
Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic model checking

•  Probabilistic model checking…
−  is a formal verification technique  

for modelling and analysing systems 
that exhibit probabilistic behaviour

•  Formal verification…
−  is the application of rigorous,  

mathematics-based techniques 
to establish the correctness 
of computerised systems

3 DP/Probabilistic Model Checking, Michaelmas 2011

Outline
•  Introducing probabilistic model checking…

•  Topics for this lecture
−  the role of automatic verification
−  what is probabilistic model checking?
−  why is it important?
−  where is it applicable?
−  what does it involve?

•  About this course
−  aims and organisation
−  information and links

4 DP/Probabilistic Model Checking, Michaelmas 2011

Conventional software engineering
•  From requirements to software system

−  apply design methodologies
−  code directly in programming language
−  validation via testing, code walkthroughs

Validation
System Informal

requirements

5 DP/Probabilistic Model Checking, Michaelmas 2011

Formal verification
•  From requirements to formal specification

−  formalise specification, derive model
−  formally verify correctness

Formal
specification

Fo
rm

al
is

e

Model

System

Ab
st

ra
ct

 Refine

Verification

Informal
requirements

6 DP/Probabilistic Model Checking, Michaelmas 2011

But my program works!
•  True, there are many successful large-scale complex

computer systems…
−  online banking, electronic commerce
−  information services, online libraries, business processes
−  supply chain management
−  mobile phone networks

•  Yet many new potential application domains with far
greater complexity and higher expectations
−  automotive drive-by-wire
−  medical sensors: heart rate & blood pressure monitors
−  intelligent buildings and spaces, environmental sensors

•  Learning from mistakes costly…

Toyota Prius
•  Toyota Prius

−  first mass-produced hybrid vehicle

•  February 2010
−  software “glitch” found in 

anti-lock braking system
−  in response to numerous 

complaints/accidents

•  Eventually fixed via software update
−  in total 185,000 cars recalled, at huge cost
−  handling of the incident prompted  

much criticism, bad publicity

7 DP/Probabilistic Model Checking, Michaelmas 2011

8 DP/Probabilistic Model Checking, Michaelmas 2011

Ariane 5
•  ESA (European Space Agency) Ariane 5 launcher

−  shown here in maiden flight 
on 4th June 1996

•  37secs later self-destructs

−  uncaught exception: numerical  
overflow in a conversion routine  
results in incorrect altitude sent 
by the on-board computer

•  Expensive, embarrassing…

9 DP/Probabilistic Model Checking, Michaelmas 2011

The London Ambulance Service
•  London Ambulance Service  

computer aided despatch system
−  Area 600sq miles
−  Population 6.8million
−  5000 patients per day
−  2000-2500 calls per day
−  1000-1200 999 calls per day

•  Introduced October 1992
•  Severe system failure:

−  position of vehicles incorrectly recorded
−  multiple vehicles sent to the same location
−  20-30 people estimated to have died as a result

10 DP/Probabilistic Model Checking, Michaelmas 2011

What do these stories have in common?
•  Programmable computing devices

−  conventional computers and networks
−  software embedded in devices

•  airbag controllers, mobile phones, etc
•  Programming error direct cause of failure

•  Software critical
−  for safety
−  for business
−  for performance

•  High costs incurred: not just financial

•  Failures avoidable…

11 DP/Probabilistic Model Checking, Michaelmas 2011

Why must we verify?
 “Testing can only show the presence of errors, not their absence.”

 To rule out errors need to  
consider all possible executions 
often not feasible mechanically!
−  need formal verification…

 “In their capacity as a tool,  
computers will be but a ripple  
on the surface of our culture.  
In their capacity as intellectual  
challenge, computers are  
without precedent in the  
cultural history of mankind.”

Edsger Dijkstra
1930-2002

12 DP/Probabilistic Model Checking, Michaelmas 2011

Automatic verification
•  Formal verification…

−  the application of rigorous, mathematics-based techniques 
to establish the correctness of computerised systems

−  essentially: proving that a program satisfies it specification
−  many techniques: manual proof, automated theorem proving,

static analysis, model checking, …

•  Automatic verification =
−  mechanical, push-button technology
−  performed without human intervention

1070 atoms 10500,000 states

Verification via model checking

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

(error trace) System
 require-

ments

¬EF fail

Model checker
e.g. SMV, Spin

13 DP/Probabilistic Model Checking, Michaelmas 2011

14 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking in practice
•  Model checking now routinely applied to real-life systems

−  not just “verification”…
−  model checkers used as a debugging tool
−  at IBM, bugs detected in arbiter that could not be found with

simulations
•  Now widely accepted in industrial practice

−  Microsoft, Intel, Cadence, Bell Labs, IBM,...
•  Many software tools, both commercial and academic

−  smv, SPIN, SLAM, FDR2, FormalCheck, RuleBase, ...
−  software, hardware, protocols, …

•  Extremely active research area
−  2008 Turing Award won by Edmund Clarke, Allen Emerson

and Joseph Sifakis for their work on model checking

15 DP/Probabilistic Model Checking, Michaelmas 2011

New challenges for verification
•  Devices, ever smaller

−  laptops, phones, sensors… 

•  Networking, wireless, wired & global
−  wireless & internet everywhere  

•  New design and engineering challenges
−  adaptive computing,  

ubiquitous/pervasive computing,  
context-aware systems

−  trade-offs between e.g. performance,  
security, power usage, battery life, …

16 DP/Probabilistic Model Checking, Michaelmas 2011

New challenges for verification
•  Many properties other than correctness are important
•  Need to guarantee…

−  safety, reliability, performance, dependability
−  resource usage, e.g. battery life
−  security, privacy, trust, anonymity, fairness
−  and much more…

•  Quantitative, as well as qualitative requirements:
−  “how reliable is my car’s Bluetooth network?”
−  “how efficient is my phone’s power management policy?”
−  “how secure is my bank’s web-service?”

•  This course: probabilistic verification

17 DP/Probabilistic Model Checking, Michaelmas 2011

Why probability?
•  Some systems are inherently probabilistic…

•  Randomisation, e.g. in distributed coordination algorithms
−  as a symmetry breaker, in gossip routing to reduce flooding

•  Examples: real-world protocols featuring randomisation
−  Randomised back-off schemes

•  IEEE 802.3 CSMA/CD, IEEE 802.11 Wireless LAN
−  Random choice of waiting time

•  IEEE 1394 Firewire (root contention), Bluetooth (device discovery)
−  Random choice over a set of possible addresses

•  IPv4 Zeroconf dynamic configuration (link-local addressing)
−  Randomised algorithms for anonymity, contract signing, …

18 DP/Probabilistic Model Checking, Michaelmas 2011

Why probability?
•  Some systems are inherently probabilistic…

•  Randomisation, e.g. in distributed coordination algorithms
−  as a symmetry breaker, in gossip routing to reduce flooding

•  Modelling uncertainty and performance
−  to quantify rate of failures, express Quality of Service

•  Examples:
−  computer networks, embedded systems
−  power management policies
−  nano-scale circuitry: reliability through defect-tolerance

19 DP/Probabilistic Model Checking, Michaelmas 2011

Why probability?
•  Some systems are inherently probabilistic…

•  Randomisation, e.g. in distributed coordination algorithms
−  as a symmetry breaker, in gossip routing to reduce flooding

•  Modelling uncertainty and performance
−  to quantify rate of failures, express Quality of Service

•  For quantitative analysis of software and systems
−  to quantify resource usage given a policy

 “the minimum expected battery capacity for a scenario…” 

•  And many others, e.g. biological processes

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic temporal  
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
 require-

ments

P<0.1 [F fail]

0.5
0.1

0.4

Probabilistic
model checker

e.g. PRISM

20 DP/Probabilistic Model Checking, Michaelmas 2011

21 DP/Probabilistic Model Checking, Michaelmas 2011

Case study: FireWire protocol
•  FireWire (IEEE 1394)

−  high-performance serial bus for networking 
multimedia devices; originally by Apple

−  "hot-pluggable" - add/remove  
devices at any time

−  no requirement for a single PC (need acyclic topology)

•  Root contention protocol
−  leader election algorithm, when nodes join/leave
−  symmetric, distributed protocol
−  uses electronic coin tossing and timing delays
−  nodes send messages: "be my parent"
−  root contention: when nodes contend leadership
−  random choice: "fast"/"slow" delay before retry

22 DP/Probabilistic Model Checking, Michaelmas 2011

FireWire example

23 DP/Probabilistic Model Checking, Michaelmas 2011

FireWire leader election

R

24 DP/Probabilistic Model Checking, Michaelmas 2011

FireWire root contention

Root
contention

25 DP/Probabilistic Model Checking, Michaelmas 2011

FireWire root contention

Root
contention

R

26 DP/Probabilistic Model Checking, Michaelmas 2011

FireWire analysis
•  Probabilistic model checking

−  model constructed and analysed using PRISM
−  timing delays taken from IEEE standard
−  model includes:

•  concurrency: messages between nodes and wires
•  underspecification of delays (upper/lower bounds)

−  max. model size: 170 million states 

•  Analysis:
−  verified that root contention always 

resolved with probability 1
−  investigated time taken for leader election
−  and the effect of using biased coin

•  based on a conjecture by Stoelinga

27 DP/Probabilistic Model Checking, Michaelmas 2011

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

28 DP/Probabilistic Model Checking, Michaelmas 2011

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

(short wire length)

Using a biased coin

29 DP/Probabilistic Model Checking, Michaelmas 2011

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin

30 DP/Probabilistic Model Checking, Michaelmas 2011

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin
is beneficial!

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic temporal  
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
 require-

ments

P<0.1 [F fail]

0.5
0.1

0.4

Probabilistic
model checker

e.g. PRISM

31 DP/Probabilistic Model Checking, Michaelmas 2011

32 DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic model checking inputs
•  Models: variants of Markov chains

−  discrete-time Markov chains (DTMCs)
•  discrete time, discrete probabilistic behaviours only

−  continuous-time Markov chains (CTMCs)
•  continuous time, continuous probabilistic behaviours

−  Markov decision processes (MDPs)
•  DTMCs, plus nondeterminism

•  Specifications
−  informally:

•  “probability of delivery within time deadline is …”
•  “expected time until message delivery is …”
•  “expected power consumption is …”

−  formally:
•  probabilistic temporal logics (PCTL, CSL, LTL, PCTL*, …)
•  e.g. P<0.05 [F err/total>0.1], P=? [F≤t reply_count=k]

33 DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic model checking involves…
•  Construction of models

−  from a description in a high-level modelling language

•  Probabilistic model checking algorithms
−  graph-theoretical algorithms

•  e.g. for reachability, identifying strongly connected components
−  numerical computation

•  linear equation systems, linear optimisation problems
•  iterative methods, direct methods
•  uniformisation, shortest path problems

−  automata for regular languages
−  also sampling-based (statistical) for approximate analysis

•  e.g. hypothesis testing based on simulation runs

34 DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic model checking involves…
•  Efficient implementation techniques

−  essential for scalability to real-life systems
−  symbolic data structures based on binary decision diagrams
−  algorithms for bisimulation minimisation, symmetry reduction

•  Tool support
−  PRISM: free, open-source probabilistic model checker
−  currently based at Oxford University
−  supports all probabilistic models discussed here

35 DP/Probabilistic Model Checking, Michaelmas 2011

Course aims
•  Introduce main types of probabilistic models and

specification notations
−  theory, syntax, semantics, examples
−  probability, expectation, costs/rewards

•  Explain the working of probabilistic model checking
−  algorithms & (symbolic) implementation

•  Introduce software tools
−  probabilistic model checker PRISM

•  Examples from wide range of application domains
−  communication & coordination protocols, performance &

reliability modelling, biological systems, … 

•  Mix of theory and practice

36 DP/Probabilistic Model Checking, Michaelmas 2011

Course outline
•  Discrete-time Markov chains (DTMCs) and their properties
•  Probabilistic temporal logics: PCTL, LTL, etc.
•  PCTL model checking for DTMCs
•  The PRISM model checker
•  Costs & rewards
•  Continuous-time Markov chains (CTMCs)
•  Counterexamples & bisimulation
•  Markov decision processes (MDPs)
•  Probabilistic LTL model checking
•  Implementation and data structures: symbolic techniques

37 DP/Probabilistic Model Checking, Michaelmas 2011

Course information
•  Prerequisites/background

−  basic computer science/maths background
−  no probability knowledge assumed  

•  Lectures
−  20 lectures: Mon 2pm, Wed 3pm, Thur 12pm (wks 1-4)

•  Classes/practicals (please sign up on-line)
−  4 problem sheets + 1 hr classes 

(Tue 3pm, Wed 12pm, wks 3, 5, 7, 8)
−  4 practical exercises, based on PRISM,  

4 scheduled 2 hr practical sessions (Tue 4pm, wks 3, 4, 6, 7),
+ work outside lab sessions

•  Assessment
−  take-home assignment

38 DP/Probabilistic Model Checking, Michaelmas 2011

Further information
•  Course lecture notes are self-contained

−  www.cs.ox.ac.uk/teaching/materials11-12/probabilistic/  

•  For further reading material…
−  two online tutorial papers also cover a lot of the material

•  Stochastic Model Checking 
Marta Kwiatkowska, Gethin Norman and David Parker

•  Automated Verification Techniques for Probabilistic Systems 
Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker

−  DTMC/MDP material also based on Chapter 10 of:  

−  PRISM web site: http://www.prismmodelchecker.org/

Principles of Model Checking 
Christel Baier and Joost-Pieter Katoen 
MIT Press 

39 DP/Probabilistic Model Checking, Michaelmas 2011

Next lecture(s)

•  Wed 3pm
•  Thur 12pm

•  Discrete-time Markov chains

40 DP/Probabilistic Model Checking, Michaelmas 2011

Acknowledgements

•  Much of the material in the course is based on an existing
lecture course prepared by:
−  Marta Kwiatkowska
−  Gethin Norman
−  Dave Parker

•  Various material and examples also appear courtesy of:
−  Christel Baier
−  Joost-Pieter Katoen

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic Model Checking

•  Formal verification and analysis of systems that exhibit
probabilistic behaviour
−  e.g. randomised algorithms/protocols
−  e.g. systems with failures/unreliability

•  Based on the construction and analysis of precise
mathematical models

•  This lecture: discrete-time Markov chains

2

DP/Probabilistic Model Checking, Michaelmas 2011

Overview
•  Probability basics

•  Discrete-time Markov chains (DTMCs)
−  definition, properties, examples

•  Formalising path-based properties of DTMCs
−  probability space over infinite paths

•  Probabilistic reachability
−  definition, computation

•  Sources/further reading: Section 10.1 of [BK08]

3

DP/Probabilistic Model Checking, Michaelmas 2011

Probability basics
•  First, need an experiment

−  The sample space Ω is the set of possible outcomes
−  An event is a subset of Ω, can form events A ∩ B, A ∪ B, Ω ∖ A

•  Examples:
−  toss a coin: Ω = {H,T}, events: “H”, “T”
−  toss two coins: Ω = {(H,H),(H,T),(T,H),(T,T)},

 event: “at least one H”
−  toss a coin ∞–often: Ω is set of infinite sequences of H/T

 event: “H in the first 3 throws”
•  Probability is:

−  Pr(“H”) = Pr(“T”) = 1/2, Pr(“at least one H”) = 3/4
−  Pr(“H in the first 3 throws”) = 1/2 + 1/4 + 1/8 = 7/8

4

DP/Probabilistic Model Checking, Michaelmas 2011

Probability example
•  Modelling a 6-sided die using a fair coin

−  algorithm due to Knuth/Yao:
−  start at 0, toss a coin
−  upper branch when H
−  lower branch when T
−  repeat until value chosen

•  Is this algorithm correct?
−  e.g. probability of obtaining a 4?
−  Obtain as disjoint union of events
−  THH, TTTHH, TTTTTHH, …
−  Pr(“eventually 4”)
 = (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

0

3

2

1

6

4

5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

5

DP/Probabilistic Model Checking, Michaelmas 2011

Example…
•  Other properties?

−  “what is the probability of termination?”
•  e.g. efficiency?

−  “what is the probability of needing 
more than 4 coin tosses?”

−  “on average, how many  
coin tosses are needed?”

•  Probabilistic model checking provides a framework for
these kinds of properties…
−  modelling languages
−  property specification languages
−  model checking algorithms, techniques and tools

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

6

DP/Probabilistic Model Checking, Michaelmas 2011

Discrete-time Markov chains
•  State-transition systems augmented with probabilities

•  States
−  set of states representing possible configurations of the

system being modelled
•  Transitions

−  transitions between states model  
evolution of system’s state;  
occur in discrete time-steps

•  Probabilities
−  probabilities of making transitions 

between states are given by  
discrete probability distributions

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

7

DP/Probabilistic Model Checking, Michaelmas 2011

Markov property

•  If the current state is known, then the future states of the
system are independent of its past states

•  i.e. the current state of the model contains all information
that can influence the future evolution of the system

•  also known as “memorylessness”

8

DP/Probabilistic Model Checking, Michaelmas 2011

Simple DTMC example
•  Modelling a very simple communication protocol

−  after one step, process starts trying to send a message
−  with probability 0.01, channel unready so wait a step
−  with probability 0.98, send message successfully and stop
−  with probability 0.01, message sending fails, restart

s1 s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

9

DP/Probabilistic Model Checking, Michaelmas 2011

Discrete-time Markov chains
•  Formally, a DTMC D is a tuple (S,sinit,P,L) where:

−  S is a set of states (“state space”)
−  sinit ∈ S is the initial state
−  P : S × S → [0,1] is the transition probability matrix

 where Σs’∈S P(s,s’) = 1 for all s ∈ S
−  L : S → 2AP is function labelling states with atomic propositions

(taken from a set AP)

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

10

DP/Probabilistic Model Checking, Michaelmas 2011

Simple DTMC example

s1 s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

D = (S,sinit,P,L)

S = {s0, s1, s2, s3}
sinit = s0

AP = {try, fail, succ}
L(s0)=∅,
L(s1)={try},
L(s2)={fail},
L(s3)={succ}

11

DP/Probabilistic Model Checking, Michaelmas 2011

Some more terminology
•  P is a stochastic matrix, meaning it satisifes:

−  P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) = 1 for all s ∈ S 

•  A sub-stochastic matrix satisfies:
−  P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) ≤ 1 for all s ∈ S

•  An absorbing state is a state s for which:
−  P(s,s) = 1 and P(s,s’) = 0 for all s≠s’
−  the transition from s to itself is sometimes called a self-loop

•  Note: Since we assume P is stochastic…
−  every state has at least one outgoing transition
−  i.e. no deadlocks (in model checking terminology)

12

DP/Probabilistic Model Checking, Michaelmas 2011

DTMCs: An alternative definition
•  Alternative definition… a DTMC is:

−  a family of random variables { X(k) | k=0,1,2,… }
−  where X(k) are observations at discrete time-steps
−  i.e. X(k) is the state of the system at time-step k
−  which satisfies…

•  The Markov property (“memorylessness”)
−  Pr(X(k)=sk | X(k-1)=sk-1, … , X(0)=s0)

 = Pr(X(k)=sk | X(k-1)=sk-1)
−  for a given current state, future states are independent of past

•  This allows us to adopt the “state-based” view presented so
far (which is better suited to this context)

13

DP/Probabilistic Model Checking, Michaelmas 2011

Other assumptions made here
•  We consider time-homogenous DTMCs

−  transition probabilities are independent of time
−  P(sk-1,sk) = Pr(X(k)=sk | X(k-1)=sk-1)
−  otherwise: time-inhomogenous

•  We will (mostly) assume that the state space S is finite
−  in general, S can be any countable set

•  Initial state sinit ∈ S can be generalised…
−  to an initial probability distribution sinit : S → [0,1]

•  Transition probabilities are reals: P(s,s’) ∈ [0,1]
−  but for algorithmic purposes, are assumed to be rationals

14

DP/Probabilistic Model Checking, Michaelmas 2011

DTMC example 2 - Coins and dice
•  Recall Knuth/Yao’s die algorithm from earlier:

S = { s0, s1, …, s6, 1, 2, …, 6 }

 sinit = s0

 P(s0,s1)=0.5
 P(s0,s2)=0.5
 etc.

 L(s0) = {init}
 etc.

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{init}

{done, four}

{done}

{done}

{done}

{done}

{done}

15

DP/Probabilistic Model Checking, Michaelmas 2011

DTMC example 3 - Zeroconf
•  Zeroconf = “Zero configuration networking”

−  self-configuration for local, ad-hoc networks
−  automatic configuration of unique IP for new devices
−  simple; no DHCP, DNS, …

•  Basic idea:
−  65,024 available IP addresses (IANA-specified range)
−  new node picks address U at random
−  broadcasts “probe” messages: “Who is using U?”
−  a node already using U replies to the probe
−  in this case, protocol is restarted
−  messages may not get sent (transmission fails, host busy, …)
−  so: nodes send multiple (n) probes, waiting after each one

16

DP/Probabilistic Model Checking, Michaelmas 2011

DTMC for Zeroconf
−  n=4 probes, m existing nodes in network
−  probability of message loss: p
−  probability that new address is in use: q = m/65024

s1 s0 s2 s3
q

1

1

{ok} {error}

{start} s4

s5

s6

s7

s8

1

1-q

1-p

1-p
1-p 1-p

p p p

p

1
17

DP/Probabilistic Model Checking, Michaelmas 2011

Properties of DTMCs
•  Path-based properties

−  what is the probability of observing a particular behaviour (or
class of behaviours)?

−  e.g. “what is the probability of throwing a 4?”

•  Transient properties
−  probability of being in state s after t steps?

•  Steady-state
−  long-run probability of being in each state

•  Expectations
−  e.g. “what is the average number of coin tosses required?”

18

DP/Probabilistic Model Checking, Michaelmas 2011

DTMCs and paths
•  A path in a DTMC represents an execution (i.e. one possible

behaviour) of the system being modelled
•  Formally:

−  infinite sequence of states s0s1s2s3… 
such that P(si,si+1) > 0 ∀i≥0

−  infinite unfolding of DTMC
•  Examples:

−  never succeeds: (s0s1s2)ω

−  tries, waits, fails, retries, succeeds: s0s1s1s2s0s1(s3)ω
•  Notation:

−  Path(s) = set of all infinite paths starting in state s
−  also sometimes use finite (length) paths
−  Pathfin(s) = set of all finite paths starting in state s

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

19

DP/Probabilistic Model Checking, Michaelmas 2011

Paths and probabilities
•  To reason (quantitatively) about this system

−  need to define a probability space over paths

•  Intuitively:
−  sample space: Path(s) = set of all  

infinite paths from a state s
−  events: sets of infinite paths from s
−  basic events: cylinder sets (or “cones”)
−  cylinder set Cyl(ω), for a finite path ω 

= set of infinite paths with the common finite prefix ω
−  for example: Cyl(ss1s2)

s1 s2 s

20

DP/Probabilistic Model Checking, Michaelmas 2011

Probability spaces
•  Let Ω be an arbitrary non-empty set

•  A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω
closed under complementation and countable union, i.e.:
−  if A ∈ Σ, the complement Ω ∖ A is in Σ
−  if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ
−  the empty set ∅ is in Σ

•  Elements of Σ are called measurable sets or events

•  Theorem: For any family F of subsets of Ω, there exists a
unique smallest σ-algebra on Ω containing F

21

DP/Probabilistic Model Checking, Michaelmas 2011

Probability spaces

•  Probability space (Ω, Σ, Pr)

−  Ω is the sample space

−  Σ is the set of events: σ-algebra on Ω

−  Pr : Σ → [0,1] is the probability measure:
 Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai

22

DP/Probabilistic Model Checking, Michaelmas 2011

Probability space - Simple example
•  Sample space Ω

−  Ω = {1,2,3}

•  Event set Σ
−  e.g. powerset of Ω
−  Σ = { ∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }
−  (closed under complement/countable union, contains ∅)

•  Probability measure Pr
−  e.g. Pr(1) = Pr(2) = Pr(3) = 1/3
−  Pr({1,2}) = 1/3+1/3 = 2/3, etc.

23

DP/Probabilistic Model Checking, Michaelmas 2011

Probability space - Simple example 2
•  Sample space Ω

−  Ω = ℕ = { 0,1,2,3,4,… }

•  Event set Σ
−  e.g. Σ = { ∅, “odd”, “even”, ℕ }
−  (closed under complement/countable union, contains ∅)

•  Probability measure Pr
−  e.g. Pr(“odd”) = 0.5, Pr(“even”) = 0.5

24

DP/Probabilistic Model Checking, Michaelmas 2011

Probability space over paths
•  Sample space Ω = Path(s)

set of infinite paths with initial state s
•  Event set ΣPath(s)

−  the cylinder set Cyl(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ }
−  ΣPath(s) is the least σ-algebra on Path(s) containing Cyl(ω) for

all finite paths ω starting in s
•  Probability measure Prs

−  define probability Ps(ω) for finite path ω = ss1…sn as:
•  Ps(ω) = 1 if ω has length one (i.e. ω = s)
•  Ps(ω) = P(s,s1) · … · P(sn-1,sn) otherwise
•  define Prs(Cyl(ω)) = Ps(ω) for all finite paths ω

−  Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1]

•  See [KSK76] for further details

25

DP/Probabilistic Model Checking, Michaelmas 2011

Paths and probabilities - Example
•  Paths where sending fails immediately

− ω = s0s1s2
−  Cyl(ω) = all paths starting s0s1s2…
−  Ps0(ω) = P(s0,s1) · P(s1,s2)

 = 1 · 0.01 = 0.01
−  Prs0(Cyl(ω)) = Ps0(ω) = 0.01

•  Paths which are eventually successful and with no failures
−  Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ …
−  Prs0(Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ …)

 = Ps0(s0s1s3) + Ps0(s0s1s1s3) + Ps0(s0s1s1s1s3) + …
 = 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + …
 = 0.9898989898…
 = 98/99

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

26

DP/Probabilistic Model Checking, Michaelmas 2011

Reachability
•  Key property: probabilistic reachability

−  probability of a path reaching a state in some target set T ⊆ S
−  e.g. “probability of the algorithm terminating successfully?”
−  e.g. “probability that an error occurs during execution?”

•  Dual of reachability: invariance
−  probability of remaining within some class of states
−  Pr(“remain in set of states T”) = 1 - Pr(“reach set S\T”)
−  e.g. “probability that an error never occurs”

•  We will also consider other variants of reachability
−  time-bounded, constrained (“until”), …

27

DP/Probabilistic Model Checking, Michaelmas 2011

Reachability probabilities
•  Formally: ProbReach(s, T) = Prs(Reach(s, T))

−  where Reach(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i }

•  Is Reach(s, T) measurable for any T ⊆ S ? Yes…
−  Reach(s, T) is the union of all basic cylinders 

Cyl(s0s1…sn) where s0s1…sn in Reachfin(s, T)
−  Reachfin(s, T) contains all finite paths s0s1…sn such that:  

s0=s, s0,…,sn-1 ∉ T, sn ∈ T
−  set of such finite paths s0s1…sn is countable

•  Probability
−  in fact, the above is a disjoint union
−  so probability obtained by simply summing…

28

DP/Probabilistic Model Checking, Michaelmas 2011

Computing reachability probabilities
•  Compute as (infinite) sum…

•  Σs0,…,sn ∈ Reachfin(s, T) Prs0(Cyl(s0,…,sn))  

= Σs0,…,sn ∈ Reachfin(s, T) P(s0,…,sn)

•  Example:
−  ProbReach(s0, {4})
= Prs0(Reach(s0, {4}))
−  Finite path fragments:
−  s0(s2s6)ns2s54 for n ≥ 0
−  Ps0(s0s2s54) + Ps0(s0s2s6s2s54) + Ps0(s0s2s6s2s6s2s54) + …
= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

29

DP/Probabilistic Model Checking, Michaelmas 2011

Computing reachability probabilities
•  ProbReach(s0, {s6}) : compute as infinite sum?

−  doesn’t scale…

s1 s0 s2 s3
q

1

1

{ok} {error}

{start} s4

s5

s6

s7

s8

1

1-q

1-p

1-p
1-p 1-p

p p p

p

1

30

DP/Probabilistic Model Checking, Michaelmas 2011

Computing reachability probabilities
•  Alternative: derive a linear equation system

−  solve for all states simultaneously
−  i.e. compute vector ProbReach(T)

•  Let xs denote ProbReach(s, T)

•  Solve:

€

xs =
1
0

P(s,s') ⋅ xs'
s'∈S
∑

if s ∈ T
if T is not reachable from s
otherwise

⎧

⎨

⎪
⎪

⎩

⎪
⎪

31

DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  Compute ProbReach(s0, {4})

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

32

DP/Probabilistic Model Checking, Michaelmas 2011

Unique solutions
•  Why the need to identify states that cannot reach T?

•  Consider this simple DTMC:
−  compute probability of reaching {s0} from s1

−  linear equation system: xs0 = 1, xs1 = xs1

−  multiple solutions: (xs0, xs1) = (1,p) for any p ∈ [0,1]

s1 s0
1

1

33

DP/Probabilistic Model Checking, Michaelmas 2011

Computing reachability probabilities
•  Another alternative: least fixed point characterisation

•  Consider functions of the form:
−  F : [0,1]S → [0,1]S

•  And define:
−  y ≤ y’ iff y(s) ≤ y’(s) for all s

•  y is a fixed point of F if F(y) = y

•  A fixed point x of F is the least fixed point of F if x ≤ y for
any other fixed point y

vectors of
probabilities
for each state

34

DP/Probabilistic Model Checking, Michaelmas 2011

Least fixed point
•  ProbReach(T) is the least fixed point of the function F:

•  This yields a simple iterative algorithm to approximate
ProbReach(T):

−  x(0) = 0 (i.e. x(0)(s) = 0 for all s)
−  x(n+1) = F(x(n))

−  x(0) ≤ x(1) ≤ x(2) ≤ x(3) ≤ …
−  ProbReach(T) = limn→∞ x(n)

€

F(y)(s) =
1

P(s,s')⋅ y(s')
s'∈S
∑

⎧

⎨
⎪

⎩ ⎪

if s ∈ T
otherwise.

in practice, terminate
when for example:  

maxs | x(n+1)(s) - x(n)(s)) | < ɛ 

for some user-defined
tolerance value ɛ

35

DP/Probabilistic Model Checking, Michaelmas 2011

Least fixed point
•  Expressing ProbReach as a least fixed point… 

−  corresponds to solving the linear equation system 
using the power method

•  other iterative methods exist (see later)
•  power method is guaranteed to converge

−  generalises non-probabilistic reachability

−  can be generalised to:
•  constrained reachability (see PCTL “until”)
•  reachability for Markov decision processes

−  also yields bounded reachability probabilities…

36

DP/Probabilistic Model Checking, Michaelmas 2011

Bounded reachability probabilities
•  Probability of reaching T from s within k steps

•  Formally: ProbReach≤k(s, T) = Prs(Reach≤k(s, T)) where:
−  Reach≤k(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i≤k }

•  ProbReach≤k(T) = x(k+1) from the previous fixed point
−  which gives us…

€

ProbReach≤k(s, T) =
1
0

P(s,s')⋅ ProbReach≤k-1(s', T)
s'∈S
∑

if s ∈ T
if k = 0 & s ∉ T
if k > 0 & s ∉ T

⎧

⎨

⎪
⎪

⎩

⎪
⎪

37

DP/Probabilistic Model Checking, Michaelmas 2011

(Bounded) reachability
•  ProbReach(s0, {1,2,3,4,5,6}) = 1

•  ProbReach≤k (s0, {1,2,3,4,5,6}) = …

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

38

DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…

•  Discrete-time Markov chains (DTMCs)
−  state-transition systems augmented with probabilities

•  Formalising path-based properties of DTMCs
−  probability space over infinite paths

•  Probabilistic reachability
−  infinite sum
−  linear equation system
−  least fixed point characterisation
−  bounded reachability

39

DP/Probabilistic Model Checking, Michaelmas 2011

Next lecture

•  Thur 12pm

•  Discrete-time Markov chains…
−  transient
−  steady-state
−  long-run behaviour

40

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Next few lectures…
•  Today:

−  Discrete-time Markov chains (continued)

•  Mon 2pm:
−  Probabilistic temporal logics

•  Wed 3pm:
−  PCTL model checking for DTMCs

•  Thur 12pm:
−  PRISM

3 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Transient state probabilities

•  Long-run / steady-state probabilities

•  Qualitative properties
−  repeated reachability
−  persistence

4 DP/Probabilistic Model Checking, Michaelmas 2011

Transient state probabilities

•  What is the probability, having started in state s, of being in
state s’ at time k?
−  i.e. after exactly k steps/transitions have occurred
−  this is the transient state probability: πs,k(s’)

•  Transient state distribution: πs,k
−  vector πs,k i.e. πs,k(s’) for all states s’

•  Note: this is a discrete probability distribution
−  so we have πs,k : S → [0,1]
−  rather than e.g. Prs : ΣPath(s) → [0,1] where ΣPath(s) ⊆ 2Path(s)

5 DP/Probabilistic Model Checking, Michaelmas 2011

Transient distributions

k=2:

0.25 1 1

1 1

0.25
0.5

0.5

0.5

k=0:

0.25 1 1

1 1

0.25

0.5

0.5

0.5

k=1:

0.25 1 1

1 1

0.25
0.5

0.5

0.5

k=3:

0.25 1 1

1 1

0.25
0.5

0.5

0.5

6 DP/Probabilistic Model Checking, Michaelmas 2011

Computing transient probabilities

•  Transient state probabilities:
−  πs,k(s’) = Σs’’∈S P(s’’,s’) · πs,k-1(s’’)
−  (i.e. look at incoming transitions)

•  Computation of transient state distribution:
−  πs,0 is the initial probability distribution
−  e.g. in our case πs,0(s’) = 1 if s’=s and πs,0(s’) = 0 otherwise
−  πs,k = πs,k-1· P

•  i.e. successive vector-matrix multiplications

7 DP/Probabilistic Model Checking, Michaelmas 2011

Computing transient probabilities

s0

0.25
1

s1 s2

s3 s4 s5

1

1 1

0.25

0.5

0.5

0.5

€

0, 1
8
,0, 5

8
, 1

8
, 1

8[]

€

1
4
,0, 1

8
, 1

2
, 1

8
,0[]

€

0, 1
2
,0, 1

2
,0,0[]

€

1,0,0,0,0,0[]πs0,0 =

πs0,1 =

πs0,2 =

πs0,3 =

…

€

P =

0 0.5 0 0.5 0 0
0.5 0 0.25 0 0.25 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

8 DP/Probabilistic Model Checking, Michaelmas 2011

Computing transient probabilities
•  πs,k = πs,k-1 · P = πs,0 · Pk

•  kth matrix power: Pk
−  P gives one-step transition probabilities
−  Pk gives probabilities of k-step transition probabilities
−  i.e. Pk(s,s’) = πs,k(s’)

•  A possible optimisation: iterative squaring
−  e.g. P8 = ((P2)2)2
−  only requires log k multiplications
−  but potentially inefficient, e.g. if P is large and sparse  

−  in practice, successive vector-matrix multiplications preferred

9 DP/Probabilistic Model Checking, Michaelmas 2011

Notion of time in DTMCs
•  Two possible views on the timing aspects of a system

modelled as a DTMC:

•  Discrete time-steps model time accurately
−  e.g. clock ticks in a model of an embedded device
−  or like dice example: interested in number of steps (tosses)

•  Time-abstract
−  no information assumed about the time transitions take
−  e.g. simple Zeroconf model

•  In the latter case, transient probabilities are not very useful
•  In both cases, often beneficial to study long-run behaviour

10 DP/Probabilistic Model Checking, Michaelmas 2011

Long-run behaviour

•  Consider the limit: πs = limk→∞ πs,k
−  where πs,k is the transient state distribution at time k  

having starting in state s
−  this limit, where it exists, is called the limiting distribution

•  Intuitive idea
−  the percentage of time, in the long run, spent in each state
−  e.g. reliability: “in the long-run, what percentage of time is the

system in an operational state”

11 DP/Probabilistic Model Checking, Michaelmas 2011

Limiting distribution
•  Example:

€

0,0, 1
12

, 2
3
, 1

6
, 1

12[]

€

0, 1
8
,0, 5

8
, 1

8
, 1

8[]

€

1
4
,0, 1

8
, 1

2
, 1

8
,0[]

€

0, 1
2
,0, 1

2
,0,0[]

€

1,0,0,0,0,0[]πs0,0 =

πs0,1 =

πs0,2 =

πs0,3 =

…

πs0 =

0.25 1 1

1 1

0.25
0.5

0.5

0.5

s0

12 DP/Probabilistic Model Checking, Michaelmas 2011

Long-run behaviour
•  Questions:

−  when does this limit exist?
−  does it depend on the initial state/distribution?

