
Automated Verification of
Cyber-Physical Systems

A.A. 2022/2023
Corso di Laurea Magistrale in Informatica

Basic Notions

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

General Info for This Class

Automated Verification of Cyber-Physical Systems is an
elective course for the Master Degree in Computer Science

Lecturer: Igor Melatti

Where to find these slides and more:

https://igormelatti.github.io/aut_ver_cps/

20222023/index_eng.html

also on MS Teams: “DT0759: Automated Verification of
Cyber-Physical Systems (2022/23)”, code 11xu0gi

2 classes every week, 2 hours per class

https://igormelatti.github.io/aut_ver_cps/20222023/index_eng.html
https://igormelatti.github.io/aut_ver_cps/20222023/index_eng.html

Rules for Exams

Each exam has a written part (50% of mark) and a
project/paper (50% of mark)

each student may choose if making a project or reviewing a
paper
teams of at most 2 students are allowed for projects

Written exam will be a mix of open and closed questions on
the whole exam program

Project/paper may be discussed only after having passed the
written exam

however, pre-evaluation is possible

Rules for Exams

Project: perform verification of a given cyber-physical system

each team may choose one among the ones selected by lecturer
or may propose one (but wait for lecturer approval!)
each team will have to discuss its project with slides

Paper: read a conference or journal paper and present it with
slides

each student may choose one among the ones selected by
lecturer
or may propose one (but wait for lecturer approval!)

Model Checking Problem

Input: a system S and (at least) a property φ

more precisely, a model of S must be provided
that is, S must be described in some suitable language

Output:

PASS S satisfies φ, i.e., S |= φ

the system S is correct w.r.t. the property φ
mathematical certification, much better than,
e.g., testing

FAIL S does not satisfy φ, i.e., S ̸|= φ

the system S is buggy w.r.t. the property φ
a counterexample providing evidence of the
error is also returned

Model Checking vs. Other Verification Techniques

Model checking is fully automatic

a model checker only needs the description of S and the
property φ
“press button and go”
this is not true for other verification tools such as proof
checkers, which require human intervention in the process

Model checking is correct for both PASS and FAIL

unless the description of S, or the property φ, are wrong
this is not true for other verification techniques such as testing,
which only guarantees the FAIL result
a buggy system may pass all tests, because the error is in some
corner case

Model Checking Shortcomings

Only works for finite-state systems

typical example: you may verify a system with 3, 4 or 5
processes, but not with n processes, for a generic n

Requires skilled personnel to write descriptions (and
properties)

must know both the model checker language and the system
however, less skilled than a proof checker user
very few exceptions in which the model is automatically
extracted from the system
also direct translations from digital circuits to NuSMV are
available

Very resource demanding

besides PASS and FAIL, also OutOfMem and OutOfTime are
expected results...
bounded model checking: PASS is limited to execution up to a
given number of steps

Model Checking Algorithms

Two main categories:

Explicit visit the graph induced by the description of S
very good for invariants and LTL model
checking of communication protocols
on-the-fly generation of the graph: only the
reachable states are stored, the adjacency matrix
is implicitly given by the description of S
Murphi, SPIN

Symbolic represent sets of states and transition relations as
OBDDs

very good for LTL and CTL model checking of
hardware-like systems
all translated into a boolean formula
also SAT tools may be used (bounded model
checking)

Cyber-Physical Systems

A Cyber-Physical System (CPS) is a system where a physical
system is controlled and/or monitored by a software

They are either partially or fully autonomous

we will mainly deal with fully autonomous CPSs

Examples are everywhere:

Internet of Things devices
Unmanned Autonomous Vehicles
Drones
Medical Devices
Embedded Systems
...

Cyber-Physical Systems with Controllers

AD DA Plant

Control

Software

microcontroller

CPSs with Controllers: Classical Examples

Buck DC/DC Converter

CPSs with Controllers: Classical Examples

Buck DC/DC Converter

CPSs with Controllers: Classical Examples

Continuous time dynamics

˙iL = a1,1iL + a1,2vO + a1,3vD (1)

˙vO = a2,1iL + a2,2vO + a2,3vD (2)

q → vD = RoniD (3)

q → iD ≥ 0 (4)

u → vu = Roniu (5)

vD = vu − Vin (6)

q̄ → vD = Roff iD (7)

q̄ → vD ≤ 0 (8)

ū → vu = Roff iu (9)

iD = iL − iu (10)
where:

iL, vO are state variables

u ∈ {0, 1} is the action

CPSs with Controllers: Classical Examples

Discrete time dynamics with sampling time T

iL
′ = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (11)

vO
′ = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD . (12)

q → vD = RoniD(13)

q → iD ≥ 0 (14)

u → vu = Roniu (15)

vD = vu − Vin (16)

q̄ → vD = Roff iD (17)

q̄ → vD ≤ 0 (18)

ū → vu = Roff iu (19)

iD = iL − iu (20)

CPSs with Controllers: Classical Examples

Goal: keep vO in a desired safe interval

typically, 5− 0.01V ≤ vO ≥ 5 + 0.01V

Notwithstanding the input voltage Vi and the resistance R
may vary in some given interval

typically, R = 5± 25%Ω,Vi = 15± 25%V

Effectively used in laptops: from battery voltage (Vi) to
laptop processor voltage (vO)

CPSs with Controllers: Classical Examples

Inverted Pendulum

CPSs with Controllers: Classical Examples

Inverted Pendulum

CPSs with Controllers: Classical Examples

Continuous time dynamics

θ̈ =
g

l
sin θ +

1

ml2
Fu

where:

θ is the state variable

u ∈ {0, 1} is the action

m, l ,F are system parameters

CPSs with Controllers: Classical Examples

Continuous time dynamics

ẋ1 = x2 (21)

ẋ2 =
g

l
sin x1 +

1

ml2
Fu (22)

