
Automated Verification of
Cyber-Physical Systems

A.A. 2022/2023
Corso di Laurea Magistrale in Informatica

Simulation of Systems

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Simulation vs Model Checking

In “standard” Model Checking, we are given

a non-deterministic Kripke Structure (KS)
an LTL or CTL property to be verified

The output is either PASS or FAIL

if PASS, then all evolutions (paths) of the given model fulfill
the given property
if FAIL, we also have a counterexample

Simulation of a system only considers one path

Murphi Simulation

void Make_a_run(NFSS N , invariant φ)
{

let N = ⟨S , I ,Post⟩;
s_curr = pick_a_state(I);
i f (!φ(s_curr))
return with error message;

while (1) { /* loop forever */

i f (Post(s_curr) = ∅)

return with deadlock message;

s_next = pick_a_state(Post(s_curr));
i f (!φ(s_next))
return with error message;

s_curr = s_next;

}

}

SPIN Simulation

void Make_a_run(NFSS N)

{

let N = ⟨S , {s0},Post⟩;
s_curr = s0;
i f (some assertion fail in s_curr))

return with error message;

while (1) { /* loop forever */

i f (Post(s_curr) = ∅)

return with deadlock message;

s_next = pick_a_state(Post(s_curr));
i f (some assertion fail in s_curr))

return with error message;

s_curr = s_next;

}

}

Repeating a Simulation

Simulations may be deterministic or probabilistic

both Murphi and SPIN simulations are probabilistic
at each step, a transition is chosen among the n possible ones
with probability 1

n
of course, n may be different at each step

Running multiple probabilistic simulations typically implies
obtaining different paths

the longest the path, the more likely this is to happen

Repeating a Simulation

For deterministic simulations, all runs are the same

multiple simulations all result in the same path

Deterministic simulation are however important when inputs
from the environment are present

this is actually true for many systems
inputs could be required to be all present from the start, or to
be provided during the system evolution

Running multiple simulation result in different paths if we vary
the inputs to be received

this is actually true for many systems

We of course may have inputs from the environment also in
probabilistic simulations

Simulation

Similar to testing

If an error is found, the system is bugged

or the model is not faithful
actually, simulation in standard model checking is also used to
understand if the model itself contains errors

If an error is not found, we cannot conclude anything

The error state may lurk somewhere, out of reach for the
random choice in pick a state

Simulation vs Modeling

However, for complex CPSs simulation is needed

In fact, accurately modeling a complex CPS in a classical
model checker is often too difficult or inconvenient

plant must be modeled by real variables: inherently infinite
state systems
can be approximated, but accuracy may be low

Simulators are often already available for testing, why can’t
we rely on them?

not “real” model checking, but something close to it
far better than “simple” testing

May be either build from scratch, or implemented with
dedicated tools

C/Java/Python dedicated programs vs. Simulink/Modelica

Simulation-based Model Checking

Too many states, we cannot store them in an hash table

transition relation defined by a complex simulator, translation
in OBDDs cannot be done

Two main workhorses:

System Level Formal Verification chooses system inputs so as
to cover as much as possible

mainly for safety, but also some sort of LTL
may be used

Statistical Model Checking uses powerful statistical methods
to perform model checking

something like Monte-Carlo sampling
i.e., we run the simulation several times, and we
try to derive some guaranteed answer

Simulation

A simulation is an experiment on a model

we focus on simulations performed by a computer

Simulation is very easy to implement in the case of classical
model checkers

no problems with RAM or execution time

This stems from the fact that classical model checking deals
with finite state systems

one step at a time, time passing typically not important
state space is finite and described by discrete-typed variables

Simulation

What if we need to simulate a cyber-physical system?

e.g., simulate the Apollo mission
many subsystem interacting with each other via continuous
signals
some subsystems are described by ODEs (Ordinary Differential
Equations)

In some cases, system developers also builds a simulator from
scratch, e.g., in the C language

directly experimenting on the physical object may be
dangerous, expensive, or simply impossible (e.g., it still does
not exist)

Many tools are available to easily describe complex models to
be simulated

e.g., able to approximate solutions for ODEs

Here we will deal with the open-source Modelica

we will also have a look to Simulink

Some Background: ODEs

With same simplification, an ODE is an equation

F (x , y , y ′, y ′′, . . . , y (n)) = 0

The unknown y is a function y = f (x)

In our context, the independent variable is time, denoted by t

in simulations, we are interested in the system evolution over
time...
thus, we have functions x = f (t)

Moreover, we will consider explicit ODEs ẋ = F (t, x)

x usually is in some n-dimensional space, e.g., x ∈ Rn

thus, this is a system of equations
note that, with explicit ODEs, derivatives higher than 1 are
not needed
simply put x1 = x , x2 = ẋ1...

