
Automated Verification of

Cyber-Physical Systems

Notes on Probabilistic Model Checking

Igor Melatti

• Slides from https://www.prismmodelchecker.org/lectures/pmc/, col-
lected in all slides.pdf

– in the following, slides numbering refers to such file

• All to be read, here we will comment the most important ones

• Slide 4: “validation” used in a broad sense

• Slide 17: there are protocols containing some like if (rand() < 0.5)

do something; else do something else;

– using standard model checking techniques, we may only use non-
determinism

– thus verifying if there is a path leading to an error (if we are checking
a safety property)

– but having a path going to the error may be straightforward

– instead, we may want to verify that an error has a low probability

– with probabilistic model checking, probabilities are embedded in the
model

• Compare slides 13 and 20...

– counterexamples not as important as in standard model checking

• Slides 21–26: sketch of a widely used leader election protocol

• Slides 27–30: results of verifying the above protocol using PRISM (PRob-
abilistIc Symbolic Model checker)

– state-of-the-art probabilistic model checker

– all figures are obtained by performing many verifications, each time
varying some parameters

– T or the bias of a coin used in the protocol itself

1

• Slide 32: standard model checking only accepts a Kripke Structure-like
input for the model

– in PRISM, 3 different mathematical models may be used

– it is the modeler task to understand which to use

– some logic is for some input only (e.g., CSL is only for CTMCs)

• Slide 46:

– “termination”: arrive at one of the rightmost states

– “number of coin tosses”: number of transitions to “terminate”

• Slide 51: all rows sum to 1

• Slide 52: in a stochastic matrix, from any state we must go to some
(possibly the same) state

• Slide 54: homogeneous because, in the random variable setting, could still
be that, e.g., P(x(k) = sj | x(k−1) = sj′) ̸= P(P(x(m) = sk | x(m−1) =
sk−1)) for k ̸= m

– i.e., not only the actual path, but neither the number of steps needed
to reach sj is important

• Slide 55: of course, suitable APs may be used to label also the other “final”
states

– only “interesting” labels are being shown

• Slide 56:

– first two properties are close to what it may be done in standard
model checking

– of course, dropping the probabilistic part

– last two are in probabilistic model checking only

• Slide 57:

– s0 → s1 corresponds to the three items in slide 56: new node picks
address U at random, broadcasts probe messages: “Who is using U?”
and a node already using U replies to the probe (all of this happens
with probability q = 1

#all addrs)

– probability p is typically low

– after error, needs manual restart or perhaps too many devices are
using the network

• Slide 60: if ω is a path of length 0, we have all paths starting from s are
in the cylinder

2

• Slide 61: if a family F does not fulfill the σ-algebra properties, simply add
(the minimal number of) elements in order to fulfill them

– σ-algebra may also be called Borel field (requires countably infinite
unions)

– note that “family of subsets of Ω” means a set Σ ⊆ 2Ω

– of course, the first and the last property imply that Ω ∈ Σ

• Slide 62: typically, Σ = 2Ω

– however, we could be interested in understanding the “minimal” Σ ⊆
2Ω we may use without disrupting probability definition

– thus, we take “good” subsets of Σ ⊆ 2Ω, namely σ-algebras

– we will never ask which is probability of a “bad” subset of Ω, i.e. of
an element not in Σ

• Slide 65:

– in probabilistic model checking, sets in Σ must have the following
property: taken some finite prefix ω, all infinite paths having ω as a
prefix must be in the family

– i.e., Cyl(ω) ∈ Σ

– we can see a cylinder Cyl(ω) as the sub-tree of paths starting from
the last state of ω

– suppose we have only three paths starting from s, i.e., Ω = Path(s) =
{p1, p2, p3} and that p1, p2 share a common prefix |ω| > 0

– then Σ = {∅, {p2}, {p1, p3}, {p1, p2, p3}} is a σ-algebra but does not
fulfill the above property because {p1, p2} /∈ Σ

– adding {p1, p2} we have Σ′ =
{∅, {p2}, {p1, p3}, {p1, p2, p3}, {p1, p2}, {p3}, {p2, p3}}

– Σ′ ̸= 2Ω, but the least one is Σ∗ = {∅, {p1, p2}, {p3}, {p1, p2, p3}}
– we will never ask the probability of {p1, p3}: the only finite path they

have in common is s, which is also in common with p2...