Discrete time dynamics with sampling time T

x ′1 = x1 + Tx2 (23)

x ′2 = x2 + T
g

l
sin x1 + T

1

ml2
Fu (24)

In This Course

To deal with cyber-physical systems:

Probabilistic Model Checking

rather than “are there errors?”, it is “is the error probability
low enough?”
the system is probabilistic, i.e., a Markov Chain

System Level Formal Verification

directly use a simulator instead of describing the system within
the model checker
this will also need some background on systems simulation

In This Course

To deal with cyber-physical systems:

Statistical Model Checking

rather than “are there errors?”, it is “is the error probability
low enough?”
the system is a non-probabilistic simulator
the answer is given with some statistical confidence

Automatic Synthesis of Controllers

rather than “are there errors in this system?”, it is “generate a
controller so that errors are avoided”

Formal Verification Methodologies: a Classification

There are two macro-categories:

Interactive methods

as the name suggests, not (fully) automatic
human intervention is typically required
in this course, we do not deal with such techniques

Automatic methods

only human intervention is to model the system

There also exist hybridations among the two categories

Formal Verification Methodologies: a Classification

There are two macro-categories:

Interactive methods

as the name suggests, not (fully) automatic
human intervention is typically required
in this course, we do not deal with such techniques

Automatic methods

only human intervention is to model the system

There also exist hybridations among the two categories

Interactive Methods

Also called proof checkers, proof assistants or high-order
theorem provers

Tools which helps in building a mathematical proof of
correctness for the given system and property

Pros

virtually no limitation to the type of system and property to be
verified

Cons

highly skilled personnel is needed
both in mathematical logic and in deductive reasoning
needed to “help” tools in building the proof

Interactive Methods

Used for projects with high budgets

For which the automatic methods limitations are not
acceptable

used, e.g., to prove correctness of microprocessor circuits or
OS microkernels

Some tools in this category (see
https://en.wikipedia.org/wiki/Proof_assistant):

HOL
PVS
Coq

https://en.wikipedia.org/wiki/Proof_assistant

Automatic Methods

Commonly dubbed Model Checking

Model Checking software tools are called model checkers

There are some tens model checkers developed; the most
important ones are listed in https://en.wikipedia.org/

wiki/List_of_model_checking_tools

Many are freely downloadable and modifiable for research and
study purposes

Research area with many achievements in over 30 years

https://en.wikipedia.org/wiki/List_of_model_checking_tools
https://en.wikipedia.org/wiki/List_of_model_checking_tools

Verification Tradeoffs

The Model Checking Dream

The Model Checking Dream

Actual Model Checking

In order to have this computationally feasible, we need a
strong assumption on the system under verification (SUV)

I.e., it must have a finite number of states

Finite State System (FSS)

In this way, model checkers “simply” have to implement
reachability-related algorithms on graphs

Such finite state assumption, though strong, is applicable to
many interesting systems

that is: many systems are actually FSSs
or they may be approximated as such
or a part of them may be approximated as such

What Is a State?

There are many notions of “state” in computer science

Model checking states are not the ones in UML-like state
diagrams

Model checking states are similar to operational semantics
states

That is: suppose that a system is “described” by n variables

Then, a state is an assignment to all n variables

given D1, . . . ,Dn as our n variables domains, then a state is
s ∈ ×n

i=1Di

What Is a State: Example

We have two identical processes accessing to a shared resource

in the figure below, i , j denote the two processes
the well-known Peterson algorithm is used

What Is a State: Example

The 5 “states” in the preceding figure are actually modalities

From a model checking point of view, they correspond to
multiple states

To see which are the actual states, let us model this system
with the following variables:

mi , with i = 1, 2: the modality for process i
Qi , with i = 1, 2: Qi is a boolean which holds iff process i
wants to access the shared resource
turn: shared variable

What Is a State: Example

Thus, the resulting model checking states are the following:

What Is a State: Example

There are 25 reachable states

assuming state ⟨L0, L0, f , f , 1⟩ as the starting one

All possible states are 200

there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 × 52 overall assignments

The L0 modality for the first process encloses 6 (reachable)
states

No need of guards on transitions!

guards will be needed for systems with external inputs

What Is a State: Example

There are 25 reachable states

assuming state ⟨L0, L0, f , f , 1⟩ as the starting one

All possible states are 200

there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 × 52 overall assignments

The L0 modality for the first process encloses 6 (reachable)
states

No need of guards on transitions!
guards will be needed for systems with external inputs

What Is a State: Example

There are 25 reachable states

assuming state ⟨L0, L0, f , f , 1⟩ as the starting one

All possible states are 200

there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 × 52 overall assignments

The L0 modality for the first process encloses 6 (reachable)
states
No need of guards on transitions!

guards will be needed for systems with external inputs

From State Diagrams to Model Checking

The UML-like state diagram is often useful to write the model

as we will see, this will depend on the model checker input
language

It is the model checker task to extract the global (reachable)
graph as seen before

And then analyze it

Murphi

Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

Murphi

Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

UML-like state diagram: this is the first process; the second
may be obtained exchanging 1’s with 2’s and viceversa

L1 L2 L3 L4L0

turn := 1; !Q[2] or turn = 2

Q[2] and turn = 1

Q[1] := false;

Q[1] := true;

Murphi

Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

two identical processes
each applies Peterson protocol to access to the critical section
L3
the first issuing the request enters L3
Q is a global variable, defined as an array of two integers

each process i may modify Q[i] and read Q[(i + 1) mod 2]

turn is another global variable, which may be both read and
modified by both processes

Murphi

Murphi description for Peterson protocol: let’s start with the
variables

of course turn and Q, but also two variables P for the modality
(“states” in the UML-like state diagram)
see 01.2 peterson.no rulesets.no parametric.m

to this aim, we define constants and types
the N constant (number of processes) is here fictious: only 2
processes, not more
this version of Peterson protocol only works for 2 processes

thus, the state space is
S = label t2 × {true, false}2 × {1, 2}

Variables for Murphi Model Describing Peterson Protocol

turn v ∈ {1..N}

v ∈ {L0, L1, L2, L3, L4}

v ∈ {true, false} v ∈ {true, false}

P

Q

v ∈ {L0, L1, L2, L3, L4}

Murphi

Hence, |S | = 52 × 22 × 2 = 200 (there are 200 possible states)

as a matter of comparison, the “state” L0 in the UML-like
state diagram actually contains 51 × 22 × 2 = 40 states...