Example ODEs

ẋ = t + x

(ẋ1, ẋ2) = (t + x2e
x1 , x1 log t)

Model of an infectious desease (HIV):
(ẋ1, ẋ2) = (λ− dx1 − ηβx1x2,−x2(a+ l) + ηβx1x2)

x1, x2 are uninfected and infected cells, l is an action by the
immune system
a, d , λ, β, η are system parameters

ODEs: Euler Approximation

Given the time-invariant ODE ẋ = F (x), we may use the
Euler approximation

for small τ , ẋ ≈ x(t+τ)−x(t)
τ

if we sample time with τ , i.e., we only consider
t ∈ {0, τ, 2τ, . . . , kτ, . . .}...
... we have that F (x(kτ)) = x(kτ+τ)−x(kτ)

τ
thus by setting xk = x(kτ), we have a discrete-time difference
equation xk+1 = xk + τF (xk)

This only works for small τ and small k

it can be proved that ||xk − x(kτ)|| ≤ τψ(k), where ψ is not
bounded
at least, in the general case

Some Background: Systems

A system is a mathematical concept used to study properties
physical objects

sometimes also called abstract system, or system model

It is typically used to study evolutions as a function of time

Virtually infinite examples:

population of rabbits
spread of diseases
physical objects: a fridge, an oven, a building, a car, ...
part of physical objects: a resistor, a brick, a wheel, ...
controllers for physical objects: ABS, autonomous driving, ...

First distinction is among objects (what we want to model)
and system (the mathematical model)

a system is defined through functions, sets, etc

Some Background: Systems

Given an object, one may devise different systems

as we may have different programs to solve the same problem
not only because of different people doing it: different
properties on the same object may be investigated

Given a system, it may be applied to different objects

spreading of different diseases may have a common model
wheel of a car and of a motorcycle

Some Background: Systems

We start defining systems by looking at their inputs and
outputs

keeping in mind that it is all as a function of time

Deterministic systems: given an input sequence from some
“start”, the output is the same

probabilistic systems also exist, we do not consider them here

Black-box system: at first, we perform experiments on the
system

we provide sequences of inputs and observe the sequence of
outputs

Some Background: Systems

We begin experiments at some time t0 ∈ T , with T ⊆ R
for some systems, T ⊆ N

We consider all input functions u : T → U for our object

U is some set on which inputs may vary
it may be multidimensional, e.g. U = N× Z× R2

of course, such input functions are uncountably many, this is a
conceptual experiment

For each u, we have an output function y : T → Y coming
out of the object

U and Y may be different
again, Y may be multidimensional

We define the system S = {(u, y) | u is an input function and
y the corresponding output function}

thus, S ⊂ U × Y

Some Background: Systems

Example: determine the number of students which graduate
in same bachelor course

assumption: student enrolls once every year, thus T ⊂ N
U ⊂ N: number of students enrolling “from outside”
Y ⊂ N: number of graduated students
U = {f | f : T → U}, analogous for Y
example of input-output:

u1(2020) = 200, u1(2021) = 221, u1(2022) = 198, and
u1(x) = 0 for x /∈ {2020, 2021, 2022}...
... and we observe
y1(2020) = 51, y1(2021) = 51, y1(2022) = 60
u1(2020) = 136, u2(2021) = 231, u2(2022) = 90, and
u2(x) = 0 for x /∈ {2020, 2021, 2022}...
... and we observe
y2(2020) = 42, y2(2021) = 37, y2(2022) = 98
u1, u2 ∈ U , y1, y2 ∈ Y, (u1, y1), (u2, y2) ∈ S

