Automated Verification of
Cyber-Physical Systems
Notes on Probabilistic Model Checking

Igor Melatti

Slides from https://www.prismmodelchecker.org/lectures/pmc/, col-
lected in all_slides.pdf

— in the following, slides numbering refers to such file
All to be read, here we will comment the most important ones
Slide 4: “validation” used in a broad sense

Slide 17: there are protocols containing some like if (rand() < 0.5)
do_something; else do_something else;

— using standard model checking techniques, we may only use non-
determinism

— thus verifying if there is a path leading to an error (if we are checking
a safety property)

— but having a path going to the error may be straightforward
— instead, we may want to verify that an error has a low probability
— with probabilistic model checking, probabilities are embedded in the
model
Compare slides 13 and 20...
— counterexamples not as important as in standard model checking

Slides 21-26: sketch of a widely used leader election protocol

Slides 27-30: results of verifying the above protocol using PRISM (PRob-
abilistIc Symbolic Model checker)
— state-of-the-art probabilistic model checker

— all figures are obtained by performing many verifications, each time
varying some parameters

— T or the bias of a coin used in the protocol itself



e Slide 32: standard model checking only accepts a Kripke Structure-like
input for the model
— in PRISM, 3 different mathematical models may be used
— it is the modeler task to understand which to use

— some logic is for some input only (e.g., CSL is only for CTMCs)
e Slide 46:

— “termination”: arrive at one of the rightmost states

— “number of coin tosses”: number of transitions to “terminate”
e Slide 51: all rows sum to 1

e Slide 52: in a stochastic matrix, from any state we must go to some
(possibly the same) state

e Slide 54: homogeneous because, in the random variable setting, could still
be that, e.g., P(z(k) = s; | x(k—1) = s5) # P(P(z(m) = s; | x(m—1) =
sg—1)) for k £m

— i.e., not only the actual path, but neither the number of steps needed
to reach s; is important

e Slide 55: of course, suitable APs may be used to label also the other “final”
states

— only “interesting” labels are being shown
e Slide 56:
— first two properties are close to what it may be done in standard
model checking
— of course, dropping the probabilistic part

— last two are in probabilistic model checking only
e Slide 57:

— sp — s1 corresponds to the three items in slide 56: new node picks
address U at random, broadcasts probe messages: “Who is using U?”
and a node already using U replies to the probe (all of this happens

— probability p is typically low

— after error, needs manual restart or perhaps too many devices are
using the network

e Slide 60: if w is a path of length 0, we have all paths starting from s are
in the cylinder



e Slide 61: if a family F does not fulfill the o-algebra properties, simply add
(the minimal number of) elements in order to fulfill them

— o-algebra may also be called Borel field (requires countably infinite
unions)

— note that “family of subsets of 27 means a set ¥ C 2%

— of course, the first and the last property imply that Q € X

e Slide 62: typically, ¥ = 29

— however, we could be interested in understanding the “minimal” ¥ C
29 we may use without disrupting probability definition

— thus, we take “good” subsets of ¥ C 2, namely o-algebras

— we will never ask which is probability of a “bad” subset of €2, i.e. of
an element not in X

e Slide 65:

— in probabilistic model checking, sets in ¥ must have the following
property: taken some finite prefix w, all infinite paths having w as a
prefix must be in the family

— ie., Cyllw) e &

— we can see a cylinder Cyl(w) as the sub-tree of paths starting from
the last state of w

— suppose we have only three paths starting from s, i.e., = Path(s) =
{p1,p2,p3} and that py, ps share a common prefix |w| > 0

— then 3 = {0, {p=}, {p1,p3}, {p1,p2,p3}} is a o-algebra but does not
fulfill the above property because {p1,p2} ¢ X

— adding {p1,p2} we have Y =
{0, {p2}, {p1,p3}, {p1,p2, p3}. {p1, P2}, {ps}. {p2, p3}}
— %' # 29 but the least one is 3* = {0, {p1,p2}, {ps}, {p1, 2, p3}}

— we will never ask the probability of {p1, ps}: the only finite path they
have in common is s, which is also in common with ps...

e Slide 67: in KSs, reachability and invariance excludes each other, here
they can coexist

e Slide 68: once reached, I'm done, so I don’t consider paths going back to
T after having already touched T before (see definition of Reachgy,)