However, as we will see, reachable states are about 10 times
less

2 initial states: turn may be initialied with any value in its
domain

Note that 01.2 peterson.no rulesets.no parametric.m

we have rules repeated 2 times in a nearly equal fashion

This can be done in this very simple model, but in general
descriptions must be parametric

Murphi

If we want to check Peterson with 3 processi, currently we
would have to add one more rule in the desciprion

Instead, it must be possible to only change the value of N
from 2 to 3

To write parametric descriptions in Murphi, rules are grouped
with rulesets

an index will allow to describe the behavior of the generic
process i
see 02.2 peterson.with rulesets.no parametric.m

Murphi

Invariant: of course, at any execution instant, there must be
only one state in L3 (mutual exclusion)

In a first order logic, it would be something like:

∀k ∈ {1, . . . , N}. ∀k ′ ∈ {1, . . . , N}. (k ̸= k ′∧P[k] = L3) ⇒ P[k ′] ̸= L3

Or, as a reverse:

¬(∃k ∈ {1, . . . , N}. ∃k ′ ∈ {1, . . . , N}. k ̸= k ′∧P[k] = L3∧P[k ′] = L3)

In the first version, it is stated what is correct to happen

In the first version, it is stated what is wrong to happen

In both 00.2 peterson.with rulesets.no parametric.m

and 02.2 peterson.no rulesets.no parametric.m

invariant is not parametric

See 03.2 peterson.with rulesets.parametric.m

Kripke Structures

Let AP be a set of “atomic propositions”

in the sense of first-order logic: each atomic proposition is
either true or false
tipically identified with lower case letters p, q, . . .

A Kripke Structure (KS) over AP is a 4-tuple ⟨S , I ,R, L⟩
S is a finite set, its elements are called states
I ⊆ S is a set of initial states
R ⊆ S × S is a transition relation
L : S → 2AP is a labeling function

Labeled Transition Systems

A Labeled Transition System (LTS) is a 4-tuple ⟨S , I ,Λ, δ⟩
S is a finite set of states as before
I ⊆ S is a set of initial states as before (not always included)
Λ is a finite set of labels
δ ⊆ S × Λ× S is a labeled transition relation

Peterson’s Mutual Exclusion as a Kripke Structure

S = {(p1, p2, q1, q2, t) | p1, p2 ∈ {L0,L1,L2,L3,L4}, q1, q2 ∈
{0, 1}, t ∈ {1, 2}} = {L0,L1,L2,L3,L4}2 × {0, 1}2 × {1, 2}
I = {L0}2 × {0}2 × {1, 2}
R: see next slide

AP = {(P1 = v) | v ∈ {L0,L1,L2,L3,L4}} ∪ {(P2 = v) | v ∈
{L0,L1,L2,L3,L4}} ∪ {(Q1 = v) | v ∈ {0, 1}} ∪ {(Q2 =
v) | v ∈ {0, 1}} ∪ {(turn = v) | v ∈ {1, 2}}

e.g.: L(L0,L0, 0, 0, 1)) = {(P1 = L0), (P2 = L0), (Q1 =
0), (Q2 = 0), (turn = 1)}

Peterson’s Mutual Exclusion as a Kripke Structure

E.g.: ((L0,L0, 0, 0, 1), (L1,L0, 1, 0, 1)) ∈ R, whilst
((L0,L0, 0, 0, 1), (L2,L0, 0, 0, 1)) /∈ R

Of course, |R| = number of arrows in figure above

Kripke Structure vs Labeled Transition Systems

KSs have atomic propositions on states, LTSs have labels on
transitions

In model checking, atomic propositions are mandatory

to specify the formula to be verified, as we will see
a first example was the invariant in Murphi

Instead, it is not required to have a label on transitions

Murphi allows to do so, but it is optional
may be easily added automatically, if needed

Labels are typically needed when:

we deal with macrostates, as in UML state diagrams
when we are describing a complex system by specifying its
sub-components, so labels are used for synchronization

Total Transition Relation

In many cases, the transition relation R is required to be total

∀s ∈ S .∃s ′ ∈ S : (s, s ′) ∈ R

this of course allows also s = s ′ (self loop)

In the Peterson’s example, the relation is actually total

Murphi allows also non-total relations, by using option -ndl

note however that not giving option -ndl is stronger:
∀s ∈ S .∃s ′ ∈ S : s ̸= s ′ ∧ (s, s ′) ∈ R
otherwise, if s is s.t. ∀s ′. s = s ′ ∨ (s, s ′) /∈ R, Murphi calls s a
deadlock state
that is, you cannot go anywhere, except possibly self looping
on s

By deleting any rule, we will obtain a non-total transition
relation

Non-Determinism

The transition relation is, as the name suggests, a relation

Thus, starting from a given state, it is possible to go to many
different states

in a deterministic system,
∀s1, s2, s3 ∈ S . (s1, s2) ∈ R ∧ (s1, s3) ∈ R → s2 = s3
this does not hold for KSs

This means that, starting from state s1, the system may
non-deterministically go either to s2 or to s3

or many other states

Motivations for non-determinism: modeling choices!

underspecified subsystems
unpredictable interleaving
interactions with an uncontrollable environment
...