Some Background: Systems

Example: determine the output voltage of a buck DC-DC converter

Some Background: Systems

Example: determine the output voltage of a buck DC-DC
converter

T ⊂ R
U ⊂ {0, 1} × R

u may be closed (0) or open (1) at any time
Vi may be any real number

Y ⊂ R: observed output voltage vO
example of input-output (times are in microseconds):

u1(t) = (0, 5) for all t ∈ [0, 10], u1(t) = (1, 5) for all
t ∈ [10, 100]
u2(t) = (0, 15) for all t ∈ [0, 9], u2(t) = (1, 10) for all
t ∈ (9, 15], u2(t) = (0, 7) for all t > 15

Some Background: Systems

Result for u1

Some Background: Systems

Result for u2

Some Background: Systems

... but this is also a result for u1

Some Background: Systems

... and this is also a result for u2

Some Background: Systems

Is this a non-deterministic system??? NO!

The point is that output is not determined by input only

though for some systems this is the case: number of students
above

The missing element is the state

essentially, the input/output function has side effects...

Thus, the output (for deterministic systems) is a function of
both the input and the state

in the examples above, we made different choices for the
starting state

Some Background: Systems

For our purposes, a system will be defined by a 6-tuple
S = ⟨T ,U,Y ,X , η, ϕ⟩:

U,Y are sets of possible input and output values, resp.
T is a set of times

if T ⊆ R then we have a continuous-time system
if T ⊆ N then we have a discrete-time system

X is a set of states

may be either finite or infinite
if T ⊂ N and |X | < ∞ then we essentially have a Kripke
structure

η : T × X × U → Y defines the output function
ϕ : T × T × X × U → X defines the state transition function

recall that U = {f | f : T → U}

Some Background: Systems

η : T × X × U → Y is as expected

given the current time, the current state, and the current
input, we can compute the output

ϕ : T × T × X × U → X is somewhat more complicated than
expected

one would expect ϕ : T × X × U → X
actually, this is enough for most systems

For some systems, the state transition function depend on
some sequence of inputs, not only the last one

so we need a function, defined at least on an interval [t0, t)
this is why ϕ also takes two times instead of one

3 conditions must hold for η and ϕ: causality, consistency and
separation

Some Background: Causal Systems

∀t, t0 ∈ T , x0 ∈ X . (t ≥ t0 ∧ u|[t0,t)] = u′|[t0,t)) ⇒
ϕ(t, t0, x0, u|[t0,t)]) = ϕ(t, t0, x0, u

′|[t0,t))
That it is, if we fix the first 3 arguments t, t0, x0 of ϕ...

... and we provide, as a fourth argument, two possible
different functions u, u′...

... which however output the same values in the interval
[t0, t)...

... then the final value of ϕ does not change

Thus, what happens in the interval [t0, t) causes the system
to go to one single state

Some Background: Consistent Systems

∀t ∈ T , x0 ∈ X , u ∈ U . ϕ(t, t, x0, u) = x0

Recall that, for a call ϕ(t, t0, x , u), u is considered in the
interval [t0, t)

Thus, in a call ϕ(t, t, x0, u), we are considering the empty
interval [t, t)

Hence, we have no input at all!

Of course, without inputs, the system cannot change its
current state

Some Background: Separation Property of Systems

∀t, t0, t1 ∈ T , x0 ∈ X , u ∈ U . (t > t1 > t0) ⇒
ϕ(t, t0, x0, u|[t0,t)]) = ϕ(t, t1, ϕ(t1, t0, x0, u|[t0,t1)), u|[t1,t))
In few words: the state you obtain if you go straight from t0
to t, is the same state you would obtain if:

you first go from t0 to some intermediate t1
i.e., x1 = ϕ(t1, t0, x0, u|[t0,t1))

and then from t1 to t

i.e., ϕ(t, t1, x1, u|[t1,t))

Some Background: Hybrid Systems

Note that the set of states X may be multi-dimensional

e.g., X = R3, or X = {1, 2, 3} × Z
Thus, also ϕ may be multi-dimensional

Informally, if X has dimension n, then we will have n state
variables

recall that the same holds for U,Y : we may have multiple
input and output variables

Hybrid systems: those for which some variables are continuous
and other are discrete

in some texts, a “hybrid system” have some variables
depending on T = N and some other on T = R

This is exactly the case of cyber-physical systems!