•  Need to consider underlying graph
−  (V,E) where V are vertices and E ⊆ VxV are edges
−  V = S and E = { (s,s’) s.t. P(s,s’) > 0 }

1

s0 s1

1

0.5

s0

s1

0.5 s2

1

1

13 DP/Probabilistic Model Checking, Michaelmas 2011

Graph terminology
•  A state s’ is reachable from s if there is a finite path

starting in s and ending in s’
•  A subset T of S is strongly connected if, for each pair of

states s and s’ in T, s’ is reachable from s passing only
through states in T

•  A strongly connected component (SCC) is a maximally
strongly connected set of states (i.e. no superset of it is
also strongly connected)

•  A bottom strongly connected component (BSCC) is an SCC
T from which no state outside T is reachable from T

•  Alternative terminology: “s communicates with s’”,
“communicating class”, “closed communicating class”

14 DP/Probabilistic Model Checking, Michaelmas 2011

Example - (B)SCCs

s0

0.25
1

s1 s2

s3 s4 s5

1

1 1

0.25

0.5

0.5

0.5

BSCC

BSCC BSCC

SCC

15 DP/Probabilistic Model Checking, Michaelmas 2011

Graph terminology
•  Markov chain is irreducible if all its states belong to a

single BSCC; otherwise reducible

•  A state s is periodic, with period d, if
−  the greatest common divisor of the set { n | fs

(n)>0} equals d
−  where fs

(n) is the probability of, when starting in state s,
returning to state s in exactly n steps

•  A Markov chain is aperiodic if its period is 1

1

s0 s1

1

16 DP/Probabilistic Model Checking, Michaelmas 2011

Steady-state probabilities
•  For a finite, irreducible, aperiodic DTMC…

−  limiting distribution always exists
−  and is independent of initial state/distribution

•  These are known as steady-state probabilities
−  (or equilibrium probabilities)
−  effect of initial distribution has disappeared, denoted π

•  These probabilities can be computed as the unique solution
of the linear equation system:

17 DP/Probabilistic Model Checking, Michaelmas 2011

Steady-state - Balance equations

•  Known as balance equations

•  That is:

−  π(s’) = Σs∈S π(s) · P(s,s’)

−  Σs∈S π(s) = 1
normalisation

balance the
probability of
leaving and

entering a state s’

18 DP/Probabilistic Model Checking, Michaelmas 2011

Steady-state - Example
•  Let x = π
•  Solve: x·P = x, Σsx(s) = 1

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

x2+x3 = x0
x0+0.01x1 = x1
0.01x1 = x2
0.98x1 = x3

x0+x1+x2+x3 = 1

…

x0+(100/99)x0+x0 = 1
x0 = 99/298

…

x ≈ [0.332215, 0.335570,
 0.003356, 0.328859]

19 DP/Probabilistic Model Checking, Michaelmas 2011

Steady-state - Example
•  Let x = π
•  Solve: x·P = x, Σsx(s) = 1

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

x ≈ [0.332215, 0.335570,
 0.003356, 0.328859]

Long-run percentage of time
spent in the state “try”
≈ 33.6%

Long-run percentage of time
spent in “fail”/”succ”
≈ 0.003356 + 0.328859
≈ 33.2%

20 DP/Probabilistic Model Checking, Michaelmas 2011

Periodic DTMCs
•  For (finite, irreducible) periodic DTMCs, this limit:

•  does not exist, but this limit does:

•  Steady-state probabilities for these DTMCs can be
computed by solving the same set of linear equations:

(and where both limits exist,
e.g. for aperiodic DTMCs,
these 2 limits coincide)

1

s0 s1

1

21 DP/Probabilistic Model Checking, Michaelmas 2011

Steady-state - General case
•  General case: reducible DTMC

−  compute vector πs
−  (note: distribution depends on initial state s)

•  Compute BSCCs for DTMC; then two cases to consider:
•  (1) s is in a BSCC T

−  compute steady-state probabilities x in sub-DTMC for T
−  πs(s’) = x(s’) if s’ in T
−  πs(s’) = 0 if s’ not in T

•  (2) s is not in any BSCC
−  compute steady-state probabilities xT for sub-DTMC of each

BSCC T and combine with reachability probabilities to BSCCs
−  πs(s’) = ProbReach(s, T) · xT(s’) if s’ is in BSCC T
−  πs(s’) = 0 if s’ is not in a BSCC

22 DP/Probabilistic Model Checking, Michaelmas 2011

Steady-state - Example 2
•  πs depends on initial state s

s0

0.25
1

s1 s2

s3 s4 s5

1

1 1

0.25

0.5

0.5

0.5

πs3 = [0 0 0 1 0 0]

πs4 = [0 0 0 0 1 0]  

πs2 = πs5 =  

πs0 =

πs1 = …

€

0,0, 1
12

, 2
3
, 1

6
, 1

12[]

€

0,0, 1
2
,0,0, 1

2[]

23 DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative properties
•  Quantitative properties:

−  “what is the probability of event A?” 

•  Qualititative properties:
−  “the probability of event A is 1” (“almost surely A”)
−  or: “the probability of event A is > 0” (“possibly A”)

•  For finite DTMCs, qualititative properties do not depend on
the transition probabilities - only need underlying graph
−  e.g. to determine “is target set T reached with probability 1?” 

(see DTMC model checking lecture)
−  computing BSCCs of a DTMCs yields information about 

long-run qualitative properties…

24 DP/Probabilistic Model Checking, Michaelmas 2011

Fundamental property
•  Fundamental property of (finite) DTMCs…

•  With probability 1,  
a BSCC will be reached  
and all of its states 
visited infinitely often

•  Formally:
−  Prs0 (s0s1s2… | ∃ i≥0, ∃ BSCC T such that 

 ∀ j≥i sj ∈ T and  
 ∀ s∈T sk = s for infinitely many k) = 1

s0

0.25
1

s1 s2

s3 s4 s5

1

1 1

0.25

0.5

0.5

0.5

25 DP/Probabilistic Model Checking, Michaelmas 2011

Zeroconf example
•  2 BSCCs: {s6}, {s8}
•  Probability of trying to acquire a new address infinitely

often is 0

s1 s0 s2 s3
q

1

1

{ok} {error}

{start} s4

s5

s6

s7

s8

1

1-q

1-p

1-p
1-p 1-p

p p p

p

1

26 DP/Probabilistic Model Checking, Michaelmas 2011

Aside: Infinite Markov chains
•  Infinite-state random walk

•  Value of probability p does affect qualitative properties

−  ProbReach(s, {s0}) = 1 if p ≤ 0.5

−  ProbReach(s, {s0}) < 1 if p > 0.5

s1 s0 1-p

p

s2

1-p

p

s3

1-p

p

• • •

1-p

27 DP/Probabilistic Model Checking, Michaelmas 2011

Repeated reachability
•  Repeated reachability:

−  “always eventually…”, “infinitely often…”
•  Prs0 (s0s1s2… | ∀ i≥0 ∃ j≥i sj ∈ B)

−  where B ⊆ S is a set of states

•  e.g. “what is the probability that the protocol successfully
sends a message infinitely often?”

•  Is this measurable? Yes…
−  set of satisfying paths is:  

−  where Cm is the union of all cylinder sets Cyl(s0s1…sm) for
finite paths s0s1…sm such that sm ∈ B

28 DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative repeated reachability
•  Prs0 (s0s1s2… | ∀ i≥0 ∃ j≥i sj ∈ B) = 1 

Prs0 (“always eventually B”) = 1 

 if and only if  

•  T ∩ B ≠ ∅ for each BSCC T that is reachable from s0

s0

0.25
1

s1 s2

s3 s4 s5

1

1 1

0.25

0.5

0.5

0.5
Example:

B = { s3, s4, s5 }

29 DP/Probabilistic Model Checking, Michaelmas 2011

Persistence
•  Persistence properties:

−  “eventually forever…”
•  Prs0 (s0s1s2… | ∃ i≥0 ∀ j≥i sj ∈ B)

−  where B ⊆ S is a set of states

•  e.g. “what is the probability of the leader election algorithm
reaching, and staying in, a stable state?”

•  e.g. “what is the probability that an irrecoverable error
occurs?”

•  Is this measurable? Yes… FG B = ¬ GF (S\B)

30 DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative persistence
•  Prs0 (s0s1s2… | ∃ i≥0 ∀ j≥i sj ∈ B) = 1 

Prs0 (“eventually forever B”) = 1  

 if and only if  

•  T ⊆ B for each BSCC T that is reachable from s0

s0

0.25
1

s1 s2

s3 s4 s5

1

1 1

0.25

0.5

0.5

0.5
Example:

B = { s2, s3, s4, s5 }

31 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Transient state probabilities

−  successive vector-matrix multiplications

•  Long-run/steady-state probabilities
−  requires graph analysis
−  irreducible case: solve linear equation system
−  reducible case: steady-state for sub-DTMCs + reachability

•  Qualitative properties
−  repeated reachability
−  persistence

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview
•  Temporal logic

•  Non-probabilistic temporal logic
−  CTL

•  Probabilistic temporal logic
−  PCTL = CTL + probabilities

•  Qualitative vs. quantitative

•  Linear-time properties
−  LTL, PCTL*

3 DP/Probabilistic Model Checking, Michaelmas 2011

Temporal logic
•  Temporal logic

−  formal language for specifying and reasoning about how the
behaviour of a system changes over time

−  extends propositional logic with modal/temporal operators
−  one important use: representation of system properties to be

checked by a model checker
•  Logics used in this course are probabilistic extensions of

temporal logics devised for non-probabilistic systems
−  So we revert briefly to (labelled) state-transition diagrams

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

s1 s0

s2

s3

{fail}

{succ}

{try}

4 DP/Probabilistic Model Checking, Michaelmas 2011

State-transition systems

•  Labelled state-transition system (LTS) (or Kripke structure)
−  is a tuple (S,sinit,→,L) where:
−  S is a set of states (“state space”)
−  sinit ∈ S is the initial state
− → ⊆ S x S is the transition relation
−  L : S → 2AP is function labelling 

states with atomic propositions 
(taken from a set AP)

•  DTMC (S,sinit,P,L) has underlying LTS (S,sinit,→,L)
−  where → = { (s,s’) s.t. P(s,s’) > 0 }

s1 s0

s2

s3

1

{fail}

{succ}

{try}

5 DP/Probabilistic Model Checking, Michaelmas 2011

Paths - some notation
•  Path ω = s0s1s2… such that (si,si+1) ∈ → for i ≥ 0

−  we write si → si+1 as shorthand for (si,si+1) ∈ →  

•  ω(i) is the (i+1)th state of ω, i.e. si

•  ω[…i] denotes the (finite) prefix ending in the (i+1)th state
−  i.e. ω[…i] = s0s1…si

•  ω[i…] denotes the suffix starting from the (i+1)th state
−  i.e. ω[i…] = sisi+1si+2…

•  As for DTMCs, Path(s) = set of all infinite paths from s

6 DP/Probabilistic Model Checking, Michaelmas 2011

CTL
•  CTL - Computation Tree Logic
•  Syntax split into state and path formulae

−  specify properties of states/paths, respectively
−  a CTL formula is a state formula

•  State formulae:
−  φ ::= true | a | φ ∧ φ | ¬φ | A ψ | E ψ
−  where a ∈ AP and ψ is a path formula  

•  Path formulae
−  ψ ::= X φ | F φ | G φ | φ U φ
−  where φ is a state formula

Some of these
operators (e.g.

A, F, G) are
derivable…

X = “next”
F = “future”
G = “globally”
U = “until”

7 DP/Probabilistic Model Checking, Michaelmas 2011

CTL semantics
•  Intuitive semantics:

−  of quantifiers (A/E) and temporal operators (F/G/U)

EF red EG red E [yellow U red]

AF red AG red A [yellow U red]

8 DP/Probabilistic Model Checking, Michaelmas 2011

CTL semantics
•  Semantics of state formulae:

−  s ⊨ φ denotes “s satisfies φ” or “φ is true in s”

•  For a state s of an LTS (S,sinit,→,L):  

−  s ⊨ true always
−  s ⊨ a ⇔ a ∈ L(s)
−  s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

−  s ⊨ ¬φ ⇔ s ⊭ φ
−  s ⊨ A ψ ⇔ ω ⊨ ψ for all ω ∈ Path(s)
−  s ⊨ E ψ ⇔ ω ⊨ ψ for some ω ∈ Path(s)

9 DP/Probabilistic Model Checking, Michaelmas 2011

CTL semantics
•  Semantics of path formulae:

− ω ⊨ ψ denotes “ω satisfies ψ” or “ψ is true along ω”

•  For a path ω of an LTS (S,sinit,→,L):

− ω ⊨ X φ ⇔ ω(1) ⊨ φ
− ω ⊨ F φ ⇔ ∃k≥0 s.t. ω(k) ⊨ φ
− ω ⊨ G φ ⇔ ∀i≥0 ω(i) ⊨ φ
− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 s.t. ω(k) ⊨ φ2 and ∀i<k ω(i) ⊨ φ1

10 DP/Probabilistic Model Checking, Michaelmas 2011

CTL examples
•  Some examples of satisfying paths:

− ω0 ⊨ X succ

− ω1 ⊨ ¬fail U succ

•  Example CTL formulas:
−  s1 ⊨ try ∧ ¬fail
−  s1 ⊨ E [X succ] and s1, s3 ⊨ A [X succ]
−  s0 ⊨ E [¬fail U succ] but s0 ⊭ A [¬fail U succ]

s1 s0

s2

s3

{fail}

{succ}

{try}

s1 s3 s3 s3

{succ} {succ} {succ} {try}
ω0:

s1 s1 s3 s3

{try} {succ} {succ}

s0

{try}

ω1:

11 DP/Probabilistic Model Checking, Michaelmas 2011

CTL examples
•  AG (¬(crit1∧crit2))

−  mutual exclusion

•  AG EF initial
−  for every computation, it is always possible to return to the

initial state

•  AG (request → AF response)
−  every request will eventually be granted

•  AG AF crit1 ∧ AG AF crit2
−  each process has access to the critical section infinitely often

12 DP/Probabilistic Model Checking, Michaelmas 2011

CTL equivalences
•  Basic logical equivalences:

−  false ≡ ¬true (false)
−  φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)
−  φ1 → φ2 ≡ ¬φ1 ∨ φ2 (implication)

•  Path quantifiers:
−  A ψ ≡ ¬E(¬ψ)
−  E ψ ≡ ¬A(¬ψ)

•  Temporal operators:
−  F φ ≡ true U φ
−  G φ ≡ ¬F(¬φ)

For example:
AG φ ≡ ¬EF(¬ φ)

13 DP/Probabilistic Model Checking, Michaelmas 2011

CTL - Alternative notation
•  Some commonly used notation…

•  Temporal operators:
−  F φ ≡ ◊ φ (“diamond”)
−  G φ ≡ □ φ (“box”)
−  X φ ≡ ○ φ

•  Path quantifiers:
−  A ψ ≡ ∀ ψ
−  E ψ ≡ ∃ ψ

•  Brackets: none/round/square
−  AF ψ
−  A (ψ1 U ψ2)
−  A [ψ1 U ψ2]

14 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL
•  Temporal logic for describing properties of DTMCs

−  PCTL = Probabilistic Computation Tree Logic [HJ94]
−  essentially the same as the logic pCTL of [ASB+95]

•  Extension of (non-probabilistic) temporal logic CTL
−  key addition is probabilistic operator P
−  quantitative extension of CTL’s A and E operators

•  Example
−  send → P≥0.95 [F≤10 deliver]
−  “if a message is sent, then the probability of it being delivered

within 10 steps is at least 0.95”

15 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL syntax
•  PCTL syntax:

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulae)

−  ψ ::= X φ | φ U≤k φ | φ U φ (path formulae)

−  where a is an atomic proposition, p ∈ [0,1] is a probability
bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

•  A PCTL formula is always a state formula
−  path formulae only occur inside the P operator

“until”

 ψ is true with
probability ~p

“bounded
until” “next”

16 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL semantics for DTMCs
•  Semantics for non-probabilistic operators same as for CTL:

−  s ⊨ φ denotes “s satisfies φ” or “φ is true in s”
− ω ⊨ ψ denotes “ω satisfies ψ” or “ψ is true along ω” 

•  For a state s of a DTMC (S,sinit,P,L):
−  s ⊨ true always
−  s ⊨ a ⇔ a ∈ L(s)
−  s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

−  s ⊨ ¬φ ⇔ s ⊭ φ
•  For a path ω of a DTMC (S,sinit,P,L):

− ω ⊨ X φ ⇔ ω(1) ⊨ φ
− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that ω(i) ⊨ φ2  

 and ∀j<i, ω(j) ⊨ φ1
− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 s.t. ω(k) ⊨ φ2 and ∀i<k ω(i) ⊨ φ1

U≤k not in CTL
(but could easily

be added)

17 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL semantics for DTMCs
•  Semantics of the probabilistic operator P

−  informal definition: s ⊨ P~p [ψ] means that “the probability,
from state s, that ψ is true for an outgoing path satisfies ~p”

−  example: s ⊨ P<0.25 [X fail] ⇔ “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

−  formally: s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p
−  where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

s

¬ψ

ψ Prob(s, ψ) ~ p ?

18 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL equivalences for DTMCs

•  Basic logical equivalences:
−  false ≡ ¬true (false)
−  φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)
−  φ1 → φ2 ≡ ¬φ1 ∨ φ2 (implication)

•  Negation and probabilities
−  e.g. ¬P>p [φ1 U φ2] ≡ P≤p [φ1 U φ2]

19 DP/Probabilistic Model Checking, Michaelmas 2011

Reachability and invariance
•  Derived temporal operators, like CTL…

•  Probabilistic reachability: P~p [F φ]
−  the probability of reaching a state satisfying φ
−  F φ ≡ true U φ
−  “φ is eventually true”
−  bounded version: F≤k φ ≡ true U≤k φ

•  Probabilistic invariance: P~p [G φ]
−  the probability of φ always remaining true
−  G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ)
−  “φ is always true”
−  bounded version: G≤k φ ≡ ¬(F≤k ¬φ)

strictly speaking,
G φ cannot be

derived from the
PCTL syntax in
this way since

there is no
negation of path

formulae

20 DP/Probabilistic Model Checking, Michaelmas 2011

Derivation of P~p [G φ]
•  In fact, we can derive P~p [G φ] directly in PCTL…

−  s ⊨ P>p [G φ] ⇔ Prob(s, G φ) > p
 ⇔ Prob(s, ¬(F ¬φ)) > p
 ⇔ 1 - Prob(s, F ¬φ) > p
 ⇔ Prob(s, F ¬φ) < 1 - p
 ⇔ s ⊨ P<1-p [F ¬φ]

•  Other equivalences:
−  P≥p [G φ] ≡ P≤1-p [F ¬φ]
−  P<p [G φ] ≡ P>1-p [F ¬φ]
−  P>p [G≤k φ] ≡ P<1-p [F≤k ¬φ]
−  etc.

21 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL examples
•  P<0.05 [F err/total>0.1]

−  “with probability at most 0.05, more than 10% of the NAND
gate outputs are erroneous?”

•  P≥0.8 [F≤k reply_count=n]
−  “the probability that the sender has received n

acknowledgements within k clock-ticks is at least 0.8”
•  P<0.4 [¬failA U failB]

−  “the probability that component B fails before component A is
less than 0.4”

•  ¬oper → P≥1 [F (P>0.99 [G≤100 oper])]
−  “if the system is not operational, it almost surely reaches a

state from which it has a greater than 0.99 chance of staying
operational for 100 time units”

22 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL and measurability
•  All the sets of paths expressed by PCTL are measurable

−  i.e. are elements of the σ-algebra ΣPath(s)
−  see for example [Var85] (for a stronger result in fact)

•  Recall: probability space (Path(s), ΣPath(s), Prs)
−  ΣPath(s) contains cylinder sets C(ω) for all finite paths ω starting

in s and is closed under complementation, countable union

•  Next (X φ)
−  cylinder sets constructed from paths of length one

•  Bounded until (φ1 U≤k φ2)
−  (finite number of) cylinder sets from paths of length at most k

•  Until (φ1 U φ2)
−  countable union of paths satisfying φ1 U≤k φ2 for all k≥0

23 DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative vs. quantitative properties
•  P operator of PCTL can be seen as a quantitative analogue

of the CTL operators A (for all) and E (there exists)

•  Qualitative PCTL properties
−  P~p [ψ] where p is either 0 or 1

•  Quantitative PCTL properties
−  P~p [ψ] where p is in the range (0,1)

•  P>0 [F φ] is identical to EF φ
−  there exists a finite path to a φ-state

•  P≥1 [F φ] is (similar to but) weaker than AF φ
−  a φ-state is reached “almost surely”
−  see next slide…

24 DP/Probabilistic Model Checking, Michaelmas 2011

Example: Qualitative/quantitative
•  Toss a coin repeatedly until “tails” is thrown

•  Is “tails” always eventually thrown?
−  CTL: AF “tails”
−  Result: false
−  Counterexample: s0s1s0s1s0s1…

•  Does the probability of eventually  
throwing “tails” equal one?
−  PCTL: P≥1 [F “tails”]
−  Result: true
−  Infinite path s0s1s0s1s0s1… has zero probability

s0

s1

s2

0.5

0.5

1

1

{heads}

{tails}

25 DP/Probabilistic Model Checking, Michaelmas 2011

Quantitative properties
•  Consider a PCTL formula P~p [ψ]

−  if the probability is unknown, how to choose the bound p?
•  When the outermost operator of a PTCL formula is P

−  PRISM allows formulae of the form P=? [ψ]
−  “what is the probability that path formula ψ is true?”

•  Model checking is no harder: compute the values anyway
•  Useful to spot patterns, trends
•  Example

−  P=? [F err/total>0.1]
−  “what is the probability  

that 10% of the NAND 
gate outputs are erroneous?”

26 DP/Probabilistic Model Checking, Michaelmas 2011

Limitations of PCTL
•  PCTL, although useful in practice, has limited expressivity

−  essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

•  More expressive logics can be used, for example:
−  LTL [Pnu77], the non-probabilistic linear-time temporal logic
−  PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL

•  To introduce these logics, we return briefly again to  
non-probabilistic logics and models…

27 DP/Probabilistic Model Checking, Michaelmas 2011

Branching vs. Linear time
•  In CTL, temporal operators always appear inside A or E

−  in LTL, temporal operators can be combined

•  LTL but not CTL:
−  F [req ∧ X ack]
−  “eventually a request occurs, followed immediately by an

acknowledgement”

•  CTL but not LTL:
−  AG EF initial
−  “for every computation, it is always possible to return to the

initial state”

28 DP/Probabilistic Model Checking, Michaelmas 2011

LTL
•  LTL syntax

−  path formulae only

−  ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
−  where a ∈ AP is an atomic proposition

•  LTL semantics (for a path ω)
− ω ⊨ true always
− ω ⊨ a ⇔ a ∈ L(ω(0))
− ω ⊨ ψ1 ∧ ψ2 ⇔ ω ⊨ ψ1 and ω ⊨ ψ2

− ω ⊨ ¬ψ ⇔ ω ⊭ ψ
− ω ⊨ X ψ ⇔ ω[1…] ⊨ ψ
− ω ⊨ ψ1 U ψ2 ⇔ ∃k≥0 s.t. ω[k…] ⊨ ψ2 and  

 ∀i<k ω[i…] ⊨ ψ1

29 DP/Probabilistic Model Checking, Michaelmas 2011

LTL
•  LTL semantics

−  implicit universal quantification over paths
−  i.e. for an LTS M = (S,sinit,→,L) and LTL formula ψ
−  s ⊨ ψ iff ω ⊨ ψ for all paths ω ∈ Path(s)
−  M ⊨ ψ iff sinit ⊨ ψ

•  e.g:
−  A F [req ∧ X ack]
−  “it is always the case that, eventually, a request occurs,

followed immediately by an acknowledgement”

•  Derived operators like CTL, for example:
−  F ψ ≡ true U ψ
−  G ψ ≡ ¬F(¬ψ)

30 DP/Probabilistic Model Checking, Michaelmas 2011

LTL + probabilities
•  Same idea as PCTL: probabilities of sets of path formulae

−  for a state s of a DTMC and an LTL formula ψ:
−  Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }
−  all such path sets are measurable (see later)

•  Examples (from DTMC lectures)…
•  Repeated reachability: “always eventually…”

−  Prob(s, GF send)
−  e.g. “what is the probability that the protocol successfully

sends a message infinitely often?”
•  Persistence properties: “eventually forever…”

−  Prob(s, FG stable)
−  e.g. “what is the probability of the leader election algorithm

reaching, and staying in, a stable state?”

31 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL*
•  PCTL* subsumes both (probabilistic) LTL and PCTL

•  State formulae:
−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ]
−  where a ∈ AP and ψ is a path formula

•  Path formulae:
−  ψ ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
−  where φ is a state formula

•  A PCTL* formula is a state formula φ
−  e.g. P>0.1 [GF crit1] ∧ P>0.1 [GF crit2]

32 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Temporal logic:

−  formal language for specifying and reasoning about how the
behaviour of a system changes over time

non-probabilistic
(e.g. LTSs)

probabilistic
(e.g. DTMCs)

CTL

LTL

PCTL

LTL + prob.

PCTL*

Φ

ψ

Φ

Prob(s, ψ)

Φ

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic temporal  
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
 require-

ments

P<0.1 [F fail]

0.5
0.1

0.4

Probabilistic
model checker

e.g. PRISM

2 DP/Probabilistic Model Checking, Michaelmas 2011

3 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  PCTL model checking for DTMCs

•  Computation of probabilities for PCTL formulae
−  next
−  bounded until
−  (unbounded) until

•  Solving large linear equation systems
−  direct vs. iterative methods
−  iterative solution methods

4 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL
•  PCTL syntax:

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulae)

−  ψ ::= X φ | φ U≤k φ | φ U φ (path formulae)

−  where a is an atomic proposition, p ∈ [0,1] is a probability
bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

•  Remaining operators can be derived (false, ∨, →, F, G, …)
−  hence will not be discussed here

“until”

 ψ is true with
probability ~p

“bounded
until” “next”

5 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL model checking for DTMCs
•  Algorithm for PCTL model checking [CY88,HJ94,CY95]

−  inputs: DTMC D=(S,sinit,P,L), PCTL formula φ
−  output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

•  What does it mean for a DTMC D to satisfy a formula φ?
−  often, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)
−  sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

•  Sometimes, focus on quantitative results
−  e.g. compute result of P=? [F error]
−  e.g. compute result of P=? [F≤k error] for 0≤k≤100

6 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL model checking for DTMCs
•  Basic algorithm proceeds by induction on parse tree of φ

−  example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

•  For the non-probabilistic operators:
−  Sat(true) = S
−  Sat(a) = { s ∈ S | a ∈ L(s) }
−  Sat(¬φ) = S \ Sat(φ)
−  Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

•  For the P~p [ψ] operator:
−  need to compute the  

probabilities Prob(s, ψ) 
for all states s ∈ S

−  Sat(P~p [ψ]) = { s ∈ S | Prob(s, ψ) ~ p }

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succ try

7 DP/Probabilistic Model Checking, Michaelmas 2011

Probability computation
•  Three temporal operators to consider:

•  Next: P~p[X φ]

•  Bounded until: P~p[φ1 U≤k φ2]
−  adaptation of bounded reachability for DTMCs

•  Until: P~p[φ1 U φ2]
−  adaptation of reachability for DTMCs
−  graph-based “precomputation” algorithms
−  techniques for solving large linear equation systems

8 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL next for DTMCs
•  Computation of probabilities for PCTL next operator

−  Sat(P~p[X φ]) = { s ∈ S | Prob(s, X φ) ~ p }
−  need to compute Prob(s, X φ) for all s ∈ S

•  Sum outgoing probabilities for  
transitions to φ-states
−  Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

•  Compute vector Prob(X φ) of 
probabilities for all states s
−  Prob(X φ) = P · φ
−  where φ is a 0-1 vector over S with φ(s) = 1 iff s ⊨ φ
−  computation requires a single matrix-vector multiplication

s

φ

9 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL next - Example
•  Model check: P≥0.9 [X (¬try ∨ succ)]

−  Sat (¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ)  
= ({s0,s1,s2,s3} ∖ {s1}) ∪ {s3} = {s0,s2,s3}

−  Prob(X (¬try ∨ succ)) = P · (¬try ∨ succ) = …

•  Results:
−  Prob(X (¬try ∨ succ)) = [0, 0.99, 1, 1]
−  Sat(P≥0.9 [X (¬try ∨ succ)]) = {s1, s2, s3}

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

10 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until for DTMCs
•  Computation of probabilities for PCTL U≤k operator

−  Sat(P~p[φ1 U≤k φ2]) = { s ∈ S | Prob(s, φ1 U≤k φ2) ~ p }
−  need to compute Prob(s, φ1 U≤k φ2) for all s ∈ S 

•  First identify (some) states where probability is trivially 1/0
−  Syes = Sat(φ2)
−  Sno = S \ (Sat(φ1) ∪ Sat(φ2))

Sat(φ2)

Sat(φ1)
S

11 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until for DTMCs
•  Let:

−  Syes = Sat(φ2)
−  Sno = S \ (Sat(φ1) ∪ Sat(φ2))

•  And let:
−  S? = S \ (Syes ∪ Sno)

•  Compute solution of recursive equations:

Sat(φ2)

Sat(φ1) S

12 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until for DTMCs
•  Simultaneous computation of vector Prob(φ1 U≤k φ2)

−  i.e. probabilities Prob(s, φ1 U≤k φ2) for all s ∈ S

•  Iteratively define in terms of matrices and vectors
−  define matrix P’ as follows: P’(s,s’) = P(s,s’) if s ∈ S?,  

P’(s,s’) = 1 if s ∈ Syes and s=s’, P’(s,s’) = 0 otherwise
−  Prob(φ1 U≤0 φ2) = φ2
−  Prob(φ1 U≤k φ2) = P’ · Prob(φ1 U≤k-1 φ2)
−  requires k matrix-vector multiplications

•  Note that we could express this in terms of matrix powers
−  Prob(φ1 U≤k φ2) = (P’)k · φ2 and compute (P’)k in log2k steps
−  but this is actually inefficient: (P’)k is much less sparse than P’

13 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until - Example
•  Model check: P>0.98 [F≤2 succ] ≡ P>0.98 [true U≤2 succ]

−  Sat (true) = S = {s0,s1,s2,s3}, Sat(succ) = {s3}
−  Syes = {s3}, Sno = ∅, S? = {s0,s1,s2}, P’ = P
−  Prob(true U≤0 succ) = succ = [0, 0, 0, 1]

−  Sat(P>0.98 [F≤2 succ]) = {s1, s3}

14 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for DTMCs
•  Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S
•  First, identify all states where the probability is 1 or 0

−  Syes = Sat(P≥1 [φ1 U φ2])
−  Sno = Sat(P≤0 [φ1 U φ2])

•  Then solve linear equation system for remaining states

•  Running example:

P>0.8 [¬a U b] 0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.5 0.9
1

{a}

{b}

0.1

s0

s1 s3

s2 s4

s5

15 DP/Probabilistic Model Checking, Michaelmas 2011

Precomputation
•  We refer to the first phase (identifying sets Syes and Sno) as

“precomputation”
−  two algorithms: Prob0 (for Sno) and Prob1 (for Syes)
−  algorithms work on underlying graph (probabilities irrelevant)

•  Important for several reasons
−  ensures unique solution to linear equation system

•  only need Prob0 for uniqueness, Prob1 is optional
−  reduces the set of states for which probabilities must be

computed numerically
−  gives exact results for the states in Syes and Sno (no round-off)
−  for model checking of qualitative properties (P~p[·] where p is

0 or 1), no further computation required

16 DP/Probabilistic Model Checking, Michaelmas 2011

Sno = Sat(P≤0 [¬a U b])

0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.5 0.9
0.1

Sat(P>0 [¬a U b]) Sat(b)

Precomputation - Prob0
•  Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :

−  first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])
−  i.e. find all states which can, with non-zero probability, reach

a φ2-state without leaving φ1-states
−  i.e. find all states from which there is a finite path through φ1-

states to a φ2-state: simple graph-based computation
−  subtract the resulting set from S

Example:
P>0.8 [¬a U b]

1

a

b s0

s1 s3

s2 s4

s5

17 DP/Probabilistic Model Checking, Michaelmas 2011

Prob0 algorithm

•  Note: can be formulated as a least fixed point computation
−  also well suited to computation with binary decision diagrams

18 DP/Probabilistic Model Checking, Michaelmas 2011

Syes =
Sat(P≥1 [¬a U b])

Sat(P<1 [¬a U b]) Sno = Sat(P≤0 [¬a U b])

Precomputation - Prob1
•  Prob1 algorithm to compute Syes = Sat(P≥1 [φ1 U φ2]) :

−  first compute Sat(P<1 [φ1 U φ2]), reusing Sno

−  this is equivalent to the set of states which have a non-zero
probability of reaching Sno, passing only through φ1-states

−  again, this is a simple graph-based computation
−  subtract the resulting set from S

Example:
P>0.8 [¬a U b]

1

a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
0.1

0.5
s0

s1 s3

s2 s4

s5

19 DP/Probabilistic Model Checking, Michaelmas 2011

Prob1 algorithm

20 DP/Probabilistic Model Checking, Michaelmas 2011

Prob 1 explanation

21 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - linear equations
•  Probabilities Prob(s, φ1 U φ2) can now be obtained as the

unique solution of the following set of linear equations
−  essentially the same as for probabilistic reachability

•  Can also be reduced to a system in |S?| unknowns instead
of |S| where S? = S \ (Syes ∪ Sno)

€

Prob(s, φ1 U φ2) =
1
0

P(s,s')⋅ Prob(s', φ1 U φ2)
s'∈S
∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

if s ∈ Syes

if s ∈ Sno

otherwise

22 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - linear equations
•  Example: P>0.8 [¬a U b]
•  Let xi = Prob(si, ¬a U b)

x1 = x3 = 0
x4 = x5 = 1
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

x0 = 0.1x1+0.9x2 = 0.8
Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]
Sat(P>0.8 [¬a U b]) = { s2,s4,s5 }

Sno =
Sat(P≤0 [¬a U b])

a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
1

Syes =
Sat(P≥1 [¬a U b])

0.1
0.5

s0

s1 s3

s2 s4

s5

23 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL Until – Example 2
•  Example: P>0.5 [G¬b]
•  Prob(si, G¬b)  

= 1 - Prob(si, ¬(G¬b))  
= 1 - Prob(si, F b)  

•  Let xi = Prob(si, F b)  

x3 = 0 and x4 = x5 = 1
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

x1 = 0.6x3+0.4x0 = 0.4x0
x0 = 0.1x1+0.9x2 = 5/6 and x1= 1/3
Prob(G¬b) = 1-x = [1/6, 2/3, 1/9, 1, 0, 0]
Sat(P>0.5 [G¬b]) = { s1,s3 }

Sno = Sat(P≤0 [F b])

Syes =
Sat(P≥1 [F b])

a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
1 0.1

0.5
s0

s1 s3

s2 s4

s5

24 DP/Probabilistic Model Checking, Michaelmas 2011

Linear equation systems
•  Solution of large (sparse) linear equation systems

−  size of system (number of variables) typically O(|S|)
−  state space S gets very large in practice

•  Two main classes of solution methods:
−  direct methods - compute exact solutions in fixed number of

steps, e.g. Gaussian elimination, L/U decomposition
−  iterative methods, e.g. Power, Jacobi, Gauss-Seidel, …
−  the latter are preferred in practice due to scalability

•  General form: A·x = b
−  indexed over integers,
−  i.e. assume S = { 0,1,…,|S|-1 }

25 DP/Probabilistic Model Checking, Michaelmas 2011

Iterative solution methods
•  Start with an initial estimate for the vector x, say x(0)

•  Compute successive (increasingly accurate) approximations
−  approximation (solution vector) at kth iteration denoted x(k)

−  computation of x(k) uses values of x(k-1)

•  Terminate when solution vector has converged sufficiently
•  Several possibilities for convergence criteria, e.g.:

−  maximum absolute difference

−  maximum relative difference

26 DP/Probabilistic Model Checking, Michaelmas 2011

Jacobi method
•  Based on fact that:

•  can be rearranged as:

•  yielding this update scheme:

For probabilistic
model checking,
A(i,i) is always

non-zero

27 DP/Probabilistic Model Checking, Michaelmas 2011

Gauss-Seidel
•  The update scheme for Jacobi:

•  can be improved by using the most up-to-date values of 
x(j) that are available

•  This is the Gauss-Seidel method:

28 DP/Probabilistic Model Checking, Michaelmas 2011

Over-relaxation
•  Over-relaxation:

