DISIM




MODULE user (semaphore)

VAR
state : {idle, entering, critical, exiting};
ASSIGN
init(state) := idle;
next(state) :=
case

state = idle: entering;

state = entering & !semaphore: critical;
state = critical: {critical, exiting};
state = exiting: idle;

TRUE : state;

esac; ‘¥\ S
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next (semaphore) :=
case
state = entering: TRUE;
state = exiting: FALSE;
TRUE: semaphore;
esac;
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MODULE main
VAR
semaphore : boolean;
procl : process user(semaphore);
proc2 : process user (semaphore);
ASSIGN
init (semaphore)

FALSE;

SPEC
AG(!(procl.state = critical & proc2.state = critical))

LTLSPEC

G F procl.state = critical ’%m.w\ m
. g e



0BDD 1fp(MuFormula T) /* uZ.T(Z) */

{

Q = Mx.0;
Q = T(Q);
/% T clearly says where Q must be replaced */
/* e.g.: if pZ. Ax.f(x)VZ(x), then
Q =X f(x)ANQ(x) */
while (Q# Q) {

Q = Q;
Q' = T(Q);
}
return Q; /* or Q, they are the same... */
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0BDD gfp(NuFormula T) /* vZ.T(Z) */
{
Q = M. 1;
Q = T(Q);
while (Q# Q') {
Q= Q5
QI = T(Q);
}

return Q;
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bool checkCTL(KS S, CTL ¢) {

let S=(S,I,R,L);

B = LblSt(p);

return Ax. /[(x) A—=B(x) = Ax. 0;
}
0BDD LblSt(CTL ¢) { /* also S=(S,,R L) */
if (Ip€ AP.p=p) return Ax. p(x);

else if (p=-¢) return Ax. -LblSt (¢)(x);
else if (p=a¢1Ap2)

return Ax.LblSt (¢1) (x)ALb1St (#2)(x);

else if (p=EX¢)

return Ax.3Jy: R(x,y)ALblSt () (y);

else if (¢ =EG¢)

return gfp (vZ. Ax. Lb1St (@) (x)A(Jy : R(x,y) ANZ(y))) ;
else if (p=¢; EU ¢y)

return 1fp(uZ. Ax. Lb1St (¢r) (x)V % o— m |
(Lb1St (b)) (x)A By : R(x, y)AZ(y))); & " ‘