plant + controller/monitor
plant is continuous, controller/monitor is discrete

Some Background: Special Systems

With some semplification, a system is time-invariant iff
∀t, t0, t1 ∈ T , x ∈ X , u ∈ U . ϕ(t, t0, x , u) =
ϕ(t − t0, 0, x , u) ∧ η(t, x , u(t)) = η(t1, x , u(t1))

that is, the absolute time is not important
the relative time is

given a state x , system evolution from 1 to 3 seconds and
from 10 to 12 seconds is the same

For time-invariant systems, we can always set t0 = 0

For time-invariant systems, we can also write
x(t) = ϕ(x(t), u(t)), y(t) = η(x(t), u(t))

Some Background: Special Systems

With some semplification, a system is linear iff
U,Y ,X are linear spaces

that is, any linear combination
∑n

i=1 aixi is in X etc

U is a linear subspace of UT = {f | f : T → U}
again, any linear combination

∑n
i=1 aiui (t) is in U

fixed any 2 times t, t0 ∈ T as first 2 arguments, ϕ is linear in
the remaining 2 arguments

ϕ(t, t0, x , u) = A · [x , u] + b for some A and b
A, b may depend on t, t0, but not on x , u

fixed any time t ∈ T as first argument, η is linear in the
remaining 2 arguments

Linear systems are easy to model, simulate and verify

With some semplification, a system is:

a finite-state system if U,X ,Y are finite sets (Kripke structure)
a finite-dimensional system if U,X ,Y are linear
finite-dimension spaces

Some Background: Generating Functions

For discrete-time systems, we have that
x(t + 1) = ϕ(t + 1, t, x(t), u|[t,t+1)) =
ϕ(t + 1, t, x(t), u(t)) = f (t, x(t), u(t))

first and second argument of ϕ are not independent...
f has the same domain of η

For continuous-time systems, we focus on regular systems,
i.e., those systems for which ϕ is differentiable and there
exists a function f s.t.

dϕ(t,t0,x,u)
dt = f (t, ϕ(t, t0, x , u), u(t))

with the initial condition that exists an x0 ∈ X s.t.
x0 = ϕ(t0, t0, x0, u)
often, it is easier to provide f than ϕ

Using Newtonian notation, we have ẋ(t) = f (t, x(t), u(t))

For time-invariant systems, we have
ẋ(t) = f (x(t), u(t)), y(t) = η(x(t))

Some Background: System For Students’ Example

X ⊆ N3,U,Y ⊆ N,T = N
Parameters αi (t) ∈ [0, 1] is ratio of students passing an year t

x1(t + 1) = (1− α1(t))x1(t) + u(t)

xi (t + 1) = (1− αi (t))xi (t) + αi−1(t)xi−1(t) for i = 2, 3

y(t) = α3(t)x3(t)

Note that, if ai (t) = 1 for all t, then states are not needed, as
we have y(t) = u(t − 3)

Summing up:

f (t) =

 (1− α1(t))x1(t) + u(t)
(1− α2(t))x2(t) + α1(t)x1(t)
(1− α3(t))x3(t) + α2(t)x2(t)



Some Background: System For Buck DC/DC Converter

Some Background: System For Buck DC/DC Converter

X ⊆ R2,U ∈ {0, 1} × R,Y ⊆ R,T = R
L,C ,R, rL, rC ∈ R are system parameters

we will also use 6 real numbers ai,j for i ∈ {1, 2}, j ∈ {1, 2, 3}
which are functions of such parameters
e.g., a2,3 = − 1

L
rCR
rC+R

Variables for state are iL, vO , vD , iD , vu, iu (real) and q
(boolean)

Variables for input are u (boolean) and Vi (real)

y(t) = vO(t), thus η is easy

ϕ is defined by cases in the following slide

for the definition of ϕ, some other (auxiliary) variables are
useful: vD , iD , vu, iu (real) and q (boolean)
Ron ≈ 0,Roff >> Ron are fixed parameters

Some Background: System For Buck DC/DC Converter

We omit (t) for better readability
There must exist a value for vD , iD , vu, iu ∈ R, q ∈ {0, 1} s.t.