Some Useful Notation

Given a KS S = ⟨S , I ,R, L⟩, we can define:

the predecessor function PreS : S → 2S

defined as PreS(s) = {s ′ ∈ S | (s ′, s) ∈ R}
we will write simply Pre(s) when S is understood

the successor function Post : S → 2S

defined as Post(s) = {s ′ ∈ S | (s, s ′) ∈ R}

Note that, if S is deterministic, ∀s ∈ S . |Post(s)| ≤ 1

Paths in KSs

A path (or execution) on a KS S = ⟨S , I ,R, L⟩ is a sequence
π = s0s1s2 . . . such that:

∀i ≥ 0. si ∈ S (it is composed by states)
∀i ≥ 0. (si , si+1) ∈ R (it only uses valid transitions)

We will denote i-th state of a path as π(i) = si

Note that paths in LTSs also have actions: π = s0a0s1a1 . . .
s.t. (si , ai , si+1 ∈ δ)

Paths in KSs

The length of a path π is the number of states in π

paths can be either finite π = s0s1 . . . sn, in which case
|π| = n + 1
or infinite π = s0s1 . . ., in which case |π| = ∞

We will denote the prefix of a path up to i as π|i = s0 . . . si
a prefix of a path is always a finite path

A path π is maximal iff one of the following holds

|π| = ∞
|π| = n + 1 and |Post(π(n))| = 0

that is, ∀s ∈ S . (π(n), s) /∈ R
i.e., the last state of the path has no successors
often called terminal state

If R is total, maximal paths are always infinite

for many model checking algorithms, this is required

Reachability

The set of paths of S starting from s ∈ S is denoted by
Path(S, s) = {π | π is a path in S ∧ π(0) = s}
The set of paths of S is denoted by
Path(S) = ∪s∈IPath(S, s)

that is, they must start from an initial state

A state s ∈ S is reachable iff
∃π ∈ Path(S), k ≤ |π| : π(k) = s

i.e., there exists a path from an initial state leading to s
through valid transitions

The set of reachable states is defined by
Reach(S) = {π(i) | π ∈ Path(S), i ≤ |π|}

Safety Property Verification

Verification of invariants: nothing bad happens

The property is a formula φ : S → {0, 1}
built using boolean combinations of atomic propositions in
p ∈ AP
i.e., the syntax is

Φ : (Φ) | Φ ∧ Φ | Φ ∨ Φ | ¬Φ | p

The KS S satisfies φ iff φ holds on all reachable states

∀s ∈ Reach(S). φ(s) = 1

Note that it may happen that φ(s) = 0 for some s ∈ S : never
mind, if s /∈ Reach(S)

How to Verify a Murphi Description M

Theoretically, extract KS S and property φ from M as
described above

for a given invariant I in M, φ(s) = ζ(I , s) for all s ∈ S

Then, KS S satisfies φ iff φ holds on all reachable states

∀s ∈ Reach(S). φ(s) = 1

Thus, consider KS as a graph and perform a visit

states are nodes, transitions are edges

If a state e s.t. φ(e) = 0 is found, then we have an error

Otherwise, all is ok

How to Verify a Murphi Description M

From a practical point of view, many optimization may be
done, but let us stick to the previous scheme

The worst case time complexity for a DFS or a BFS is
O(|V |+ |E |) (and same for space complexity)

For KSs, this means O(|S |+ |R|), thus it is linear in the size
of the KS

Is this good? NO! Because of the state space explosion
problem

Assuming that B bits are needed to encode each state

i.e., B =
∑n

i=1 bi , being bi the number of bits to encode
domain Di

We have that |S | = O(2B)

State Space Explosion

The “practical” input dimension is B, rather than |S | or |R|
Typically, for a system with N components, we have O(N)
variables, thus O(B) encoding bits

It is very common to verify a system with N components, and
then (if N is ok) also for N + 1 components

verifying a system with a generic number N of components is a
typically proof checker task...

This entails an esponential increase in the size of |S |
Thus we need “clever” versions of BFS/DFS

Standard BFS: No Good for Model Checking

Assumes that all graph nodes are in RAM

For KSs, graph nodes are states, and we now there are too
many

state space explosion

You also need a full representation of the graph, thus also
edges must be in RAM

using adjacency matrices or lists does not change much
for real-world systems, you may easily need TB of RAM

Even if you have all the needed RAM, there is a huge
preprocessing time needed to build the graph from the Murphi
specification

Then, also BFS itself may take a long time

Murphi BFS

We need a definition inbetween the model and the KS: NFSS
(Nondeterministic Finite State System)

N = ⟨S , I ,Post⟩, plus the invariant φ

S is the set of states, I ⊆ S the set of initial states
Post : S → 2S is the successor function as defined before

given a state s, it returns T s.t. t ∈ T → (s, t) ∈ R

no labeling, we already have φ

Murphi BFS

KSs and NFSSs differ on having Post instead of R

Post may easily be defined from the Murphi specification

Such definition is implicit, as programming code, thus
avoiding to store adjacency matrices or lists

t ∈ Post(s) iff there is a rule Ti ∈ T s.t. Ti guard is true in s
and Ti body changes s to t

see above for using η and ζ

Essentially, if the current state is s, it is sufficient to inspect all
(flattened) rules in the Murphi specification M

for all guards which are enabled in s, execute the body so as
to obtain t, and add t to next(s)

This is done “on the fly”, only for those states s which must
be explored

Murphi Simulation

void Make_a_run(NFSS N , invariant φ)
{

let N = ⟨S , I ,Post⟩;
s_curr = pick_a_state(I);
i f (!φ(s_curr))
return with error message;

while (1) { /* loop forever */

s_next = pick_a_state(Post(s_curr));
i f (!φ(s_next))
return with error message;

s_curr = s_next;