• Slide 67: in KSs, reachability and invariance excludes each other, here
they can coexist

• Slide 68: once reached, I’m done, so I don’t consider paths going back to
T after having already touched T before (see definition of Reachfin)

– if a loop is present before going to T , then we have infinite paths,
but always countable

• Slides 70–71: from definition to computation

3

• Slides 71 and 73: if the condition “if T is not reachable from s” were
omitted in slide 71, then we would have the non-unique solution of slide
73

– “reachable” here means Reachfin(s, T) ̸= ∅
– to be determined using standard model checking techniques, essen-

tially considering only edges with a strictly positive probability

• Slide 74: AB is the set of functions f : B → A

– so, F takes a function from S to [0, 1] and returns another function
from S to [0, 1]

– need not to be distribution probabilities, thus for y ∈ [0, 1]S we may
have

∑
s∈S y(s) ̸= 1

– note that, for some y1, y2, both y1 ≤ y2 and y2 ≤ y1 may be false,
i.e., this is a partial ordering

• Slide 75: no more need of the reachability clause

• Slide 76: “power method” is the one shown in slide 75

• Slide 77: we laways have to use infinite paths, as this is our Ω

• Slide 78: in the plot, probability is always closer to 1, without actually
being equal to 1

– only the first probability, which considers infinite paths, is 1

• Slide 84: note that you need two states and a bound to define the transient
state probability

– we have |S| transient state distributions

– note that, in transient state distributions, the destination varies and
the source stays constant

• Slide 90: recall that πs is a vector where, at position s′, we have
limk→∞ πs,k(s

′)

– i.e., the probability that, in the long run, you go from s to s′

– the starting distribution (k = 0) is 1 for s′ = s and 0 otherwise

• Slide 93: you can escape from an SCC, you cannot escape from a BSCC

• Slide 95: a state is aperiodic if d = 1, a Markov Chain is aperiodic if all
its states are aperiodic

– if a state as a self loop, then it is aperiodic

– or if, e.g., has a path of length 3 and one of length 4

4

• Slide 97: written in that way, π is a row vector

– “balance of leaving and entering”: π vs. P

• Slide 98: irreducible and aperiodic

• Slide 100: period of the small example is 2

– new limit: we are considering the average of the distributions result-
ing after 1, . . . , n steps; we then take the limit of such averages

• Slide 101: “compute vector πs” is of course the final goal...

• Slide 102, let us comment some values

– in the long run, any SCC which is not BSCC will be left, thus πt(s0) =
πt(s1) = 0 for all t

– of course, this is a consequence of the algorithm in slide 101

– πs0(s2) =
1
2 (

1
2
1
4 + 1

23
1
4 + 1

25
1
4 + . . .) = 1

2 (
1
4
2
3) =

1
12

• Slide 104: note that all BSCCs are reached with probability 1, as in the
long run such probabilities do not sum up

– so reaching a selected BSCC has probability 1...

– .. and also reached any of the three BSCCs has probability 1!

– in the computation of π this does not happen only because we have
the normalization factor

• Slide 105: both ok and error have probability 1

– 1
2 with normalization

– all other states (including the retry state s0 mentioned in the slide)
have probability 0

• Slide 107: “always eventually” and “infinitely often” = GF

• Slide 109: “eventually forever” = FG

• Slide 117: some derivable operators, like OR and implication, are omitted;
others, like F and G, are present

• Slide 126: compare with slide 117

– state formulas with E and A have disappeared, replaced by the quan-
titative operator P, which allows intermediate results between “at
least one” and “for all”

– the path formulas are actually the same, with the addition of the
bounded until

5

– as explained in slide 127, there would be no problem in adding it to
CTL too

– of course, k ≥ 1, and Φ1U
≤0Φ2 ≡ Φ2 (see slide 127)

– F and G, though absent, are expressible using U as shown in slide
123

– the bounded until also allows bounded F and G (see slide 130)

• Slide 128: Prob(s, ψ) to be defined as in slide 66: disjoint sum of cylinders
probabilities

– that is, collect all infinite paths starting from s and satisfying ψ,
consider all their common distinct finite prefixes and sum the prob-
abilities of such prefixes

– note that such prefixes always exist, as we have a finite number of
states

• Slides 130-131: explanation

– in LTL, Gϕ ≡ ¬(Fϕ)
– in CTL, the same formula cannot be applied, as negations of path

formulas are not allowed

– however, since A¬Ψ ≡ ¬EΨ (the first formula is in CTL∗, the second
in CTL), we may define G on F and ultimately on U

– an analogous trick may be done in PCTL, by negating the compari-
son: P<p[Gϕ] ≡ P≥p[F¬ϕ] and similar...

• Slide 132: for the last formula, oper is evaluated on the first state only

– however, PRISM allows a probability distribution as the initial
state...