−  compute new values with existing schemes (e.g. Jacobi)
−  but use weighted average with previous vector

•  Example: Jacobi + over-relaxation

•  where ω ∈ (0,2) is a parameter to the algorithm

29 DP/Probabilistic Model Checking, Michaelmas 2011

Comparison
•  Gauss-Seidel typically outperforms Jacobi

−  i.e. faster convergence
−  also: only need to store a single solution vector  

•  Both Gauss-Seidel and Jacobi usually outperform the Power
method (see least fixed point method from Lecture 2)  

•  However Power method has guaranteed convergence
−  Jacobi and Gauss-Seidel do not 

•  Over-relaxation methods may converge faster
−  for well chosen values of ω
−  need to rely on heuristics for this selection

30 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking complexity
•  Model checking of DTMC (S,sinit,P,L) against PCTL formula Φ

complexity is linear in |Φ| and polynomial in |S| 

•  Size |Φ| of Φ is defined as number of logical connectives
and temporal operators plus sizes of temporal operators
−  model checking is performed for each operator  

•  Worst-case operator is P~p [Φ1 U Φ2]
−  main task: solution of linear equation system of size |S|
−  can be solved with Gaussian elimination: cubic in |S|
−  and also precomputation algorithms (max |S| steps)

•  Strictly speaking, U≤k could be worse than U for large k
−  but in practice k is usually small

31 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Model checking a PCTL formula φ on a DTMC

−  i.e. determine set Sat(φ)
−  recursive: bottom-up traversal of parse tree of φ

•  Atomic propositions and logical connectives: trivial

•  Key part: computing probabilities for P~p […] formulae
−  X Φ : one matrix-vector multiplications
−  Φ1 U≤k Φ2 : k matrix-vector multiplications
−  Φ1 U Φ2 : graph-based precomputation algorithms + solution

of linear equation system in at most |S| variables

•  Iterative methods for solving large linear equation systems

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Practicals

•  4 practical exercises
•  4 scheduled 2 hour practical sessions:

−  Tuesday 4-6pm, room 379, weeks 3, 4, 6 and 7
−  demonstrator: Aistis Simaitis

•  Note:
−  you will also be expected to complete some of the practical

work outside these hours
−  final assignment will include practical (PRISM) exercises

http://www.prismmodelchecker.org/courses/pmc1112/

3 DP/Probabilistic Model Checking, Michaelmas 2011

Overview
•  Tool support for probabilistic model checking

−  motivation, existing tools

•  The PRISM model checker
−  functionality, features
−  modelling language
−  property specification

•  Running example
−  leader election protocol

•  PRISM tool demo

4 DP/Probabilistic Model Checking, Michaelmas 2011

Motivation
•  Complexity of PCTL model checking

−  generally polynomial in model size (number of states)

•  State space explosion problem
−  models for realistic case studies are typically huge

•  Clearly (efficient) tool support is required

•  Benefits:
−  fully automated process
−  high-level languages/formalisms for building models
−  visualisation of quantitative results

5 DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic model checkers
•  PRISM (this lecture): DTMCs, MDPs, CTMCs, PTAs + rewards
•  Markov chain model checkers

−  MRMC: DTMCs, CTMCs + reward extensions
−  PEPA toolset: CTMCs + CSL

•  Markov decision process (MDP) tools
−  LiQuor: LTL verification for MDPs (Probmela language)
−  RAPTURE: prototype for abstraction/refinement of MDPs
−  ProbDiVinE: parallel/distributed LTL model checking of MDPs

•  Simulation-based probabilistic model checking:
−  APMC, Ymer (both based on PRISM language), VESTA

•  And more
−  APNN-Toolbox, SMART, CADP, Möbius, PASS, PARAM, …
−  see: http://www.prismmodelchecker.org/other-tools.php

6 DP/Probabilistic Model Checking, Michaelmas 2011

The PRISM tool
•  PRISM: Probabilistic symbolic model checker

−  developed at Birmingham/Oxford University, since 1999
−  free, open source (GPL)
−  versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs

•  Modelling of:
−  DTMCs, CTMCs, MDPs + costs/rewards
−  probabilistic timed automata (PTAs) (not covered here)

•  Model checking of:
−  PCTL, CSL, LTL, PCTL* + extensions + costs/rewards

7 DP/Probabilistic Model Checking, Michaelmas 2011

PRISM functionality
•  High-level modelling language
•  Wide range of model analysis methods

−  efficient symbolic implementation techniques
−  also: approximate verification using simulation + sampling

•  Graphical user interface
−  model/property editor
−  discrete-event simulator - model traces for debugging, etc.
−  easy automation of verification experiments
−  graphical visualisation of results

•  Command-line version
−  same underlying verification engines
−  useful for scripting, batch jobs

8 DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic model checking
•  Overview of the probabilistic model checking process

−  two distinct phases: model construction, model checking

Model
construction

High-level
model

Model

Result Model
checking

Property
PRISM

language
description

PCTL/CSL/LTL/…
formula

DTMC, MDP
or CTMC

9 DP/Probabilistic Model Checking, Michaelmas 2011

Model construction

PRISM
language

description graph-based
algorithm

Translation
from

high-level
language

Reachability:
building set
of reachable

states

Model construction

Model High-level
model

matrix
manipulation

DTMC, MDP
or CTMC

10 DP/Probabilistic Model Checking, Michaelmas 2011

Modelling languages/formalisms
•  Many high-level modelling languages, formalisms available

•  For example:
−  probabilistic/stochastic process algebras
−  stochastic Petri nets
−  stochastic activity networks

•  Custom languages for tools, e.g.:
−  PRISM modelling language
−  Probmela (probabilistic variant of Promela, the input language

for the model checker SPIN) - used in LiQuor

11 DP/Probabilistic Model Checking, Michaelmas 2011

PRISM modelling language
•  Simple, textual, state-based language

−  modelling of DTMCs, CTMCs, MDPs, …
−  based on Reactive Modules [AH99]

•  Basic components…
•  Modules:

−  components of system being modelled
−  composed in parallel

•  Variables
−  finite (integer ranges or Booleans)
−  local or global
−  all variables public: anyone can read, only owner can modify

12 DP/Probabilistic Model Checking, Michaelmas 2011

PRISM modelling language
•  Guarded commands

−  describe behaviour of each module
−  i.e. the changes in state that can occur
−  labelled with probabilities (or, for CTMCs, rates)
−  (optional) action labels

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

13 DP/Probabilistic Model Checking, Michaelmas 2011

PRISM modelling language
•  Parallel composition

−  model multiple components that can execute independently
−  for DTMC models, mostly assume components operate

synchronously, i.e. move in lock-step
•  Synchronisation

−  simultaneous transitions in more than one module
−  guarded commands with matching action-labels
−  probability of combined transition is product of individual

probabilities for each component
•  More complex parallel compositions can be defined

−  using process-algebraic operators
−  other types of parallel composition, action hiding/renaming

14 DP/Probabilistic Model Checking, Michaelmas 2011

Simple example

module M1
 x : [0..3] init 0;
 [a] x=0 -> (x’=1);
 [b] x=1 -> 0.5:(x’=2) + 0.5:(x’=3);
endmodule

module M2
 y : [0..3] init 0;
 [a] y=0 -> (y’=1);
 [b] y=1 -> 0.4:(y’=2) + 0.6:(y’=3);
endmodule

15 DP/Probabilistic Model Checking, Michaelmas 2011

Example: Leader election
•  Randomised leader election protocol

−  due to Itai & Rodeh (1990)
•  Set-up: N nodes, connected in a ring

−  communication is synchronous (lock-step)
•  Aim: elect a leader

−  i.e. one uniquely designated node
−  by passing messages around the ring

•  Protocol operates in rounds. In each round:
−  each node choose a (uniformly) random id ∈ {0,…,k-1}
−  (k is a parameter of the protocol)
−  all nodes pass their id around the ring
−  if there is (maximum) unique id, node with this id is the leader
−  if not, try again with a new round

16 DP/Probabilistic Model Checking, Michaelmas 2011

PRISM code

17 DP/Probabilistic Model Checking, Michaelmas 2011

PRISM property specifications
•  Based on (probabilistic extensions of) temporal logic

−  incorporates PCTL, CSL, LTL, PCTL*
−  also includes: quantitative extensions, costs/rewards 

•  Leader election properties
−  P≥1 [F elected]

•  with probability 1, a leader is eventually elected
−  P>0.8 [F≤k elected]

•  with probability greater than 0.8, a leader is elected within k steps 

•  Usually focus on quantitative properties:
−  P=? [F≤k elected]

•  what is the probability that a leader is elected within k steps?

18 DP/Probabilistic Model Checking, Michaelmas 2011

PRISM property specifications
•  Best/worst-case scenarios

−  combining “quantitative” and “exhaustive” aspects

•  e.g. computing values for a range of states…

•  P=? [F≤t elected {tokens≤k}{min}] -
−  “minimum probability of the leader election algorithm

completing within t steps from any state where there are at
most k tokens”

•  R=? [F end {“init”}{max}] -
−  “maximum expected run-time over all possible initial

configurations”

19 DP/Probabilistic Model Checking, Michaelmas 2011

PRISM property specifications
•  Experiments:

−  ranges of model/property parameters
−  e.g. P=? [F≤T error] for N=1..5, T=1..100

 where N is some model parameter and T a time bound
−  identify patterns, trends, anomalies in quantitative results

20 DP/Probabilistic Model Checking, Michaelmas 2011

PRISM…

21 DP/Probabilistic Model Checking, Michaelmas 2011

More info on PRISM
•  PRISM website: http://www.prismmodelchecker.org/  

−  tool download: binaries, source code (GPL)
−  on-line example repository (50+ case studies)
−  on-line documentation:

•  PRISM manual
•  PRISM tutorial

−  support: help forum, bug tracking, feature requests
−  related publications, talks, tutorials, links

•  Course practicals info at:  

−  http://www.prismmodelchecker.org/courses/pmc1112/

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview
•  Specifying costs and rewards

−  DTMCs
−  PRISM language

•  Properties: expected reward values
−  instantaneous
−  cumulative
−  reachability
−  temporal logic extensions

•  Model checking
−  computing reward values

•  Case study
−  randomised contract signing

3 DP/Probabilistic Model Checking, Michaelmas 2011

Costs and rewards
•  We augment DTMCs with rewards (or, conversely, costs)

−  real-valued quantities assigned to states and/or transitions
−  these can have a wide range of possible interpretations

•  Some examples:
−  elapsed time, power consumption, size of message queue,

number of messages successfully delivered, net profit, …

•  Costs? or rewards?
−  mathematically, no distinction between rewards and costs
−  when interpreted, we assume that it is desirable to minimise

costs and to maximise rewards
−  we will consistently use the terminology “rewards” regardless

4 DP/Probabilistic Model Checking, Michaelmas 2011

Reward-based properties
•  Properties of DTMCs augmented with rewards

−  allow a wide range of quantitative measures of the system
−  basic notion used here: expected value of rewards
−  formal property specifications will be in an extension of PCTL

•  More precisely, we use two distinct classes of property…

•  Instantaneous properties
−  e.g. the expected value of the reward at some time point

•  Cumulative properties
−  e.g. the expected cumulated reward over some period

5 DP/Probabilistic Model Checking, Michaelmas 2011

DTMC reward structures
•  For a DTMC (S,sinit,P,L), a reward structure is a pair (ρ,ι)

−  ρ : S → ℝ≥0 is the state reward function (vector)
−  ι : S × S → ℝ≥0 is the transition reward function (matrix)  

•  Example (for use with instantaneous properties)
−  “size of message queue”: ρ maps each state to the number of

jobs in the queue in that state, ι is not used
•  Examples (for use with cumulative properties)

−  “time-steps”: ρ returns 1 for all states and ι is zero
 (equivalently, ρ is zero and ι returns 1 for all transitions)

−  “number of messages lost”: ρ is zero and ι maps transitions
 corresponding to a message loss to 1

−  “power consumption”: ρ is defined as the per-time-step
 energy consumption in each state and ι as the energy cost of
 each transition

6 DP/Probabilistic Model Checking, Michaelmas 2011

Rewards in the PRISM language

(instantaneous, state rewards) (cumulative, state rewards)

(cumulative, state/trans. rewards)
(up = num. operational components,

wake = action label)

(cumulative, transition rewards)
(q = queue size, q_max = max.

queue size, receive = action label)

 rewards “total_queue_size”
 true : queue1+queue2;
 endrewards

 rewards “time”
 true : 1;
 endrewards

 rewards “power”
 sleep=true : 0.25;
 sleep=false : 1.2 * up;
 [wake] true : 3.2;
 endrewards

 rewards "dropped"
 [receive] q=q_max : 1;
 endrewards

7 DP/Probabilistic Model Checking, Michaelmas 2011

Expected reward properties
•  Expected (“average”) values of rewards…

•  Instantaneous
−  “the expected value of the state reward at time-step k”
−  e.g. “the expected queue size after exactly 90 seconds”

•  Cumulative (time-bounded)
−  “the expected reward cumulated up to time-step k”
−  e.g. “the expected power consumption over one hour”

•  Reachability (also cumulative)
−  “the expected reward cumulated before reaching states T⊆S”
−  e.g. “the expected time for the algorithm to terminate”

8 DP/Probabilistic Model Checking, Michaelmas 2011

Expectation
•  Probability space (Ω, Σ, Pr)

−  probability measure Pr : Σ → [0,1]

•  Random variable X
−  a measurable function X : Ω → Δ
−  usually real-valued, i.e.: X : Ω → ℝ

•  Expected (“average”) value of the random variable: Exp(X)

€

Exp(X) = X(ω)dPr
ω∈Ω
∫

€

Exp(X) = X(ω)⋅ Pr(ω)
ω∈Ω

∑ discrete case

9 DP/Probabilistic Model Checking, Michaelmas 2011

Reachability + rewards
•  Expected reward cumulated before reaching states T⊆S
•  Define a random variable:

−  XReach(T) : Path(s) → ℝ≥0
−  where for an infinite path ω= s0s1s2…

−  where kT = min{ j | sj ∈ T }
•  Then define:

−  ExpReach(s, T) = Exp(s, XReach(T))
−  denoting: expectation of the random variable XReach(T)  

with respect to the probability measure Prs, i.e.:

10 DP/Probabilistic Model Checking, Michaelmas 2011

Computing the rewards
•  Determine states for which ProbReach(s, T) = 1

•  Solve linear equation system:

−  ExpReach(s, T) =

€

∞

0
ρ(s) + P(s,s')⋅ ι(s,s') + ExpReach(s', T)()

s'∈S
∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

if ProbReach(s, T) < 1
if s ∈ T
otherwise

11 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  Let ρ = [0, 1, 0, 0] and ι(s,s’) = 0 for all s,s’ ∈ S
•  Compute ExpReach(s0, {s3})

−  (“expected number of times pass through s1 to get to s3”)
•  First check:

−  ProbReach({s3}) = { 1, 1, 1, 1 }
•  Then solve linear equation system:

−  (letting xi = ExpReach(si, {s3})):
−  x0 = 0 + 1·(0 + x1)
−  x1 = 1 + 0.01·(0+x2)+0.01·(0+x1)+0.98 ·(0+x3)
−  x2 = 0 + 1·(0 + x0)
−  x3 = 0
−  Solution: ExpReach({s3}) = [100/98, 100/98, 100/98, 0]

•  So: ExpReach(s0, {s3}) = 100/98 ≈ 1.020408

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

12 DP/Probabilistic Model Checking, Michaelmas 2011

Specifying reward properties
•  PRISM extends PCTL to include expected reward properties

−  add an R operator, which is similar to the existing P operator

−  φ ::= … | P~p [ψ] | R~r [I=k] | R~r [C≤k] | R~r [F φ]

−  where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

•  R~r [·] means “the expected value of · satisfies ~r”

“reachability”

 expected
reward is ~r

“cumulative” “instantaneous”

13 DP/Probabilistic Model Checking, Michaelmas 2011

Random variables for reward formulae
•  Definition of random variables for the R operator:

−  for an infinite path ω= s0s1s2…

−  where kφ = min{ j | sj ⊨ φ }

XFφ
same as

XReach(Sat(φ))
from earlier

14 DP/Probabilistic Model Checking, Michaelmas 2011

Reward formula semantics
•  Formal semantics of the three reward operators:

•  For a state s in the DTMC:  

−  s ⊨ R~r [I=k] ⇔ Exp(s, XI=k) ~ r
−  s ⊨ R~r [C≤k] ⇔ Exp(s, XC≤k) ~ r
−  s ⊨ R~r [F Φ] ⇔ Exp(s, XFΦ) ~ r

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) → ℝ≥0 with respect to the probability measure Prs

•  We can also define R=? […] properties, as for the P operator
−  e.g. R=? [F Φ] returns the value Exp(s, XFΦ)

Exp(s, XFΦ)
same as

ExpReach(s, Sat(Φ))
from earlier

15 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking reward operators
•  Like for model checking P~p […], to check R~r […]

−  compute reward values for all states, compare with bound r

•  Instantaneous: R~r [I=k] - compute Exp(XI=k)
−  solution of recursive equations
−  essentially: k matrix-vector multiplications

•  Cumulative: R~r [C≤t] - compute Exp(XC≤k)
−  solution of recursive equations
−  essentially: k matrix-vector multiplications

•  Reachability: R~r [F φ] - compute Exp(XFΦ)
−  graph analysis + linear equation system
−  (see computation of ExpReach(s, T) earlier)

Model checking
R operator

same complexity
as for P operator

16 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking R~r [I=k]
•  Expected instantaneous reward at step k

−  can be defined in terms of transient probabilities for step k

•  Exp(s, XI=k) = Σs’∈S πs,k(s’) · ρ(s’)

•  Exp(XI=k) = Pk · ρ

•  Yielding recursive definition:
−  Exp(XI=0) = ρ
−  Exp(XI=k) = P · Exp(XI=(k-1))
−  i.e. k matrix-vector multiplications
−  note: “backwards” computation (like bounded until prob.s)  

rather than “forwards” computation (like transient prob.s)

17 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  Let ρ = [0, 1, 0, 0] and ι(s,s’) = 0 for all s,s’ ∈ S
•  Compute Exp(s0, XI=2)

−  (“probability of being in state s1”)
−  Exp(XI=0) = [0, 1, 0, 0]
−  Exp(XI=1) = P · Exp(XI=0)

−  Exp(XI=2) = P · Exp(XI=1)

•  Result: Exp(s0, XI=2) = 0.01

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

18 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking R~r [C≤k]
•  Expected reward cumulated up to time-step k

•  Again, a recursive definition:

•  And in matrix/vector notation:

−  where ∙ denotes Schur (pointwise) matrix multiplication
−  and 1 is a vector of all 1s

19 DP/Probabilistic Model Checking, Michaelmas 2011

Case study: Contract signing
•  Two parties want to agree on a contract

−  each will sign if the other will sign, but do not trust each other
−  there may be a trusted third party (judge)
−  but it should only be used if something goes wrong

•  In real life: contract signing with pen and paper
−  sit down and write signatures simultaneously

•  On the Internet…
−  how to exchange commitments on an asynchronous network?
−  “partial secret exchange protocol” [EGL85]

20 DP/Probabilistic Model Checking, Michaelmas 2011

Contract signing – EGL protocol
•  Partial secret exchange protocol for 2 parties (A and B)

•  A (B) holds 2N secrets a1,…,a2N (b1,…,b2N)
−  a secret is a binary string of length L
−  secrets partitioned into pairs: e.g. { (ai, aN+i) | i=1,…,N }
−  A (B) committed if B (A) knows one of A’s (B’s) pairs

•  Uses “1-out-of-2 oblivious transfer protocol” OT(S,R,x,y)
−  Sender S sends x and y to receiver R
−  R receives x with probability ½ otherwise receives y
−  S does not know which one R receives
−  if S cheats then R can detect this with probability ½

21 DP/Probabilistic Model Checking, Michaelmas 2011

EGL protocol - Step 1

1…L

1…N

N+1…2N

1…L

1…N

N+1…2N

OT(A,B,ai,aN+i)

Party A Party B

OT(B,A,bi,bN+i)

(repeat for i=1…N)

22 DP/Probabilistic Model Checking, Michaelmas 2011

EGL protocol - Step 2

1…L

1…N

N+1…2N

1…L

1…N

N+1…2N

Party A Party B
 A sends bit i  
of aj to B for

j=1…2N

 Then B does 
the same  

for bj

(repeat for i=1…L)

23 DP/Probabilistic Model Checking, Michaelmas 2011

Contract signing - Results
•  Modelled in PRISM as a DTMC (no concurrency) [NS06]

•  Highlights a weakness in the protocol
−  party B can act maliciously by quitting the protocol early
−  this behaviour not considered in the original analysis

•  PRISM analysis shows
−  if B stops participating in the protocol as soon as he/she has

obtained one of A pairs, then, with probability 1, at this point:
•  B possesses a pair of A’s secrets
•  A does not have complete knowledge of any pair of B’s secrets

−  protocol is not fair under this attack:
−  B has a distinct advantage over A

24 DP/Probabilistic Model Checking, Michaelmas 2011

Contract signing - Results
•  The protocol is unfair because in step 2:

−  A sends a bit for each of its secret before B does

•  Can we make this protocol fair by changing the message
sequence scheme?

•  Since the protocol is asynchronous the best we can hope
for is:
−  B (or A) has this advantage with probability ½

•  We consider 3 possible alternative message sequence
schemes (EGL2, EGL3, EGL4)

25 DP/Probabilistic Model Checking, Michaelmas 2011

 (step 1)
 …
 (step 2)
 for (i=1,…,L)
 for (j=1,…,N) A transmits bit i of secret aj to B
 for (j=1,…,N) B transmits bit i of secret bj to A
 for (j=N+1,…,2N) A transmits bit i of secret aj to B
 for (j=N+1,…,2N) B transmits bit i of secret bj to A

Contract signing - EGL2

26 DP/Probabilistic Model Checking, Michaelmas 2011

Modified step 2 for EGL2

1…L

1…N

N+1…2N

1…L

1…N

N+1…2N

Party A Party B
 A sends bit i  
of aj to B for

j=1…N

 Then B does 
the same  

for bj

(after j=1…N, send j=N+1…2N)
(then repeat for i=1…L)

27 DP/Probabilistic Model Checking, Michaelmas 2011

 (step 1)
 …
 (step 2)
 for (i=1,…,L) for (j=1,…,N)
 A transmits bit i of secret aj to B
 B transmits bit i of secret bj to A
 for (i=1,…,L) for (j=N+1,…,2N)
 A transmits bit i of secret aj to B
 B transmits bit i of secret bj to A

Contract signing - EGL3

28 DP/Probabilistic Model Checking, Michaelmas 2011

Modified step 2 for EGL3

1…L

1…N

N+1…2N

1…L

1…N

N+1…2N

Party A Party B
 A sends bit i  
of aj to B for

 Then B does 
the same  

for bj

(repeat for j=1…N and for i=1…L)
(then send j=N+1…2N for i=1…L)

29 DP/Probabilistic Model Checking, Michaelmas 2011

 (step 1)
 …
 (step 2)
 for (i=1,…,L)
 A transmits bit i of secret a1 to B
 for (j=1,…,N) B transmits bit i of secret bj to A
 for (j=2,…,N) A transmits bit i of secret aj to B
 for (i=1,…,L)
 A transmits bit i of secret aN+1 to B
 for (j=N+1,…,2N) B transmits bit i of secret bj to A
 for (j=N+2,…,2N) A transmits bit i of secret aj to B

Contract signing - EGL4

30 DP/Probabilistic Model Checking, Michaelmas 2011

Modified step 2 for EGL4

1…L

1…N

N+1…2N

1…L

1…N

N+1…2N

Party A Party B A sends bit i  
of a1 to B

 Then A sends
bit i of aj to B  

for j=2…N

(repeat for i=1…L)
(then send j=N+1…2N in same fashion)

 Then B sends
bit i of bj to B  

for j=1…N

31 DP/Probabilistic Model Checking, Michaelmas 2011

Contract signing - Results
•  The chance that the protocol is unfair

−  probability that one party gains knowledge first
−  P=? [F knowB ∧ ¬knowA] and P=? [F knowA ∧ ¬knowB]

32 DP/Probabilistic Model Checking, Michaelmas 2011

Contract signing - Results
•  The influence that each party has on the fairness

−  once a party knows a pair, the expected number of messages
from this party required before the other party knows a pair

R=? [F knowA]

Reward structure:

Assign 1 to transitions
corresponding to messages
being sent from B to A
after B knows a pair  

(and 0 to all other transitions)

33 DP/Probabilistic Model Checking, Michaelmas 2011

Contract signing - Results
•  The duration of unfairness of the protocol

−  once a party knows a pair, the expected total number of
messages that need to be sent before the other knows a pair

R=? [F knowA]

Reward structure:

Assign 1 to transitions
corresponding to any message
being sent between A and B
after B knows a pair  

(and 0 to all other transitions)

34 DP/Probabilistic Model Checking, Michaelmas 2011

Contract signing - Results
•  Results show EGL4 is the ‘fairest’ protocol

•  Except for “duration of fairness” measure
−  expected messages that need to be sent for a party to know a

pair once the other party knows a pair
−  this value is larger for B than for A
−  and, in fact, as n increases, this measure:

•  increases for B
•  decreases for A

•  Solution:
−  if a party sends a sequence of bits in a row (without the other

party sending messages in between), require that the party
send these bits as as a single message

35 DP/Probabilistic Model Checking, Michaelmas 2011

Contract signing - Results
•  The duration of unfairness of the protocol

−  (with the solution on the previous slide applied to all variants)

36 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Costs and rewards

−  real-valued assigned to states/transitions of a DTMC
•  Properties

−  expected instantaneous/cumulative reward values
−  PRISM property specifications: adds R operator to PCTL

•  Model checking
−  instantaneous: matrix-vector multiplications
−  cumulative: matrix-vector multiplications
−  reachability: graph analysis + linear equation systems

•  Case study
−  randomised contract signing

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Time in DTMCs
•  Time in a DTMC proceeds in discrete steps

•  Two possible interpretations:
−  accurate model of (discrete) time units

•  e.g. clock ticks in model of an embedded device
−  time-abstract

•  no information assumed about the time transitions take

•  Continuous-time Markov chains (CTMCs)
−  dense model of time
−  transitions can occur at any (real-valued) time instant
−  modelled using exponential distributions

3 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Exponential distribution and its properties

•  Continuous-time Markov chains (CTMCs)
−  definition, examples
−  race condition
−  embedded DTMC
−  generator matrix

•  Paths and probabilities
−  probabilistic reachability

4 DP/Probabilistic Model Checking, Michaelmas 2011

Continuous probability distributions
•  Defined by:

−  cumulative distribution function

−  where f is the probability density function
−  Pr(X=t) = 0 for all t

•  Example: uniform distribution: U(a,b)

5 DP/Probabilistic Model Checking, Michaelmas 2011

Exponential distribution
•  A continuous random variable X is exponential with

parameter λ>0 if the density function is given by:

−  we write: X ~ Exponential(λ)
•  Cumulative distribution function (for t≥0):

•  Other properties:
−  negation:
−  mean (expectation):
−  variance: Var(X) = 1/λ2

€

F(t) = Pr(X ≤ t) = λ
0

t
∫ ⋅ e−λ⋅xdx = [−e−λ⋅x]0t = 1− e−λ⋅t

€

f(t) =
⎧
⎨
⎪

⎩ ⎪

λ⋅ e−λ⋅t

0
if t > 0
otherwise

€

Pr(X > t) = e-λ⋅t

€

E[X] = x⋅ λ⋅ e-λ⋅x
0

∞

∫ dx = 1
λ

 λ = “rate”

6 DP/Probabilistic Model Checking, Michaelmas 2011

Exponential distribution - Examples

•  The more λ increases, the faster the c.d.f. approaches 1

Cumulative distribution function Probability density function

7 DP/Probabilistic Model Checking, Michaelmas 2011

Exponential distribution
•  Adequate for modelling many real-life phenomena

−  failures
•  e.g. time before machine component fails

−  inter-arrival times
•  e.g. time before next call arrives to a call centre

−  biological systems
•  e.g. times for reactions between proteins to occur

•  Maximal entropy (“uncertainty”) if just the mean is known
−  i.e. best approximation when only mean is known

•  Can approximate general distributions arbitrarily closely
−  phase-type distributions 

8 DP/Probabilistic Model Checking, Michaelmas 2011

Exponential distribution – Property 1
•  The exponential distribution has the memoryless property:

−  Pr(X>t1+t2 I X>t1) = Pr(X>t2)

•  Pr (X>t1+t2 I X>t1) = Pr(X>t1+t2 ∧ X>t1) / Pr(X>t1)
 = Pr(X>t1+t2) / Pr(X>t1)

 = e-λ·(t1+t2) / e-λ·t1
 = (e-λ·t1· e-λ·t2) / e-λ·t1
 = e-λ·t2
 = Pr(X>t2)
•  The exponential distribution is the only continuous

distribution which is memoryless
−  discrete-time equivalent is the geometric distribution

9 DP/Probabilistic Model Checking, Michaelmas 2011

Exponential distribution – Property 2
•  The minimum of two independent exponential distributions

is an exponential distribution (parameter is sum)
−  X1 ~ Exponential(λ1), X2 ~ Exponential(λ2)
−  Y = min(X1,X2)

−  Y ~ Exponential(λ1+λ2)
•  Generalises to minimum of n distributions

10 DP/Probabilistic Model Checking, Michaelmas 2011

Exponential distribution – Property 3
•  Consider two independent exponential distributions

−  X1 ~ Exponential(λ1), X2 ~ Exponential(λ2)
−  what is the probability that X1<X2 ?

−  probability that X1<X2 is λ1/(λ1+λ2)
•  Generalises to n distributions

11 DP/Probabilistic Model Checking, Michaelmas 2011

Continuous-time Markov chains
•  Continuous-time Markov chains (CTMCs)

−  labelled transition systems augmented with rates
−  discrete states
−  continuous time-steps
−  delays exponentially distributed

•  Suited to modelling:
−  reliability models
−  control systems
−  queueing networks
−  biological pathways
−  chemical reactions
−  ...

12 DP/Probabilistic Model Checking, Michaelmas 2011

Continuous-time Markov chains
•  Formally, a CTMC C is a tuple (S,sinit,R,L) where:

−  S is a finite set of states (“state space”)
−  sinit ∈ S is the initial state
−  R : S × S → ℝ≥0 is the transition rate matrix
−  L : S → 2AP is a labelling with atomic propositions

•  Transition rate matrix assigns rates to each pair of states
−  used as a parameter to the exponential distribution
−  transition between s and s’ when R(s,s’)>0
−  probability triggered before t time units: 1 – e-R(s,s’)·t

13 DP/Probabilistic Model Checking, Michaelmas 2011

Simple CTMC example
•  Modelling a queue of jobs

−  initially the queue is empty
−  jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3)
−  jobs are served with rate 3 (i.e. mean service time is 1/3)
−  maximum size of the queue is 3
−  state space: S = {si}i=0..3 where si indicates i jobs in queue

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

Race conditions
•  What happens when there exists multiple s’ with R(s,s’)>0?

−  race condition: first transition triggered determines next state
−  two questions:
−  1. How long is spent in s before a transition occurs?
−  2. Which transition is eventually taken?

•  1. Time spent in a state before a transition
−  minimum of exponential distributions
−  exponential with parameter given by summation:

−  probability of leaving a state s within [0,t] is 1-e-E(s)·t

−  E(s) is the exit rate of state s
−  s is called absorbing if E(s)=0 (no outgoing transitions)

14 DP/Probabilistic Model Checking, Michaelmas 2011

Race conditions…
•  2. Which transition is taken from state s?