— if a loop is present before going to T, then we have infinite paths,
but always countable

e Slides 70-71: from definition to computation



Slides 71 and 73: if the condition “if T is not reachable from s” were

omitted in slide 71, then we would have the non-unique solution of slide
73

— “reachable” here means Reachg,(s,T) # 0

— to be determined using standard model checking techniques, essen-
tially considering only edges with a strictly positive probability

Slide 74: AP is the set of functions f: B — A

— 50, F takes a function from S to [0,1] and returns another function
from S to [0, 1]

— need not to be distribution probabilities, thus for y € [0,1]° we may
have > qy(s) #1

— note that, for some 1, y2, both 31 < y2 and yo < y; may be false,
i.e., this is a partial ordering

Slide 75: no more need of the reachability clause
Slide 76: “power method” is the one shown in slide 75
Slide 77: we laways have to use infinite paths, as this is our Q2

Slide 78: in the plot, probability is always closer to 1, without actually
being equal to 1

— only the first probability, which considers infinite paths, is 1

Slide 84: note that you need two states and a bound to define the transient
state probability

— we have |S| transient state distributions

— note that, in transient state distributions, the destination varies and
the source stays constant

Slide 90: recall that 7 is a vector where, at position s’, we have
].imk;*)oo Ws’k(sl)

— i.e., the probability that, in the long run, you go from s to s’

— the starting distribution (k = 0) is 1 for s’ = s and 0 otherwise
Slide 93: you can escape from an SCC, you cannot escape from a BSCC

Slide 95: a state is aperiodic if d = 1, a Markov Chain is aperiodic if all
its states are aperiodic

— if a state as a self loop, then it is aperiodic

— or if, e.g., has a path of length 3 and one of length 4



Slide 97: written in that way, 7 is a row vector
— “balance of leaving and entering”: 7 vs. P

Slide 98: irreducible and aperiodic

Slide 100: period of the small example is 2

— new limit: we are considering the average of the distributions result-
ing after 1,...,n steps; we then take the limit of such averages

Slide 101: “compute vector 75" is of course the final goal...
Slide 102, let us comment some values

— in the long run, any SCC which is not BSCC will be left, thus m:(sg) =
me(s1) =0 for all ¢
— of course, this is a consequence of the algorithm in slide 101
- o) =34+ E A e =3GD = 4
Slide 104: note that all BSCCs are reached with probability 1, as in the
long run such probabilities do not sum up
— so reaching a selected BSCC has probability 1...
— .. and also reached any of the three BSCCs has probability 1!
— in the computation of 7 this does not happen only because we have
the normalization factor

Slide 105: both ok and error have probability 1

- % with normalization

— all other states (including the retry state so mentioned in the slide)
have probability 0

Slide 107: “always eventually” and “infinitely often” = GF
Slide 109: “eventually forever” = FG

Slide 117: some derivable operators, like OR and implication, are omitted;
others, like F and G, are present

Slide 126: compare with slide 117

— state formulas with E and A have disappeared, replaced by the quan-
titative operator P, which allows intermediate results between “at
least one” and “for all”

— the path formulas are actually the same, with the addition of the
bounded until



— as explained in slide 127, there would be no problem in adding it to
CTL too

— of course, k > 1, and &, U<0d, = &, (see slide 127)

— F and G, though absent, are expressible using U as shown in slide
123

the bounded until also allows bounded F and G (see slide 130)

e Slide 128: Prob(s, v) to be defined as in slide 66: disjoint sum of cylinders
probabilities

— that is, collect all infinite paths starting from s and satisfying ),
consider all their common distinct finite prefixes and sum the prob-
abilities of such prefixes

— note that such prefixes always exist, as we have a finite number of
states

e Slides 130-131: explanation
— in LTL, G¢ = ~(F¢)

— in CTL, the same formula cannot be applied, as negations of path
formulas are not allowed

— however, since A—¥ = —EW (the first formula is in CTL*, the second
in CTL), we may define G on F and ultimately on U

— an analogous trick may be done in PCTL, by negating the compari-
son: P, [G¢] = P>,[F-¢] and similar...
e Slide 132: for the last formula, oper is evaluated on the first state only
— however, PRISM allows a probability distribution as the initial
state...
— note also that the last property has nested probability operators, as

a CTL formula may have nested state formulas

e Slide 134: when the event space is infinite, an event with probability 1 is
not sure (and one with probability 0 is not impossible)

e Slide 135:

k .
— P((s051)*) = limgo0 12 o3 = limp 00 55 = 0
— actually, it is not even an event! it does not belong to any cylinder,
thus it is not in the o-algebra

— in fact, any prefix of (s¢s1)* with odd length (i.e., ending in sg) may
go on with so

— thus, singling out (sgs1)“ only (i.e., considering the singleton event
{(s0s1)¥}) is impossible in this example



— thus, it is correct that the final probability of reaching tails is 1...