}

}

Murphi Simulation

void Make_a_run(NFSS N , invariant φ)
{

let N = ⟨S , I ,Post⟩;
s_curr = pick_a_state(I);
i f (!φ(s_curr))
return with error message;

while (1) { /* loop forever */

i f (Post(s_curr) = ∅)

return with deadlock message;

s_next = pick_a_state(Post(s_curr));
i f (!φ(s_next))
return with error message;

s_curr = s_next;

}

}

Murphi Simulation

Similar to testing

If an error is found, the system is bugged

or the model is not faithful
actually, Murphi simulation is used to understand if the model
itself contains errors

If an error is not found, we cannot conclude anything

The error state may lurk somewhere, out of reach for the
random choice in pick a state

Standard BFS (Cormen-Leiserson-Rivest)

Murphi BFS

FIFO Queue Q;

HashTable T;

bool BFS(NFSS N , AP φ)
{

let N = (S , I , Post);
foreach s in I {

i f (!φ(s))
return f a l s e ;

}

foreach s in I
Enqueue(Q, s);

foreach s in I
Hash In s e r t (T, s);

Murphi BFS

while (Q ̸= ∅) {

s = Dequeue(Q);
foreach s_next in Post(s) {

i f (!φ(s_next))
return f a l s e ;

i f (s_next i s not in T) {

Enqueue(Q, s_next);

Hash In s e r t (T, s_next);

} /* if */ } /* foreach */ } /* while */

return true;
}

Murphi BFS

Edges are never stored in memory

(Reachable) states are stored in memory only at the end of
the visit

inside hashtable T

This is called on-the-fly verification

States are marked as visited by putting them inside an
hashtable

rather than coloring them as gray or black
which needs the graph to be already in memory

State Space Explosion

State space explosion hits in the FIFO queue Q and in the
hashtable T

and of course in running time...

However, Q is not really a problem

it is accessed sequentially
always in the front for extraction, always in the rear for
insertion
can be efficiently stored using disk, much more capable of
RAM

T is the real problem

random access, not suitable for a file
what to do?
before answering, let’s have a look at Murphi code

Murphi Usage

As for all explicit model checker, a Murphi verification has the
following steps:

0 compile Murph source code and write a Murphi model
model.m

1 invoke Murphi compiler on model.m: this generates a file
model.cpp

mu options model.m

see mu -h for available options

2 invoke C++ compiler on model.cpp: this generates an
executable file

g++ -Ipath to include model.cpp -o model

path to include is the include directory inside Murphi
distribution

3 invoke the executable file

./model options

see ./model -h for available options

LTL Syntax

Φ ::= p | Φ1 ∧ Φ2 | ¬Φ | (Φ) | XΦ | Φ1 U Φ2

Other derived operators:

of course true, false, OR and other propositional logic
connectors
future (or eventually): FΦ = true U Φ
globally: GΦ = ¬(true U ¬Φ)
release: Φ1 R Φ2 = ¬(¬Φ1 U ¬Φ2)
weak until: Φ1 W Φ2 = (Φ1 U Φ2) ∨ GΦ1

Other notations:

next: XΦ = ⃝Φ
GΦ = □Φ
FΦ = ♢Φ

We are dropping past operators, thus this is pure future LTL

LTL Semantics

Goal: formally defining when S |= φ, being S a KS and φ an
LTL formula

we say that S satisfies φ, or φ holds in S
This is true when, for all paths π of S, π satisfies φ

i.e., ∀π ∈ Path(S). π |= φ
symbol |= is overloaded...

For a given π, π |= φ iff π, 0 |= φ

Finally, to define when π, i |= φ, a recursive definition over the
recursive syntax of LTL is provided

π ∈ Path(S), i ∈ N

LTL Semantics for π, i |= φ

∀π ∈ Path(S), i ∈ N. π, i |= true

π, i |= p iff p ∈ L(π(i))

π, i |= Φ1 ∧ Φ2 iff π, i |= Φ1 ∧ π, i |= Φ2

π, i |= ¬Φ iff π, i ̸|= Φ

π, i |= XΦ iff π, i + 1 |= Φ

π, i |= Φ1 U Φ2 iff ∃k ≥ i : π, k |= Φ2 ∧∀i ≤ j < k . π, j |= Φ1

LTL Semantics for Added Operators

It is easy to prove that:

π, i |= GΦ iff ∀j ≥ i . π, j |= Φ
π, i |= FΦ iff ∃j ≥ i . π, j |= Φ
π, i |= Φ1 R Φ2 iff ∀j ≥ i . (∀k < j . π, k |= Φ1) → π, j |= Φ2

π, i |= Φ1 W Φ2 iff (∀j ≥ i . π, j |= Φ1) ∨ (∃k ≥ i : π, k |=
Φ2 ∧ ∀i ≤ j < k . π, j |= Φ1)

For many formulas, it is silently required that paths are infinite

That’s why transition relations in KSs must be total

Safety and Liveness Properties in LTL

Given an LTL formula φ, φ is a safety formula iff
∀S. (∃π ∈ Path(S) : π ̸|= φ) → ∃k : π|k ̸|= φ

Given an LTL formula φ, φ is a liveness formula iff
∀S. (∃π ∈ Path(S) : π ̸|= φ) → |π| = ∞
All LTL formulas are either safety, liveness, or the AND of a
safety and a liveness

being defined on paths, the counterexample is always a path

Safety properties are those involving only G, X, true and
atomic propositions

Liveness are all those involving an F, or a U where the first
formula is not the constant true

Some formulas are both safety and liveness, like true, G true
and so on

LTL Examples

S |= Fp since p holds in the
first state
For full: let π ∈ Path(S)
π, 0 |= Fp with j = 0

recall: π, i |= FΦ iff
∃j ≥ i . π, j |= Φ
π, i |= p iff p ∈ L(π(i))

LTL Examples

S ̸|= Fa since s6 is not reach-
able from s0
counterexample: π =
s0s5s0s5 . . .
For full: π, 0 ̸|= Fa as, for all
j ≥ 0, a /∈ L(π(j))