−  the choice is independent of the time at which it occurs
−  e.g. if X1 ~ Exponential(λ1), X2 ~ Exponential(λ2)
−  then the probability that X1<X2 is λ1/(λ1+λ2)
−  more generally, the probability is given by…

•  The embedded DTMC: emb(C)=(S,sinit,Pemb(C),L)
−  state space, initial state and labelling as the CTMC
−  for any s,s’∈S

•  Probability that next state from s is s’ given by Pemb(C)(s,s’)
 15 DP/Probabilistic Model Checking, Michaelmas 2011

Two interpretations of a CTMC
•  Consider a (non-absorbing) state s ∈ S with multiple

outgoing transitions, i.e. multiple s’ ∈ S with R(s,s’)>0

•  1. Race condition
−  each transition triggered after exponentially distributed delay

•  i.e. probability triggered before t time units: 1 – e-R(s,s’)·t
−  first transition triggered determines the next state

•  2. Separate delay/transition
−  remain in s for delay exponentially distributed with rate E(s)

•  i.e. probability of taking an outgoing transition from s within [0,t]
is given by 1-e-E(s)·t

−  probability that next state is s’ is given by Pemb(C)(s,s’)
•  i.e. R(s,s’)/E(s) = R(s,s’) / Σs’∈S R(s,s’)

16 DP/Probabilistic Model Checking, Michaelmas 2011

17 DP/Probabilistic Model Checking, Michaelmas 2011

More on CTMCs…
•  Infinitesimal generator matrix Q

•  Alternative definition: a CTMC is:
−  a family of random variables { X(t) | t ∈ ℝ≥0 }
−  X(t) are observations made at time instant t
−  i.e. X(t) is the state of the system at time instant t
−  which satisfies…

•  Memoryless (Markov property)
Pr(X(tk)=sk | X(tk-1)=sk-1, …,X(t0)=s0) = Pr(X(tk)=sk | X(tk-1)=sk-1)

18 DP/Probabilistic Model Checking, Michaelmas 2011

Simple CTMC example…
C = (S, sinit, R, L)
S = {s0, s1, s2, s3}
sinit = s0

AP = {empty, full}
L(s0)={empty}, L(s1)=L(s2)=∅ and L(s3)={full}

€

R =

0 3/2 0 0
3 0 3/2 0
0 3 0 3/2
0 0 3 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

€

Pemb(C) =

0 1 0 0
2/3 0 1/3 0
0 2/3 0 1/3
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

€

Q =

−3/2 3/2 0 0
3 −9/2 3/2 0
0 3 −9/2 3/2
0 0 3 −3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

infinitesimal
generator matrix

transition
rate matrix

embedded
DTMC

19 DP/Probabilistic Model Checking, Michaelmas 2011

Example 2
•  3 machines, each can fail independently

−  delay modelled as exponential distributions
−  failure rate λ, i.e. mean-time to failure (MTTF) = 1/ λ

•  One repair unit
−  repairs a single machine at rate µ (also exponential)

•  State space:
−  S = {si}i=0..3 where si indicates i machines operational

s2 s3

3λ

1

{inactive} {high}

s1 s0

2λ λ

µ µ µ

{low} {high}

20 DP/Probabilistic Model Checking, Michaelmas 2011

Example 3
•  Chemical reaction system: two species A and B
•  Two reactions:

−  reversible reaction under which 
species A and B bind to form AB  
(forwards rate = |A|·|B|·k1,  
backwards rate = |AB|·k2)

−  degradation of A (rate |A|·k3)
−  |X| denotes number of 

molecules of species X
•  CTMC with state space

−  (|A|,|B|,|AB|)
−  initially (2,2,0)

2,2,0

4k1

1,1,1 0,0,2

1,2,0 0,1,1

k1

2k2 k2

0,2,0

2k3

k3

k3 2k1

k2

A
k3 A + B AB

k1

k2

21 DP/Probabilistic Model Checking, Michaelmas 2011

Paths of a CTMC
•  An infinite path ω is a sequence s0t0s1t1s2t2… such that

−  R(si,si+1) > 0 and ti ∈ ℝ>0 for all i ∈ ℕ
−  ti denotes the amount of time spent in si

•  or a sequence s0t0s1t1s2t2…tk-1sk such that
−  R(si,si+1) > 0 and ti ∈ ℝ>0 for all i<k
−  sk is absorbing (i.e. R(s,s’) = 0 for all s’ ∈ S)
−  i.e. remain in state sk indefinitely

•  Path(s) denotes all infinite paths starting in state s
•  Further notation:

−  time(ω,j) = amount of time spent in the jth state, i.e. tj
− ω@t = state occupied at time t:
−  see e.g. [BHHK03, KNP07a] for precise definitions

22 DP/Probabilistic Model Checking, Michaelmas 2011

Recall: Probability spaces
•  A σ-algebra (or σ-field) on Ω is a set Σ of subsets of Ω

closed under complementation and countable union, i.e.:
−  if A ∈ Σ, the complement Ω ∖ A is in Σ
−  if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ
−  the empty set ∅ is in Σ

•  Elements of Σ are called measurable sets or events
•  Theorem: For any set F of subsets of Ω, there exists a

unique smallest σ-algebra on Ω containing F
•  Probability space (Ω, Σ, Pr)

−  Ω is the sample space
−  Σ is the set of events: σ-algebra on Ω
−  Pr : Σ → [0,1] is the probability measure:

 Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai

23 DP/Probabilistic Model Checking, Michaelmas 2011

Probability space
•  Sample space: Path(s) (set of all paths from a state s)
•  Events: sets of infinite paths
•  Basic events: cylinders

−  cylinders = sets of paths with common finite prefix
−  include time intervals in cylinders

•  Finite prefix is a sequence s0,I0,s1,I1,…,In-1,sn
−  s0,s1,s2,…,sn sequence of states where R(si,si+1)>0 for i<n
−  I0,I1,I2,…,In-1 sequence of of non-empty intervals of ℝ≥0

•  Cylinder Cyl(s0,I0,s1,I1,…,In-1,sn) is the set of infinite paths:
− ω(i)=si for all i ≤ n and time(ω,i) ∈ Ii for all i < n

24 DP/Probabilistic Model Checking, Michaelmas 2011

Probability space
•  Define probability measure over cylinders inductively

•  Prs(Cyl(s))=1

•  Prs(Cyl(s,I,s1,I1,…,In-1,sn,I’,s’)) equals:

€

Prs(Cyl(s,I,s1,I1,...,In−1,sn)) ⋅ Pemb(C) (sn,s') ⋅ e−E(sn)⋅inf I' − e−E(sn)⋅sup I'()

probability of transition
from sn to s’ (defined

using embedded DTMC)
probability time spent in state sn

is within the interval I’

25 DP/Probabilistic Model Checking, Michaelmas 2011

Probability space - Example
•  Probability of leaving the initial state s0 and moving to state

s1 within the first 2 time units of operation

•  Cylinder Cyl(s0,(0,2],s1)

•  Prs0(Cyl(s0,(0,2],s1))  

= Prs0(Cyl(s0)) · Pemb(C)(s0,s1) · (e-E(s0)·0 - e-E(s0)·2)
 = 1 · Pemb(C)(s0,s1) · (e-E(s0)·0 - e-E(s0)·2)
 = 1 · 1 · (e-3/2·0 – e-3/2·2)
 = 1– e-3

 ≈ 0.95021

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

26 DP/Probabilistic Model Checking, Michaelmas 2011

Probability space
•  Probability space (Path(s), ΣPath(s), Prs) (see [BHHK03])

•  Sample space Ω = Path(s)
−  i.e. all infinite paths

•  Event set ΣPath(s)
−  least σ-algebra on Path(s) containing all cylinders sets 

Cyl(s0,I0,…,In-1,sn) where:
•  s0,…,sn ranges over all state sequences with R(si,si+1)>0 for all i
•  I0,…,In-1 ranges over all sequences of non-empty intervals in ℝ≥0  

(where intervals are bounded by rationals)
•  Probability measure Prs

−  Prs extends uniquely from probability defined over cylinders

27 DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic reachability
•  Probabilistic reachability

−  the probability of reaching a target set T⊆S
−  measurability:

•  union of all basic cylinders Cyl(s0,(0,∞),s1,(0,∞),…,(0,∞),sn)  
where sn ∈ T

•  set of such state sequences s0s1…sn is countable

•  Time-bounded probabilistic reachability
−  the probability of reaching a target set T⊆S within t time units
−  measurability:

•  union of all basic cylinders Cyl(s0,I0,s1,I1,…,In-1,sn)  
where sn ∈ T and sup(I0)+…+sup(In-1) ≤ t

•  set of such state sequences s0s1…sn is countable
•  set of rational-bounded intervals is countable

28 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Exponential distribution

−  suitable for modelling failures, waiting times, reactions, …
−  nice mathematical properties

•  Continuous-time Markov chains
−  transition delays modelled as exponential distributions
−  race condition
−  embedded DTMC
−  generator matrix

•  Probability space over paths
−  (untimed and timed) probabilistic reachability

Lecture 9  
Continuous-time Markov chains…

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Transient probabilities
−  uniformisation

•  Steady-state probabilities

•  CSL: Continuous Stochastic Logic

−  syntax
−  semantics
−  examples

3 DP/Probabilistic Model Checking, Michaelmas 2011

Recall
•  Continuous-time Markov chain: C = (S,sinit,R,L)

−  R : S × S → ℝ≥0 is the transition rate matrix
−  rates interpreted as parameters of exponential distributions

•  Embedded DTMC: emb(C)=(S,sinit,Pemb(C),L)

•  Infinitesimal generator matrix

otherwise
s's and 0E(s) if

0(s)E if

0
1
)/E(s)s'(s,

)s'(s,emb(C) ==
>

⎪⎩

⎪
⎨
⎧

=
R

P

otherwise
'ss

)'s,s(
)'s,s()'s,s(

'ss

≠

⎩
⎨
⎧
−= ∑ ≠

R
RQ

4 DP/Probabilistic Model Checking, Michaelmas 2011

Transient and steady-state behaviour
•  Transient behaviour

−  state of the model at a particular time instant
−  πC

s,t(s’) is probability of, having started in state s, being in
state s’ at time t (in CTMC C)

−  πC
s,t

 (s’) = Prs{ ω ∈ PathC(s) | ω@t=s’ }

•  Steady-state behaviour
−  state of the model in the long-run
−  πC

s(s’) is probability of, having started in state s, being in
state s’ in the long run

−  πC
s(s’) = limt→∞ πC

s,t(s’)
−  intuitively: long-run percentage of time spent in each state

5 DP/Probabilistic Model Checking, Michaelmas 2011

Computing transient probabilities
•  Consider a simple example

−  and compare to the case for DTMCs

•  What is the probability of being in state s0 at time t?

•  DTMC/CTMC:

1

s0 s1

1

6 DP/Probabilistic Model Checking, Michaelmas 2011

Computing transient probabilities
•  Πt - matrix of transient probabilities

−  Πt(s,s’)=πs,t(s’)

•  Πt solution of the differential equation: Πt’ = Πt · Q
−  where Q is the infinitesimal generator matrix

•  Can be expressed as a matrix exponential and therefore
evaluated as a power series

−  computation potentially unstable
−  probabilities instead computed using uniformisation

! i/)t(e 0i
it

t ∑
∞

=

⋅ ⋅== QΠ Q

7 DP/Probabilistic Model Checking, Michaelmas 2011

Uniformisation
•  We build the uniformised DTMC unif(C) of CTMC C
•  If C =(S,sinit,R,L), then unif(C) = (S,sinit,Punif(C),L)

−  set of states, initial state and labelling the same as C
−  Punif(C) = I + Q/q
−  I is the |S|×|S| identity matrix
−  q ≥ max { E(s) | s ∈ S } is the uniformisation rate

•  Each time step (epoch) of uniformised DTMC corresponds
to one exponentially distributed delay with rate q
−  if E(s)=q transitions the same as embedded DTMC (residence

time has the same distribution as one epoch)
−  if E(s)<q add self loop with probability 1-E(s)/q (residence

time longer than 1/q so one epoch may not be ‘long enough’)

8 DP/Probabilistic Model Checking, Michaelmas 2011

Uniformisation - Example
•  CTMC C:

•  Uniformised DTMC unif(C)
−  let uniformisation rate q = maxs { E(s) } = 3

3

s0 s1

2
⎥⎦
⎤

⎢⎣
⎡= 02

30R

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

−
−+⎥⎦

⎤
⎢⎣
⎡=+=

3
1

3
23

2
3
2

)C(unif 1011
10
01q/QIP

⎥⎦
⎤

⎢⎣
⎡

−
−= 22

33Q

1

s0 s1

2/3
1/3

9 DP/Probabilistic Model Checking, Michaelmas 2011

Uniformisation

()()
() ()

()∑
∑

∑

∞

= ⋅

∞

=

⋅⋅−

∞

=

⋅⋅−

⋅−⋅⋅⋅−⋅⋅

⋅

⋅⋅

⋅⋅

⋅==

=

=

=

=

0i
i)C(unif

i,tq

0i
i)C(unif

! i
)tq(tq

0i
i)C(unif

! i
)tq(tq

tq)tq(t)(qt
t

 γ

 e

 e

eeee

i

i

)C(unif)C(unif

P

P

P

Π PIPQ

ith Poisson probability with
parameter q·t

•  Using the uniformised DTMC the transient probabilities can
be expressed by:

Punif(C) is stochastic (all entries in
[0,1] & rows sum to 1);

therefore computations with P are
more numerically stable than Q

10 DP/Probabilistic Model Checking, Michaelmas 2011

Uniformisation

•  (Punif(C))i is probability of jumping between each pair of
states in i steps

•  γq·t,i is the ith Poisson probability with parameter q·t
−  the probability of i steps occurring in time t, given each has

delay exponentially distributed with rate q

•  Can truncate the (infinite) summation using the techniques
of Fox and Glynn [FG88], which allow efficient computation
of the Poisson probabilities

() γ0i
i)C(unif

i,tqt ∑
∞

= ⋅ ⋅= PΠ

11 DP/Probabilistic Model Checking, Michaelmas 2011

Uniformisation
•  Computing πs,t for a fixed state s and time t

−  can be computed efficiently using matrix-vector operations
−  pre-multiply the matrix Πt by the initial distribution
−  in this case: πs,0(s’) equals 1 if s=s’ and 0 otherwise

−  compute iteratively to avoid the computation of matrix powers

()

()∑

∑
∞

= ⋅

∞

= ⋅

⋅⋅

⋅⋅

=

=⋅=

0i
i)C(unif

0,si,tq

0i
i)C(unif

i,tq0,st0,st,s

 πγ

 γπ

 ππ

P

PΠ

() ())C(unifi)C(unif
ts,

1i)C(unif
ts, π π PPP ⋅⋅=⋅

+

12 DP/Probabilistic Model Checking, Michaelmas 2011

Uniformisation - Example
•  CTMC C, uniformised DTMC for q=3

•  Initial distribution: πs0,0 = [1, 0]
•  Transient probabilities for time t = 1:

3

s0 s1

2
⎥⎦
⎤

⎢⎣
⎡= 02

30R ⎥⎦
⎤

⎢⎣
⎡=

3
1

3
2

)C(unif 10P⎥⎦
⎤

⎢⎣
⎡

−
−= 22

33Q

...10]0,1[γ10]0,1[γ10
01]0,1[γ

2

3
1

3
22,3

3
1

3
21,30,3 +⎥⎦

⎤
⎢⎣
⎡⋅⋅+⎥⎦

⎤
⎢⎣
⎡⋅⋅+⎥⎦

⎤
⎢⎣
⎡⋅⋅=

()∑
∞

= ⋅ ⋅⋅= 0i
i)C(unif

0,0si,tq1,0s πγπ P

≈ [0.404043, 0.595957]

13 DP/Probabilistic Model Checking, Michaelmas 2011

Steady-state probabilities
•  Limit πC

s(s’) = limt→∞ πC
s,t(s’)

−  exists for all finite CTMCs
−  (see next slide)

•  As for DTMCs, need to consider the underlying graph
structure of the Markov chain:
−  reachability (between pairs) of states
−  bottom strongly connected components (BSCCs)
−  one special case to consider: absorbing states are BSCCs
−  note: can do this equivalently on embedded DTMC

•  CTMC is irreducible if all its states belong to a single BSCC;
otherwise reducible

14 DP/Probabilistic Model Checking, Michaelmas 2011

Periodicity
•  Unlike for DTMCs, do not need to consider periodicity

•  e.g. probability of being in state s0 at time t?

•  DTMC/CTMC:

1

s0 s1

1

15 DP/Probabilistic Model Checking, Michaelmas 2011

Irreducible CTMCs
•  For an irreducible CTMC:

−  the steady-state probabilities are independent of the starting
state: denote the steady state probabilities by πC(s’)

•  These probabilities can be computed as
−  the unique solution of the linear equation system:

 where Q is the infinitesimal generator matrix of C

•  Solved by standard means:
−  direct methods, such as Gaussian elimination
−  iterative methods, such as Jacobi and Gauss-Seidel

1)s(π and 0π Ss
CC ==⋅ ∑∈

Q

16 DP/Probabilistic Model Checking, Michaelmas 2011

Balance equations

1)s(π and 0π Ss
CC ==⋅ ∑∈

Q

For all s ∈ S:
πC(s) · (-Σs’≠s R(s,s’)) + Σs’≠s πC(s’) · R(s’,s) =

0
⇔

πC(s) · Σs’≠s R(s,s’) = Σs’≠s πC(s’) · R(s’,s)

balance the rate of
leaving and entering

a state
normalisation

17 DP/Probabilistic Model Checking, Michaelmas 2011

Steady-state - Example
•  Solve: π·Q=0 and ∑ π(s)=1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

=

3300
2/32/930
02/32/93
002/32/3

Q s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

0)s(π3)s(π2/3
0)s(π3)s(π2/9)s(π2/3
0)s(π3)s(π2/9)s(π2/3
0)s(π3)s(π2/3

32

321

210

10

=⋅−⋅

=⋅+⋅−⋅

=⋅+⋅−⋅

=⋅+⋅−

1)s(π)s(π)s(π)s(π 3210 =+++

π = [8/15, 4/15, 2/15, 1/15]

18 DP/Probabilistic Model Checking, Michaelmas 2011

Reducible CTMCs
•  For a reducible CTMC:

−  the steady-state probabilities πC(s’) depend on start state s

•  Find all BSCCs of CTMC, denoted bscc(C)  

•  Compute:
−  steady-state probabilities πT of sub-CTMC for each BSCC T
−  probability ProbReachemb(C)(s, T) of reaching each T from s

•  Then:

otherwise
bscc(C)T some for Ts' if

0
)'s(π)T ,s(ProbReach)'s(π

Temb(C)C
s

∈∈

⎩
⎨
⎧ ⋅=

19 DP/Probabilistic Model Checking, Michaelmas 2011

CSL
•  Temporal logic for describing properties of CTMCs

−  CSL = Continuous Stochastic Logic [ASSB00,BHHK03]
−  extension of (non-probabilistic) temporal logic CTL

•  Key additions:
−  probabilistic operator P (like PCTL)
−  steady state operator S

•  Example: down → P>0.75 [¬fail U [1,2.5] up]
−  when a shutdown occurs, the probability of a system recovery

being completed between 1 and 2.5 hours without further
failure is greater than 0.75

•  Example: S<0.1[insufficient_routers]
−  in the long run, the chance that an inadequate number of

routers are operational is less than 0.1

20 DP/Probabilistic Model Checking, Michaelmas 2011

CSL syntax
•  CSL syntax:

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] | S~p [φ] (state formulae)

−  ψ ::= X φ | φ UI φ (path formulae)

−  where a is an atomic proposition, I interval of ℝ≥0 and p ∈
[0,1], ~ ∈ {<,>,≤,≥}

•  A CSL formula is always a state formula
−  path formulae only occur inside the P operator

 ψ is true with
probability ~p

“time bounded
until” “next”

 in the “long
run” φ is true

with
probability ~p

21 DP/Probabilistic Model Checking, Michaelmas 2011

CSL semantics for CTMCs
•  CSL formulae interpreted over states of a CTMC

−  s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”
•  Semantics of state formulae:

−  for a state s of the CTMC (S,sinit,R,L):

−  s ⊨ a ⇔ a ∈ L(s)
−  s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

−  s ⊨ ¬φ ⇔ s ⊨ φ is false
−  s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p
−  s ⊨ S~p [φ] ⇔ ∑s’ ⊨ φ πs(s’) ~ p

Probability of, starting in state s, being
in state s’ in the long run

Probability of,
starting in state s,
satisfying the path

formula ψ

22 DP/Probabilistic Model Checking, Michaelmas 2011

CSL semantics for CTMCs
•  Prob(s, ψ) is the probability, starting in state s, of satisfying

the path formula ψ
−  Prob(s, ψ) = Prs {ω ∈ Paths | ω ⊨ ψ }

•  Semantics of path formulae:
−  for a path ω of the CTMC:
− ω ⊨ X φ ⇔ ω(1) is defined and ω(1) ⊨ φ
− ω ⊨ φ1 UI φ2 ⇔ ∃t ∈ I. (ω@t ⊨ φ2 ∧ ∀t’<t. ω@t’ ⊨ φ1)

there exists a time instant in the interval I where φ2
is true and φ1 is true at all preceding time instants

if ω(0) is absorbing
ω(1) not defined

23 DP/Probabilistic Model Checking, Michaelmas 2011

More on CSL
•  Basic logical derivations:

−  false, φ1 ∨ φ2, φ1 → φ2

•  Normal (unbounded) until is a special case
−  φ1 U φ2 ≡ φ1 U[0,∞) φ2

•  Derived path formulae:
−  F φ ≡ true U φ, FI φ ≡ true UI φ
−  G φ ≡ ¬(F ¬φ), GI φ ≡ ¬(FI ¬φ)

•  Negate probabilities: …
−  e.g. ¬P>p [ψ] ≡ P≤p [ψ], ¬S≥p [φ] ≡ S>p [φ]

•  Quantitative properties
−  of the form P=? [ψ] and S=? [φ]
−  where P/S is the outermost operator
−  experiments, patterns, trends, …

24 DP/Probabilistic Model Checking, Michaelmas 2011

CSL example - Workstation cluster
•  Case study: Cluster of workstations [HHK00]

−  two sub-clusters (N workstations in each cluster)
−  star topology with a central switch
−  components can break down, single repair unit

−  minimum QoS: at least ¾ of the workstations operational and
connected via switches

−  premium QoS: all workstations operational and connected via
switches

backbone

left
switch

right
switch

left
sub-cluster

right
sub-cluster

25 DP/Probabilistic Model Checking, Michaelmas 2011

CSL example - Workstation cluster
•  S=? [minimum]

−  the probability in the long run of having minimum QoS

•  P=? [F[t,t] minimum]
−  the (transient) probability at time instant t of minimum QoS

•  P<0.05 [F[0,10] ¬minimum]
−  the probability that the QoS drops below minimum within 10

hours is less than 0.05

•  ¬minimum → P<0.1 [F[0,2] ¬minimum]
−  when facing insufficient QoS, the chance of facing the same

problem after 2 hours is less than 0.1

26 DP/Probabilistic Model Checking, Michaelmas 2011

CSL example - Workstation cluster
•  minimum → P>0.8 [minimum U[0,t] premium]

−  the probability of going from minimum to premium QoS
within t hours without violating minimum QoS is at least 0.8

•  P=? [¬minimum U[t,∞) minimum]
−  the chance it takes more than t time units to recover from

insufficient QoS

•  ¬r_switch_up → P<0.1 [¬r_switch_up U ¬l_switch_up]
−  if the right switch has failed, the probability of the left switch

failing before it is repaired is less than 0.1

•  P=? [F[2,∞) S>0.9[minimum]]
−  the probability of it taking more than 2 hours to get to a state

from which the long-run probability of minimum QoS is >0.9

27 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Transient probabilities (time instant t)

−  computation with uniformisation: efficient iterative method

•  Steady-state (long-run) probabilities
−  like DTMCs
−  requires graph analysis
−  irreducible case: solve linear equation system
−  reducible case: steady-state for sub-CTMCs + reachability

•  CSL: Continuous Stochastic Logic
−  extension of PCTL for properties of CTMCs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  CSL model checking
−  basic algorithm
−  untimed properties
−  time-bounded until
−  the S (steady-state) operator

•  Rewards
−  reward structures for CTMCs
−  properties: extension of CSL
−  model checking

3 DP/Probabilistic Model Checking, Michaelmas 2011

CSL: Continuous Stochastic Logic
•  CSL syntax:

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] | S~p [φ] (state formulae)

−  ψ ::= X φ | φ UI φ (path formulae)

−  where a is an atomic proposition, I an interval of ℝ≥0,  
p ∈ [0,1] and ~ ∈ {<,>,≤,≥}

 ψ is true with
probability ~p

“time bounded
until”

“next”
 in the “long
run” φ is true

with
probability ~p

4 DP/Probabilistic Model Checking, Michaelmas 2011

CSL model checking for CTMCs
•  Algorithm for CSL model checking [BHHK03]

−  inputs: CTMC C=(S,sinit,R,L), CSL formula φ
−  output: Sat(φ) = { s∈S | s ⊨ φ }, the set of states satisfying φ

•  Often, also consider quantitative results
−  e.g. compute result of P=? [F[0,t] minimum] for 0≤t≤100

•  Basic algorithm similar to PCTL for DTMCs
−  proceeds by induction on parse tree of φ

•  For the non-probabilistic operators:
−  Sat(true) = S
−  Sat(a) = { s ∈ S | a ∈ L(s) }
−  Sat(¬φ) = S \ Sat(φ)
−  Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

5 DP/Probabilistic Model Checking, Michaelmas 2011

CSL model checking for CTMCs
•  Main task: computing probabilities for P~p [·] and S~p [·]

−  φ ::= true | a | φ ∧ φ | ¬φ |  

 P~p [X φ] | P~p [φ U φ] | P~p [φ UI φ] | S~p [φ]

−  where φ1 U φ2 ≡ φ1 U[0,∞) φ2

time
bounded

until
untimed steady-

state

6 DP/Probabilistic Model Checking, Michaelmas 2011

Untimed properties
•  Untimed properties can be verified on the embedded DTMC

−  properties of the form: P~p [X φ] or P~p [φ1 U φ2]
−  use algorithms for checking PCTL against DTMCs

•  Certain qualitative time-bounded until formulae can also
be verified on the embedded DTMC
−  for any (non-empty) interval I

 s ⊨ P~0 [φ1 UI φ2] if and only if s ⊨ P~0 [φ1 U[0,∞) φ2]

−  can use precomputation algorithm Prob0

7 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking - Time-bounded until
•  Compute Prob(s, φ1 UI φ2) for all states where I is an

arbitrary interval of the non-negative real numbers
•  Note:

−  Prob(s, φ1 UI φ2) = Prob(s, φ1 Ucl(I) φ2)
 where cl(I) denotes the closure of the interval I

−  Prob(s, φ1 U[0,∞) φ2) = Probemb(C)(s, φ1 U φ2)
 where emb(C) is the embedded DTMC

•  Therefore, 3 remaining cases to consider:
−  I = [0,t] for some t∈ℝ≥0, I = [t,t’] for some t≤t’∈ℝ≥0  

and I = [t,∞) for some t∈ℝ≥0

•  Two methods: 1. Integral equations; 2. Uniformisation

8 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until (integral equations)
•  Computing the probabilities reduces to determining the

least solution of the following set of integral equations
−  (note similarity to bounded until for DTMCs)

•  Prob(s, φ1 U[0,t] φ2) equals
−  1 if s ∈ Sat(φ2),
−  0 if s ∈ Sat(¬φ1 ∧¬φ2)
−  and otherwise equals

•  One possibility: solve these integrals numerically
−  e.g. trapezoidal, Simpson and Romberg integration
−  expensive, possible problems with numerical stability

probability of
moving from s
to s’ at time x

probability, in state
s’, of satisfying
until before t-x

time units elapse

€

Pemb(C)(s,s')⋅ E(s)⋅ e−E(s)⋅x()
s'∈S
∑ ⋅ Prob(s',φ1 U[0,t−x] φ2) dx

0

t
∫

9 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until (uniformisation)
•  Reduction to transient analysis…

•  Make all φ2 states absorbing
−  from such a state φ1 U[0,x] φ2  

holds with probability 1

•  Make all ¬φ1 ∧¬φ2 states absorbing
−  from such a state φ1 U[0,x] φ2  

holds with probability 0

•  Formally: Construct CTMC C[φ2][¬φ1 ∧¬φ2]
−  where for CTMC C=(S,sinit,R,L), let C[θ]=(S,sinit,R[θ],L) where

 R[θ](s,s’)=R(s,s’) if s ∉ Sat(θ) and 0 otherwise

Sat(φ2)

Sat(φ1) S

10 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until (uniformisation)
•  Problem then reduces to calculating transient probabilities

of the CTMC C[φ2][¬φ1 ∧¬φ2]:

transient probability: starting in state s, the
probability of being in state s’ at time t

11 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until (uniformisation)
•  Can now adapt uniformisation to computing the vector of

probabilities Prob(φ1 U[0,t] φ2)
−  recall Πt is matrix of transient probabilities Πt(s,s’)=πs,t(s’)
−  computed via uniformisation:

•  Combining with:

12 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until (uniformisation)
•  Have shown that we can calculate the probabilities as:

•  Infinite summation can be truncated using the techniques
of Fox and Glynn [FG88]

•  Can compute iteratively to avoid matrix powers:

€

 Punif(C)()
 i+1
⋅ φ2 = Punif(C) ⋅ Punif(C)()

 i
⋅ φ2

⎛

⎝
⎜

⎞

⎠
⎟

€

Prob(φ1 U[0,t] φ2) = γq⋅t,i ⋅ Punif(C[φ2][¬φ1∧¬φ2])()
 i
⋅ φ2

⎛

⎝
⎜

⎞

⎠
⎟

i=0

∞

∑

13 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until - Example
•  P>0.65 [F[0,7.5] full] ≡ P>0.65 [true U[0,7.5] full]

−  “probability of the queue becoming full within 7.5 time units”
•  State s3 satisfies full and no states satisfy ¬true

−  in C[full][¬true ∧¬ full] only state s3 made absorbing

matrix of unif(C[full][¬true ∧¬full])
with uniformisation rate maxs∈SE(s)

=4.5

s3 made absorbing

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

14 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until - Example
•  Computing the summation of matrix-vector multiplications

−  yields Prob(F[0,7.5] full) ≈ [0.6482, 0.6823, 0.7811, 1]

•  P>0.65[F[0,7.5] full] satisfied in states s1, s2 and s3

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

15 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until - P~p [φ1 U[t,t’] φ2]
•  In this case the computation can be split into two parts:
•  1. Probability of remaining in φ1 states until time t

−  can be computed as transient probabilities on the CTMC
where are states satisfying ¬φ1 have been made absorbing

•  2. Probability of reaching a φ2 state, while remaining in
states satisfying φ1, within the time interval [0,t’-t]
−  i.e. computing Prob(φ1 U[0,t’-t] φ2)

probability
φ1 U[0,t’-t] φ2
holds in s’

Probability of reaching state
s’ at time t and satisfying
φ1 up until this point

sum over states
satisfying φ1

16 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until - P~p [φ1 U[t,t’] φ2]
•  Let Probφ1(s, φ1U[0,t’-t]φ2) = Prob(s, φ1U[0,t’-t]φ2) if s∈Sat(φ1)

and 0 otherwise
•  From the previous slide we have:

−  summation can be truncated using Fox and Glynn [FG88]
−  can compute iteratively (only scalar and matrix-vector

operations)

17 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until - P~p [φ1 U[t,∞) φ2]
•  Similar to the case for φ1 U[t,t’] φ2 except second part is now

unbounded, and hence the embedded DTMC can be used
•  1. Probability of remaining in φ1 states until time t
•  2. Probability of reaching a φ2 state, while remaining in

states satisfying φ1
−  i.e. computing Prob(φ1 U[0,∞) φ2)

€

Prob(s,φ1 U[t,∞] φ2) = πs,t
C[¬φ1]

(s')⋅ Probemb(C)(s',φ1 U φ2)
s'∈Sat(φ1)

∑

probability
φ1 U[0,∞) φ2
holds in s’

Probability of reaching
state s’ at time t and

satisfying φ1 up until this
point

sum over states
satisfying φ1

18 DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until - P~p [φ1 U[t,∞) φ2]
•  Letting Probφ1(s, φ1U[0,∞)φ2) = Prob(s, φ1U[0,∞)φ2) if s∈Sat

(φ1) and 0 otherwise, we have:

−  summation can be truncated using Fox and Glynn [FG88]
−  can compute iteratively (only scalar and matrix-vector

operations

19 DP/Probabilistic Model Checking, Michaelmas 2011

Model Checking - S~p [φ]
•  A state s satisfies the formula S~p[φ] if ∑s’ ⊨ φ πC

s(s’) ~ p
−  πC

s(s’) is probability, having started in state s, of being in
state s’ in the long run

•  Thus reduces to computing and then summing steady-
state probabilities for the CTMC

•  If CTMC is irreducible:
−  solution of one linear equation system

•  If CTMC is reducible:
−  determine set of BSCCs for the CTMC
−  solve two linear equation systems for each BSCC T
−  one to obtain the vector ProbReachemb(C)(T)
−  the other to compute the steady state probabilities πT for T

20 DP/Probabilistic Model Checking, Michaelmas 2011

S~p [φ] - Example
•  S<0.1[full]
•  CTMC is irreducible (comprises a single BSCC)

−  steady state probabilities independent of starting state
−  can be computed by solving π·Q=0 and ∑ π(s)=1

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

21 DP/Probabilistic Model Checking, Michaelmas 2011

S~p [φ] - Example

−  solution: π = [8/15, 4/15, 2/15, 1/15]
−  ∑s’ ⊨ Sat(full) π (s’) = 1/15 < 0.1
−  so all states satisfy S<0.1[full]

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

22 DP/Probabilistic Model Checking, Michaelmas 2011

Rewards (or costs)
•  Like DTMCs, we can augment CTMCs with rewards

−  real-valued quantities assigned to states and/or transitions
−  can be interpreted in two ways: instantaneous/cumulative
−  properties considered here: expected value of rewards
−  formal property specifications in an extension of CSL

•  For a CTMC (S,sinit,R,L), a reward structure is a pair (ρ,ι)
−  ρ : S →ℝ≥0 is a vector of state rewards
−  ι : S × S →ℝ≥0 is a matrix of transition rewards

•  For cumulative reward-based properties of CTMCs
−  state rewards interpreted as rate at which reward gained
−  if the CTMC remains in state s for t∈ℝ>0 time units, a reward

of t·ρ(s) is acquired

23 DP/Probabilistic Model Checking, Michaelmas 2011

Reward structures - Examples

•  Example: “size of message queue”
−  ρ(si)=i and ι(si,sj)=0 ∀i,j

•  Example: “time for which queue is not full”
−  ρ(si)=1 for i<3, ρ(s3)=0 and ι(si,sj)=0 ∀i,j

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3
instantaneous

cumulative

24 DP/Probabilistic Model Checking, Michaelmas 2011

Reward structures - Examples

•  Example: “number of requests served”

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3
cumulative

25 DP/Probabilistic Model Checking, Michaelmas 2011

CSL and rewards
•  PRISM extends CSL to incorporate reward-based properties

−  adds R operator like the one added to PCTL

−  φ ::= … | R~r [I=t] | R~r [C≤t] | R~r [F φ] | R~r [S]

−  where r,t ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}

•  R~r [·] means “the expected value of · satisfies ~r”

“reachability”

 expected reward is ~r

“cumulative” “instantaneous” “steady-state”

26 DP/Probabilistic Model Checking, Michaelmas 2011

Types of reward formulae
•  Instantaneous: R~r [I=t]

−  the expected value of the reward at time-instant t is ~r
−  “the expected queue size after 6.7 seconds is at most 2”

•  Cumulative: R~r [C≤t]
−  the expected reward cumulated up to time-instant t is ~r
−  “the expected requests served within the first 4.5 seconds of

operation is less than 10”
•  Reachability: R~r [F φ]

−  the expected reward cumulated before reaching φ is ~r
−  “the expected requests served before the queue becomes full”

•  Steady-state R~r [S]
−  the long-run average expected reward is ~r
−  “expected long-run queue size is at least 1.2”

27 DP/Probabilistic Model Checking, Michaelmas 2011

Reward properties in PRISM
•  Quantitative form:

−  e.g. R=? [C≤t]
−  what is the expected reward cumulated up to time-instant t?