Slide 136: this is outside standard PCTL, but PRISM allows it as it is
useful and “easy”; note that it must be the outermost P

Slide 140: the example provided is in CTL*
Slide 142: comparing with slide 126

— state formulas are the same

— path formulas also allow state formulas, as well as (direct) logical
combinations of path formulas

— note that such logical combinations are NOT redundant, i.e., they
cannot be derived from the path formulas

— the given example is not in PCTL because of GF

Slide 143: simply LTL + prob does not have a name, you can use PCTL*
instead

Slide 148: let us assume it is not a problem to have full graphs in memory

— as we will see, PRISM uses OBDDs (for sets of states) and a special
extension of theirs known as MTBDD for functions S — [0, 1]

Slide 151: it is assumed that Sat(®) has already been computed
— formulas has a finite size, so atomic propositions (are logical combi-
nations of atomic propositions) have to be used somewhere

— we follow the formula syntax tree, starting from the leaves
Slide 186: some limitations in the modelling language
— probabilities must be constant; if something as a function of some
value is needed, we have to break it down in multiple states

— essentially as NuSMV, but with probabilities: only main arithmetic
operations are allowed to define next states

— build the DTMC corresponding to a generic input model
Slide 235:

— f(t) is not a probability! If b —a < 1, f(t) > 1 for ¢ € [a, b]...
— it may seem confusing, but “probability density function” (PDF) #
probability

— it becomes a probability when multiplied by a infinitesimal: f(z)dx
is the probability than value of X is inside [z, x + dx]

— the “cumulative distribution function” (CDF) F'(t), instead, is a
probability



— integrals go from some lower bound; in the general case, it is —oo
but may be overriden by special cases

e Slide 236:

— there are many types of random variable, here is one

— despite looking “ugly”, many computations are simplified, e.g., we
easily derive a closed form for F(t)

— formula for expected value when an f(z) is available: E[X] =
7 af(x)dx

— in the case of the exponential distribution: fooo TAe
Ll = 4

A

—Ar _ [_me—km _

e Slide 238: to clarify examples

— in all these cases, we have a random variable X with CDF F(t)
P(X <t) =1—e M (or equivalently P(X > t) = e™™), and A is
known by some (typically statistical) measures

— “time before machine component fails”: X =time of machine com-
ponent failure

— for example, if we know that A\ = 2, then the probability that the
component fails after time ¢t = 3 is e ~ 2 x 1073; conversely, it fails
before t = 3 with probability 99.8%!

— not surprising: A is the “rate”, meaning the number of failures (in
this case) for every time unit

— thus, saying A = 2 means there are “typically” 2 failures at each time
unit; so, after, 3 time units, we should be almost sure at least failure
has happened...

— of course, “time unit” depends on the problem and on how A has been
estimated; it could be 10 years, in the case of a computer component
(so t = 3 means 30 years)

— easy to see why the expected value is %: if the rate is 2, it should

happen twice in a time unit, thus we should see the failure in % time
units...

— so, generally speaking: we know that something happens with some
regularity (i.e., A times every time unit), so which is the probability
of the event happening before time t7

e Slide 243-245: no probabilities, only rates with the clarified meaning

— this “generates” a probability once also a time ¢ is considered

— that is: from sg, at time ¢ there is a probability 1 — e 3 to go to
3 .
state s1, and e 2t to stay 1n sg



this implies that only one rate may be considered from each state:
hence the discussion in slide 245

see also slide 240
note that there are not self loops, as they are treated as above

note that, for an absorbing state s, probability of staying in s is 1

e Slide 246: of course, if just one rate is available from a given state s to
some §', then R(s,s’) = E(s)...

e Slide 248: wrong formula for @

should be — 3> R(s, 3)

so R = @, excluding the diagonal, where R is 0 whilst ) has the
information on the probability to stay in s

that is, probability of still being in s at time ¢ is e@(s:9)t

we can also see that P°™P(s,s') = 9&’;2) if Q(s,s) # 0 and
PP (5 ") = 1 otherwise

rows in P°™ sum to 1, rows in Q sum to 0

second item not to be confused with the discussion in slides 235-236

e Slide 250: MTTF and rate, if rate of failure is 2 every day, then MTTF is
12 hours (half a day)...