Counterexample is infinite,
thus this is a liveness property
Any finite prefix of π is not a
counterexample

LTL Examples

S ̸|= Gp since there are many
counterexamples, here is one:
π = s0s5s0s5 . . .
For full: π, 0 ̸|= Gp with j = 1

recall: π, i |= GΦ iff
∀j ≥ i . π, j |= Φ
π, i |= p iff p ∈ L(π(i))

Safety property, actually
π|2 is enough
Every path having π|2 as a
prefix is a counterexample

LTL Examples

S |= G¬a since s6 is not
reachable from s0
For full: let π ∈ Path(S)
π, 0 |= G¬a as the only state
s with a ∈ L(s) is s6, which is
not reachable from s0

recall: π ∈ Path(S) im-
plies π(0) ∈ I , thus π(0) = s0
here

LTL Examples

S |= p U q since p ∈ L(s0),
next(s0) = {s1, s5} and q ∈
L(s1) ∧ q ∈ L(s5)

LTL Examples

S ̸|= p U r , a counterexample
is π = s0s1(s2s3s4)
Again this is a liveness formula,
even if π|1 would have been
enough
In fact, you have to consider all
possible KSs...

LTL Examples

S ̸|= ¬(p U r), a counterexam-
ple is π = (s0s5)
Thus it may happen that S ̸|=
Φ and S ̸|= ¬(Φ)
Instead, it is impossible that
S |= Φ and S |= ¬(Φ)

LTL Examples

S ̸|= FGp, a counterexample is
π = s0s1(s2s3s4)
Again this is a liveness formula

LTL Examples

S |= GFp
All lassos are s0s5 or s2s3s4
In both such lassos, there are
states in which p holds

LTL Examples

S |= GFp ∨ FGp
Consequence of the two previ-
ous slides

LTL Examples

S ̸|= G(p U q), a counterexam-
ple is π = s0s1(s2s3s4)
(p U q) must hold at any
reachable state
Ok in s0, s1, s2, but not in s3

LTL Non-Toy Examples

Recall the Peterson’s protocol: checking mutual exclusion is
G(p ∧ q), being p = P[1] = L3, q = P[2] = L3

all invariants are of the form GP, where P does not contain
modal operators X, U or F

Checking that both processes access to the critical section
infinitely often is GF P[1] = L3 ∧ GF P[2] = L3

liveness property: no process is infinitely banned to access the
critical section

Even better: G (P[1] = L2 → F P[1] = L3)

the same for the other process
since it is simmetric, this is actually enough

Equivalence Between LTL Properties

Definition of equivalence between LTL properties:
φ1 ≡ φ2 iff ∀S. S |= φ1 ⇔ S |= φ2

equivalent: ∀σ...
Idempotency:

FFp ≡ Fp
GGp ≡ Gp
p U (p U q) ≡ (p U q) U q ≡ p U q

Absorption:

GFGp ≡ FGp
FGFp ≡ GFp

Expansion (used by LTL Model Checking algorithms!):

p U q ≡ q ∨ (p ∧ X(p U q))
Fp ≡ p ∨ XFp
Gp ≡ p ∧ XGp

CTL Syntax

Φ ::= p | Φ1 ∧ Φ2 | ¬Φ | (Φ) | EXΦ | EGΦ | EΦ1 U Φ2

Other derived operators (besides true, false, OR, etc):
EFΦ = Etrue U Φ

cannot be defined using E¬G¬Φ, as this is not a CTL formula
actually, it is a CTL* formula (see later)

AFΦ = ¬EG¬Φ, AGΦ = ¬EF¬Φ, AXΦ = ¬EX¬Φ
AΦ1 U Φ2 = (¬E¬Φ2 U (¬Φ1 ∧ ¬Φ1)) ∧ ¬EG¬Φ2

Φ1AUΦ2 = AΦ1UΦ2, Φ1EUΦ2 = EΦ1UΦ2

Comparison with LTL Syntax

Φ ::= true | p | Φ1 ∧ Φ2 | ¬Φ | (Φ) | XΦ | Φ1 U Φ2

Essentially, all temporal operators are preceded by either E or
G

with some care for U

CTL Semantics

Goal: formally defining when S |= φ, being S a KS and φ a
CTL formula

This is true when, for all initial states s ∈ I of S, sπφ
thus, CTL is made of state formulas
LTL has path formulas

To define when s |= φ, a recursive definition over the recursive
syntax of CTL is provided

no need of an additional integer as for LTL syntax

CTL Semantics for s, i |= φ

∀s ∈ S . s, i |= true

s |= p iff p ∈ L(s)

s |= Φ1 ∧ Φ2 iff s |= Φ1 ∧ s |= Φ2

s |= ¬Φ iff s ̸|= Φ

s |= EXΦ iff ∃π ∈ Path(S, s). π(1) |= Φ

s |= EGΦ iff ∃π ∈ Path(S, s). ∀j . π(j) |= Φ

s |= EΦ1 U Φ2 iff
∃π ∈ Path(S, s)∃k : π(k) |= Φ2 ∧ ∀j < k. π(j) |= Φ1

CTL Semantics for Added Operators

It is easy to prove that:

s |= AGΦ iff ∀π ∈ Path(S, s). ∀j . π(j) |= Φ
s |= AFΦ iff ∀π ∈ Path(S, s). ∃j . π(j) |= Φ
analogously for AU, AR, AW
just replace ∀ with ∃ for EF, ER, EW

As for CTL, for many formulas, it is silently required that
paths are infinite

So again transition relations in KSs must be total

Safety and Liveness Properties in CTL

Some CTL formulas may be neither safety nor liveness

being defined on states, the counterexample may be an entire
computation tree

Safety properties are those involving only AG, AX, true and
atomic propositions

Some formulas are both safety and liveness, like true, G true
and so on

Liveness are formulas like AF, AFAG, AU

EF or EG are neither liveness nor safety

CTL Examples

S |= AFp since p holds in the
first state
For full: s0 |= Fp since p ∈
L(s0), thus, for all paths start-
ing in s0, p holds in the first
state, so it holds eventually