•  Add labels to R operator to distinguish between multiple
reward structures defined on the same CTMC
−  e.g. R{num_req}=? [C≤4.5]
−  “the expected number of requests served within the first 4.5

seconds of operation”
−  e.g. R{pow}=? [C≤4.5]
−  “the expected power consumption within the first 4.5 seconds

of operation”

28 DP/Probabilistic Model Checking, Michaelmas 2011

Reward formula semantics
•  Formal semantics of the four reward operators:

−  s ⊨ R~r [I=t] ⇔ Exp(s, XI=t) ~ r
−  s ⊨ R~r [C≤t] ⇔ Exp(s, XC≤t) ~ r
−  s ⊨ R~r [F Φ] ⇔ Exp(s, XFΦ) ~ r
−  s ⊨ R~r [S] ⇔ limt→∞(1/t · Exp(s, XC≤t)) ~ r

•  where:
−  Exp(s, X) denotes the expectation of the random variable

 X : Path(s) → ℝ≥0 with respect to the probability measure Prs

29 DP/Probabilistic Model Checking, Michaelmas 2011

Reward formula semantics
•  Definition of random variables:

−  path ω= s0t0s1t1s2…

−  where jt=min{ j | ∑i≤j ti ≥ t } and kφ = min{ i | si ⊨ φ }

state of ω at time t

time spent in state si

time spent in
state sjt before

t time units
have elapsed

30 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking reward formulae
•  Instantaneous: R~r [I=t]

−  reduces to transient analysis (state of the CTMC at time t)
−  use uniformisation

•  Cumulative: R~r [C≤t]
−  extends approach for time-bounded until
−  based on uniformisation

•  Reachability: R~r [F φ]
−  can be computed on the embedded DTMC
−  reduces to solving a system of linear equations

•  Steady-state: R~r [S]
−  similar to steady state formulae S~r [φ]
−  graph based analysis (compute BSCCs)
−  solve systems of linear equations (compute steady state

probabilities of each BSCC)

31 DP/Probabilistic Model Checking, Michaelmas 2011

CSL model checking complexity
•  For model checking of a CTMC complexity:

−  linear in |Φ| and polynomial in |S|
−  linear in q·tmax (tmax is maximum finite bound in intervals)

•  P~p[Φ1 U[0,∞) Φ2], S~p[Φ], R~r [F Φ] and R~r [S]
−  require solution of linear equation system of size |S|
−  can be solved with Gaussian elimination: cubic in |S|
−  precomputation algorithms (max |S| steps)

•  P~p[Φ1 UI Φ2], R~r [C≤t] and R~r [I=t]
−  at most two iterative sequences of matrix-vector products
−  operation is quadratic in the size of the matrix, i.e. |S|
−  total number of iterations bounded by Fox and Glynn
−  the bound is linear in the size of q·t (q uniformisation rate)

32 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Model checking a CSL formula φ on a CTMC

−  recursive: bottom-up traversal of parse tree of φ
•  Main work: computing probabilities for P and S operators

−  untimed (X Φ, Φ1 U Φ2): perform on embedded DTMC
−  time-bounded until: use uniformisation-based methods,

rather than more expensive solution of integral equations
−  other forms of time-bounded until, i.e. [t1,t2] and [t,∞),  

reduce to two sequential computations like for [0,t]
−  S operator: summation of steady-state probabilities

•  Rewards - similar to DTMCs
−  except for continuous-time accumulation of state rewards
−  extension of CSL with R operator
−  model checking of R comparable with that of P

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Counterexamples
−  non-probabilistic model checking
−  counterexamples for PCTL + DTMCs
−  computing smallest counterexamples

•  Bisimulation
−  bisimulation equivalences: DTMCs, CTMCs
−  preservation of logics: PCTL, CSL
−  bisimulation minimisation

3 DP/Probabilistic Model Checking, Michaelmas 2011

Non probabilistic counterexamples
•  Counterexamples (for non-probabilistic model checking)

−  generated when model checking a (universal) property fails
−  trace through model illustrating why property does not hold
−  major advantage of the model checking approach
−  bug finding vs. verification

•  Example:
−  CTL property AG ¬err
−  (or equivalently, ¬EF err)
−  (“an error state is never reached”)
−  counterexample is a finite trace  

to a state satisfying err
−  alternatively, this is a witness 

to the satisfaction of formula EF err

{err}

4 DP/Probabilistic Model Checking, Michaelmas 2011

Counterexamples for DTMCs?
•  PCTL example: P<0.01 [F err]

−  “the probability of reaching an error state is less than 0.01”
−  what is a counterexample for s ⊭ P<0.01 [F err] ?
−  not necessarily illustrated by a single trace to an err state
−  in fact, “counterexample” is a set of paths satisfying F err

whose combined measure is greater than or equal to 0.01
•  Alternative approach to “debugging” seen so far:

−  probabilistic model checker provides actual probabilities
−  e.g. queries of the form P=? [F err]
−  anomalous behaviour identified by examining trends
−  e.g. P=? [F≤T err] for T=0,…,100

•  This lecture: DTMC counterexamples in style of [HK07]
−  also some work done on CTMC/MDP counterexamples

5 DP/Probabilistic Model Checking, Michaelmas 2011

DTMC notation
•  DTMC: D = (S,sinit,P,L)
•  Path(s) = set of all infinite paths starting in state s
•  Prs : ΣPath(s) → [0,1] = probability measure over infinite paths

−  where ΣPath(s) is the σ-algebra on Path(s)
−  defined in terms of probabilities for finite paths

•  Ps(ω) = probability for finite path ω = ss1…sn
−  Ps(s) = 1
−  Ps(ss1…sn) = P(s,s1) · P(s1,s2) · … · P(sn-1,sn)
−  extend notation to sets: Ps(C) for set of finite paths C
−  Ps extends uniquely to Prs

•  Path(s, ψ) = { ω ∈ Path(s) | ω ⊨ ψ }
−  Prob(s, ψ) = Prs(Path(s, ψ))

•  Pathfin(s, ψ) = set of finite paths from s satisfying ψ

6 DP/Probabilistic Model Checking, Michaelmas 2011

Counterexamples for DTMCs
•  Consider PCTL properties of the form:

−  P≤p [Φ1 U≤k Φ2], where k ∈ ℕ ∪ {∞}
−  i.e. bounded or unbounded until formulae with closed upper

probability bounds

•  Refutation:
−  s ⊭ P≤p [Φ1 U≤k Φ2]
− ⇔ Prs(Path(s, Φ1 U≤k Φ2)) > p
−  i.e. total probability mass of Φ1 U≤k Φ2 paths exceeds p

•  Since the property is an until formula
−  this is evidenced by a set of finite paths

7 DP/Probabilistic Model Checking, Michaelmas 2011

Counterexamples for DTMCs
•  A counterexample for P≤p [Φ1 U≤k Φ2] in state s is:

−  a set C of finite paths such that C ⊆ Pathfin(s, ψ) and Ps(C) > p

•  Example
−  Consider the PCTL formula:
−  P≤0.3 [F a]
−  This is not satisfied in s0
−  Prob(s0, F a) = 1/4+1/8+1/16+… = 1/2
−  A counterexample: C = { s0s2, s0s0s2 }
−  Ps0(C) = 1/4 + (1/2)(1/4) = 3/8 = 0.375

s1

1/2

1

1/4

1

{a}

s0

s2

1/4

8 DP/Probabilistic Model Checking, Michaelmas 2011

Finiteness of counterexamples
•  There is always a finite counterexample for:

−  s ⊭ P≤p [Φ1 U≤k Φ2]

•  On the other hand, consider this DTMC:
−  and the PCTL formula:
−  P<1/2 [F a]

−  Prob(s0, F a) = 1/4+1/8+1/16+… 
 = 1/2

−  s0 ⊭ P<1/2 [F a]

−  counterexample would require infinite set of paths
−  { (s0)is2 }i∈ℕ

s1

1/2

1

1/4

1

{a}

s0

s2

1/4

9 DP/Probabilistic Model Checking, Michaelmas 2011

Counterexamples for DTMCs
•  Aim: counterexamples should be succinct, comprehensible
•  Set of all counterexamples:

−  CXp(s,ψ) = set of all counterexamples for P≤p [ψ] in state s
•  Minimal counterexample

−  counterexample C with |C| ≤ |C’| for all C’ ∈ CXp(s,ψ)
•  “Smallest” counterexample

−  minimal counterexample C with P(C) ≥ P(C’)  
for all minimal C’ ∈ CXp(s,ψ)

−  reduces to finding…
•  Strongest (most probable) evidence

−  finite path ω in Pathfin(s, ψ) such that P(ω) ≥ P(ω’)  
for all ω’ ∈ Pathfin(s, ψ)

−  i.e. contributes most to violation of PCTL formula

10 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  PCTL formula: P≤1/2 [F b]

−  s0 ⊭ P≤1/2 [F b]
−  since Prob(s0, F b) = 0.9

•  Counterexamples:
−  C1 = { s0s1s2, s0s1s4s2, s0s1s4s5, s0s4s2 }

•  Ps0(C1) = 0.2+0.2+0.12+0.15 = 0.67 (not minimal)
−  C2 = { s0s1s2, s0s1s4s2, s0s1s4s5 }

•  Ps0(C2) = 0.2+0.2+0.12 = 0.52 (not “smallest”)
−  C3 = { s0s1s2, s0s1s4s2, s0s4s2 }

•  Ps0(C3) = 0.2+0.2+0.15 = 0.55 (“smallest”)

{b}
1/3

1 1

s0 s1 s2

s3 s4 s5

0.6

0.3 0.1

0.2

0.3

0.3
0.7

0.5
2/3

{b}

11 DP/Probabilistic Model Checking, Michaelmas 2011

Weighted digraphs
•  A weighted directed graph is a tuple G = (V, E, w) where:

−  V is a set of vertices
−  E ⊆ V × V is a set of edges
−  w : E → ℝ≥0 is a weight function

•  Finite path ω in G
−  is a sequence of vertices v0v1v2…vn such that (vi,vi+1)∈E ∀i≥0
−  the distance of ω = v0v1v2…vn is: Σi=0…n-1 w(vi,vi+1)

•  Shortest path problem
−  given a weighted digraph, find a path between two vertices v1

and v2 with the smallest distance
−  i.e. a path ω s.t. d(ω) ≤ d(ω’) for all other such paths ω’

12 DP/Probabilistic Model Checking, Michaelmas 2011

Finding strongest evidences
•  Reduction to graph problem…
•  Step 1: Adapt the DTMC

−  make states satisfying ¬Φ1∧ ¬Φ2 absorbing
•  (i.e. replace all outgoing transitions with a single self-loop)

−  add an extra state t and replace all transitions from any Φ2
state with a single transition to t (with probability 1)

•  Step 2: Convert new DTMC into a weighted digraph
−  for the (adapted) DTMC D = (S,sinit,P,L):
−  corresponding graph is GD = (V, E, w) where:
−  V = S and E = { (s,s’)∈S×S | P(s,s’)>0 }
−  w(s,s’) = log(1/P(s,s’))

•  Key idea: for any two paths ω and ω’ in D (and in GD)
−  Ps(ω’) ≥ Ps(ω) if and only if d(ω’) ≤ d(ω)

13 DP/Probabilistic Model Checking, Michaelmas 2011

Example…
•  PCTL formula: P≤1/2 [F b]

log(3)

log(1)

s0 s1 s2

s3 s4 s5

log(5/3)

log
(10/3)

log(10)

log(5)

log
(10/3)

log
(2) log

(3/2) t
1

1
1

{b}
1/3

1 1

s0 s1 s2

s3 s4 s5

0.6

0.3 0.1

0.2

0.3

0.3
0.7

0.5
2/3

{b}

DTMC

weighted digraph

14 DP/Probabilistic Model Checking, Michaelmas 2011

Finding strongest evidences
•  To find strongest evidence in DTMC D

−  analyse corresponding digraph
•  For unbounded until formula P≤p [Φ1 U Φ2]

−  solve shortest path problem in digraph (target t)
−  polynomial time algorithms exist

•  e.g. Dijsktra’s algorithm can be implemented in O(|E|+|V|·log|V|)
•  For bounded until formula P≤p [Φ1 U≤k Φ2]

−  solve special case of the constrained shortest path problem
−  also solvable in polynomial time

•  Generation of smallest counterexamples
−  based on computation of k shortest paths
−  k can be computed on the fly

15 DP/Probabilistic Model Checking, Michaelmas 2011

Other cases
•  Lower bounds on probabilities

−  i.e. s ⊭ P≥p [Φ1 U≤k Φ2]
−  negate until formula to reverse probability bound
−  solvable with BSCC computation + probabilistic reachability
−  for details, see [HK07]

•  Continuous-time Markov chains
−  these techniques can be extended to CTMCs and CSL [HK07b]
−  naïve approach: apply DTMC techniques to uniformised DTMC
−  modifications required to get smaller counterexamples
−  another possibility: directed search based techniques [AHL05]

16 DP/Probabilistic Model Checking, Michaelmas 2011

Bisimulation
•  Identifies models with the same branching structure

−  i.e. the same stepwise behaviour
−  each model can simulate the actions of the other
−  guarantees that models satisfy many of the same properties

•  Uses of bisimulation:
−  show equivalence between a model and its specification
−  state space reduction: bisimulation minimisation

•  Formally, bisimulation is an equivalence relation over states
−  bisimilar states must have identical labelling 

and identical stepwise behaviour

17 DP/Probabilistic Model Checking, Michaelmas 2011

Equivalence relations
•  Let R be a relation over some set S

−  i.e. R ⊆ S × S
−  we write s1 R s2 as shorthand for (s1,s2) ∈ R  

•  R is an equivalence relation iff:
−  R is reflexive, i.e. s R s
−  R is symmetric, i.e. if s1 R s2 then s2 R s1

−  R is transitive, i.e. if s1 R s2 and s2 R s3 then s1 R s3

•  R partitions S:
−  equivalence classes: [s]R = { s’ ∈ S | s’ R s }
−  the quotient of S under R is denoted S/R = { [s]R | s ∈ S }

18 DP/Probabilistic Model Checking, Michaelmas 2011

Bisimulation on DTMCs
•  Consider a DTMC D = (S,sinit,P,L)
•  Some notation:

−  P(s,T) = Σs’∈T P(s,s’) for T ⊆ S

•  An equivalence relation R on S is a probabilistic
bisimulation on D if and only if for all s1 R s2:
−  L(s1) = L(s2)
−  P(s1, T) = P(s2, T) for all T ∈ S/R (i.e. for all equivalence classes of R)

•  States s1 and s2 are bisimulation-equivalent (or bisimilar)
−  if there exists a probabilistic bisimulation R on D with s1 R s2
−  denoted s1 ~ s2

19 DP/Probabilistic Model Checking, Michaelmas 2011

Simple example
•  Bisimulation relation ~

•  Quotient of S under ~
−  { {s1}, {u1, u2}, {v1, v2} }

•  Bisimilar states:
−  u1 ~ u2

−  v1 ~ v2 u2 u1 1

{b} {a}

v1 v2

1

2/3

s1

1/3

{b}
{a}

1 1

1/2 1/6
1/6 1/6

20 DP/Probabilistic Model Checking, Michaelmas 2011

Bisimulation on DTMCs
•  Bisimulation between DTMCs D1 and D2

−  D1 ~ D2 if they have bisimilar initial states
•  Formally:

−  state labellings for D1 and D2 over same set of atomic prop.s
−  bisimulation relation is over disjoint union of D1 and D2

u2 u1 1

{b} {a}

v1 v2

1

2/3

s1

1/3

{b}
{a}

1 1

1/2 1/6
1/6 1/6

u 1 v

s

{b} {a}

1

2/3 1/3

1

D1 D2

21 DP/Probabilistic Model Checking, Michaelmas 2011

Simple example
•  Bisimilar states: Bisimilar DTMCs: D1 ~ D2

−  u1 ~ u2 ~ u

−  v1 ~ v2 ~ v
−  s1 ~ s

u2 u1 1

{b} {a}

v1 v2

1

2/3

s1

1/3

{b}
{a}

1 1

1/2 1/6
1/6 1/6

u 1 v

s

{b} {a}

1

2/3 1/3

1

D1 D2

22 DP/Probabilistic Model Checking, Michaelmas 2011

Quotient DTMC
•  For a DTMC D = (S,sinit,P,L) and probabilistic bisimulation ~

•  Quotient DTMC is
−  D/~ = (S’,s’init,P’,L’)

•  where:
−  S’ = S/~ = { [s]~ | s ∈ S }
−  s’init = [sinit]~
−  P’([s]~, [s’]~) = P(s, [s’]~)
−  L’([s]~) = L(s)

[u]~ 1

[s]~

{b} {a}

1

2/3 1/3

1

[v]~

well defined since
bisimulation ensures 

P(s, [s’]~) same for all s in [s]~

23 DP/Probabilistic Model Checking, Michaelmas 2011

Bisimulation and PCTL
•  Probabilistic bisimulation preserves all PCTL formulae

•  For all states s and s’:

s ~ s’
⇔

for all PCTL formulae Φ, s ⊨ Φ if and only if s’ ⊨ Φ

•  Note also:
−  every pair of non-bisimilar states can be distinguished with

some PCTL formula
−  ~ is the coarsest relation with this property
−  in fact, bisimulation also preserves all PCTL* formulae

24 DP/Probabilistic Model Checking, Michaelmas 2011

CTMC bisimulation
•  Check equivalence of rates, not probabilities…

•  An equivalence relation R on S is a probabilistic
bisimulation on CTMC C=(S,sinit,R,L)  
if and only if for all s1 R s2:
−  L(s1) = L(s2)
−  R(s1, T) = R (s2, T) for all classes T in S/R

•  Alternatively, check:
−  L(s1) = L(s2), Pemb(C)(s1, T) = Pemb(C)(s2, T), E(s1) = E(s2)

•  Bisimulation on CTMCs preserves CSL
−  (see [BHHK03] and also [DP03])

25 DP/Probabilistic Model Checking, Michaelmas 2011

Bisimulation minimisation
•  More efficient to perform PCTL/CSL model checking on the

quotient DTMC/CTMC
−  assuming quotient model can be constructed efficiently
−  (see [KKZJ07] for experimental results on this)

•  Bisimulation minimisation
−  algorithm to construct quotient model
−  based on partition refinement
−  repeated splitting of an initially coarse partition
−  final partition is coarsest bisimulation wrt. initial partition
−  (optimisations/variants possible by changing initial partition)
−  complexity: O(|P|·log|S| + |AP|·|S|) [DHS’03]

•  assuming suitable data structure used (splay trees)

26 DP/Probabilistic Model Checking, Michaelmas 2011

Bisimulation minimisation
•  1. Start with initial partition

−  say Π = { { s∈S | L(s)=lab } | lab∈2AP }

•  2. Find a splitter T ∈ Π for some block B ∈ Π
−  a splitter T is a block such that probability of going to T

differs for some states in block B
−  i.e. ∃s,s’∈B . P(s,T) ≠ P(s’,T)

•  3. Split B into sub-blocks
−  such that P(s,T) is the same for all states in each sub-block

•  4. Repeat steps 2/3 until no more splitters exist
−  i.e. no change to partition Π

replace P with R
for CTMCs

27 DP/Probabilistic Model Checking, Michaelmas 2011

CTMC example
•  Consider model checking P~p [F[0,t] a] on this CTMC:

Minimisation:

Π0: B1={s0,s1,s2,s3,s4,s5}, B2={s6}
B2 is a splitter for B1

(since e.g. R(s1,B2)=0≠2=R(s2,B2))
Π1: B1={s0,s1,s4,s5}, B2={s6}, B3={s2,s3}
B3 is a splitter for B1

(since e.g. R(s1,B3)=0≠4=R(s0,B3))
Π2: B1={s1,s5}, B2={s6}, B3={s2,s3}, B4={s0,s4}
No more splitters…

S/~ = { {s1,s5}, {s6}, {s2,s3}, {s0,s4} }

s1 s0 1 s2 s3

2

{a} s5 s4 s6

2

2.5
1.5

4

3.5
1

1 2

5.5

5

6

28 DP/Probabilistic Model Checking, Michaelmas 2011

CTMC example…

C S/~ = { {s1,s5}, {s6}, {s2,s3}, {s0,s4} }

C/~

s0,s4 1 s6

{a}
2

4

1
5.5

s1,s5 s2,s3
11

ProbC(s0, F[0,t] a) = ProbC/~({s0,s4}, F[0,t] a)

s1 s0 1 s2 s3

2

{a} s5 s4 s6

2

2.5
1.5

4

3.5
1

1 2

5.5

5

6

29 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Counterexamples

−  essential ingredient of non-probabilistic model checking
−  counterexamples for PCTL + DTMCs

•  finite set of paths showing ⊭ P≤p [Φ1 U≤k Φ2]
−  computing smallest counterexamples

•  reduction to well-known graph problems

•  Bisimulation
−  relates states/Markov chains with identical labelling 

and identical stepwise behaviour
−  preserves PCTL, CSL, …
−  bisimulation minimisation: automated reduction to quotient

model

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Nondeterminism

•  Markov decision processes (MDPs)

•  Paths, probabilities and adversaries

•  End components

3 DP/Probabilistic Model Checking, Michaelmas 2011

Recap: DTMCs
•  Discrete-time Markov chains (DTMCs)

−  discrete state space, transitions are discrete time-steps
−  from each state, choice of successor state (i.e. which

transition) is determined by a discrete probability distribution

•  DTMCs are fully probabilistic
−  well suited to modelling, for example, simple random

algorithms or synchronous probabilistic systems where
components move in lock-step

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

4 DP/Probabilistic Model Checking, Michaelmas 2011

Nondeterminism
•  But, some aspects of a system may not be probabilistic and

should not be modelled probabilistically; for example:

•  Concurrency - scheduling of parallel components
−  e.g. randomised distributed algorithms - multiple probabilistic

processes operating asynchronously
•  Unknown environments

−  e.g. probabilistic security protocols - unknown adversary
•  Underspecification - unknown model parameters

−  e.g. a probabilistic communication protocol designed for
message propagation delays of between dmin and dmax

•  Abstraction
−  e.g. partition DTMC into similar (but not identical) states

5 DP/Probabilistic Model Checking, Michaelmas 2011

Probability vs. nondeterminism

•  Labelled transition system
−  (S,s0,R,L) where R ⊆ S×S
−  choice is nondeterministic

•  Discrete-time Markov chain
−  (S,s0,P,L) where P : S×S→[0,1]
−  choice is probabilistic

•  How to combine?

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

s1 s0

s2

s3

{fail}

{succ}

{try}

6 DP/Probabilistic Model Checking, Michaelmas 2011

Markov decision processes
•  Markov decision processes (MDPs)

−  extension of DTMCs which allow nondeterministic choice

•  Like DTMCs:
−  discrete set of states representing possible configurations of

the system being modelled
−  transitions between states occur in discrete time-steps

•  Probabilities and nondeterminism
−  in each state, a nondeterministic  

choice between several discrete  
probability distributions over  
successor states

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

7 DP/Probabilistic Model Checking, Michaelmas 2011

Markov decision processes
•  Formally, an MDP M is a tuple (S,sinit,Steps,L) where:

−  S is a finite set of states (“state space”)
−  sinit ∈ S is the initial state
−  Steps : S → 2Act×Dist(S) is the transition probability function

 where Act is a set of actions and Dist(S) is the set of discrete
probability distributions over the set S

−  L : S → 2AP is a labelling with atomic propositions

•  Notes:
−  Steps(s) is always non-empty,  

i.e. no deadlocks
−  the use of actions to label  

distributions is optional

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

8 DP/Probabilistic Model Checking, Michaelmas 2011

Simple MDP example
•  Modification of the simple DTMC communication protocol

−  after one step, process starts trying to send a message
−  then, a nondeterministic choice between: (a) waiting a step

because the channel is unready; (b) sending the message
−  if the latter, with probability 0.99 send successfully and stop
−  and with probability 0.01, message sending fails, restart

s1 s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}
start send

stop

wait

restart

9 DP/Probabilistic Model Checking, Michaelmas 2011

Simple MDP example 2
•  Another simple MDP example with four states

−  from state s0, move directly to s1 (action a)
−  in state s1, nondeterministic choice between actions b and c
−  action b gives a probabilistic choice: self-loop or return to s0
−  action c gives a 0.5/0.5 random choice between heads/tails

s1 s0

s2

s3

0.5

0.5 0.7

1

1

{heads}

{tails}

{init}

0.3

1 a

b

c

a

a

10 DP/Probabilistic Model Checking, Michaelmas 2011

Simple MDP example 2

M = (S,sinit,Steps,L)

S = {s0, s1, s2, s3}
sinit = s0

Steps(s0) = { (a, [s1↦1]) }
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) }
Steps(s2) = { (a, [s2↦1]) }
Steps(s3) = { (a, [s3↦1]) }

s1 s0

s2

s3

0.5

0.5 0.7

1

1

{heads}

{tails}

{init}

0.3

1 a

b

c

a

a

AP = {init,heads,tails}
L(s0)={init},
L(s1)=∅,
L(s2)={heads},
L(s3)={tails}

11 DP/Probabilistic Model Checking, Michaelmas 2011

The transition probability function
•  It is often useful to think of the function Steps as a matrix

−  non-square matrix with |S| columns and Σs∈S |Steps(s)| rows

•  Example (for clarity, we omit actions from the matrix)

Steps(s0) = { (a, s1↦1) }
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) }
Steps(s2) = { (a, s2↦1) }
Steps(s3) = { (a, s3↦1) }

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

12 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Parallel composition

t0 t1 t2 1

1

0.5
0.5

s0 s1 s2 1

1

0.5
0.5

Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

module M1
 s : [0..2] init 0;
 [] s=0 -> (s’=1);
 [] s=1 -> 0.5:(s’=0) + 0.5:(s’=2);
 [] s=2 -> (s’=2);

endmodule

module M2 = M1 [s=t] endmodule

13 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Parallel composition

t0 t1 t2 1

1

0.5
0.5

1 1 1

s0 t0 s0 t1 s0 t2

s1 t0

s2 t0

s1 t1

s2 t1

s1 t2

s2 t2

0.5

1

1

1

1 0.5 1 0.5 1
1

0.5

1

0.5

1

0.5

0.5

0.5

0.5

0.5 0.5 0.5

s0

s1

s2

0.5 1

0.5

1

Asynchronous parallel  
composition of two  
3-state DTMCs

Action labels 
omitted here

14 DP/Probabilistic Model Checking, Michaelmas 2011

Paths and probabilities
•  A (finite or infinite) path through an MDP

−  is a sequence of states and action/distribution pairs
−  e.g. s0(a0,µ0)s1(a1,µ1)s2…
−  such that (ai,µi) ∈ Steps(si) and µi(si+1) > 0 for all i≥0
−  represents an execution (i.e. one possible behaviour) of the

system which the MDP is modelling

•  Path(s) = set of all paths through MDP starting in state s
−  Pathfin(s) = set of all finite paths from s

•  Paths resolve both nondeterministic  
 and probabilistic choices
−  how to reason about probabilities?

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

15 DP/Probabilistic Model Checking, Michaelmas 2011

Adversaries
•  To consider the probability of some behaviour of the MDP

−  first need to resolve the nondeterministic choices
−  …which results in a DTMC
−  …for which we can define a probability measure over paths

•  An adversary resolves nondeterministic choice in an MDP
−  also known as “schedulers”, “policies” or “strategies”

•  Formally:
−  an adversary σ of an MDP M is a function mapping every finite

path ω = s0(a0,µ0)s1...sn to an element σ(ω) of Steps(sn)
−  i.e. resolves nondeterminism based on execution history

•  Adv (or AdvM) denotes the set of all adversaries

16 DP/Probabilistic Model Checking, Michaelmas 2011

Adversaries - Examples
•  Consider the previous example MDP

−  note that s1 is the only state for which |Steps(s)| > 1
−  i.e. s1 is the only state for which an adversary makes a choice
−  let µb and µc denote the probability distributions associated

with actions b and c in state s1

•  Adversary σ1
−  picks action c the first time
−  σ1(s0s1)=(c,µc)

•  Adversary σ2
−  picks action b the first time, then c

−  σ2(s0s1)=(b,µb), σ2(s0s1s1)=(c,µc),  
σ2(s0s1s0s1)=(c,µc)

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

(Note: actions/distributions 
omitted from paths for clarity)

17 DP/Probabilistic Model Checking, Michaelmas 2011

Adversaries and paths
•  Pathσ(s) ⊆ Path(s)

−  (infinite) paths from s where nondeterminism resolved by σ
−  i.e. paths s0(a0,µ0)s1(a1,µ1)s2…
−  for which σ(s0(a0,µ0)s1…sn)) = (an,µn)

•  Adversary σ1
−  (picks action c the first time)
−  Pathσ1(s0) = { s0s1s2

ω, s0s1s3
ω }

•  Adversary σ2
−  (picks action b the first time, then c)
−  Pathσ2(s0) = { s0s1s0s1s2

ω, s0s1s0s1s3
ω, s0s1s1s2

ω, s0s1s1s3
ω }

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

18 DP/Probabilistic Model Checking, Michaelmas 2011

Induced DTMCs
•  Adversary σ for MDP induces an infinite-state DTMC Dσ

•  Dσ = (Pathσfin(s),s,Pσs) where:
−  states of the DTMC are the finite paths of σ starting in state s
−  initial state is s (the path starting in s of length 0)
−  Pσs(ω,ω’)=µ(s’) if ω’= ω(a, µ)s’ and σ(ω)=(a,µ)
−  Pσs(ω,ω’)=0 otherwise

•  1-to-1 correspondence between Pathσ(s) and paths of Dσ

•  This gives us a probability measure Prσs over Pathσ(s)
−  from probability measure over paths of Dσ

19 DP/Probabilistic Model Checking, Michaelmas 2011

Adversaries - Examples
•  Fragment of induced DTMC for adversary σ1

−  σ1 picks action c the first time

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

s0s1 s0

0.5
1 s0s1s2

s0s1s3

s0s1s2s2

s0s1s3s3 0.5

1

1

20 DP/Probabilistic Model Checking, Michaelmas 2011

Adversaries - Examples
•  Fragment of induced DTMC for adversary σ2

−  σ2 picks action b, then c

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s3 0.5
s0s1

0.7
s0s1s0

s0s1s1
0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s3 0.5

1

1

s0s1s1s2s2

s0s1s1s3s3

21 DP/Probabilistic Model Checking, Michaelmas 2011

MDPs and probabilities
•  Probσ(s, ψ) = Prσs { ω ∈ Pathσ(s) | ω ⊨ ψ }

−  for some path formula ψ
−  e.g. Probσ(s, F tails)

•  MDP provides best-/worst-case analysis
−  based on lower/upper bounds on probabilities
−  over all possible adversaries

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

€

pmin(s,ψ) = infσ∈Adv Probσ (s,ψ)

€

pmax(s,ψ) = supσ∈Adv Probσ(s,ψ)

22 DP/Probabilistic Model Checking, Michaelmas 2011

Examples
•  Probσ1(s0, F tails) = 0.5
•  Probσ2(s0, F tails) = 0.5

−  (where σi picks b i-1 times then c)
•  …
•  pmax(s0, F tails) = 0.5
•  pmin(s0, F tails) = 0

•  Probσ1(s0, F tails) = 0.5
•  Probσ2(s0, F tails)  

 = 0.3+0.7·0.5 = 0.65
•  Probσ3(s0, F tails)  

 = 0.3+0.7·0.3+0.7·0.7·0.5 = 0.755
•  …
•  pmax(s0, F tails) = 1
•  pmin(s0, F tails) = 0.5

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

23 DP/Probabilistic Model Checking, Michaelmas 2011

Memoryless adversaries
•  Memoryless adversaries always pick same choice in a state

−  also known as: positional, Markov, simple
−  formally, σ(s0(a0,µ0)s1...sn) depends only on sn

−  can write as a mapping from states, i.e. σ(s) for each s ∈ S
−  induced DTMC can be mapped to a |S|-state DTMC

•  From previous example:
−  adversary σ1 (picks c in s1) is memoryless; σ2 is not

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a
s1 s0

s2

s3

0.5

0.5

1
1

{heads}

{tails}

{init} 1 a
c

a

a

24 DP/Probabilistic Model Checking, Michaelmas 2011

Other classes of adversary
•  Finite-memory adversary

−  finite number of modes, which can govern choices made
−  formally defined by a deterministic finite automaton
−  induced DTMC (for finite MDP) again mapped to finite DTMC

•  Randomised adversary
−  maps finite paths s0(a1,µ1)s1...sn in MDP to a probability

distribution over element of Steps(sn)
−  generalises deterministic schedulers
−  still induces a (possibly infinite state) DTMC

•  Fair adversary
−  fairness assumptions on resolution of nondeterminism

25 DP/Probabilistic Model Checking, Michaelmas 2011

End components
•  Consider an MDP M = (S,sinit,Steps,L)

•  A sub-MDP of M is a pair (S’,Steps’) where:
−  S’ ⊆ S is a (non-empty) subset of M’s states
−  Steps’(s) ⊆ Steps(s) for each s ∈ S’
−  is closed under probabilistic branching, i.e.:
−  { s’ | µ(s’)>0 for some (a,µ)∈Steps’(s) } ⊆ S’

•  An end component of M is a  
strongly connected sub-MDP

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1

26 DP/Probabilistic Model Checking, Michaelmas 2011

End components
•  For finite MDPs…

•  For every end component, there  
is an adversary which,  
with probability 1, forces the MDP 
to remain in the end component 
and visit all its states infinitely often

•  Under every adversary σ,  
with probability 1 an end component 
will be reached and all of its states 
visited infinitely often

−  (analogue of fundamental property of finite DTMCs)

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1

27 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Nondeterminism

−  concurrency, unknown environments/parameters, abstraction
•  Markov decision processes (MDPs)

−  discrete-time + probability and nondeterminism
−  nondeterministic choice between multiple distributions

•  Adversaries
−  resolution of nondeterminism only
−  induced set of paths and (infinite state DTMC)
−  induces DTMC yields probability measure for adversary
−  best-/worst-case analysis: minimum/maximum probabilities
−  memoryless adversaries

•  End components
−  long-run behaviour: analogue of BSCCs for DTMCs

Lecture 13  
Reachability in MDPs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Recall - MDPs

•  Markov decision process: M = (S,sinit,Steps,L)
•  Adversary σ ∈ Adv resolves nondeterminism
•  σ induces set of paths Pathσ(s) and DTMC Dσ

•  Dσ yields probability space Prσs over Pathσ(s)
•  Probσ(s, ψ) = Prσs { ω ∈ Pathσ(s) | ω ⊨ ψ }
•  MDP yields minimum/maximum probabilities:

€

pmin(s,ψ) = infσ∈Adv Probσ (s,ψ)

€

pmax(s,ψ) = supσ∈Adv Probσ(s,ψ)

3 DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic reachability

•  Minimum and maximum probability of reaching target set
−  target set = all states labelled with atomic proposition a

•  Vectors: pmin(F a) and pmax(F a)
−  minimum/maximum probabilities for all states of MDP

€

pmin(s,F a) = infσ∈Adv Probσ(s,F a)

€

pmax(s,F a) = supσ∈Adv Probσ(s,F a)

4 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Qualitative probabilistic reachability
−  case where pmin>0 or pmax>0

•  Optimality equation

•  Memoryless adversaries suffice
−  finitely many adversaries to consider

•  Computing reachability probabilities
−  value iteration (fixed point computation)
−  linear programming problem
−  policy iteration

5 DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative probabilistic reachability

•  Consider the problem of determining states for which 
pmin(s, F a) or pmax(s, F a) is zero (or non-zero)
−  max case: Smax=0 = { s ∈ S | pmax(s, F a) = 0 }
−  this is just (non-probabilistic) reachability

R := Sat(a)
done := false
while (done = false)
 R� = R ∪ { s ∈ S | ∃(a,µ)∈Steps(s) . ∃s�∈R . µ(s�)>0}
 if (R�=R) then done := true
 R := R�
endwhile
return S\R

6 DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative probabilistic reachability

•  Min case: Smin=0 = { s ∈ S | pmin(s, F a) = 0 }

R := Sat(a)
done := false
while (done = false)
 R� = R ∪ { s ∈ S |∀(a,µ)∈Steps(s) . ∃s�∈R .
µ(s�)>0}
 if (R�=R) then done := true
 R := R�
endwhile
return S\R

note: quantification
over all choices

7 DP/Probabilistic Model Checking, Michaelmas 2011

Optimality (min)

•  The values pmin(s, F a) are the unique solution of the
following equations:

•  This is an instance of the Bellman equation
−  (basis of dynamic programming techniques)

€

xs =

1 if s ∈ Sat(a)

0 if s ∈ Smin=0

min µ(s')⋅ xs'
s' ∈S

∑ | (a,µ) ∈ Steps (s)
%
&
'

('

)
*
'

+ '
otherwise

%

&

'
'
'

(

'
'
'

optimal solution for state s uses
optimal solution for successors s�

Smin=0
=

{ s | pmin(s, F a)=0 }

8 DP/Probabilistic Model Checking, Michaelmas 2011

Optimality (max)

•  Likewise, the values pmax(s, F a) are the unique solution of
the following equations:

€

xs =

1 if s ∈ Sat(a)

0 if s ∈ Smax=0

max µ(s') ⋅ xs'
s'∈S

∑ | (a,µ) ∈ Steps (s)
%
&
'

('

)
*
'

+ '
otherwise

%

&

'
'
'

(

'
'
'

Smax=0
=

{ s | pmax(s, F a)=0 }

9 DP/Probabilistic Model Checking, Michaelmas 2011

Memoryless adversaries

•  Memoryless adversaries suffice for probabilistic reachability
−  i.e. there exist memoryless adversaries σmin & σmax such that:
−  Probσmin(s, F a) = pmin(s, F a) for all states s ∈ S
−  Probσmax(s, F a) = pmax(s, F a) for all states s ∈ S

•  Construct adversaries from optimal solution:

€

σmin(s) = argmin µ(s') ⋅ pmin(s',Fa)
s'∈S
∑ | (a,µ) ∈ Steps (s)
&
'
(

) (

*
+
(

, (

€

σmax(s) = argmax µ(s') ⋅ pmax(s',Fa)
s'∈S

∑ | (a,µ) ∈ Steps (s)
&
'
(

) (

*
+
(

, (

10 DP/Probabilistic Model Checking, Michaelmas 2011

Computing reachability probabilities

•  Several approaches…

•  1. Value iteration
−  approximate with iterative solution method
−  corresponds to fixed point computation

•  2. Reduction to a linear programming (LP) problem
−  solve with linear optimisation techniques
−  exact solution using well-known methods

•  3. Policy iteration
−  iteration over adversaries

Preferable 
in practice,

e.g. in PRISM

better
complexity;

good for small
examples

11 DP/Probabilistic Model Checking, Michaelmas 2011

Method 1 - Value iteration (min)

•  For minimum probabilities pmin(s, F a) it can be shown that:
−  pmin(s, F a) = limn→∞ xs

(n) where:

−  where: S? = S \ (Sat(a) ∪ Smin=0)

•  Approximate iterative solution technique
−  iterations terminated when solution converges sufficiently

€

xs

(n)
=

1 if s ∈ Sat(a)

0 if s ∈ Smin=0

0 if s ∈ S? and n = 0

min µ(s') ⋅ xs'

(n−1)

s'∈S

∑ | (a,µ) ∈ Steps (s)
&
'
(

) (

*
+
(

, (
if s ∈ S? and n > 0

&

'

(
(
(

)

(
(
(

12 DP/Probabilistic Model Checking, Michaelmas 2011

Method 1 - Value iteration (max)

•  Value iteration applies to maximum probabilities in the
same way…
−  pmax(s, F a) = limn→∞ xs

(n) where:

−  where: S? = S \ (Sat(a) ∪ Smax=0)

€

xs

(n)
=

1 if s ∈ Sat(a)

0 if s ∈ Smax=0

0 if s ∈ S? and n = 0

max µ(s') ⋅ xs'

(n−1)

s'∈S

∑ | (a,µ) ∈ Steps (s)
&
'
(

) (

*
+
(

, (
if s ∈ S? and n > 0

&

'

(
(
(

)

(
(
(

Dave Parker

13 DP/Probabilistic Model Checking, Michaelmas 2011

Example

•  Minimum/maximum probability of reaching an a-state

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}
0.4

0.5

0.1

0.25

1

14 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Value iteration (min)

Compute: pmin(si, F a)
Sat(a) = {s2}, Smin=0 ={s3}, S? = {s0, s1}

 [x0

(n),x1
(n),x2

(n),x3
(n)]

n=0: [0, 0, 1, 0]
n=1: [min(1·0, 0.25·0+0.25·0+0.5·1),
 0.1·0+0.5·0+0.4·1, 1, 0]
 = [0, 0.4, 1, 0]
n=2: [min(1·0.4,0.25·0+0.25·0+0.5·1),
 0.1·0+0.5·0.4+0.4·1, 1, 0]
 =[0.4, 0.6, 1, 0]
n=3: …

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

Smin=0

15 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Value iteration (min)

 [x0
(n),x1

(n),x2
(n),x3

(n)]
n=0: [0.000000, 0.000000, 1, 0]
n=1: [0.000000, 0.400000, 1, 0]
n=2: [0.400000, 0.600000, 1, 0]
n=3: [0.600000, 0.740000, 1, 0]
n=4: [0.650000, 0.830000, 1, 0]
n=5: [0.662500, 0.880000, 1, 0]
n=6: [0.665625, 0.906250, 1, 0]
n=7: [0.666406, 0.919688, 1, 0]
n=8: [0.666602, 0.926484, 1, 0]
…
n=20: [0.666667, 0.933332, 1, 0]
n=21: [0.666667, 0.933332, 1, 0]
 ≈ [2/3, 14/15, 1, 0]

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

Smin=0

pmin(F a)
=

[2/3, 14/15, 1, 0]

16 DP/Probabilistic Model Checking, Michaelmas 2011

Generating an optimal adversary

•  Min adversary σmin [x0
(n),x1

(n),x2
(n),x3

(n)]
…
n=20: [0.666667, 0.933332, 1, 0]
n=21: [0.666667, 0.933332, 1, 0]
 ≈ [2/3, 14/15, 1, 0]

s0 : min(1·14/15, 0.5·1+0.25·0+0.25·2/3)
 =min(14/15, 2/3) s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

Smin=0

17 DP/Probabilistic Model Checking, Michaelmas 2011

Generating an optimal adversary

•  DTMC Dσmin

s0

s1 s2

s3
0.5

0.25

1

1

{a}

0.4

0.5

0.1

0.25

 [x0
(n),x1

(n),x2
(n),x3

(n)]
…
n=20: [0.666667, 0.933332, 1, 0]
n=21: [0.666667, 0.933332, 1, 0]
 ≈ [2/3, 14/15, 1, 0]

s0 : min(1·14/15, 0.5·1+0.25·0+0.25·2/3)
 =min(14/15, 2/3)

18 DP/Probabilistic Model Checking, Michaelmas 2011

Value iteration as a fixed point

•  Can view value iteration as a fixed point computation over
vectors of probabilities y ∈ [0,1]S, e.g. for minimum:

•  Let:
−  x(0) = 0 (i.e. x(0)(s) = 0 for all s)
−  x(n+1) = F(x(n))

•  Then:
−  x(0) ≤ x(1) ≤ x(2) ≤ x(3) ≤ …
−  pmin(F a) = limn→∞ x(n)

!
!