– note also that the last property has nested probability operators, as
a CTL formula may have nested state formulas

• Slide 134: when the event space is infinite, an event with probability 1 is
not sure (and one with probability 0 is not impossible)

• Slide 135:

– P((s0s1)
ω) = limk→∞ Π

k
2
i=0

1
2 = limk→∞

1
2k

= 0

– actually, it is not even an event! it does not belong to any cylinder,
thus it is not in the σ-algebra

– in fact, any prefix of (s0s1)
ω with odd length (i.e., ending in s0) may

go on with s2

– thus, singling out (s0s1)
ω only (i.e., considering the singleton event

{(s0s1)ω}) is impossible in this example

6

– thus, it is correct that the final probability of reaching tails is 1...

• Slide 136: this is outside standard PCTL, but PRISM allows it as it is
useful and “easy”; note that it must be the outermost P

• Slide 140: the example provided is in CTL∗

• Slide 142: comparing with slide 126

– state formulas are the same

– path formulas also allow state formulas, as well as (direct) logical
combinations of path formulas

– note that such logical combinations are NOT redundant, i.e., they
cannot be derived from the path formulas

– the given example is not in PCTL because of GF

• Slide 143: simply LTL + prob does not have a name, you can use PCTL∗

instead

• Slide 148: let us assume it is not a problem to have full graphs in memory

– as we will see, PRISM uses OBDDs (for sets of states) and a special
extension of theirs known as MTBDD for functions S → [0, 1]

• Slide 151: it is assumed that Sat(Φ) has already been computed

– formulas has a finite size, so atomic propositions (are logical combi-
nations of atomic propositions) have to be used somewhere

– we follow the formula syntax tree, starting from the leaves

• Slide 186: some limitations in the modelling language

– probabilities must be constant; if something as a function of some
value is needed, we have to break it down in multiple states

– essentially as NuSMV, but with probabilities: only main arithmetic
operations are allowed to define next states

– build the DTMC corresponding to a generic input model

• Slide 235:

– f(t) is not a probability! If b− a < 1, f(t) > 1 for t ∈ [a, b]...

– it may seem confusing, but “probability density function” (PDF) ̸=
probability

– it becomes a probability when multiplied by a infinitesimal: f(x)dx
is the probability than value of X is inside [x, x+ dx]

– the “cumulative distribution function” (CDF) F (t), instead, is a
probability

7

– integrals go from some lower bound; in the general case, it is −∞
but may be overriden by special cases

• Slide 236:

– there are many types of random variable, here is one

– despite looking “ugly”, many computations are simplified, e.g., we
easily derive a closed form for F (t)

– formula for expected value when an f(x) is available: E[X] =∫∞
−∞ xf(x)dx

– in the case of the exponential distribution:
∫∞
0
xλe−λx = [−xe−λx −

1
λe

−λx]|∞0 = 1
λ

• Slide 238: to clarify examples

– in all these cases, we have a random variable X with CDF F (t) =
P(X ≤ t) = 1 − e−λt (or equivalently P(X > t) = e−λt), and λ is
known by some (typically statistical) measures

– “time before machine component fails”: X =time of machine com-
ponent failure

– for example, if we know that λ = 2, then the probability that the
component fails after time t = 3 is e−6 ≈ 2×10−3; conversely, it fails
before t = 3 with probability 99.8%!

– not surprising: λ is the “rate”, meaning the number of failures (in
this case) for every time unit

– thus, saying λ = 2 means there are “typically” 2 failures at each time
unit; so, after, 3 time units, we should be almost sure at least failure
has happened...

– of course, “time unit” depends on the problem and on how λ has been
estimated; it could be 10 years, in the case of a computer component
(so t = 3 means 30 years)

– easy to see why the expected value is 1
λ : if the rate is 2, it should

happen twice in a time unit, thus we should see the failure in 1
2 time

units...

– so, generally speaking: we know that something happens with some
regularity (i.e., λ times every time unit), so which is the probability
of the event happening before time t?

• Slide 243–245: no probabilities, only rates with the clarified meaning

– this “generates” a probability once also a time t is considered

– that is: from s0, at time t there is a probability 1 − e−
3
2 t to go to

state s1, and e
− 3

2 t to stay in s0

8

– this implies that only one rate may be considered from each state:
hence the discussion in slide 245

– see also slide 240

– note that there are not self loops, as they are treated as above

– note that, for an absorbing state s, probability of staying in s is 1

• Slide 246: of course, if just one rate is available from a given state s to
some s′, then R(s, s′) = E(s)...

• Slide 248: wrong formula for Q

– should be −
∑

s̸=s̃R(s, s̃)

– so R = Q, excluding the diagonal, where R is 0 whilst Q has the
information on the probability to stay in s

– that is, probability of still being in s at time t is eQ(s,s)t

– we can also see that P emb(s, s′) = Q(s,s′)
−Q(s,s) if Q(s, s) ̸= 0 and

P emb(s, s′) = 1 otherwise

– rows in P emb sum to 1, rows in Q sum to 0

– second item not to be confused with the discussion in slides 235–236

• Slide 250: MTTF and rate, if rate of failure is 2 every day, then MTTF is
12 hours (half a day)...