CTL Examples

S |= EFp for the same reason
as above
If it holds for all paths, then it
holds for one path
AFΦ → EFΦ
The same holds for the other
temporal operators G,U etc

CTL Examples

S ̸|= EFa since s6 is not reach-
able
Note that the counterexample
cannot be a single path
Since it would not enough to
disprove existence
The full reachable graph must
be provided
One could also show the tree of
all paths
Neither safety nor liveness

CTL Examples

S |= A(p U q) since p ∈ L(s0),
next(s0) = {s1, s5} and q ∈
L(s1) ∧ q ∈ L(s5)

CTL Examples

S ̸|= A(p U r), a counterexam-
ple is π = s0s1(s2s3s4)

CTL Examples

S |= E(p U r), an example is
π = (s0s5)

CTL Examples

S ̸|= ¬E(p U r), a counterex-
ample is π = (s0s5)
In fact, S ̸|= Φ iff S |= ¬(Φ)
No hidden quantifier...

CTL Examples

S ̸|= AFAGp, a counterexam-
ple is π = s0s1(s2s3s4)
This is a liveness formula

CTL Examples

S ̸|= EFEGp, a counterexam-
ple is again a computation tree
All lassos are s0s5 or s2s3s4
In both such lassos, there are
states in which p does not hold

CTL Examples

S ̸|= AFEGp, a counterexam-
ple is again a computation tree
Since S ̸|= EFEGp...

CTL Examples

S ̸|= EFAGp, a counterexam-
ple is again a computation tree
Since S ̸|= EFEGp...

CTL Non-Toy Examples

Recall the Peterson’s protocol: checking mutual exclusion is
AG(p ∧ q), being p = P[1] = L3, q = P[2] = L3

equivalent to LTL Gp

It is always possible to restart:
AGEF P[1] = L0 ∧ AGEF P[2] = L0

CTL vs. LTL: a Comparison

Recall that φ1 ≡ φ2 iff ∀S. S |= φ1 ⇔ S |= φ2

also holds (w.l.g.) when φ1 is LTL and φ2 is CTL

Of course, some CTL formulas cannot be expressed in LTL

it is enough to put an E, since LTL always universally
quantifies paths
so, there is not an LTL φ s.t. φ ≡ EGp

no, F¬p is not the same, why?

So, one might think: LTL is contained in CTL

simply replace each temporal operator O with AO, that’s it
let T be a translator doing this
for any LTL formula φ, φ ≡ T (φ)
actually, Gp ≡ T (Gp) = AGp

CTL vs. LTL: a Comparison

Theorem. Let φ be an LTL formula. Then, either i) φ ≡ T (φ)
or ii) there does not exist a CTL formula ψ s.t. φ ≡ ψ

idea of proof: replacing with E is of course not correct, and
temporal operators on paths are the same

Corollary. There exists an LTL formula φ s.t., for all CTL
formulas ψ, φ ̸≡ ψ

Proof of corollary:
by the theorem above and the definitions, we need to find

1 an LTL formula φ
2 a KS S

where S |= φ and S ̸|= T (φ)

viceversa is not possible

CTL vs. LTL: a Comparison

For example, as for the LTL formula, we may take φ = FGp
note instead that GFp ≡ AGAFp

For example, as for the KS S, we may take

We have that S |= FGp, but S ̸|= AFAGp

Thus, CTL requires “more” than the corresponding LTL

CTL vs. LTL: a Comparison

S ̸|= AFAGp means that
¬(∀π ∈ Path(S). ∃j : ∀ρ ∈ Path(S, π(j)). ∀k . p ∈ ρ(k))
= ∃π ∈ Path(S). ∀j : ∃ρ ∈ Path(S, π(j)). ∃k . p ̸∈ ρ(k)

the path π is a loop on s0...

S |= FGp means that ∀π ∈ Path(S). ∃j : ∀k ≥ j . p ∈ π(k)

Thus, there is not a CTL formula equivalent to FGp

Furthermore, there is not an LTL formula equivalent to
AFAGp

CTL, LTL and CTL*

CTL* introduced in 1986 (Emerson, Halpern) to include both
CTL and LTL

No restrictions on path quantifiers to be 1-1 with temporal
operators, as in CTL

State formulas: Φ ::= true | p | Φ1 ∧ Φ2 | ¬Φ | AΨ | EΨ
Path formulas: Ψ ::= Φ | Ψ1 ∧Ψ2 | ¬Ψ | Ψ1UΨ2 | FΨ | GΨ

CTL, LTL and CTL*

The intersection between CTL and LTL is both syntactic and
“semantic”

Some formulas are both CTL and LTL in syntax: all those
involving only boolean combinations of atomic propositions

“Semantic” intersection: some LTL formulas may be
expressed in CTL and vice versa, using different syntax

AGAFp and GFp
AGp and Gp
etc

Peterson Protocol in Promela

bool turn , flag [2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit ++;

assert(ncrit == 1); /* critical section */

ncrit --;

flag[_pid] = 0;

goto again

}

Dijkstra Protocol in Promela

#define p 0

#define v 1

chan sema = [0] of { bit }; /* rendez -vous */

proctype dijkstra ()

{ byte count = 1; /* local variable */

do
:: (count == 1) -> sema!p; count = 0

/* send 0 and blocks , unless some other

proc is already blocked in reception */

:: (count == 0) -> sema?v; count = 1

/* receive 1, same as above */

od

}

Dijkstra Protocol in Promela

proctype user()

{ do
:: sema?p;

/* critical section */

sema!v;

/* non -critical section */

od

}

init

{ run dijkstra ();

run user(); run user(); run user()

}

SPIN Simulation

Almost equal to Murphi one

void Make_a_run(NFSS N)

{

let N = ⟨S , {s0},Post⟩;
s_curr = s0;
i f (some assertion fail in s_curr))

return with error message;

while (1) { /* loop forever */

i f (Post(s_curr) = ∅)

return with deadlock message;

s_next = pick_a_state(Post(s_curr));
i f (some assertion fail in s_curr))

return with error message;

s_curr = s_next;

}

}

SPIN Verification

Able to answer to the following questions:

is there a deadlock (invalid end state)?
are there reachable assertions which fail (safety)?
is a given LTL formula (safety or liveness) ok in the current
system?
is a given neverclaim (safety or liveness) ok in the current
system?