"

!
!

#

$

%
&
'

"
#
$

∈⋅

∈

∈

=

∑
∈

=

otherwise)s()µ(a,|)'s(y)'s(µmin

Ssif0
)a(Satsif1

)(s)yF(

S s'

0min

Steps

19 DP/Probabilistic Model Checking, Michaelmas 2011

Linear programming

•  Linear programming
−  optimisation of a linear objective function
−  subject to linear (in)equality constraints

•  General form:
−  n variables: x1, x2, … ,xn

−  maximise (or minimise):
•  c1x1+c2x2+…+cnxn

−  subject to constraints
•  a11x1+a12x2+…a1nxn ≤ b1
•  a21x1+a22x2+…a2nxn ≤ b2

•  …
•  am1x1+am2x2+…amnxn ≤ bm

Many standard solution
techniques exist, e.g.

Simplex, ellipsoid method,  
interior point method

In matrix/vector form:
Maximise (or minimise)
c·x subject to A·x ≤ b

20 DP/Probabilistic Model Checking, Michaelmas 2011

Method 2 - Linear programming problem

•  Min probabilities pmin(s, F a) can be computed as follows:
−  pmin(s, F a) = 1 if s ∈ Sat(a)
−  pmin(s, F a) = 0 if s ∈ Smin=0

−  values for remaining states in the set S? = S \ (Sat(a) ∪ Sno) can 
be obtained as the unique solution of the following 
linear programming problem:

€

maximize xs subject to the constraints :
s ∈S?∑

xs ≤ µ(s') ⋅ xs' +
s'∈S?

∑ µ(s')
s'∈Sat(a)

∑

for all s ∈ S? and for all (a,µ) ∈ Steps (s)

21 DP/Probabilistic Model Checking, Michaelmas 2011

Linear programming problem (max)

•  Max probabilities pmax(s, F a) can be computed as follows:
−  pmax(s, F a) = 1 if s ∈ Sat(a)
−  pmax(s, F a) = 0 if s ∈ Smax=0

−  values for remaining states in the set S? = S \ (Sat(a) ∪ Sno) can 
be obtained as the unique solution of the following 
linear programming problem:

Differences 
from min case

€

minimize xs subject to the constraints :
s ∈S?∑

xs ≥ µ(s') ⋅ xs' +
s'∈S?

∑ µ(s')
s'∈Sat(a)

∑

for all s ∈ S? and for all (a,µ) ∈ Steps (s)

22 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Linear programming (min)

Let xi = pmin(si, F a)
Sat(a): x2=1, Smin=0: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 0.25·x0 + 0.5
●  x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

Smin=0

23 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Linear programming (min)

x0

x1

0

0

1

1 2/3

x0

x1

0

0

1

1

0.8

x0

x1

0

0

1

1

x1 ≤ 0.2·x0
+ 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

Smin=0

Let xi = pmin(si, F a)
Sat(a): x2=1, Smin=0: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 2/3
●  x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3

24 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Linear programming (min)

x0

x1

0

0

1

1

0.8

2/3

max

Solution:
(x0, x1)

=
(2/3, 14/15)

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

Smin=0

Let xi = pmin(si, F a)
Sat(a): x2=1, Smin=0: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 2/3
●  x1 ≤ 0.2·x0 + 0.8

pmin(F a)
=

[2/3, 14/15, 1, 0]

25 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Linear programming (min)

Let xi = pmin(si, F a)
Sat(a): x2=1, Smin=0: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 2/3
●  x1 ≤ 0.2·x0 + 0.8

x0

x1

0

0

1

1

0.8

2/3

max
Two memoryless

adversaries

x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

Smin=0

26 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Value iteration + LP

 [x0
(n),x1

(n),x2
(n),x3

(n)]
n=0: [0.000000, 0.000000, 1, 0]
n=1: [0.000000, 0.400000, 1, 0]
n=2: [0.400000, 0.600000, 1, 0]
n=3: [0.600000, 0.740000, 1, 0]
n=4: [0.650000, 0.830000, 1, 0]
n=5: [0.662500, 0.880000, 1, 0]
n=6: [0.665625, 0.906250, 1, 0]
n=7: [0.666406, 0.919688, 1, 0]
n=8: [0.666602, 0.926484, 1, 0]
…
n=20: [0.666667, 0.933332, 1, 0]
n=21: [0.666667, 0.933332, 1, 0]
 ≈ [2/3, 14/15, 1, 0]

x0

x1

0

0
2/3

1

27 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Linear programming (max)

x0

x1

0

0

1

1 2/3

x0

x1

0

0

1

1

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

●  x3 ≥ x2

●  x3 ≥ x3

0 1

x0

x1

0

1

0.8

Let xi = pmax(si, F a)
Sat(a): x2=1, Smax=0 = ∅
For S? = {s0, s1,s3} :
Minimise x0+x1+x3 subject to constraints:

●  x0 ≥ x1

●  x0 ≥ 2/3 + 1/3x3

●  x1 ≥ 0.2·x0 + 0.8
 x1 ≥ 0.2·x0 +0.8

x0 ≥ 1

x0 ≥ x1

28 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Linear programming (max)

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

x0 x0

x1

0

0

1

1

0.8

2/3

min

(only feasible)
solution:
(x0, x1,x2)

=
(1, 1, 1)

●  x3 ≥ x2

●  x3 ≥ x3

Let xi = pmax(si, F a)
Sat(a): x2=1, Smax=0 = ∅
For S? = {s0, s1,s3} :
Minimise x0+x1+x3 subject to constraints:

●  x0 ≥ x1

●  x0 ≥ 2/3 + 1/3x3

●  x1 ≥ 0.2·x0 + 0.8

29 DP/Probabilistic Model Checking, Michaelmas 2011

Generating an adversary

•  Max adversary σmax Let xi = pmax(si, F a)
Sat(a): x2=1, Smax=0 = ∅
For S? = {s0, s1,s3} :
Minimise x0+x1+x3 subject to constraints:

●  x0 ≥ x1

●  x0 ≥ 2/3 + 1/3x3

●  x1 ≥ 0.2·x0 + 0.8
Solution:

●  (x0, x1,x3) = (1, 1, 1)

●  x3 ≥ x2

●  x3 ≥ x3

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

30 DP/Probabilistic Model Checking, Michaelmas 2011

Method 3 - Policy iteration

•  Value iteration:
−  iterates over (vectors of) probabilities

•  Policy iteration:
−  iterates over adversaries (“policies”)

•  1. Start with an arbitrary (memoryless) adversary σ
•  2. Compute the reachability probabilities Probσ(F a) for σ
•  3. Improve the adversary in each state
•  4. Repeat 2/3 until no change in adversary

•  Termination:
−  finite number of memoryless adversaries
−  improvement (in min/max probabilities) each time

31 DP/Probabilistic Model Checking, Michaelmas 2011

Method 3 - Policy iteration

•  1. Start with an arbitrary (memoryless) adversary σ
−  pick an element of Steps(s) for each state s ∈ S

•  2. Compute the reachability probabilities Probσ(F a) for σ
−  probabilistic reachability on a DTMC
−  i.e. solve linear equation system

•  3. Improve the adversary in each state

•  4. Repeat 2/3 until no change in adversary

€

σ' (s) = argmin µ(s') ⋅ Probσ (s',Fa)
s'∈S

∑ | (a,µ) ∈ Steps (s)
&
'
(

) (

*
+
(

, (

€

σ' (s) = argmax µ(s') ⋅ Probσ(s',Fa)
s'∈S

∑ | (a,µ) ∈ Steps (s)
&
'
(

) (

*
+
(

, (

32 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Policy iteration (min)

Arbitrary adversary σ:
Compute: Probσ(F a)
Let xi = Probσ(si, F a)
x2=1, x3=0 and:

●  x0 = x1

●  x1 = 0.1·x0 + 0.5·x1 + 0.4
Solution:
Probσ(F a) = [1, 1, 1, 0]
Refine σ in state s0:
min{1(1), 0.5(1)+0.25(0)+0.25(1)}
= min{1, 0.75} = 0.75

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

Smin=0

33 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Policy iteration (min)

Refined adversary σ�:
Compute: Probσ�(F a)
Let xi = Probσ�(si, F a)
x2=1, x3=0 and:

●  x0 = 0.25·x0 + 0.5
●  x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:
Probσ�(F a) = [2/3, 14/15, 1, 0]
This is optimal

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

Smin=0

34 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Policy iteration (min)

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sat(a)

Smin=0

x0 x0

x1

0

0

1

1

0.8

2/3

σ

σ
�

x1 = 0.2·x0 + 0.8

x0 = x1

x0 = 2/3

35 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…

•  Probabilistic reachability in MDPs
•  Qualitative case: min/max probability > 0

−  simple graph-based computation
−  need to do this first, before other computation methods

•  Memoryless adversaries suffice
−  reduction to finite number of adversaries

•  Computing reachability probabilities…  
(and generation of optimal adversary)

•  1. Value iteration
−  approximate; iterative; fixed point computation

•  2. Reduce to linear programming problem
−  good for small examples; doesn’t scale well

•  3. Policy iteration

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  PCTL for MDPs
−  syntax, semantics, examples

•  PCTL model checking
−  next, bounded until, until
−  precomputation algorithms
−  value iteration, linear optimisation
−  examples

•  Costs and rewards

3 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL
•  Temporal logic for describing properties of MDPs

−  identical syntax to the logic PCTL for DTMCs

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

−  ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

−  where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

“until”

 ψ is true with
probability ~p

“bounded
until” “next”

4 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL semantics for MDPs
•  PCTL formulas interpreted over states of an MDP

−  s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

•  Semantics of (non-probabilistic) state formulas and of path
formulas are identical to those for DTMCs:

•  For a state s of the MDP (S,sinit,Steps,L):
−  s ⊨ a ⇔ a ∈ L(s)
−  s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

−  s ⊨ ¬φ ⇔ s ⊨ φ is false
•  For a path ω = s0(a1,µ1)s1(a2,µ2)s2… in the MDP:

− ω ⊨ X φ ⇔ s1 ⊨ φ
− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1
− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

5 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL semantics for MDPs
•  Semantics of the probabilistic operator P

−  can only define probabilities for a specific adversary σ
−  s ⊨ P~p [ψ] means “the probability, from state s, that ψ is true

for an outgoing path satisfies ~p for all adversaries σ”
−  formally s ⊨ P~p [ψ] ⇔ Probσ(s, ψ) ~ p for all adversaries σ
−  where Probσ(s, ψ) = Prσs { ω ∈ Pathσ(s) | ω ⊨ ψ }

s

¬ψ

ψ Probσ(s, ψ) ~ p

6 DP/Probabilistic Model Checking, Michaelmas 2011

Minimum and maximum probabilities
•  Letting:

−  pmax(s, ψ) = supσ∈Adv Probσ(s, ψ)
−  pmin(s, ψ) = infσ∈Adv Probσ(s, ψ)

•  We have:
−  if ~ ∈ {≥,>}, then s ⊨ P~p [ψ] ⇔ pmin(s, ψ) ~ p
−  if ~ ∈ {<,≤}, then s ⊨ P~p [ψ] ⇔ pmax(s, ψ) ~ p

•  Model checking P~p[ψ] reduces to the computation over all
adversaries of either:
−  the minimum probability of ψ holding
−  the maximum probability of ψ holding

7 DP/Probabilistic Model Checking, Michaelmas 2011

Classes of adversary
•  A more general semantics for PCTL over MDPs

−  parameterise by a class of adversaries Adv*

•  Only change is:
−  s ⊨Adv* P~p [ψ] ⇔ Probσ(s, ψ) ~ p for all adversaries σ ∈ Adv*

•  Original semantics obtained by taking Adv* = Adv

•  Alternatively, take Adv* to be the set of all fair adversaries
−  path fairness: if a state occurs on a path infinitely often, then

each non-deterministic choice occurs infinitely often
−  see e.g. [BK98]

8 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL derived operators
•  Many of the same equivalences as for DTMCs, e.g.:

−  F φ ≡ true U φ (eventually)
−  F≤k φ ≡ true U≤k φ
−  G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ) (always)
−  G≤k φ ≡ ¬(F≤k ¬φ)
−  etc.

•  But… for example:
−  P≥p [ψ] ≢ ¬P<p [ψ] (negation + probability)

•  Duality between min/max:
−  for any path formula ψ: pmin(s, ψ) = 1- pmax(s, ¬ψ)
−  so, for example: P≥p [G φ] ≡ P≤1-p [F ¬φ]

9 DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative properties
•  PCTL can express qualitative properties of MDPs

−  like for DTMCs, can relate these to CTL’s AF and EF operators
−  need to be careful with “there exists” and adversaries

•  P≥1 [F φ] is (similar to but) weaker than AF φ
−  P≥1 [F φ] ⇔ Probσ(s, F φ) ≥ 1 for all adversaries σ
−  recall that “probability≥1” is weaker than “for all”

•  We can construct an equivalence for EF φ
−  EF φ ≢ P>0[F φ]
−  but:
−  EF φ ≡ ¬P≤0[F φ]

⇔ there exists a finite path from s to a φ-state
⇔ Probσ(s, F φ) > 0 for some adversary σ
⇔ not Probσ(s, F φ) ≤ 0 for all adversaries σ
⇔ ¬P≤0 [F φ]

10 DP/Probabilistic Model Checking, Michaelmas 2011

Quantitative properties
•  For PCTL properties with P as the outermost operator

−  PRISM allows a quantitative form
−  for MDPs, there are two types: Pmin=? [ψ] and Pmax=? [ψ]
−  i.e. “what is the minimum/maximum probability (over all

adversaries) that path formula ψ is true?”
−  model checking is no harder since compute the values of pmin

(s, ψ) or pmax(s, ψ) anyway
−  useful to spot patterns/trends

•  Example CSMA/CD protocol
−  “min/max probability

 that a message is sent
 within the deadline”

11 DP/Probabilistic Model Checking, Michaelmas 2011

Some real PCTL examples
•  Byzantine agreement protocol

−  Pmin=? [F (agreement ∧ rounds≤2)]
−  “what is the minimum probability that agreement is reached

within two rounds?”

•  CSMA/CD communication protocol
−  Pmax=? [F collisions=k]
−  “what is the maximum probability of k collisions?”

•  Self-stabilisation protocols
−  Pmin=? [F≤t stable]
−  “what is the minimum probability of reaching a stable state

within k steps?”

12 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL model checking for MDPs
•  Algorithm for PCTL model checking [BdA95]

−  inputs: MDP M=(S,sinit,Steps,L), PCTL formula φ
−  output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

•  Often, also consider quantitative results
−  e.g. compute result of Pmin=? [F≤t stable] for 0≤t≤100

•  Basic algorithm same as PCTL for DTMCs
−  proceeds by induction on parse tree of φ

•  For the non-probabilistic operators:
−  Sat(true) = S
−  Sat(a) = { s ∈ S | a ∈ L(s) }
−  Sat(¬φ) = S \ Sat(φ)
−  Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

13 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL model checking for MDPs
•  Main task: model checking P~p [ψ] formulae

−  reduces to computation of min/max probabilities
−  i.e. pmin(s, ψ) or pmax (s, ψ) for all s ∈ S
−  dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}

•  Three cases:
−  next (X φ)
−  bounded until (φ1 U≤k φ2)
−  unbounded until (φ1 U φ2)

14 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL next for MDPs
•  Computation of probabilities for PCTL next operator
•  Consider case of minimum probabilities…

−  Sat(P~p[X φ]) = { s ∈ S | pmin(s, X φ) ~ p }
−  need to compute pmin(s, X φ) for all s ∈ S

•  Recall in the DTMC case
−  sum outgoing probabilities for  

transitions to φ-states
−  Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

•  For MDPs, perform computation for each distribution
available in s and then take minimum:
−  pmin(s, X φ) = min { Σs’∈Sat(φ) µ(s’) | (a,µ)∈Steps(s) }

•  Maximum probabilities case is analogous

s

φ

15 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL next - Example
•  Model check: P≥0.5 [X heads]

−  lower probability bound so minimum probabilities required
−  Sat (heads)= {s2}
−  e.g. pmin(s1, X heads) = min (0, 0.5) = 0
−  can do all at once with matrix-vector multiplication:

•  Extracting the minimum for each state yields
−  pmin(X heads) = [0, 0, 1, 0]
−  Sat(P≥0.5 [X heads]) = {s2}

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

16 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until for MDPs
•  Computation of probabilities for PCTL U≤k operator
•  Consider case of minimum probabilities…

−  Sat(P~p[φ1 U≤k φ2]) = { s ∈ S | pmin(s, φ1 U≤k φ2) ~ p }
−  need to compute pmin(s, φ1 U≤k φ2) for all s ∈ S

•  First identify (some) states where probability is 1 or 0
−  Syes = Sat(φ2) and Sno = S \ (Sat(φ1) ∪ Sat(φ2))

•  Then solve the recursive equations:  

•  Maximum probabilities case is analogous

17 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until for MDPs
•  Simultaneous computation of vector pmin(φ1 U≤k φ2)

−  i.e. probabilities pmin(s, φ1 U≤k φ2) for all s ∈ S

•  Recursive definition in terms of matrices and vectors
−  similar to DTMC case
−  requires k matrix-vector multiplications
−  in addition requires k minimum operations

18 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until - Example
•  Model check: P<0.95 [F≤3 init] ≡ P<0.95 [true U≤3 init]

−  upper probability bound so maximum probabilities required
−  Sat (true) = S and Sat (init) = {s0}
−  Syes = {s0} and Sno = ∅
−  S? = {s1,s2,s3}

•  The vector of probabilities is 
computed successively as:
−  pmax(true U≤0 init) = [1, 0, 0, 0]
−  pmax(true U≤1 init) = [1, 0.7, 0, 0]
−  pmax(true U≤2 init) = [1, 0.91, 0, 0]
−  pmax(true U≤3 init) = [1, 0.973, 0, 0]

•  Hence, the result is:
−  Sat(P<0.95 [F≤3 init]) = { s2, s3 }

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

19 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for MDPs
•  Computation of probabilities for all s ∈ S:

−  pmin(s, φ1 U φ2) or pmax(s, φ1 U φ2)

•  Essentially the same as computation of reachability
probabilities (see previous lecture)
−  just need to consider additional φ1 constraint

•  Overview:
−  precomputation:

•  identify states where the probability is 0 (or 1)
−  several options to compute remaining values:

•  value iteration
•  reduction to linear programming

20 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for MDPs - Precomputation
•  Determine all states for which probability is 0

−  min case: Sno = { s∈S | pmin(s, φ1 U φ2)=0 } - Prob0E
−  max case: Sno = { s∈S | pmax(s, φ1 U φ2)=0 } - Prob0A

•  Determine all states for which probability is 1
−  min case: Syes = { s∈S | pmin(s, φ1 U φ2)=1 } - Prob1A
−  max case: Syes = { s∈S | pmax(s, φ1 U φ2)=1 } - Prob1E

•  Like for DTMCs:
−  identifying 0 states required (for uniqueness of LP problem)
−  identifying 1 states is optional (but useful optimisation)

•  Advantages of precomputation
−  reduces size of numerical computation problem
−  gives exact results for the states in Syes and Sno (no round-off)
−  suffices for model checking of qualitative properties

not
covered

here

21 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for MDPs - Prob0E
•  Minimum probabilities 0

−  Sno = { s∈S | pmin(s, φ1 U φ2)=0 } = Sat(¬P>0 [φ1 U φ2])

22 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for MDPs - Prob0A
•  Maximum probabilities 0

−  Sno = { s∈S | pmax(s, φ1 U φ2)=0 }

23 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for MDPs - Prob1E
•  Maximum probabilities 1

−  Syes = { s∈S | pmax(s, φ1 U φ2)=1 } = Sat(¬P<1 [φ1 U φ2])
•  Prob1E algorithm (see next slide)

−  two nested loops (double fixed point)
−  result, stored in R, will be Syes; initially R is S
−  iteratively remove (some) states u with pmax(u, φ1 U φ2)<1

•  i.e. remove (some) states for which,  
under no adversary σ, is Probσ(s, φ1 U φ2)=1

−  done by inner loop which computes subset R’ of R
•  R’ contains φ1-states with a probability distribution for which all

transitions stay within R and at least one eventually reaches φ2

−  note: after first iteration, R contains:
•  { s | ProbA(s, φ1 U φ2)>0 for some A }
•  essentially: execution of Prob0A and removal of Sno from R

24 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for MDPs - Prob1E

25 DP/Probabilistic Model Checking, Michaelmas 2011

Prob1E - Example
•  Syes = { s∈S | pmax(s, ¬a U b)=1 }

•  R = { 0, 1, 2, 3, 4 ,5 6 }
−  R’ = {2} ; R’ = {1, 2, 5} ; R’ = {1, 2, 4, 5} ; R’ = {1, 2, 4, 5, 6}

•  R = { 1, 2, 4, 5, 6 }
−  R’ = {2} ; R’ = {1, 2, 5}

•  R = { 1, 2, 5 }
−  R’ = {2} ; R’ = {1, 2, 5}

•  R = { 1, 2, 5 }

•  Syes = { 1, 2, 5 } 4

1 2

5

{b}

0 3

6

{a}

26 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for MDPs - Prob1A
•  Minimum probabilities 1

−  Syes = { s∈S | pmin(s, φ1 U φ2)=1 }

•  Can also be done with a graph-based algorithm

•  Details omitted here

•  For minimum probabilities, just take Syes = Sat(φ2)
−  recall that computing states for which probability=1 is just an

optimisation: it is not required for correctness

27 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for MDPs
•  Min/max probabilities for the remaining states, i.e.  

S? = S \ (Syes ∪ Sno), can be computed using either…

•  1. Value iteration
−  approximate iterative solution method
−  preferable in practice for efficiency reasons

•  2. Reduction to a linear optimisation problem
−  solve with well-known linear programming (LP) techniques

•  Simplex, ellipsoid method, interior point method
−  yields exact solution in finite number of steps

•  NB: Policy iteration also possible but not considered here

28 DP/Probabilistic Model Checking, Michaelmas 2011

Method 1 - Value iteration (min)
•  Minimum probabilities satisfy:

−  pmin(s, φ1 U φ2) = limn→∞ xs
(n) where:

•  Approximate iterative solution:
−  compute vector x(n) for “sufficiently large” n
−  in practice: terminate iterations when some pre-determined

convergence criteria satisfied
−  e.g. maxs | x(n)(s) - x(n-1)(s)) | < ɛ for some tolerance ɛ

29 DP/Probabilistic Model Checking, Michaelmas 2011

Method 1 - Value iteration (max)
•  Similarly, maximum probabilities satisfy:

−  pmax(s, φ1 U φ2) = limn→∞ xs
(n) where:

•  …and can be approximated iteratively

30 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - Example
•  Model check: P>0.5 [F a] ≡ P>0.5 [true U a]

−  lower probability bound so minimum probabilities required

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}
0.4

0.5

0.1

0.25

1

31 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - Example
•  Model check: P>0.5 [F a] ≡ P>0.5 [true U a]

−  lower probability bound so minimum probabilities required

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = Sat(a)

Sno = { s∈S | pmin(s, F a)=0 }

Prob0E

32 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - Example
Compute: pmin(si, F a)
Syes = {s2}, Sno ={s3}, S? = {s0, s1}

 [x0
(n),x1

(n),x2
(n),x3

(n)]
n=0: [0, 0, 1, 0]
n=1: [min(1·0, 0.25·0+0.25·0+0.5·1),
 0.1·0+0.5·0+0.4·1, 1, 0]
 = [0, 0.4, 1, 0]
n=2: [min(1·0.4,0.25·0+0.25·0+0.5·1),
 0.1·0+0.5·0.4+0.4·1, 1, 0]
 =[0.4, 0.6, 1, 0]
n=3: …

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

33 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - Example
 [x0

(n),x1
(n),x2

(n),x3
(n)]

n=0: [0.000000, 0.000000, 1, 0]
n=1: [0.000000, 0.400000, 1, 0]
n=2: [0.400000, 0.600000, 1, 0]
n=3: [0.600000, 0.740000, 1, 0]
n=4: [0.650000, 0.830000, 1, 0]
n=5: [0.662500, 0.880000, 1, 0]
n=6: [0.665625, 0.906250, 1, 0]
n=7: [0.666406, 0.919688, 1, 0]
n=8: [0.666602, 0.926484, 1, 0]
…
n=20: [0.666667, 0.933332, 1, 0]
n=21: [0.666667, 0.933332, 1, 0]
 ≈ [2/3, 14/15, 1, 0]

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

pmin(F a) =
[2/3, 14/15, 1, 0]

Sat(P>0.5 [F a]) = { s0, s1, s2 }

34 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Optimal adversary
•  Like for reachability, can generate an optimal memoryless

adversary using min/max probability values
−  and thus also a DTMC

•  Min adversary σmin [x0
(n),x1

(n),x2
(n),x3

(n)]
…
n=20: [0.666667, 0.933332, 1, 0]
n=21: [0.666667, 0.933332, 1, 0]
 ≈ [2/3, 14/15, 1, 0]

s0 : min(1·14/15, 0.5·1+0.5·0+0.25·2/3)
 =min(14/15, 2/3) s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

35 DP/Probabilistic Model Checking, Michaelmas 2011

Method 2 - Linear optimisation problem
•  Probabilities for states in S? = S \ (Syes ∪ Sno) can also be

obtained from a linear optimisation problem
•  Minimum probabilities:

•  Maximum probabilities:

€

minimize xs subject to the constraints :
s∈S?∑

xs ≥ µ(s')⋅ xs' +
s'∈S?

∑ µ(s')
s'∈Syes

∑

for all s ∈ S? and for all (a,µ) ∈ Steps (s)

€

maximize xs subject to the constraints :
s∈S?∑

xs ≤ µ(s')⋅ xs' +
s'∈S?

∑ µ(s')
s'∈Syes

∑

for all s ∈ S? and for all (a,µ) ∈ Steps (s)

36 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - Example
Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 0.25·x0 + 0.5
●  x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

37 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - Example

x0

x1

0

0

1

1 2/3
x0

x1

0

0

1

1

0.8

x0

x1

0

0

1

1

x1 ≤ 0.2·x0
+ 0.8

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 2/3
●  x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

38 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - Example

x0

x1

0

0

1

1

0.8

2/3

max

Solution:
(x0, x1)

=
(2/3, 14/15)

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 2/3
●  x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

pmin(F a) =
[2/3, 14/15, 1, 0]

Sat(P>0.5 [F a]) =
{ s0, s1, s2 }

39 DP/Probabilistic Model Checking, Michaelmas 2011

Example - Optimal adversary
Get optimal adversary from constraints of
optimisation problem that yield solution

Alternatively, use optimal probability
values in value iteration function, as
shown in value iteration example

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0

x1

0

0

1

1

0.8

2/3

max
Two memoryless

adversaries

x1 = 0.2·x0 + 0.8

x0 = x1

x0 = 2/3

40 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - Example 2
•  Model check: P<0.1 [F a]

−  upper probability bound so maximum probabilities required

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}
0.4

0.5

0.1

0.25

1

41 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - Example 2
•  Model check: P<0.1 [F a]

−  upper probability bound so maximum probabilities required

•  pmax(F a) = [1, 1, 1, 1] and Sat(P<0.1 [F a]) = ∅

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = { s∈S | pmin(s, F a)=1 } = S

Sno = { s∈S | pmin(s, F a)=0 } = ∅

Prob0A

Prob1E

42 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - Example 3
•  Model check: P>0 [F a]

−  lower probability bound so minimum probabilities required
−  qualitative property so numerical computation can be avoided

•  pmin(F a) = [?, ?, ?, 0] and Sat(P>0 [F a]) = {s0,s1,s2}

Sno = { s∈S | pmin(s, F a)=0 }

Prob0E yields Sno = {s3}
s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sno

43 DP/Probabilistic Model Checking, Michaelmas 2011

Costs and rewards
•  We can augment MDPs with rewards (or costs)

−  real-valued quantities assigned to states and/or actions
−  different from the DTMC case where transition rewards

assigned to individual transitions

•  For a MDP (S,sinit,Steps,L), a reward structure is a pair (ρ,ι)
−  ρ : S → ℝ≥0 is the state reward function
−  ι : S × Act → ℝ≥0 is transition reward function

•  As for DTMCs these can be used to compute:
−  elapsed time, power consumption, size of message queue,

number of messages successfully delivered, net profit, …

44 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL and rewards
•  Augment PCTL with rewards based properties

−  allow a wide range of quantitative measures of the system
−  basic notion: expected value of rewards

 φ ::= … | R~r [I=k] | R~r [C≤k] | R~r [F φ]

 where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

•  R~r [·] means “the expected value of · satisfies ~r for all
adversaries”

“reachability”

 expected reward is ~r

“cumulative” “instantaneous”

45 DP/Probabilistic Model Checking, Michaelmas 2011

Types of reward formulas
•  Instantaneous: R~r [I=k]

−  the expected value of the reward at time-step k is ~r for all
adversaries

−  “the minimum expected queue size after exactly 90 seconds”

•  Cumulative: R~r [C≤k]
−  the expected reward cumulated up to time-step k is ~r for all

adversaries
−  “the maximum expected power consumption over one hour”

•  Reachability: R~r [F φ]
−  the expected reward cumulated before reaching a state

satisfying φ is ~r for all adversaries
−  the maximum expected time for the algorithm to terminate

46 DP/Probabilistic Model Checking, Michaelmas 2011

Reward formula semantics
•  Formal semantics of the three reward operators:

−  for a state s in the MDP:
−  s ⊨ R~r [I=k] ⇔ Expσ(s, XI=k) ~ r for all adversaries σ
−  s ⊨ R~r [C≤k] ⇔ Expσ(s, XC≤k) ~ r for all adversaries σ
−  s ⊨ R~r [F Φ] ⇔ Expσ(s, XFΦ) ~ r for all adversaries σ

ExpA(s, X) denotes the expectation of the random variable
X : Pathσ(s) → ℝ≥0 with respect to the probability measure Prσs

47 DP/Probabilistic Model Checking, Michaelmas 2011

Reward formula semantics
•  For an infinite path ω= s0(a0,µ0)s1(a1,µ1)s2…

 where kφ =min{ i | si ⊨ φ }

48 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking reward formulas
•  Instantaneous: R~r [I=k]

−  similar to the computation of bounded until probabilities
−  solution of recursive equations
−  k matrix-vector multiplications (+ min/max)

•  Cumulative: R~r [C≤k]
−  extension of bounded until computation
−  solution of recursive equations
−  k iterations of matrix-vector multiplication + summation

•  Reachability: R~r [F φ]
−  similar to the case for until
−  solve a linear optimization problem (or value iteration)

49 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking complexity
•  For model checking of an MDP (S,sinit,Steps,L) and PCTL

formula φ (including reward operators)
−  complexity is linear in |Φ| and polynomial in |S|

•  Size |φ| of φ is defined as number of logical connectives
and temporal operators plus sizes of temporal operators
−  model checking is performed for each operator

•  Worst-case operators are P~p [φ1 U φ2] and R~r [F φ]
−  main task: solution of linear optimization problem of size |S|
−  can be solved with ellipsoid method (polynomial in |S|)
−  and also precomputation algorithms (max |S| steps)

50 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  PCTL for MDPs

−  same as syntax as for PCTL
−  key difference in semantics: “for all adversaries”
−  requires computation of minimum/maximum probabilities

•  PCTL model checking for MDPs
−  same basic algorithm as for DTMCs
−  next: matrix-vector multiplication + min/max
−  bounded until: k matrix-vector multiplications + min/max
−  until : precomputation algorithms + numerical computation

•  precomputation: Prob0A and Prob1E for max, Prob0E for min
•  numerical computation: value iteration, linear optimisation

−  complexity linear in |Φ| and polynomial in |S|
•  Costs and rewards

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  LTL - Linear temporal logic

•  Repeated reachability and persistence

•  Long-run properties of DTMCs
−  bottom strongly connected components (BSCCs)

•  Long-run properties of MDPs
−  end components (E.C.s)

3 DP/Probabilistic Model Checking, Michaelmas 2011

Limitations of PCTL
•  PCTL, although useful in practice, has limited expressivity

−  essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

•  More expressive logics can be used, for example:
−  LTL [Pnu77] - the non-probabilistic linear-time temporal logic
−  PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
−  both allow path operators to be combined

•  In PCTL, temporal operators always appear inside P~p […]
−  (and, in CTL, they always appear inside A or E)
−  in LTL (and PCTL*), temporal operators can be combined

4 DP/Probabilistic Model Checking, Michaelmas 2011

Review - CTL and PCTL
•  CTL:

−  φ ::= true | a | φ ∧ φ | ¬φ | A ψ | E ψ

−  ψ ::= X φ | φ U φ

•  PCTL
−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ]
−  ψ ::= X φ | φ U≤k φ | φ U φ

•  Notation for paths: ω = s0s1s2…
−  Path(s) = set of all (infinite) paths with s0 = s
− ω(i) denotes the (i+1)th state, i.e. ω(i) = si

− ω[i…] is the suffix starting from si, i.e. ω[i…] = sisi+1si+2…

5 DP/Probabilistic Model Checking, Michaelmas 2011

LTL - Linear temporal logic
•  LTL syntax

−  path formulae only

−  ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
−  where a ∈ AP is an atomic proposition

•  LTL semantics (for a path ω)
− ω ⊨ true always
− ω ⊨ a ⇔ a ∈ L(ω(0))
− ω ⊨ ψ1 ∧ ψ2 ⇔ ω ⊨ ψ1 and ω ⊨ ψ2

− ω ⊨ ¬ψ ⇔ ω ⊭ ψ
− ω ⊨ X ψ ⇔ ω[1…] ⊨ ψ
− ω ⊨ ψ1 U ψ2 ⇔ ∃k≥0 s.t. ω[k…] ⊨ ψ2 and  

 ∀i<k ω[i…] ⊨ ψ1

6 DP/Probabilistic Model Checking, Michaelmas 2011

LTL - Linear temporal logic
•  Derived operators like CTL, for example:

−  F ψ ≡ true U ψ
−  G ψ ≡ ¬F(¬ψ)

•  LTL semantics (non-probabilistic)
−  implicit universal quantification over paths
−  i.e. for an LTS M = (S,sinit,→,L) and LTL formula ψ
−  s ⊨ ψ iff ω ⊨ ψ for all paths ω ∈ Path(s)
−  M ⊨ ψ iff sinit ⊨ ψ

•  e.g:
−  A F (req ∧ X ack)
−  “it is always possible that a request, followed immediately by

an acknowledgement, can occur”

7 DP/Probabilistic Model Checking, Michaelmas 2011

More LTL examples
•  (F tmp_fail1) ∧ (F tmp_fail2)

−  “both servers suffer temporary failures at some point”

•  GF ready
−  “the server always eventually returns to a ready-state”

•  G (req → F ack)
−  “requests are always followed by an acknowledgement”

•  FG stable
−  “the system reaches and stays in a ‘stable’ state”

8 DP/Probabilistic Model Checking, Michaelmas 2011

Branching vs. Linear time

•  LTL but not CTL:
−  FG stable
−  “the system reaches and stays in a ‘stable’ state”
−  e.g. A FG stable ≢ AF AG stable

•  CTL but not LTL:
−  AG EF init
−  e.g. “for every computation, it is always possible to return to

the initial state”

9 DP/Probabilistic Model Checking, Michaelmas 2011

LTL + probabilities
•  Same idea as PCTL: probabilities of sets of path formulae

−  for a state s of a DTMC and an LTL formula ψ:
−  Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }
−  all such path sets are measurable (see later lecture)

•  For MDPs, we can again consider lower/upper bounds
−  pmin(s, ψ) = infσ∈Adv Probσ(s, ψ)
−  pmax(s, ψ) = supσ∈Adv Probσ(s, ψ)
−  (for LTL formula ψ)

•  For DTMCs or MDPs, an LTL specification often comprises 
an LTL (path) formula and a probability bound
−  e.g. P>0.99 [F (req ∧ X ack)]

10 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL*
•  PCTL* subsumes both (probabilistic) LTL and PCTL

•  State formulae:
−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ]
−  where a ∈ AP, ~ ∈ {<,>,≤,≥}, p ∈ [0,1] and ψ a path formula

•  Path formulae:
−  ψ ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
−  where φ is a state formula

•  A PCTL* formula is a state formula φ
−  e.g. P>0.99 [GF crit1] ∧ P>0.99 [GF crit2]
−  e.g. P≥0.75 [GF P>0 [F init]

11 DP/Probabilistic Model Checking, Michaelmas 2011

Fundamental property of DTMCs
•  Strongly connected component (SCC)

−  maximally strongly connected set of states
•  Bottom strongly connected component (BSCC)

−  SCC T from which no state outside T is reachable from T

•  With probability 1,  
a BSCC will be reached  
and all of its states 
visited infinitely often

•  Formally:
−  Prs { ω ∈ Path(s) | ∃ i≥0, ∃ BSCC T such that 

 ∀ j≥i ω(i) ∈ T and  
 ∀ s’∈T ω(k) = s' for infinitely many k } = 1

s0

0.25 1

s1 s2

s3 s4 s5

1

1 1

0.25

0.5

0.5

0.5

12 DP/Probabilistic Model Checking, Michaelmas 2011

Repeated reachability - DTMCs
•  Repeated reachability:

−  “always eventually…” or “infinitely often…”

•  e.g. “what is the probability that the protocol successfully
sends a message infinitely often?”