• Slide 250–251: λ, µ, ki must be instantiated to some value before going on
with verification

• Slide 252:

– note that a seemingly finite path is instead infinite (but ending in an
absorbing state is required)

– paths in DTMCs only have states, here we have times too

– no restriction on times, apart from being strictly positive

– for times growing, probability decreases exponentially, but it is still
possible...

– ω@t = si s.t.
∑i

j=0 tj ≥ t and i is the minimum

• Slide 254:

– for DTMCs, cylinders are simply finite prefixes of some path

– here we also have times, which may be different for the same
(sub)sequence of states

– in order to have cylinders which define sets of infinite paths, we have
to somehow abstract on times: that’s why we have time ranges in
them

9

• Slide 255: written explicitly, Ps(Cyl(s0(a0, b0]s1 . . . (an, bn]sn+1)) =
Πn

i=0P
emb(C)(si, si+1)(e

−E(si)ai − e−E(si)bi)

– recall that E(s) =
∑

s′ ̸=sR(s, s
′)

• Slide 263:

– PathC is to emphasize that is about CTMC C

– easy to define steady state probabilities, compare with slide 96

• slide 265: eQt denotes the matrix where in position (s, s′) we have etQ(s,s′)

– analogously for Qi (and Q
q in slide 266)

– remember that in Πt, t is a time, not a state

– unstable: the limit exists, but computation may diverge

• Slide 266: rows in P unif sum to 1

• Slide 268: in the Poisson probability, we usually have λ = qt

– actually, “probability mass function”, as the Poisson process is dis-
crete

– λ in exponential distribution and in the Poisson probability are dif-
ferent, though related

– that is: suppose that we have some event which may happen multiple
times within a given (fixed) interval of time

– knowing that the “typical” number of times is λ, which is the prob-
ability that we observe k events?

– of course, it should be high for k close to lambda, and low otherwise

– e.g., if there are 2 failures every day, which is probability of having

two failures in one dat? it is P(X = 2) = 22e−2

2! ≈ 27%

– having 3 failures is P(X = 3) = 23e−2

3! ≈ 18%, 1 failure is the same of
2, 0 failures is 13.5%

– rates are usually shown as r instead of λ, thus λ = rt if t is the period
length

– so: exponential distribution is about how much (continuous) time for
the first occurrence, Poisson is about how many occurrences we have
in a given time

• Slide 353: c could have been named a; named c instead because of following
examples

• Slide 354: from “transition probability matrix” of DTMCs to “transition
probability function” of MDPs

– Act, if provided, must be finite

10

– Dist(S) = {π | π : S → [0, 1] ∧
∑

s∈S π(s) = 1}
– for all s ∈ S, Steps(s) is a set where each element is a pair (l, π)

• Slide 358: that is not actually a matrix, needs delimiters

– could be seen as a sequence of matrices M1, . . . ,M|S| where Ms has
|S| columns and |Steps(s)| rows

– all piled vertically

• Slides 359–360:

– blue PRISM input language code: little trick to say “define a new
module equal to M1, where all occurrence of variable s are replaced
by t”

– we now have two modules without any synchronizing label, thus we
have to make a parallel composition

– formally, S = S1 × S2, where Si is the set of “local” states of Mi

– sinit = (s0, t0)

– Steps(si, tj) = {((i, j)1, λx. P1(si, x)), ((i, j)2, λx. P2(tj , x))}

• Slide 363: of course, there are infinitely many adversaries also for this
little example

– note that each adversary must resolve all possible finite paths

– in this easy example, σ1, σ2 are well defined because there are not
other paths, given that choices

• Slide 365: there are no deadlocks, thus there always are infinite paths of
finite length

• Slide 369:

– Probσ2(s0,F tails) = Prob({s0s1s1p(i1), s0s1s0s1p(i2) | p(k) =
sk3}) = 0.3 · 0.5 + 0.7 · 0.5 = 0.5 · (0.3 + 0.7)...

– Probσ3(s0,F tails) = Prob({s0s1s1s1p(i1), s0s1s0s1s0s1p(i2),
s0s1s1s0s1p(i3), s0s1s0s1s1p(i4) | p(k) = sk3}) = 0.32 · 0.5 + 0.72 ·
0.5 + 2 · 0.7 · 0.3 · 0.5 = 0.5 · (0.32 + 0.72 + 0.3 · 0.7) < 0.5...

11