It is possible to specify some side behaviours:

is sending to a full channel blocking, or the message is dropped
without blocking?

It may report unreachable code

Promela statements in the model which are never executed

SPIN Verification

Similar to Murphi:
1 the SPIN compiler (SrcXXX/spin -a) is invoked on

model.prm and outputs 5 files:

pan.c, pan.h, pan.m, pan.b, pan.t (unless there are errors...)

2 the 5 files given above are compiled with a C compiler

it is sufficient to compile pan.c, which includes all other files
in this way, an executable file model is obtained

3 just execute model

option --help gives an overview of all possible options

Standard Recursive DFS

HashTable Visited = ∅;

DFS(graph G = (V ,E), node v)
{

Visited := Visited ∪ v ;
foreach v ′ ∈ V t.c. (v , v ′) ∈ E {

i f (v ′ /∈ Visited)

DFS(G , v ′);

}

}

Iterative DFS

DFS(graph G = (V ,E))
{

s := init; i := 1; depth := 0;

push(s, 1);
Down:

i f (s ∈ Visited)

goto Up;

Visited := Visited ∪ s;
let S ′ = {s ′ | (s, s ′) ∈ E};
i f (|S ′| >= i) {

s := i-th element in S ′;

increment i on the top of the stack;

push(s, 1);
depth := depth + 1;

goto Down;

}

Iterative DFS

Up:

(s, i) := pop();

depth := depth - 1;

i f (depth > 0)

goto Down;

}

Binary Decision Diagrams

Represented function: f (a, b, c , d) = ab + ācd + ab̄cd

recall that + is OR, · is AND, ·̄ is negation

NuSMV Input Language

Taken from examples/smv-dist/short.smv

MODULE main

VAR

request : {Tr, Fa}; -- same as saying boolean

-- (stand for True and False)

state : {ready, busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready & (request = Tr): busy;

1 : {ready,busy};

esac;

SPEC

AG((request = Tr) -> AF state = busy)

Automata for short.smv: I and R

bs, Tr

rd, Tr

bs, Fa

rd, Fa

OBDDs for short.smv: R

Straight lines are then-edges
Dashed lines are else-edges
Dotted lines are complemented-else-edges

 request.0

 state.0

 next(state.0)

 Trans

0x22

0x21

1

0x20

OBDDs for short.smv: I

 state.0

 Init

0x6

1

NuSMV Input Language

MODULE user(semaphore)

VAR

state : {idle, entering, critical, exiting};

ASSIGN

init(state) := idle;

next(state) :=

case

state = idle: entering;

state = entering & !semaphore: critical;

state = critical: {critical, exiting};

state = exiting: idle;

TRUE : state;

esac;

NuSMV Input Language

next(semaphore) :=

case

state = entering: TRUE;

state = exiting: FALSE;

TRUE: semaphore;

esac;

NuSMV Input Language

MODULE main

VAR

semaphore : boolean;

proc1 : process user(semaphore);

proc2 : process user(semaphore);

ASSIGN

init(semaphore) := FALSE;

SPEC

AG(!(proc1.state = critical & proc2.state = critical))

LTLSPEC

G F proc1.state = critical

Computation of Least (Minimum) Fixpoint

OBDD lfp(MuFormula T) /* µZ .T (Z) */

{

Q = λx . 0;
Q ′ = T (Q);
/* T clearly says where Q must be replaced */

/* e.g.: if µZ . λx . f (x) ∨ Z (x), then

Q ′ = λx . f (x) ∧ Q(x) */

while (Q ̸= Q ′) {

Q = Q ′;

Q ′ = T (Q);
}

return Q; /* or Q ′, they are the same ... */

}

Computation of Greatest (Maximum) Fixpoint

OBDD gfp(NuFormula T) /* νZ .T (Z) */

{

Q = λx . 1;
Q ′ = T (Q);
while (Q ̸= Q ′) {

Q = Q ′;

Q ′ = T (Q);
}

return Q;

}

CTL Model Checking

bool checkCTL(KS S, CTL φ) {

let S = ⟨S , I ,R, L⟩;
B = LblSt(φ);
return λx . I (x) ∧ ¬B(x) = λx . 0;

}

OBDD LblSt(CTL φ) { /* also S = ⟨S , I ,R, L⟩ */

i f (∃p ∈ AP. φ = p) return λx . p(x);
e l se i f (φ = ¬ϕ) return λx . ¬LblSt(ϕ)(x);
e l se i f (φ = ϕ1 ∧ ϕ2)

return λx .LblSt(ϕ1)(x)∧LblSt(ϕ2)(x);
e l se i f (φ = EXϕ)
return λx . ∃y : R(x , y)∧LblSt(ϕ)(y);

e l se i f (φ = EGϕ)
return gfp(νZ . λx . LblSt(ϕ)(x) ∧ (∃y : R(x , y) ∧ Z (y)));

e l se i f (φ = ϕ1 EU ϕ2)

return lfp(µZ . λx . LblSt(ϕ2)(x)∨
(LblSt(ϕ1)(x) ∧ (∃y : R(x , y) ∧ Z (y))));

}