•  Using LTL notation:
− ω ⊨ GF a
 ⇔
− ∀ i≥0 . ∃ j≥i . ω(j) ∈ Sat(a)

•  Prob(s, GF a)
 = Prs { ω ∈ Path(s) | ∀ i≥0 . ∃ j≥i . ω(j) ∈ Sat(a) }

13 DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative repeated reachability
•  Prs { ω ∈ Path(s) | ∀ i≥0 . ∃ j≥i . ω(j) ∈ Sat(a) } = 1
•  P≥1 [GF a]

 if and only if  

•  T ∩ Sat(a) ≠ ∅ for all BSCCs T reachable from s

s0

0.25 1

s1 s2

s3 s4 s5

1

1 1

0.25 0.5

0.5

0.5

Examples:

s0 ⊨ P≥1 [GF (b∨c)]
s0 ⊭ P≥1 [GF b]
s2 ⊨ P≥1 [GF c]

PCTL*

{b} {b}
{c}

14 DP/Probabilistic Model Checking, Michaelmas 2011

Quantitative repeated reachability
•  Prob(s, GF a) = Prob(s, F TGFa)

−  where TGFa = union of all BSCCs T with T ∩ Sat(a) ≠ ∅

•  From the above, we also have:
−  P>0 [GF a] ⇔ T ∩ Sat(a) ≠ ∅ for some reachable BSCC T

Example:

Prob(s0, GF b)
= Prob(s0, F TGFb)
= Prob(s0, F (T1∪T2))
= Prob(s0, F {s3,s4})
= 2/3 + 1/6 = 5/6

s0

0.25 1

s1 s2

s3 s4 s5

1

1 1

0.25 0.5

0.5

0.5

{b} {b}
{c}

T1

T2

T3

15 DP/Probabilistic Model Checking, Michaelmas 2011

Persistence - DTMCs
•  Persistence properties: “eventually always…”

−  e.g. “what is the probability of the leader election algorithm
reaching, and staying in, a stable state?”

−  e.g. “what is the probability that an irrecoverable error
occurs?”

•  Using LTL notation:
− ω ⊨ FG a
 ⇔
−  ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a)

•  Prob(s, FG a)
 = Prs { ω ∈ Path(s) | ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a) }

16 DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative persistence
•  Prs { ω ∈ Path(s) | ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a) } = 1
•  P≥1 [FG a]

 if and only if  

•  T ⊆ Sat(a) for all BSCCs T reachable from s

s0

0.25 1

s1 s2

s3 s4 s5

1

1 1

0.25 0.5

0.5

0.5

Examples:

s0 ⊭ P≥1 [FG (b∨c)]
s0 ⊨ P≥1 [FG (b∨c∨d)]

s2 ⊨ P≥1 [FG (c∨d)]
{b} {b}

{c}

{d}

17 DP/Probabilistic Model Checking, Michaelmas 2011

Quantitative persistence
•  Prob(s, FG a) = Prob(s, F TFGa)

−  where TFGa = union of all BSCCs T with T⊆Sat(a)

Example:

Prob(s0, FG (b∨c))
= Prob(s0, F TFG(b∨c))
= Prob(s0, F (T1∪T2))
= Prob(s0, F {s3,s4})
= 2/3 + 1/6 = 5/6

s0

0.25 1

s1 s2

s3 s4 s5

1

1 1

0.25 0.5

0.5

0.5

{b} {b}
{c}

T1

T2

T3

{d}

18 DP/Probabilistic Model Checking, Michaelmas 2011

Success sets
•  The sets TP for property P are called success sets

−  TGFa = union of all BSCCs T with T ∩ Sat(a) ≠ ∅
−  TFGa = union of all BSCCs T with T ⊆ Sat(a)

•  Sometimes denoted UP
−  e.g. UGFa

−  we use Tp here (to avoid confusion with the until operator)

19 DP/Probabilistic Model Checking, Michaelmas 2011

Repeated reachability + persistence
•  Repeated reachability and persistence are dual properties

−  GF a ≡ ¬(FG ¬a)
−  FG a ≡ ¬(GF ¬a)

•  Hence, for example:
−  Prob(s, GF a) = 1 - Prob(s, FG ¬a)

•  Can show this through LTL equivalences, or…

•  Prob(s, GF a) + Prob(s, FG ¬a)
 = Prob(s, F TGFa) + Prob(s, F TFG¬a)

−  TGFa = union of BSCCs T with T∩Sat(a)≠∅ (T intersects Sat(a))
−  TFG¬a = union of BSCCs T with T⊆(S\Sat(a)) (no intersection)

 = Prob(s, F (TGFa ∪ TFG¬a)) = 1 (fundamental DTMC property)

20 DP/Probabilistic Model Checking, Michaelmas 2011

End components of MDPs
•  Consider an MDP M = (S,sinit,Steps,L)

•  A sub-MDP of M is a pair (T,Steps’) where:
−  T ⊆ S is a (non-empty) subset of M’s states
−  Steps’(s) ⊆ Steps(s) for each s ∈ T
−  (T,Steps’) is closed under probabilistic  

branching, i.e. the set of states 
{ s’ | µ(s’)>0 for some (a,µ)∈Steps’(s) }  
is a subset of T

•  An end component of M is a  
strongly connected sub-MDP

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1

Note:
●  action labels omitted
●  probabilities omitted where =1

21 DP/Probabilistic Model Checking, Michaelmas 2011

End components - Examples
•  Sub-MDPs

−  can be formed from state sets such as:
−  {s2,s5,s7,s8}, {s0,s2,s5,s7,s8}, {s5,s7,s8},
−  {s1,s3,s4}, {s1,s3,s4,s6}, {s3,s4}, …

•  End components
−  can be formed from state sets:
−  {s3,s4}, {s1,s3,s4}, {s6}, {s5,s7,s8}

•  Note that
−  state sets do not necessarily  

uniquely identify end components
−  e.g. {s1,s3,s4}

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1

22 DP/Probabilistic Model Checking, Michaelmas 2011

End components of MDPs
•  For finite MDPs…

−  (analogue of fundamental property  
of finite DTMCs)

•  For every end component, there  
is an adversary which, with 
probability 1, forces the MDP 
to remain in the end component,  
and visit all its states infinitely often

•  Under every adversary σ,  
with probability 1 an end component 
will be reached and all of its states 
visited infinitely often 

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1

23 DP/Probabilistic Model Checking, Michaelmas 2011

Repeated reachability - MDPs (max)
•  Repeated reachability (GF) for MDPs

−  consider first the case of maximum probabilities…
−  pmax(s, GF a)

•  First, a simple qualitative property:
−  Probσ(s, GF a) > 0 for some adversary σ, i.e. pmax(s, GF a) > 0
 ⇔
−  T ∩ Sat(a) ≠ ∅ for some end component T reachable from s

•  The quantitative case (for maximum probabilities):
−  pmax(s, GF a) = pmax(s, F TGFa)
−  where TGFa is the union of sets T for all end components

(T,Steps’) with T ∩ Sat(a) ≠ ∅ (i.e. at least one a-state in T)

24 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  Check: P<0.8 [GF b] for s0

•  Compute pmax(GF b)
−  pmax(GF b) = pmax(s, F TGFb)
−  TGFb is the union of sets T  

for all end components 
with T ∩ Sat(b) ≠ ∅

−  Sat(b) = { s4, s6 }
−  TGFb = T1∪T2∪T3 = { s1, s3 s4, s6 }
−  pmax(s, F TGFb) = 0.75
−  pmax(GF b) = 0.75

•  Result: s0 ⊨ P<0.8 [GF b]

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1
T1

T2

T3

T4

{b}

{b}

25 DP/Probabilistic Model Checking, Michaelmas 2011

Repeated reachability - MDPs (max)
•  Quantitative case:

−  pmax(s, GF a) = pmax(s, F TGFa)
•  This yields the qualitative property given earlier:

−  Probσ(s, GF a) > 0 for some adversary σ
 ⇔ pmax(s, GF a) > 0
 ⇔ pmax(s, F TGFa) > 0
 ⇔ Probσ(s, F TGFa) > 0 for some adversary σ
 ⇔ s ⊨ EF TGFa

 ⇔ T ∩ Sat(a) ≠ ∅ for some E.C. T reachable from s

•  Another qualitative property:
−  Probσ(s, GF a) = 1 for some adversary σ
 ⇔ pmax(s, GF a) = 1
 ⇔ pmax(s, F TGFa) = 1

Compute with 
Prob1E

26 DP/Probabilistic Model Checking, Michaelmas 2011

Repeated reachability - MDPs (min)
•  Repeated reachability for MDPs - minimum probabilities

−  pmin(s, GF a)

•  First, a useful qualitative property:  

−  Probσ(s, GF a) = 1 for all adversaries σ
 ⇔
−  s ⊨ P≥1 [GF a]
 ⇔
−  T ∩ Sat(a) ≠ ∅ for all end components T reachable from s

PCTL*

27 DP/Probabilistic Model Checking, Michaelmas 2011

Examples

•  s0 ⊨ P≥1 [GF (b∨c∨d)] ?

•  s0 ⊨ P≥1 [GF (b∨d)] ?

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1
T1

T2

T3

T4

{b}

{c}

{b}

{d}

28 DP/Probabilistic Model Checking, Michaelmas 2011

Repeated reachability - MDPs (min)
•  Repeated reachability for MDPs - minimum probabilities

−  pmin(s, GF a)

•  Quantitative case
−  use duality of min/max probabilities for MDPs
−  pmin(s, ψ) = 1- pmax(s, ¬ψ)
−  e.g. pmin(s, GF a) = 1- pmax(s, FG¬a)

•  So min probabilities for repeated reachability (GF)
−  can be computed as max probabilities for persistence (FG)

29 DP/Probabilistic Model Checking, Michaelmas 2011

Persistence - MDPs
•  Persistence for MDPs

−  pmin(s, FG a) or pmax(s, FG a)

•  Quantitative case - maximum probabilities
−  pmax(s, FG a) = pmax(s, F TFGa)
−  where TFGa is the union of sets T for all end components

(T,Steps’) with T ⊆ Sat(a) (i.e. all states in T satisfy a)

30 DP/Probabilistic Model Checking, Michaelmas 2011

Repeated reachability (again)
•  We now have way a of computing minimum probabilities

for repeated reachability (GF)
−  pmin(s, GF a) = 1 - pmax(s, FG¬a)
 = 1 - pmax(s, F TFG¬a)
−  where TFG¬a is the union of sets T for all end components

(T,Steps’) with T ⊆ S\Sat(a)
−  ie. TFG¬a is the union of sets T for all end components

(T,Steps’) with T ∩ Sat(a) = ∅

•  Can also now show why:
−  s ⊨ P≥1 [GF a]
 ⇔
−  T ∩ Sat(a) ≠ ∅ for all end components T reachable from s

Opposite of 
condition for GFa

31 DP/Probabilistic Model Checking, Michaelmas 2011

Examples

•  s0 ⊨ P>0 [GF d] ?

•  s0 ⊨ P>0.3 [GF d] ?

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1
T1

T2

T3

T4

{b}

{c}

{b}

{d}

32 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up… I
•  LTL: path-based, path operators can be combined
•  PCTL*: subsumes PCTL and LTL

non-probabilistic
(LTSs)

probabilistic
(DTMCs, MDPs)

CTL

LTL

PCTL

LTL + prob.

PCTL*

Φ

ψ

Φ

Prob(s, ψ)

Φ

33 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up… II
•  2 useful instances of LTL formulae:

−  repeated reachability: GF a
−  persistence: FG a

•  DTMCs
−  qualitative: properties of reachable BSCCs
−  quantitative: probability of reaching success set (BSCC set)

•  MDPs
−  end components: MDP analogue of BSCCs
−  pmax(s, GF a) - max. reachability of success set (T∩Sat(a)≠∅)
−  P≥1 [GF a] - reachability of end components
−  pmin(s, GF a) - one minus max. prob. for dual property
−  pmax(s, FG a) - max. reachability of success set (T ⊆ Sat(a))
−  pmin(s, FG a) – again, via dual property

Lecture 16  
Automata-based properties

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Property specifications
•  1. Reachability properties, e.g. in PCTL

−  F a or F≤t a (reachability)
−  a U b or a U≤t b (until - constrained reachability)
−  G a (invariance) (dual of reachability)
−  probability computation: graph analysis + solution of linear

equation system (or linear optimisation problem)  

•  2. Long-run properties, e.g. in LTL
−  GF a (repeated reachability)
−  FG a (persistence)
−  probability computation: BSCCs + probabilistic reachability

•  This lecture: more expressive class for type 1

3 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Nondeterministic finite automata (NFA)

•  Regular expressions and regular languages

•  Deterministic finite automata (DFA)

•  Regular safety properties

•  DFAs and DTMCs

4 DP/Probabilistic Model Checking, Michaelmas 2011

Some notation
•  Let Σ be a finite alphabet

•  A (finite or infinite) word w over Σ is
−  a sequence of α1α2… where αi ∈ Σ for all i

•  A prefix w’ of word w = α1α2… is
−  a finite word β1 β2… βn with βi=αi for all 1≤i≤n

•  Σ* denotes the set of finite words over Σ

•  Σω denotes the set of infinite words over Σ

5 DP/Probabilistic Model Checking, Michaelmas 2011

Finite automata
•  A nondeterministic finite automaton (NFA) is…

−  a tuple A = (Q, Σ, δ, Q0, F) where:

−  Q is a finite set of states
−  Σ is an alphabet
−  δ : Q × Σ → 2Q is a transition function
−  Q0 ⊆ Q is a set of initial states
−  F ⊆ Q is a set of “accept” states

q0

α

q1 q2

β

β
β

α

6 DP/Probabilistic Model Checking, Michaelmas 2011

Language of an NFA
•  Consider an NFA A = (Q, Σ, δ, Q0, F)

•  A run of A on a finite word w=α1α2…αn is:
−  a sequence of automata states q0q1…qn such that:
−  q0 ∈ Q0 and qi+1 ∈ δ(qi, αi+1) for all 0≤i<n

•  An accepting run is a run with qn ∈ F

•  Word w is accepted by A iff:
−  there exists an accepting run of A on w

•  The language of A, denoted L(A) is:
−  the set of all words accepted by A

•  Automata A and A’ are equivalent if L(A)=L(A’)

7 DP/Probabilistic Model Checking, Michaelmas 2011

Example - NFA

q0

α

q1 q2

β

β
β

α

8 DP/Probabilistic Model Checking, Michaelmas 2011

Regular expressions
•  Regular expressions E over a finite alphabet Σ

−  are given by the following grammar:
−  E ::= ∅ | ɛ | α | E + E | E.E | E*
−  where α ∈ Σ

•  Language L(E) ⊆ Σ* of a regular expression:
−  L(∅) = ∅ (empty language)
−  L(ɛ) = { ɛ } (empty word)
−  L(α) = { α } (symbol)
−  L(E1 + E2) = L(E1) ∪ L(E2) (union)
−  L(E1.E2) = { w1.w2 | w1∈L(E1) and w2∈L(E2) } (concatenation)
−  L(E*) = { wi | w∈L(E) and i∈ℕ } (finite repetition)

9 DP/Probabilistic Model Checking, Michaelmas 2011

Regular languages
•  A set of finite words L is a regular language… 

−  iff L = L(E) for some regular expression E 

−  iff L = L(A) for some finite automaton A

q0

α

q1 q2

β

β
β

α (α+β)*β(α+β)

(i.e. penultimate symbol is β)

10 DP/Probabilistic Model Checking, Michaelmas 2011

Operations on NFA
•  Can construct NFA from regular expression inductively

−  includes addition (and then removal) of ɛ-transitions

•  Can construct the intersection of two NFA
−  build (synchronised) product automaton
−  cross product of A1 ⊗ A2 accepts L(A1) ∩ L(A2)

α

ε

ε ε

ε ε ε

ε

ε

11 DP/Probabilistic Model Checking, Michaelmas 2011

Deterministic finite automata
•  A finite automaton is deterministic if:

−  |Q0|=1
−  |δ(q, α)| ≤ 1 for all q ∈ Q and α ∈ Σ
−  i.e. one initial state and no nondeterministic successors

•  A deterministic finite automaton (DFA) is total if:
−  |δ(q, α)| = 1 for all q ∈ Q and α ∈ Σ
−  i.e. unique successor states

•  A total DFA
−  can always be constructed from a DFA
−  has a unique run for any word w ∈ Σ*

12 DP/Probabilistic Model Checking, Michaelmas 2011

Determinisation: NFA → DFA
•  Determinisation of an NFA A = (Q, Σ, δ, Q0, F)

−  i.e. removal of choice in each automata state

•  Equivalent DFA is Adet = (2Q, Σ, δdet, q0, Fdet) where:

−  δdet(Q’, α) =

−  Fdet = { Q’ ⊆ Q | Q’ ∩ F ≠ ∅ }

•  Note exponential blow-up in size…

 'Qq
)α,q(δ

∈

13 DP/Probabilistic Model Checking, Michaelmas 2011

Example

q0

α

q1 q2

β

β
β

α NFA A
regexp:  

(α+β)*β(α+β)

14 DP/Probabilistic Model Checking, Michaelmas 2011

Example

q0

α

q1 q2

β

β
β

α

{q0}

α

{q0,q1}
β

β α

{q0,q2} {q0,q1,q2}

β

α
β

α

DFA Adet

NFA A
regexp:  

(α+β)*β(α+β)

15 DP/Probabilistic Model Checking, Michaelmas 2011

Other properties of NFA/DFA
•  NFA/DFA have the same expressive power

−  but NFA can be more efficient (up to exponentially smaller)

•  NFA/DFA are closed under complementation
−  build total DFA, swap accept/non-accept states

•  For any regular language L, there is a unique minimal DFA
that accepts L (up to isomorphism)
−  efficient algorithm to minimise DFA into equivalent DFA
−  partition refinement algorithm (like for bisimulation)

•  Language emptiness of an NFA reduces to reachability
−  L(A) ≠ ∅ iff can reach a state in F from an initial state in Q0

16 DP/Probabilistic Model Checking, Michaelmas 2011

Languages as properties
•  Consider a model, i.e. an LTS/DTMC/MDP/…

−  e.g. DTMC D = (S, sinit, P, Lab)
−  where labelling Lab uses atomic propositions from set AP
−  let ω ∈ Path(s) be some infinite path

•  Temporal logic properties
−  for some temporal logic (path) formula ψ, does ω ⊨ ψ ?

•  Traces and languages
−  trace(ω) ∈ (2AP)ω denotes the projection of state labels of ω
−  i.e. trace(s0s1s2s3…) = Lab(s0)Lab(s1)Lab(s2)Lab(s3)…
−  for some language L ⊆ (2AP)ω, is trace(ω) ∈ L ?

17 DP/Probabilistic Model Checking, Michaelmas 2011

Example

•  Atomic propositions
−  AP = { fail, try }
−  2AP = { ∅, {fail}, {try}, {fail,try} }

•  Paths and traces
−  e.g. ω = s0s1s1s2s0s1s2s0s1s3s3s3…
−  trace(ω) = ∅ {try} {try} {fail} ∅ {try} {fail} ∅ {try} ∅ ∅ ∅ …

•  Languages
−  e.g. “no failures”
−  L = { α1α2… ∈ (2AP)ω | αi is ∅ or {try} for all i }

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{try}

18 DP/Probabilistic Model Checking, Michaelmas 2011

Regular safety properties
•  A safety property P is a language over 2AP such that

−  for any word w that violates P (i.e. is not in the language),  
w has a prefix w’, all extensions of which, also violate P

•  A regular safety property is
−  safety property for which the set of “bad prefixes” (finite

violations) forms a regular language

•  Formally…
−  P ⊆ (2AP)ω is a safety property if:

•  ∀ w ∈ ((2AP)ω\P) . ∃ finite prefix w’ of w such that:
•  P ∩ { w’’∈ (2AP)ω | w’ is a prefix of w’’ } = ∅

−  P is a regular safety property if:
•  { w’ ∈ (2AP)* | ∀ w’’ ∈ (2AP)ω . w’.w’’ ∉ P } is regular

19 DP/Probabilistic Model Checking, Michaelmas 2011

Regular safety properties
•  A safety property P is a language over 2AP such that

−  for any word w that violates P (i.e. is not in the language),  
w has a prefix w’, all extensions of which, also violate P

•  A regular safety property is
−  safety property for which the set of “bad prefixes” (finite

violations) forms a regular language

•  Examples:
−  “at least one traffic light is always on”
−  “two traffic lights are never on simultaneously”
−  “a red light is always preceded immediately by an amber light”

20 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  Regular safety property:

−  “at most 2 failures occur”
−  language over:
 2AP = { ∅, {fail}, {try}, {fail,try} } s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{try}

21 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  Regular safety property:

−  “at most 2 failures occur”
−  language over:
 2AP = { ∅, {fail}, {try}, {fail,try} }

•  Bad prefixes (regexp):
(¬fail)*.fail.(¬fail)*.fail.(¬fail)*.fail

•  Bad prefixes (DFA):

q0 q1 q3
fail

¬fail

q2
fail

¬fail

fail

¬fail

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{try}

fail denotes:
{fail}, {fail,try}
¬fail denotes:

∅, {try}

fail denotes:
({fail} + {fail,try})
¬fail denotes:

(∅ + {try})

22 DP/Probabilistic Model Checking, Michaelmas 2011

Regular safety properties + DTMCs
•  Consider a DTMC D (with atomic propositions from AP)  

and a regular safety property P ⊆ (2AP)ω

•  Let ProbD(s, P) denote the probability of P being satisfied
−  i.e. ProbD(s, P) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ P }
−  where PrD

s is the probability measure over Path(s) for D
−  this set is always measurable (see later)

•  Example (safety) specifications
−  “the probability that at most 2 failures occur is ≥0.999”
−  “what is the probability that at most 2 failures occur?”

•  How to compute ProbD(s, P) ?

23 DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC
•  We construct the product of

−  a DTMC D = (S, sinit, P, L)
−  and a (total) DFA A = (Q, Σ, δ, q0, F)
−  intuitively: records state of A for path fragments of D

•  The product DTMC D ⊗ A is:
−  the DTMC (S×Q, (sinit,qinit), P’, L’) where:

−  qinit = δ(q0,L(sinit))

− 

−  L’(s,q) = { accept } if q ∈ F and L’(s,q) = ∅ otherwise

€

P'((s1,q1),(s2,q2)) =
P(s1,s2) if q2 = δ(q1,L(s2))

0 otherwise

$
%

& %

24 DP/Probabilistic Model Checking, Michaelmas 2011

Example

q0 q1 q3
fail

¬fail

q2
fail

¬fail

fail

¬fail

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{try}

DTMC D DFA A

fail denotes:
{fail}, {fail,try}
¬fail denotes:

∅, {try}

25 DP/Probabilistic Model Checking, Michaelmas 2011

Example

s0q0

0.01

0.98

0.01

1

1

{accept}

s1q0

s2q1

s3q0

s0q1

0.01

0.98

0.01

1

1

s1q1

s2q2

s3q1

s0q2

0.01

0.98

0.01

1

1

s1q2

s2q3

s3q2

1

Product DTMC D ⊗ A
states beyond “accept”

state unimportant

s0,δ(q0,L(s0))

26 DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC
•  One interpretation of D ⊗ A:

−  unfolding of D where q for each state (s,q) records state of
automata A for path fragment so far

•  In fact, since A is deterministic…
−  for any ω ∈ Path(s) of the DTMC D:

•  there is a unique run in A for trace(ω)
•  and a corresponding (unique) path through D ⊗ A

−  for any path ω’ ∈ PathD⊗A(s,qinit) where qinit = δ(q0,L(s))
•  there is a corresponding path in D and a run in A

•  DFA has no effect on probabilities
−  i.e. probabilities preserved in product DTMC

27 DP/Probabilistic Model Checking, Michaelmas 2011

Regular safety properties + DTMCs
•  Regular safety property P ⊆ (2AP)ω

−  “bad prefixes” (finite violations) represented by DFA A

•  Probability of P being satisfied in state s of D
−  ProbD(s, P) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ P }
 = 1 - PrD

s{ ω ∈ Path(s) | trace(ω) ∉ P }
 = 1 - PrD

s{ ω ∈ Path(s) | pref(trace(ω)) ∩ L(A) ≠ ∅ }
−  where pref(w) = set of all finite prefixes of infinite word w

−  where qs = δ(q0,L(s))

ProbD(s, P) = 1 - ProbD⊗A((s,qs), F accept)

28 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  ProbD(s0, “at most 2 failures occur”)
 = 1 - ProbD⊗A((s0,q0), F accept)
 = 1 - (1/99)3
 ≈ 0.9999989694

s0q0

0.01

0.98

0.01

1

1

{accept}

s1q0

s2q1

s3q0

s0q1

0.01

0.98

0.01

1

1

s1q1

s2q2

s3q1

s0q2

0.01

0.98

0.01

1

1

s1q2

s2q3

s3q2

1

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{try}
D

D⊗A

29 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Nondeterministic finite automata (NFA)

−  can represent any regular language, regular expression
−  closed under complementation, intersection, …
−  (non-)emptiness reduces to reachability

•  Deterministic finite automata (DFA)
−  can be constructed from NFA through determinisation
−  equally expressive as NFA, but may be larger

•  Regular safety properties
−  language representing set of possible traces
−  bad (violating) prefixes form a regular language

•  Probability of a regular safety property on a DTMC
−  construct product DTMC
−  reduces to probabilistic reachability

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Long-run properties
•  Last lecture: regular safety properties

−  e.g. “a message failure never occurs”
−  e.g. “an alarm is only ever triggered by an error”
−  bad prefixes represented by a regular language
−  property always refuted by a finite trace/path

•  Liveness properties
−  e.g. "for every request, an acknowledge eventually follows”
−  no finite prefix refutes the property
−  any finite prefix can be extended to a satisfying trace

•  Fairness assumptions
−  e.g. “every process that is enabled infinitely often is scheduled

infinitely often”
•  Need properties of infinite paths

3 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  ω-regular expressions and ω-regular languages

•  Nondeterministic Büchi automata (NBA)

•  Deterministic Büchi automata (DBA)

•  Deterministic Rabin automata (DRA)

•  Deterministic ω-automata and DTMCs

4 DP/Probabilistic Model Checking, Michaelmas 2011

ω-regular expressions
•  Regular expressions E over alphabet Σ are given by:

−  E ::= ∅ | ɛ | α | E + E | E.E | E* (where α ∈ Σ)

•  An ω-regular expression takes the form:
−  G = E1.(F1)ω + E2.(F2)ω + … + En.(Fn)ω

−  where Ei and Fi are regular expressions with ɛ ∉ L(Fi)

•  The language L(G) ⊆ Σω of an ω-regular expression G
−  is L(E1).L(F1)ω ∪ L(E2).L(F2)ω + … + L(En).L(Fn)ω

−  where L(E) is the language of regular expression E
−  and L(E)ω = { wω | w∈L(E) }

•  Example: (α+β+γ)*(β+γ)ω for Σ = { α, β, γ }

5 DP/Probabilistic Model Checking, Michaelmas 2011

ω-regular languages/properties
•  A language L ⊆ Σω over alphabet Σ is an ω-regular

language if and only if:
−  L = L(G) for some ω-regular expression G

•  ω-regular languages are:
−  closed under intersection
−  closed under complementation

•  P ⊆ (2AP)ω is an ω-regular property
−  if P is an ω-regular language over 2AP

−  (where AP is the set of atomic propositions for some model)
−  path ω satisfies P if trace(ω) ∈ P
−  NB: any regular safety property is an ω-regular property

6 DP/Probabilistic Model Checking, Michaelmas 2011

Examples
•  A message is sent successfully infinitely often

−  ((¬succ)*.succ)ω

•  Every time the process tries to send a message, it
eventually succeeds in sending it
−  ((¬try)* + try.(¬succ)*.succ)ω

s1 s0

s2

s3

0.01
0.98

0.01

0.5

1

1

{fail}

{succ}

{try}

0.5

7 DP/Probabilistic Model Checking, Michaelmas 2011

Büchi automata
•  A nondeterministic Büchi automaton (NBA) is…

−  a tuple A = (Q, Σ, δ, Q0, F) where:

−  Q is a finite set of states
−  Σ is an alphabet
−  δ : Q × Σ → 2Q is a transition function
−  Q0 ⊆ Q is a set of initial states
−  F ⊆ Q is a set of “accept” states

−  i.e. just like a nondeterministic finite automaton (NFA)

•  The difference is the accepting condition…

8 DP/Probabilistic Model Checking, Michaelmas 2011

Language of an NBA
•  Consider a Büchi automaton A = (Q, Σ, δ, Q0, F)

•  A run of A on an infinite word α1α2… is:
−  an infinite sequence of automata states q0q1… such that:
−  q0 ∈ Q0 and qi+1 ∈ δ(qi, αi+1) for all i≥0

•  An accepting run is a run with qi ∈ F for infinitely many i

•  The language L(A) of A is the set of all infinite words on
which there exists an accepting run of A

9 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  Infinitely often a

q0 q1
¬a

a
a

¬a

10 DP/Probabilistic Model Checking, Michaelmas 2011

Example…
•  As in the last lecture, we use automata to represent

languages of the form L ⊆ (2AP)ω

•  So, if AP = {a,b}, then:

•  …is actually:

q0 q1
¬a

a
a

¬a

q0 q1

∅, {b}

{a}, {a,b}
{a},
{a,b}

∅, {b}

11 DP/Probabilistic Model Checking, Michaelmas 2011

Properties of Büchi automata
•  ω-regular languages

−  L(A) is an ω-regular language for any NBA A
−  any ω-regular language can be represented by an NBA

•  ω-regular expressions
−  like for finite automata, can construct an NBA from an

arbitrary ω-regular expression E1.(F1)ω + … + En.(Fn)ω
−  i.e. there are operations on NBAs to:

•  construct NBA accepting Lω for regular language L
•  construct NBA from NFA for (regular) E and NBA for (ω-regular) F
•  construct NBA accepting union L(A1) ∪ L(A2) for NBA A1 and A2

12 DP/Probabilistic Model Checking, Michaelmas 2011

Büchi automata and LTL
•  LTL formulae

−  ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
−  where a ∈ AP is an atomic proposition

•  Can convert any LTL formula ψ into an NBA A over 2AP

−  i.e. ω ⊨ ψ ⇔ trace(ω) ∈ L(A) for any path ω

•  LTL-to-NBA translation (see e.g. [VW94], [DGV99])
−  construct a generalized NBA (multiple sets of accept states)
−  based on decomposition of LTL formula into subformulae
−  can convert GNBA into an equivalent NBA
−  various optimisations to the basic techniques developed
−  not covered here; see e.g. section 5.2 of [BK08]

13 DP/Probabilistic Model Checking, Michaelmas 2011

Büchi automata and LTL
•  GF a (“infinitely often a”)

•  G(a → F b) (“b always eventually follows a”)

q0 q1
¬a

a
a

¬a

b

a∧¬b
¬b

¬a∨b

q0 q1

14 DP/Probabilistic Model Checking, Michaelmas 2011

Deterministic Büchi automata
•  Like for finite automata…

•  A NBA is deterministic if:
−  |Q0|=1
−  |δ(q, α)| ≤ 1 for all q ∈ Q and α ∈ Σ
−  i.e. one initial state and no nondeterministic successors

•  A deterministic Büchi automaton (DBA) is total if:
−  |δ(q, α)| = 1 for all q ∈ Q and α ∈ Σ
−  i.e. unique successor states

•  But, NBA can not always be determinised…
−  i.e. NBA are strictly more expressive than DBA

15 DP/Probabilistic Model Checking, Michaelmas 2011

NBA and DBA
•  NBA and DBA for the LTL formula G b ∧ GF a

q0 q1

a∧b

b
a∧b

b

q0 q1

¬a∧b

a∧b
a∧b

¬a∧b

NBA:

DBA:

16 DP/Probabilistic Model Checking, Michaelmas 2011

No DBA possible
•  Consider the ω-regular expression (α+β)*αω over Σ={α,β}

−  i.e. words containing only finitely many instances of β
−  there is no deterministic Büchi automata accepting this

•  In particular, take α = {a} and β = ∅, i.e. Σ=2AP, AP={a}
−  (α+β)*αω represents the LTL formula FG a

•  FG a is represented by the following NBA:

•  But there is no DBA for FG a

q0 q1
¬a a

a true

q2

true

17 DP/Probabilistic Model Checking, Michaelmas 2011

Deterministic Rabin automata
•  A deterministic Rabin automaton (DRA) is…

−  a tuple A = (Q, Σ, δ, q0, Acc) where:

−  Q is a finite set of states
−  Σ is an alphabet
−  δ : Q × Σ → Q is a transition function
−  q0 ∈ Q is an initial state
−  Acc ⊆ 2Q × 2Q is an acceptance condition

•  The acceptance condition is a set of pairs of state sets
−  Acc = { (Li, Ki) | 1≤i≤k }

18 DP/Probabilistic Model Checking, Michaelmas 2011

Deterministic Rabin automata
•  A run of a word on a DRA is accepting iff:

−  for some pair (Li, Ki), the states in Li are visited finitely often
and (some of) the states in Ki are visited infinitely often 

−  or in LTL:

•  Hence:
−  a deterministic Büchi automaton is a special case of a

deterministic Rabin automaton where Acc = { (∅, {F}) }

19 DP/Probabilistic Model Checking, Michaelmas 2011

FG a
•  NBA for FG a (no DBA exists)

•  DRA for FG a

−  where acceptance condition is Acc = { ({q0},{q1}) }

q0 q1
¬a a

a true

q2

true

q0

¬a

a
a

¬a

q1

20 DP/Probabilistic Model Checking, Michaelmas 2011

Example - DRA
•  Another example of a DRA (over alphabet 2{a,b})

−  where acceptance condition is Acc = { ({q1},{q0}) }

•  In LTL: G(a → F(¬a∧b)) ∧ FG ¬a

q0

¬a∧b

a
a∨¬b

¬a

q1

21 DP/Probabilistic Model Checking, Michaelmas 2011

Properties of DRA

•  Any ω-regular language can represented by a DRA
−  (and L(A) is an ω-regular language for any DRA A)

•  i.e. DRA and NBA are equally expressive
−  (but NBA may be more compact)
−  and DRA are strictly more expressive than DBA

•  Any NBA can be converted to an equivalent DRA [Saf88]
−  size of the resulting DRA is 2O(nlogn)

22 DP/Probabilistic Model Checking, Michaelmas 2011

Deterministic ω-automata and DTMCs
•  Let A be a DBA or DRA over the alphabet 2AP

−  i.e. L(A) ⊆ (2AP)ω identifies a set of paths in a DTMC

•  Let ProbD(s, A) denote the corresponding probability
−  from state s in a discrete-time Markov chain D
−  i.e. ProbD(s, A) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ L(A) }

•  Like for finite automata (i.e. DFA), we can evaluate  
ProbD(s, A) by constructing a product of D and A
−  which records the state of both the DTMC and the automaton