˙iL = a1,1iL + a1,2vO + a1,3vD (1)

˙vO = a2,1iL + a2,2vO + a2,3vD (2)

q → vD = RoniD (3)

q → iD ≥ 0 (4)

u → vu = Roniu (5)

vD = vu − Vin (6)

q̄ → vD = Roff iD (7)

q̄ → vD ≤ 0 (8)

ū → vu = Roff iu (9)

iD = iL − iu (10)

Both ODEs and algebraic equations

Modeling in Modelica

Modelica is an open-source language for specifying (complex)
systems

developed by experts starting in late 1990s

Many implementations exist

OpenModelica+simForge, Dymola, Simulation X, MapleSim,
MathModelica
here we will stick to OpenModelica+simForge

Also see Modelica slides

Modeling in Modelica

Object-oriented language: classes and objects (i.e., class
instances)

strongly typed

Compositional modeling:

break up the system in subsystems (components)
connect the components

Very useful for complex systems, with many components

some standard components already defined, e.g., resistors,
flows etc

May use equations, also with derivatives

Generates a C program, thus it is very efficient

Modeling in Modelica

Synchronous data flow principle: time is the same for all
components

such as clocks for digital systems, but in Modelica it may be
continuous

May specify “algorithms” using assignments, ifs, whiles, etc

all variables must be instances of some class
this also includes integers and reals

Acausal modeling: simply first provide the equations for each
object, then connect the objects between them

other modeling languages, e.g., Simulink, requires to first
design the full chain of connections...
...and to make computation in sequence
Modelica allows both causal and acausal modeling
physical “reality” is lost

Modelica easier for modelers, Simulink easier for computers

Modelica: Acausal Modeling

Modelica: Acausal Modeling

Modelica: Hybrid Modeling

Modelica: Toy Example

Text file with .mo extension, let us say model.mo

class Example

output Real x, y, z;

algorithm

when initial() then //at 0, both this...

x := 0; // Pascal-like assignments

elsewhen sample(0, 1) then // ... and this

x := 1;

y := pre(x); //0 till 1, then always 2

elsewhen sample(0, 0.5) then

x := 2;

z := pre(x); //0 till 0.5, then always 1

if (z <> 2) then z := 2; end if;

end when;

end Example;

Modelica: Toy Example

Text file with .mos extension, let us say run.mos

loadModel(Modelica);

getErrorString(); // should be used after every command,

// skipped in the following

loadFile("model.mo");

//Example is defined in model.mo

simulate(Example, stopTime=10);

//x, y, z are variables of Example

plot({x, y, z}, externalWindow=true,

fileName="Example_res.mat");

Modelica: Toy Example

Run the command omc run.mos

of course, you must have installed omc for your OS

This has the following effect:
1 generates a C program model.c
2 compiles model.c to obtain the executable file model
3 executes model
4 outputs both a file Example res.mat and a graphical window

with the graph of variables x, y, z as function of time

Modelica: Commands Chain

Modelica: Toy Example Examined

class Example

output Real x, y, z;

algorithm

when initial() then //at 0, both this...

x := 0;

elsewhen sample(0, 1) then // ... and this

x := 1;

y := pre(x); //0 till 1, then always 2

elsewhen sample(0, 0.5) then

x := 2;

z := pre(x); //0 till 0.5, then always 1

if (z <> 2) then z := 2; end if;

end when;

end Example;

Modelica: Toy Example Examined

Example is a class defined by the modeler: Modelica is OO

It has 3 real-valued variables, which may become the input for
other blocks

The dynamics is an algorithm based on the sample construct

when initial() C executes code in C at time 0
when sample(A, B) C executes code in C every A+ Bx
seconds, for x ∈ N
elsewhen sample(A, B) C applies if no other preceding
(else)when was triggered but...
... if the preceding when had initial, then they are both
triggered

In expressions, pre(var) holds the value of var before the
current event

Modelica: Derivatives

Modelica: Derivatives and Algebraic Equations

Modelica: Derivatives and Algebraic Equations

time is a special variable, holding current simulation time

System dynamics of previous example is defined as

ẏ + (1 +
sin y

2
)ẋ = sin t

x − y = e−0.9x cos y

Can be transformed in “normal” form by adding state
variables:

ẋ = sin t−y1
1+ sin y

2

ẏ = y1
z1 = e−0.9x

z2 = cos y
x = z1z2 + y
y = x − z1z2

Modelica: Subsystems and Connections

Till now, stand-alone systems with just one component

Modelica allowus compositional modeling of many
components

Each component is modeled autonomously, by simply looking
at the interaction with the environment (input/output)