e Slide 250-251: A, p, k; must be instantiated to some value before going on
with verification

e Slide 252:

note that a seemingly finite path is instead infinite (but ending in an
absorbing state is required)

paths in DTMCs only have states, here we have times too
no restriction on times, apart from being strictly positive

for times growing, probability decreases exponentially, but it is still
possible...

w@t = s; s.t. Z;:o t; >t and ¢ is the minimum

e Slide 254:

for DTMCs, cylinders are simply finite prefixes of some path
here we also have times, which may be different for the same
(sub)sequence of states

in order to have cylinders which define sets of infinite paths, we have
to somehow abstract on times: that’s why we have time ranges in
them



Slide 255: written explicitly, Ps(Cyl(so(ag,bo]s1 ... (an,bn)Snt1)) =
1’127}:0I)emb(0)(Si7 si+l)(e—E(si)ai _ e—E(si)bi)

— recall that E(s) = > . R(s,s")
o Slide 263:

— Path® is to emphasize that is about CTMC C

— easy to define steady state probabilities, compare with slide 96

slide 265: 9! denotes the matrix where in position (s, s') we have !@(s:s")

— analogously for Q¢ (and % in slide 266)
— remember that in II;, ¢ is a time, not a state

— unstable: the limit exists, but computation may diverge

Slide 266: rows in P"™f sum to 1

Slide 268: in the Poisson probability, we usually have \ = gt

actually, “probability mass function”, as the Poisson process is dis-
crete

— A in exponential distribution and in the Poisson probability are dif-
ferent, though related

— that is: suppose that we have some event which may happen multiple
times within a given (fixed) interval of time

— knowing that the “typical” number of times is A, which is the prob-
ability that we observe k events?

— of course, it should be high for & close to lambda, and low otherwise

— e.g., if there are 2 failures every day, which is probability of having

two failures in one dat? it is P(X = 2) = 225!_2 ~ 27%

— having 3 failures is P(X = 3) = 23;;2 ~ 18%, 1 failure is the same of
2, 0 failures is 13.5%

— rates are usually shown as r instead of A, thus A = rt if ¢ is the period
length

— so: exponential distribution is about how much (continuous) time for
the first occurrence, Poisson is about how many occurrences we have
in a given time

e Slide 353: ¢ could have been named a; named c instead because of following
examples

e Slide 354: from “transition probability matrix” of DTMCs to “transition
probability function” of MDPs

— Act, if provided, must be finite

10



— Dist(S) ={m | 7m: 8 = [0,1]] A Y, cq(s) =1}
— for all s € S, Steps(s) is a set where each element is a pair (I, 7)
e Slide 358: that is not actually a matrix, needs delimiters
— could be seen as a sequence of matrices My, ..., M|g| where M has

|S| columns and |Steps(s)| rows

— all piled vertically
e Slides 359-360:

— blue PRISM input language code: little trick to say “define a new
module equal to M1, where all occurrence of variable s are replaced
by t?)

— we now have two modules without any synchronizing label, thus we
have to make a parallel composition

formally, S = S; x Sy, where S; is the set of “local” states of M;

— Sinit = (S0, t0)
— Steps(si, t;) = {((4, 7)1, Az. Pi(s4,2)), ((2,4)2, Ax. Pa(tj,x))}
e Slide 363: of course, there are infinitely many adversaries also for this
little example
— note that each adversary must resolve all possible finite paths
— in this easy example, 01,09 are well defined because there are not

other paths, given that choices

e Slide 365: there are no deadlocks, thus there always are infinite paths of
finite length

e Slide 369:

— Prob??(sg, F tails) = Prob({sos1s1p(i1), s0s18081p(i2) | p(k) =
k1) = 0.3-0.5+0.7-0.5 = 0.5 (0.3 +0.7)...

— Prob?(so, F tails) = Prob({sps1s181p(i1), SoS150818081p(%2),
s051515081p(i3), sos1505151p(ia) | p(k) = s5}) = 0.32.0.5 4+ 0.7 -
0.5+2-0.7-0.3-0.5=0.5-(0.324+0.724+0.3-0.7) < 0.5...

11