23 DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC for a DBA
•  For a DTMC D = (S, sinit, P, L)
•  and a (total) DBA A = (Q, Σ, δ, q0, F)

•  The product DTMC D ⊗ A is:
−  the DTMC (S×Q, (sinit,qinit), P’, L’) where:
 qinit = δ(q0,L(sinit))

 L’(s,q) = { accept } if q ∈ F and L’(s,q) = ∅ otherwise

•  Since A is deterministic
−  unique mappings between paths of D, A and D ⊗ A
−  probabilities of paths are preserved

24 DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC for a DBA
•  For DTMC D and DBA A

−  where qs = δ(q0,L(s))

•  Hence:

−  where TGFaccept = union of D⊗A BSCCs T with T∩Sat(accept)≠∅

•  Reduces to computing BSCCs and reachability probabilities

ProbD(s, A) = ProbD⊗A((s,qs), GF accept)

ProbD(s, A) = ProbD⊗A((s,qs), F TGFaccept)

25 DP/Probabilistic Model Checking, Michaelmas 2011

Example

•  Compute Prob(s0, GF a)
−  property can be represented as a DBA

•  Result: 1

q0 q1
¬a

a
a

¬a

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}

26 DP/Probabilistic Model Checking, Michaelmas 2011

Example 2
•  Compute Prob(s0, G ¬b ∧ GF a)

−  property can be represented as a DBA

•  Result: 0.75

q0 q1

¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}

27 DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC for a DRA
•  For a DTMC D = (S, sinit, P, L)
•  and a (total) DRA A = (Q, Σ, δ, q0, Acc)

−  where Acc = { (Li, Ki) | 1≤i≤k }

•  The product DTMC D ⊗ A is:
−  the DTMC (S×Q, (sinit,qinit), P’, L’) where:
 qinit = δ(q0,L(sinit))

 li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki
 (i.e. state sets of acceptance condition used as labels)  

•  (same product as for DBA, except for state labelling)

28 DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC for a DRA
•  For DTMC D and DRA A

−  where qs = δ(q0,L(s))
•  Hence:

−  where TAcc is the union of all accepting BSCCs in D⊗A
−  an accepting BSCC T of D⊗A is such that, for some 1≤i≤k:

•  q ⊨ ¬li for all (s,q) ∈ T and q ⊨ ki for some (s,q) ∈ T
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅

•  Reduces to computing BSCCs and reachability probabilities

ProbD(s, A) = ProbD⊗A((s,qs), F TAcc)

ProbD(s, A) = ProbD⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki)

29 DP/Probabilistic Model Checking, Michaelmas 2011

Example 3
•  Compute Prob(s0, FG a)

−  property can be represented as a DRA

•  Result: 0.125

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}

q0

¬a

a
a

¬a

q1

Acc = { ({q0},{q1}) }

30 DP/Probabilistic Model Checking, Michaelmas 2011

Example 4
•  Compute Prob(s0, G(b → F(¬b∧a)) ∧ FG ¬b)

−  property can be represented as a DRA

•  Result: 1

q0

¬b∧a

b
b∨¬a

¬b

q1

Acc = { ({q1},{q0}) }

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}

31 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  ω-regular expressions and ω-regular languages

−  languages of infinite words: E1.(F1)ω + E2.(F2)ω + … + En.(Fn)ω
•  Nondeterministic Büchi automata (NBA)

−  accepting runs visit a state in F infinitely often
−  can represent any ω-regular language by an NBA
−  can translate any LTL formula into equivalent NBA

•  Deterministic Büchi automata (DBA)
−  strictly less expressive than NBA (e.g. no NBA for FG a)

•  Deterministic Rabin automata (DRA)
−  generalised acceptance condition: { (Li, Ki) | 1≤i≤k }
−  as expressive as NBA; can convert any NBA to a DRA

•  Deterministic ω-automata and DTMCs
−  product DTMC + BSCC computation + reachability

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Recall
−  deterministic ω-automata (DBA or DRA) and DTMCs

•  LTL model checking for DTMCs
−  measurability
−  complexity
−  PCTL* model checking for DTMCs

•  LTL model checking for MDPs

3 DP/Probabilistic Model Checking, Michaelmas 2011

Recall - DBA and DRA
•  Deterministic Büchi automata (DBA)

−  (Q, Σ, δ, q0, F)
−  accepting run must visit some state in F infinitely often
−  less expressive than nondeterministic Büchi automata (NBA)

•  Deterministic Rabin automata (DRA)
−  (Q, Σ, δ, q0, Acc)
−  Acc = { (Li, Ki) | 1≤i≤k }
−  for some pair (Li, Ki), the states in Li must be visited finitely

often and (some of) the states in Ki visited infinitely often
−  equally expressive as NBA
−  (i.e. all ω-regular properties; and hence all LTL formulae)

4 DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC for a DBA
•  For DTMC D and DBA A

−  where qs = δ(q0,L(s))
•  Hence:

−  where TGFaccept is the union of all BSCCs T in D⊗A with T∩Sat
(accept)≠∅

•  Reduces to computing BSCCs and reachability probabilities

ProbD(s, A) = ProbD⊗A((s,qs), GF accept)

ProbD(s, A) = ProbD⊗A((s,qs), F TGFaccept)

5 DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC for a DRA
•  For DTMC D and DRA A

−  where qs = δ(q0,L(s))
•  Hence:

−  where TAcc is the union of all accepting BSCCs in D⊗A
−  an accepting BSCC T of D⊗A is such that, for some 1≤i≤k:

•  q ⊨ ¬li for all (s,q) ∈ T and q ⊨ ki for some (s,q) ∈ T
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅

•  Reduces to computing BSCCs and reachability probabilities

ProbD(s, A) = ProbD⊗A((s,qs), F TAcc)

ProbD(s, A) = ProbD⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki)

6 DP/Probabilistic Model Checking, Michaelmas 2011

LTL model checking for DTMCs
•  Model check LTL specification P~p [ψ] against DTMC D

•  1. Generate a deterministic Rabin automaton (DRA) for ψ
−  build nondeterministic Büchi automaton (NBA) for ψ [VW94]
−  convert the NBA to a DRA [Saf88]

•  2. Construct product DTMC D⊗A
•  3. Identify accepting BSCCs of D⊗A
•  4. Compute probability of reaching accepting BSCCs

−  from all states of the D⊗A
•  5. Compare probability for (s, qs) against p for each s

•  Qualitative LTL model checking - no probabilities needed

7 DP/Probabilistic Model Checking, Michaelmas 2011

Example 3 (Lec 17) revisited
•  Model check P>0.2 [FG a]

•  Result:
−  Prob(FG a) = [0.125, 0.5, 1, 0, 0, 1]
−  Sat(P>0.2 [FG a]) = { s1, s2, s5 }

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}

q0

¬a

a
a

¬a

q1

Acc = { ({q0},{q1}) }

8 DP/Probabilistic Model Checking, Michaelmas 2011

Measurability of ω-regular properties
•  For any ω-regular property ψ

−  the set of ψ-satisfying paths in any DTMC D is measurable
•  Hence, the same applies to

−  any regular safety property
−  any LTL formula

•  Proof sketch
−  any ω-regular property can be represented by a DRA A
−  we can construct D⊗A, in which there is a direct mapping from

any path ω in D to a path ω’ in D⊗A
− ω ⊨ ψ iff ω’ ⊨
−  GF Φ and FG Φ are measurable (see lecture 3)
−  ∧ and ∨ = intersection/union (which preserve measurability)

9 DP/Probabilistic Model Checking, Michaelmas 2011

Complexity
•  Complexity of model checking LTL formula ψ on DTMC D

−  is doubly exponential in |ψ| and polynomial in |D|
−  (for the algorithm presented in these lectures)

•  Converting LTL formula ψ to DRA A
−  for some LTL formulae of size n, size of smallest DRA is

•  BSCC computation
−  Tarjan algorithm - linear in model size (states/transitions)

•  Probabilistic reachability
−  linear equations - cubic in (product) model size

•  In total: O(poly(|D|,|A|))
•  In practice: |ψ| is small and |D| is large
•  Complexity can be reduced to single exponential in |ψ|

−  see e.g. [CY88,CY95]

10 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL* model checking
•  PCTL* syntax:

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ]

−  ψ ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
•  Example:

−  P>p [GF (send → P>0 [F ack])]

•  PCTL* model checking algorithm
−  bottom-up traversal of parse tree for formula (like PCTL)
−  to model check P~p [ψ]:

•  replace maximal state subformulae with atomic propositions
•  (state subformulae already model checked recursively)
•  modified formula ψ is now an LTL formula
•  which can be model checked as for LTL

11 DP/Probabilistic Model Checking, Michaelmas 2011

Recall - end components in MDPs
•  End components of MDPs 

are the analogue of BSCCs in DTMCs

•  An end component is a  
strongly connected sub-MDP

•  A sub-MDP comprises a subset 
of states and a subset of the  
actions/distributions available  
in those states, which is closed  
under probabilistic branching

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1

Note:
●  action labels omitted
●  probabilities omitted where =1

12 DP/Probabilistic Model Checking, Michaelmas 2011

Recall - end components in MDPs
•  End components of MDPs 

are the analogue of BSCCs in DTMCs

•  For every end component, there  
is an adversary which, with 
probability 1, forces the MDP 
to remain in the end component,  
and visit all its states infinitely often

•  Under every adversary σ, with 
probability 1, the set of states 
visited infinitely often forms 
an end component  

s0

s1 s2

s5 s4 s3

s7 s8 s6

0.6

0.3

0.3

0.7

0.1 0.9

0.1

13 DP/Probabilistic Model Checking, Michaelmas 2011

Recall - long-run properties of MDPs
•  Maximum probabilities

−  pmax(s, GF a) = pmax(s, F TGFa)
•  where TGFa is the union of sets T for all end components 

(T,Steps’) with T ∩ Sat(a) ≠ ∅

−  pmax(s, FG a) = pmax(s, F TFGa)
•  where TFGa is the union of sets T for all end components 

(T,Steps’) with T ⊆ Sat(a)

•  Minimum probabilities
−  need to compute from maximum probabilities…
−  pmin(s, GF a) = 1- pmax(s, FG¬a)
−  pmin(s, FG a) = 1- pmax(s, GF¬a)

14 DP/Probabilistic Model Checking, Michaelmas 2011

Automata-based properties for MDPs
•  For an MDP M and automaton A over alphabet 2AP

−  consider probability of “satisfying” language L(A) ⊆ (2AP)ω
−  ProbM,σ(s, A) = Prs

M,σ
 { ω ∈ PathM,σ(s) | trace(ω) ∈ L(A) }

−  pmax
M(s, A) = supσ∈Adv ProbM,σ(s, A)

−  pmin
M(s, A) = infσ∈Adv ProbM,σ(s, A)

•  Might need minimum or maximum probabilities
−  e.g. s ⊨ P≥0.99 [ψgood] ⇔ pmin

M
 (s, ψgood) ≥ 0.99

−  e.g. s ⊨ P≤0.05 [ψbad] ⇔ pmax
M

 (s, ψbad) ≤ 0.05
•  But, ψ-regular properties are closed under negation

−  as are the automata that represent them
−  so can always consider maximum probabilities…
−  pmax

M(s, ψbad) or 1 - pmax
M(s, ¬ψgood)

15 DP/Probabilistic Model Checking, Michaelmas 2011

LTL model checking for MDPs
•  Model check LTL specification P~p [ψ] against MDP M

•  1. Convert problem to one needing maximum probabilities
−  e.g. convert P>p [ψ] to P<1-p [¬ψ]

•  2. Generate a DRA for ψ (or ¬ψ)
−  build nondeterministic Büchi automaton (NBA) for ψ [VW94]
−  convert the NBA to a DRA [Saf88]

•  3. Construct product MDP M⊗A
•  4. Identify accepting end components (ECs) of M⊗A
•  5. Compute max. probability of reaching accepting ECs

−  from all states of the D⊗A
•  6. Compare probability for (s, qs) against p for each s

16 DP/Probabilistic Model Checking, Michaelmas 2011

Product MDP for a DRA
•  For a MDP M = (S, sinit, Steps, L)
•  and a (total) DRA A = (Q, Σ, δ, q0, Acc)

−  where Acc = { (Li, Ki) | 1≤i≤k }

•  The product MDP M ⊗ A is:
−  the MDP (S×Q, (sinit,qinit), Steps’, L’) where:
 qinit = δ(q0,L(sinit))
 Steps’(s,q) = { µq | µ ∈ Step(s) }

 li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki
 (i.e. state sets of acceptance condition used as labels)  

17 DP/Probabilistic Model Checking, Michaelmas 2011

Product MDP for a DRA
•  For MDP M and DRA A

−  where qs = δ(q0,L(s))

•  Hence:

−  where TAcc is the union of all sets T for accepting end
components (T,Steps’) in D⊗A

−  an accepting end components is such that, for some 1≤i≤k:
•  (s,q) ⊨ ¬li for all (s,q) ∈ T and (s,q) ⊨ ki for some (s,q) ∈ T
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅

pmax
M(s, A) = pmax

M⊗A((s,qs), F TAcc)

pmax
M(s, A) = pmax

M⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki)

18 DP/Probabilistic Model Checking, Michaelmas 2011

MDPs - Example 1
•  Model check P<0.8 [G ¬b ∧ GF a]

•  Result:
−  pmax(G ¬b ∧ GF a) = [0.7, 0, 1, 1]
−  Sat(P<0.8 [G ¬b ∧ GF a]) = { s0, s1 }

s0

s2 s1

s3

0.3

0.7
{b}

{a}
Acc = { (∅, {q1}) }

DRA (in fact DBA):

q0

¬a∧¬b

a∧¬b
q1

¬a∧¬b a∧¬b

19 DP/Probabilistic Model Checking, Michaelmas 2011

MDPs - Example 2
•  Model check P>0 [G ¬b ∧ GF a]

−  pmin(s, G ¬b ∧ GF a) = 1 - pmax(s, ¬(G ¬b ∧ GF a))
 = 1 - pmax(s, F b ∨ FG ¬a))

•  Result: pmin(G ¬b ∧ GF a) = [0, 0, 0, 1]
−  Sat(P>0 [G ¬b ∧ GF a]) = {s3}

s0

s2 s1

s3

0.3

0.7
{b}

{a}

DRA:

Acc = { (∅,{q2}),
 ({q1,q2},{q0}) }

q0

¬a∧¬b

q1

q2

b b

a∧¬b

¬a∧¬b

a∧¬b

true

20 DP/Probabilistic Model Checking, Michaelmas 2011

LTL model checking for MDPs
•  Maximal end components

−  can optimise LTL model checking using maximal end
components (there may be exponentially many ECs)

•  Qualitative LTL model checking
−  no numerical computation: use Prob1E, Prob0A algorithms

•  Complexity of model checking LTL formula ψ on MDP M
−  is doubly exponential in |ψ| and polynomial in |M|
−  unlike DTMCs, this cannot be improved upon

•  PCTL* model checking
−  LTL model checking can be adapted to PCTL*, as for DTMCs

•  Optimal adversaries for LTL formulae
−  memoryless adversary always exists for pmax(s, GF a)  

and for pmax(s, FG a) but not for arbitrary LTL formulae

21 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Deterministic ω-automata (DBA or DRA) and DTMCs

−  probability of language acceptance reduces to probabilistic
reachability of set of accepting BSCCs in product DTMC

•  LTL model checking for DTMCs
−  via construction of DRA for LTL formula
−  complexity: (doubly) exponential in the size of the LTL

formula and polynomial in the size of the DTMC
−  measurability of any ω-regular property on a DTMC

•  PCTL* model checking for DTMCs
−  combination of PCTL and LTL model checking algorithms

•  LTL model checking for MDPs
−  max. probabilities of reaching accepting end components
−  min. probabilities through negation and max. probabilities

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Implementation of probabilistic model checking
−  overview, key operations, symbolic vs. explicit

•  Binary decision diagrams (BDDs)
−  introduction, sets, transition relations, …

•  Multi-terminal BDDs (MTBDDs)
−  introduction, vectors, matrices, …

•  Operations on/with BDDs and MTBDDs

3 DP/Probabilistic Model Checking, Michaelmas 2011

Implementation overview
•  Overview of the probabilistic model checking process

−  two distinct phases: model construction, model checking
−  three different models, several different logics,  

various different solution/analysis methods
−  but… all these processes have much in common

Model
construction

High-level
model

Model

Result Model
checking

Property
PRISM

language
description

PCTL or CSL
formula

DTMC, MDP
or CTMC

4 DP/Probabilistic Model Checking, Michaelmas 2011

Model construction

PRISM
language

description graph-based
algorithm

Translation
from

high-level
language

Reachability:
building set
of reachable

states

Model construction

Model High-level
model

matrix
manipulation

DTMC, MDP
or CTMC

5 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking

Precomputation
algorithms

Bottom strongly
connected
component

computation

Model checking
Solution of linear
equation systems

(iterative methods)

Solution of linear
optimisation problems

(iterative methods)

Uniformisation-based
iterative methods

Basic set
operations

Model
Result

Property

DTMC, MDP
or CTMC

PCTL or CSL
formula

Two distinct classes of techniques:
graph-based algorithms

iterative numerical computation

6 DP/Probabilistic Model Checking, Michaelmas 2011

Underlying operations
•  Key objects/operations for probabilistic model checking

•  Graph-based algorithms
−  underlying transition relation of DTMC/MDP/CTMC
−  manipulation of transition relation and state sets

•  Iterative numerical computation
−  transition matrix of DTMC/MDP/CTMC, real-valued vectors
−  manipulation of real-valued matrices and vectors
−  in particular: matrix-vector multiplication

7 DP/Probabilistic Model Checking, Michaelmas 2011

State-space explosion
•  Models of real-life systems are typically huge

−  familiar problem for verification/model checking techniques

•  State-space explosion problem
−  linear increase in size of system can result in an exponential

increase in the size of the model
−  e.g. n parallel components of size m, can give up to mn states

•  Need efficient ways of storing models, sets of states, etc.
−  and efficient ways of constructing, manipulating them

•  Here, we will focus on symbolic approaches

8 DP/Probabilistic Model Checking, Michaelmas 2011

Explicit vs. symbolic data structures
•  Symbolic data structures

−  usually based on binary decision diagrams (BDDs) or variants
−  avoid explicit enumeration of data by exploiting regularity
−  potentially very compact storage (but not always)

•  Sets of states:
−  explicit: bit vectors
−  symbolic: BDDs

•  Real-valued vectors:
−  explicit: arrays of reals (in practice, doubles/floats)
−  symbolic: multi-terminal BDDs (MTBDDs)

•  Real-valued matrices:
−  explicit: sparse matrices
−  symbolic: MTBDDs

9 DP/Probabilistic Model Checking, Michaelmas 2011

Representations of Boolean formulas
•  Propositional formula: f = (x1 ∨ x2) ∧ x3

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2
x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x2

x1

0 1

x3

Binary decision tree Truth table

Binary decision diagram

10 DP/Probabilistic Model Checking, Michaelmas 2011

Binary decision trees
•  Graphical representation of Boolean functions

−  f(x1,…,xn) : {0,1}n → {0,1}
•  Binary tree with two types of nodes
•  Non-terminal nodes

−  labelled with a Boolean variable xi

−  two children: 1 (“then”, solid line) and 0 (“else”, dotted line)
•  Terminal nodes (or “leaf” nodes)

−  labelled with 0 or 1
•  To read the value of f(x1,…,xn)

−  start at root (top) node
−  take “then” edge if xi=1
−  take “else” edge if xi=0
−  result given by leaf node

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2

11 DP/Probabilistic Model Checking, Michaelmas 2011

Binary decision diagrams
•  Binary decision diagrams (BDDs) [Bry86]

−  based on binary decision trees, but reduced and ordered
−  sometimes called reduced ordered BDDs (ROBDDs)
−  actually directed acyclic graphs (DAGs), not trees
−  compact, canonical representation for Boolean functions

•  Variable ordering
−  a BDD assumes a fixed total ordering 

over its set of Boolean variables
−  e.g. x1<x2<x3

−  along any path through the BDD,  
variables appear at most once each 
and always in the correct order

x2

x1

0 1

x3

12 DP/Probabilistic Model Checking, Michaelmas 2011

BDD reduction rule 1
•  Rule 1: Merge identical terminal nodes

•  Example:

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2 x2

x1

x3

0 1

x3 x3 x3

x2

0 0 0

13 DP/Probabilistic Model Checking, Michaelmas 2011

BDD reduction rule 2
•  Rule 2: Merge isomorphic nodes, redirect incoming nodes

•  Example:

x2

x1

x3

0 1

x3 x3 x3

x2 x2

x1

x3

0 1

x3

x2

xj

xi xi

xj xj

xi xi

xj xj

xi

xj

14 DP/Probabilistic Model Checking, Michaelmas 2011

BDD reduction rule 3
•  Rule 3: Remove redundant nodes (with identical children)

•  Example:

x2

x1

x3

0 1

x3

x2 x2

x1

0 1

x3

xi

xj xj

15 DP/Probabilistic Model Checking, Michaelmas 2011

Canonicity
•  BDDs are a canonical representation for Boolean functions

−  two Boolean functions are equivalent if and only if the BDDs
which represent them are isomorphic

−  uniqueness relies on: reduced BDDs, fixed variable ordered

•  Important implications for implementation efficiency
−  can be tested in linear (or even constant) time

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2 x2

x1

0 1

x3

16 DP/Probabilistic Model Checking, Michaelmas 2011

BDD variable ordering
•  BDD size can be very sensitive to the variable ordering

−  example: f = (x1∧y1) ∨ (x2∧y2) ∨ (x3∧y3)

x2

x1

x3

10

x3 x3 x3

x2

y1 y1 y1 y1

y2 y2

y3

x1

y1

x2

y2

x3

y3

0 1

x1<y1<x2<y2< x3<y3 x1<x2<x3<y1< y2<y3

2n+2 nodes 2n+1 nodes

17 DP/Probabilistic Model Checking, Michaelmas 2011

BDDs to represent sets of states
•  Consider a state space S and some subset S’ ⊆ S

•  We can represent S’ by its characteristic function χS’
−  χS’ : S → {0,1} where χS’(s) = 1 if and only if s ∈ S’

•  Assume we have an encoding of S into n Boolean variables
−  this is always possible for a finite set S
−  e.g. enumerate the elements of S and use a binary encoding
−  (note: there may be more efficient encodings though)

•  So χS’ can be seen as a function χS’(x1,…xn) : {0,1}n → {0,1}
−  which is simply a Boolean function
−  which can therefore be represented as a BDD

18 DP/Probabilistic Model Checking, Michaelmas 2011

BDD and sets of states - Example
•  State space S: {0, 1, 2, 3, 4, 5, 6, 7}
•  Encoding of S: {000, 001, 010, 011, 100, 101, 110, 111}
•  Subset S’ ⊆ S: {3, 5, 7} → {011, 101, 111}

x1 x2 x3 fB

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x2

x1

0 1

x3

Truth table: BDD:

B

19 DP/Probabilistic Model Checking, Michaelmas 2011

BDDs and transition relations
•  Transition relations can also be represented by their

characteristic function, but over pairs of states
−  relation: R ⊆ S × S
−  characteristic function: χR : S × S → {0,1}

•  For an encoding of state space S into n Boolean variables
−  we have Boolean function fR(x1,…,xn,y1,…,yn) : {0,1}2n → {0,1}
−  which can be represented by a BDD

•  Row and column variables
−  for efficiency reasons, we interleave the row variables x1,..,xn

and column variables y1,…,yn
−  i.e. we use function fR(x1,y1,…,xn,yn) : {0,1}2n → {0,1}

20 DP/Probabilistic Model Checking, Michaelmas 2011

BDDs and transition relations
•  Example:

−  4 states: 0, 1, 2, 3
−  Encoding: 0↦00, 1↦01, 2↦10, 3↦11

y1

x1

1 0

x2

y1

x2

y2 y2

x2

Transition x1 x2 y1 y2 x1y1x2y2

(0,1) 0 0 0 1 0001
(0,2) 0 0 1 0 0100
(1,0) 0 1 0 0 0010
(2,3) 1 0 1 1 1101
(3,1) 1 1 0 1 1011
(3,2) 1 1 1 0 1110

0 1

3 2

21 DP/Probabilistic Model Checking, Michaelmas 2011

Multi-terminal binary decision diagrams
•  Multi-terminal BDDs (MTBDDs), sometimes called ADDs

−  extension of BDDs to represent real-valued functions
−  like BDDs, an MTBDD M is associated with n Boolean variables
−  MTBDD M represents a function fM(x1,…,xn) : {0,1}n → ℝ

x1 x2 x3 fM

0 0 0 0
0 0 1 3
0 1 0 9
0 1 1 0
1 0 0 4
1 0 1 4
1 1 0 9
1 1 1 0

x2

x1

3 9

x3 x3

x2

4

M
For clarity, we omit
the zero terminal

node and any
incoming edges

e.g.

22 DP/Probabilistic Model Checking, Michaelmas 2011

MTBDDs to represent vectors
•  In the same way that BDDs can represent sets of states…

−  MTBDDs can represent real-valued vectors over states S
−  e.g. a vector of probabilities Prob(s, ψ) for each state s ∈ S
−  assume we have an encoding of S into n Boolean variables
−  then vector v : S → ℝ is a function fv(x1,…,xn) : {0,1}n → ℝ

x2

x1

3 9

x3 x3

x2

4

MTBDD v
x1 x2 x3 i fv

0 0 0 0 0
0 0 1 1 3
0 1 0 2 9
0 1 1 3 0
1 0 0 4 4
1 0 1 5 4
1 1 0 6 9
1 1 1 7 0

Vector v

[0,3,9,0,4,4,9,0]

23 DP/Probabilistic Model Checking, Michaelmas 2011

MTBDDs to represent matrices
•  MTBDDs can be used to represent real-valued matrices

indexed over a set of states S
−  e.g. the transition probability/rate matrix of a DTMC/CTMC

•  For an encoding of state space S into n Boolean variables
−  a matrix M maps pairs of states to reals i.e. M : S × S→ℝ
−  this becomes: fM(x1,…,xn,y1,…,yn) : {0,1}2n → ℝ

•  Row and column variables
−  for efficiency reasons, we interleave the row variables x1,..,xn

and column variables y1,…,yn
−  i.e. we use function fM(x1,y1,…,xn,yn) : {0,1}2n → ℝ

24 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Example

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
(0,3) = 5 0 0 1 1 0101 5
(1,3) = 5 0 1 1 1 0111 5
(2,3) = 5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Matrix M MTBDD M

y1

x1

8 2

x2

y1

5

x2

y2 y2 y2

25 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Recursion
•  Descending one level in the MTBDD (i.e. setting xi=b)

−  splits the matrix represented by the MTBDD in half
−  row variables (xi) give horizontal split
−  column variables (yi) give vertical split

M|x=0,y=0 M|x=0,y=1

M|x=1,y=0 M|x=1,y=1

M|x=0

M|x=1

M

26 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Recursion

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
(0,3) = 5 0 0 1 1 0101 5
(1,3) = 5 0 1 1 1 0111 5
(2,3) = 5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Matrix M MTBDD M

y1

x1

8 2

x2

y1

5

x2

y2 y2 y2

27 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Regularity

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
(0,3) = 5 0 0 1 1 0101 5
(1,3) = 5 0 1 1 1 0111 5
(2,3) = 5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Matrix M MTBDD M

y1

x1

8 2

x2

y1

5

x2

y2 y2 y2

Repeated  
submatrices

Shared  
MTBDD node

28 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Regularity

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
(0,3) = 5 0 0 1 1 0101 5
(1,3) = 5 0 1 1 1 0111 5
(2,3) = 5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Matrix M MTBDD M

y1

x1

8 2

x2

y1

5

x2

y2 y2 y2

Identical
adjacent 

submatrices

MTBDD node  
removed

29 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Sparseness

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
(0,3) = 5 0 0 1 1 0101 5
(1,3) = 5 0 1 1 1 0111 5
(2,3) = 5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Matrix M MTBDD M

y1

x1

8 2

x2

y1

5

x2

y2 y2 y2

Blocks of
zeros

Edge goes 
straight to
zero node

30 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Compactness
•  Some simple matrices have extremely compact

representations as MTBDDs
−  e.g. the identify matrix or a constant matrix

8

x1

y1

x2

y1

y2

x3

y2

y3 y3

1

31 DP/Probabilistic Model Checking, Michaelmas 2011

Manipulating BDDs
•  Need efficient ways to manipulate Boolean functions

−  while they are represented as BDDs
−  i.e. algorithms which are applied directly to the BDDs

•  Basic operations on Boolean functions:
−  negation (¬), conjunction (∧), disjunction (∨), etc.
−  can all be applied directly to BDDs

•  Key operation on BDDs: Apply(op, A, B)
−  where A and B are BDDs and op is a binary operator over

Boolean values, e.g. ∧, ∨, etc.
−  Apply(op, A, B) returns the BDD representing function fA op fB
−  often just use infix notation, e.g. Apply(∧, A, B) = A ∧ B

−  efficient algorithm: recursive depth-first traversal of A and B
−  complexity (and size of result) is O(|A|·|B|)

•  where |C| denotes size of BDD C

32 DP/Probabilistic Model Checking, Michaelmas 2011

Apply - Example
•  Example: Apply(∨, A, B)

∨

x2

x1

0 1

x3

x4

A

A1

A2

A3

A4 A5

A6

x1

0 1

x3

x4

B

B1

B2

B3 B4

B5

A1,B1

A2,B2

A6,B2 A6,B5

A3,B4 A5,B2 A3,B2

A5,B4 A4,B3

Argument BDDs, with node labels: Recursive calls to Apply:

33 DP/Probabilistic Model Checking, Michaelmas 2011

Apply - Example
•  Example: Apply(∨, A, B)

−  recursive call structure implicitly defines resulting BDD

x2

x1

0 1

x3

x4

x3

1 1

A1,B1

A2,B2

A6,B2 A6,B5

A3,B4 A5,B2 A3,B2

A5,B4 A4,B3

34 DP/Probabilistic Model Checking, Michaelmas 2011

Apply - Example
•  Example: Apply(∨, A, B)

−  but the resulting BDD needs to be reduced
−  in fact, we can do this as part of the recursive Apply operation,

implementing reduction rules bottom-up

x2

x1

0 1

x3

x4

x3

1 1

A1,B1

A2,B2

A6,B2 A6,B5

A3,B4 A5,B2 A3,B2

A5,B4 A4,B3

x2

x1

0 1

x3

x4

35 DP/Probabilistic Model Checking, Michaelmas 2011

Implementation of BDDs
•  Store all BDDs currently in use as one multi-rooted BDD

−  no duplicate BDD subtrees, even across multiple BDDs
−  every time a new node is created, check for existence first
−  sometimes called the “unique table”
−  implemented as set of hash tables, one per Boolean variable
−  need: node referencing/dereferencing, garbage collection

•  Efficiency implications
−  very significant memory savings
−  trivial checking of BDD equality (pointer comparison)

•  Caching of BDD operation results for reuse
−  store result of every BDD operation (memory dependent)
−  applied at every step of recursive BDD operations
−  relies on fast check for BDD equality

36 DP/Probabilistic Model Checking, Michaelmas 2011

Operations with BDDs
•  Operations on sets of states easy with BDDs

−  set union: A ∪ B, in BDDs: A ∨ B
−  set intersection: A ∩ B, in BDDs: A ∧ B
−  set complement: S ∖ A, in BDDs: ¬A

•  Graph-based algorithms (e.g. reachability)
−  need forwards or backwards image operator

•  i.e. computation of all successors/predecessors of a state
•  again, easy with BDD operations (conjunction, quantification)

−  other ingredients
•  set operations (see above)
•  equality of state sets (fixpoint termination) - equality of BDDs

37 DP/Probabilistic Model Checking, Michaelmas 2011

Operations on MTBDDs
•  The BDD operation Apply extends easily to MTBDDs

•  For MTBDDs A, B and binary operation op over the reals:
−  Apply(op, A, B) returns the MTBDD representing fA op fB
−  examples for op: +, -, ×, min, max, …
−  often just use infix notation, e.g. Apply(+, A, B) = A + B

•  BDDs are just an instance of MTBDDs
−  in this case, can use Boolean ops too, e.g. Apply(∨, A, B)

•  The recursive algorithm for implementing Apply on BDDs
−  can be reused for Apply on MTBDDs

38 DP/Probabilistic Model Checking, Michaelmas 2011

Some other MTBDD operations
•  Threshold(A, ~, c)

−  for MTBDD A, relational operator op and bound c ∈ ℝ
−  converts MTBDD to BDD based on threshold ~c
−  i.e. builds BDD representing function fA ~ c
−  e.g. computing the underlying transition relation from the

probability matrix of a DTMC: R = Threshold(P, >, 0)

•  Abstract(op, {x1,…,xn}, A)
−  for MTBDD A, variables {x1,…,xn} and commutative/associative

binary operator over reals op
−  analogue of existential/universal quantification for BDDs
−  e.g. Abstract(+, {x}, A) constructs the MTBDD representing the

function fA|x=0 + fA|x=1
−  e.g. for BDD A: ∃(x1,..,xn).A ≡ Abstract(∨, {x1,…,xn}, A)

39 DP/Probabilistic Model Checking, Michaelmas 2011

MTBDD matrix/vector operations
•  Pointwise addition/multiplication and scalar multiplication

−  can be implemented with the Apply operator
−  Matrices: A + B, MTBDDs: Apply(+, A, B)

•  Matrix-matrix multiplication A·B
−  can be expressed recursively based on 4-way matrix splits

−  which forms the basis of an MTBDD implementation
−  various optimisations are possible

•  Matrix-matrix multiplication A·v is done in similar fashion

A1 = B1·C1 + B2 · C3, etc.

40 DP/Probabilistic Model Checking, Michaelmas 2011

Sparse matrices
•  Explicit data structure for matrices with many zero entries

−  assume a matrix P of size n × n with nnz non-zero elements
−  store three arrays: val and col (of size nnz) and row (of size n)
−  for each matrix entry (r,c)=v, c and v are stored in col/val
−  entries are grouped by row, with pointers stored in row
−  also possible to group by column

0.5 1 0.3 1 0.7 0.5 val

1 2 0 0 3 3 col

0 3 5 6 2 row

41 DP/Probabilistic Model Checking, Michaelmas 2011

Sparse matrices
•  Advantages

−  compact storage (proportional to number of non-zero entries)
−  fast access to matrix entries
−  especially if usually need an entire row at once
−  (which is the case for e.g. matrix-vector multiplication)

•  Disadvantage
−  less efficient to manipulate (i.e. add/delete matrix entries)

•  Storage requirements
−  for a matrix of size n × n with nnz non-zero elements
−  assume reals are 8 byte doubles, indices are 4 byte integers
−  we need 8·nnz+4·nnz+4·n = 12·nnz+4·n bytes

42 DP/Probabilistic Model Checking, Michaelmas 2011

Sparse matrices vs. MTBDDs
•  Storage requirements

−  MTBDDs: each node is 20 bytes
−  sparse matrices: 12·nnz+4·n bytes (n states, nnz transitions)

•  Case study: Kanban manufacturing system, N jobs
−  store transition rate matrix R of the corresponding CTMCs

N States
(n)

Transitions
(nnz)

MTBDD
(KB)

Sparse matrix
(KB)

3 58,400 446,400 48 5,459
4 454,475 3,979,850 96 48,414
5 2,546,432 24,460,016 123 296,588
6 11,261,376 115,708,992 154 1,399,955
7 41,644,800 450,455,040 186 5,441,445
8 133,865,325 1,507,898,700 287 13,193,599

43 DP/Probabilistic Model Checking, Michaelmas 2011

Implementation in PRISM
•  PRISM is a symbolic probabilistic model checker

−  the key underlying data structures are MTBDDs (and BDDs)

•  In fact, has multiple numerical computation engines

−  MTBDDs: storage/analysis of very large models (given
structure/regularity), numerical computation can blow up

−  Sparse matrices: fastest solution for smaller models (<106
states), prohibitive memory consumption for larger models

−  Hybrid: combine MTBDD storage with explicit storage,  
ten-fold increase in analysable model size (~107 states)

44 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Implementation of probabilistic model checking

−  graph-based algorithms, e.g. reachability, precomputation
−  manipulation of sets of states, transition relations
−  iterative numerical computation
−  key operation: matrix-vector multiplication

•  Binary decision diagrams (BDDs)
−  representation for Boolean functions
−  efficient storage/manipulation of sets, transition relations

•  Multi-terminal BDDs (MTBDDs)
−  extension of BDDs to real-valued functions
−  efficient storage/manipulation of real-valued vectors, matrices

(assuming structure and regularity)
−  can be much more compact than (explicit) sparse matrices