Complex systems are made of connected components

Connectors can be explicitly defined

causal: input/output relation is explicitly stated
acausal: input/output relation is left unspecified
Modelica will understand which is input and which is output

Modelica: Toy Example With 2 Components

Mind the difference between = and :=

model ContinuousBehav

Boolean x;

Real i (start = 1);

equation

(if x then 0.5*time else -0.1*time)*der(i) = time;

end ContinuousBehav;

Modelica: Toy Example With 2 Components

model GenerateBoolInputs

Boolean x;

parameter Real sampling = 1.0;

algorithm

when initial() then

x := false;

elsewhen sample(sampling, sampling) then

x := not(x);

end when;

end GenerateBoolInputs;

Modelica: Toy Example With 2 Components

model BoolCont

GenerateBoolInputs gbi;

ContinuousBehav cb;

equation

gbi.x = cb.x;

end BoolCont;

Modelica: Toy Example With 2 Components

May also collect parts of commands in a file file.mos and use
runScript("file.mos")

loadModel(Modelica);

getErrorString();

loadFile("model.mo");

simulate(BoolCont, stopTime=10);

plot({gbi.x, cb.i}, externalWindow=true,

fileName="BoolCont_res.mat");

Modelica: Passing of Time

For all objects defined, the time passes in the same way

it is a kind of common clock, as in digital circuits

This is of course consistent with physical reality

components are close enough...

It is always continuous time, but using sample we can also
have discrete time

Modelica: Algorithms and Equations

Both may be used, the modeler has to choose

of course, x := x + 1 inside an algorithm is ok, x = x + 1

in an equation is not
using imperative vs. declarative style is left to the modeler
in some cases, algorithm is more natural, in some other
equation has to be preferred
note that loops and ifs are available in both formats
e.g., a = (if b then 1 else 2); vs if (b) then a:=1;

else a:=2; end if;

or simply a := (if b then 1 else 2);

Algorithms, as well as equations solving, does not cause time
to pass

number of computation steps required is not important

Modelica: Algorithms

Generally speaking, when A B clauses triggers the
corresponding block B when condition A is true

A can be any boolean expression, not only sample

Functions may also be defined and used

time does not pass during function calls
again, number of computation steps is not important
must have input and output

External C or Fortran functions may be called

external "C" result = myfun();

annotation(Include = "#include \"myfile.c\"");

Modelica: Events

Discrete events happens in a discrete number of time points

given that the simulation terminates somewhere, it is actually
a finite number of points

We saw initial and sample, there is also terminal

triggered at the end of the simulation

Simulation ends either because of:

the stopTime attribute inside simulate command
a terminate statement

Modeling in Simulink

Simulink is a graphical extension to MATLAB

MATLAB itself is proprietary, but UnivAQ provides it to
students

Main goal: modeling and simulation of systems

also non-linear ones

Also see https://ctms.engin.umich.edu/CTMS/index.
php?aux=Basics_Simulink

No way of simply writing a text file: you have to use the GUI
and manipulate graphical objects

model files are saved in a binary proprietary SLX format

https://ctms.engin.umich.edu/CTMS/index.php?aux=Basics_Simulink
https://ctms.engin.umich.edu/CTMS/index.php?aux=Basics_Simulink

Modeling in Simulink

Two major classes of objects: blocks and lines

blocks used to generate, modify, combine, output, and display
signals
lines used to connect blocks, i.e., transfer signals from one
block to another
again, a common clock for all objects in a model

Suppose you create a new or open an existing Simulink model
file

How to add a new block:

click “Library Browser”
select the type of block you need

hundreds of types available, could also be searched by name

drag it to the model window
by double clicking, you can edit the properties

Modeling in Simulink

How to add a new connecting line:

simply drag the mouse from the first object to the second
object

If you are connecting an object with a line:

first make a dangling line from the destination
connect the end of such line with the “source” line
this will make the source line bifurcated

Modeling in Simulink

Most notable types of blocks:

Sources: used to generate various signals

Sinks: used to output or display signals

Continuous: continuous-time system elements

transfer functions, state-space models, PID controllers, etc.

Discrete: linear, discrete-time system elements

discrete transfer functions, discrete state-space models, etc.

Math Operations: contains many common math operations

gain, sum, product, absolute value, etc.

Ports & Subsystems: contains useful blocks to build a system

