

Automated Verification of Cyber-Physical Systems

A.A. 2022/2023

Corso di Laurea Magistrale in Informatica

Statistical Model Checking

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

Statistical Model Checking

- In the recent literature, there is not full consensus, as it may refer to:
 - estimate the probability of a BLTL property of a stochastic system
 - in a stochastic system, transitions between states are not deterministic, but probabilistic
 - estimate the probability of an LTL property of a deterministic system
 - thus, input is the same of a classical model checking problem
 - but output is “probabilistic”
 - also referred to as *quantitative model checking* or *monte-carlo model checking*

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background

- In our context, a *random variable* is a function from some event space Ω to \mathbb{R}
 - $X : \Omega \rightarrow \mathbb{R}$
- Suppose we have a probability \mathbb{P} defined on 2^Ω
 - thus, \mathbb{P} is defined on sets of events $E \subseteq \Omega$
 - recall the Kolmogorov axioms:
 - $\forall E \subseteq \Omega. \mathbb{P}(E) \in [0, 1]$
 - $\mathbb{P}(\Omega) = 1$
 - $\forall I \subseteq \mathbb{N} : (E_i \in 2^\Omega \wedge \forall i \neq j \in I. E_i \cap E_j = \emptyset) \rightarrow \mathbb{P}(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mathbb{P}(E_i)$
- The *mean* of a random variable, also called *expected value*, is defined as $\mu_X = \mathbb{E}[X] = \sum_{\omega \in \Omega} p(\omega)X(\omega)$
 - here $p(\omega) = \mathbb{P}(\{\omega\})$
 - by the axioms above, $p(\omega) \in [0, 1]$ and $\sum_{\omega \in \Omega} p(\omega) = 1$
 - for $|\Omega| < \infty$, this is a weighted average...
- Example: ...

Some Background

- Suppose that $|\Omega| = 2$, i.e., we have just two possible outcomes
 - without loss of generality, $\Omega = \{0, 1\}$
 - again, $p(0)$ and $p(1)$ are defined in some way
 - for sure, $p(1) = 1 - p(0)$; often $p(1)$ is simply p and $p(0)$ is $q = 1 - p$
- A *Bernoulli random variable* Z on Ω is s.t.
 $Z : \{0, 1\} \rightarrow \{0, 1\}$, $Z(x) = x$
 - we simply write Z instead of $Z(x)$
 - given \mathbb{P} on 2^Ω , we define $p_Z = \mathbb{P}(Z = 1)$
 - following the notation above,
$$\mu_Z = \mathbb{E}[Z] = Z(1)p_Z + Z(0)q_Z = p_Z$$

Some Background

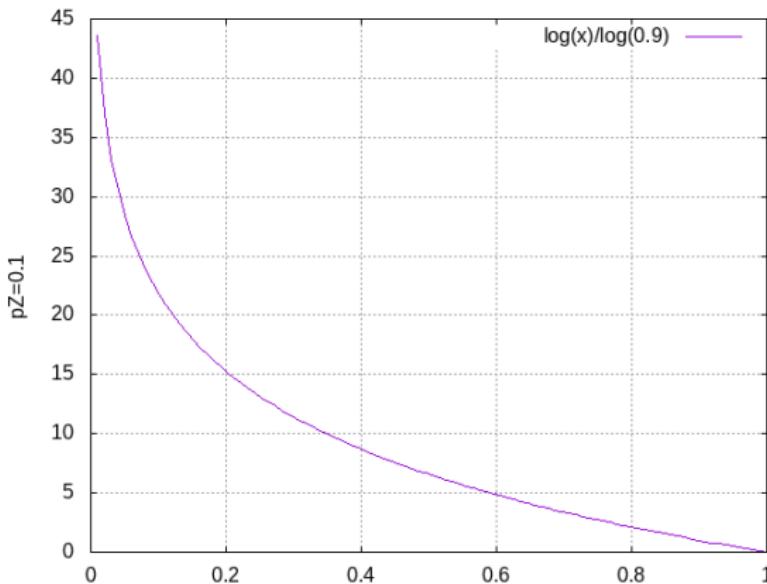
- A *Bernoulli process* consists in repeatedly running independent trials on a Bernoulli variable Z
 - either finite or infinite sequence of trials
 - “independent” means that the probability of outcome $o_1 \dots o_n$ is $\prod_{i=1}^n p(o_i)$
 - if there are k outcomes such that $o_i = 1$, then
$$\mathbb{P}(\{o_1 \dots o_n\}) = p_Z^k q_Z^{n-k} = p_Z^k (1 - p_Z)^{n-k}$$
- We can define a geometric random variable X_Z s.t.
$$X : \Omega^\infty \rightarrow \mathbb{N}$$
 - $X_Z(\omega) = n$ iff $Z = 1$ for the first time after exactly n independent trials (with probability p_Z)
- Thus, $\mathbb{P}(X_Z = N) = q_Z^{N-1} p_Z$
 - as a consequence, $\mathbb{P}(X_Z \leq N) = \sum_{n \leq N} q_Z^{N-1} p_Z = 1 - q_Z^N$

Some Background

- Suppose now that, in some way, you know the value of p_Z
- How many trials would we need to see $Z = 1$?
- Well, in these terms, you would need infinitely many trials
 - special case 1: you can't see $Z = 1$ if $p_Z = 0$
 - special case 2: you see $Z = 1$ after 1 trial if $p_Z = 1$
 - we are interested in $0 < p_Z < 1$
- Let's relax a bit: how many trials would we need to see $Z = 1$ *with a given confidence* $1 - \delta$?
 - e.g.: I want to be 90% sure, so $\delta = 0.1$
- We have $\mathbb{P}(X_Z \leq N) = 1 - (1 - p_Z)^N \geq 1 - \delta$
 - solving N as a function of δ and p_Z , we have $N \geq \frac{\log(\delta)}{\log(1 - p_Z)}$
 - note that both numerator and denominator are negative, as $0 < \delta, p_Z < 1$

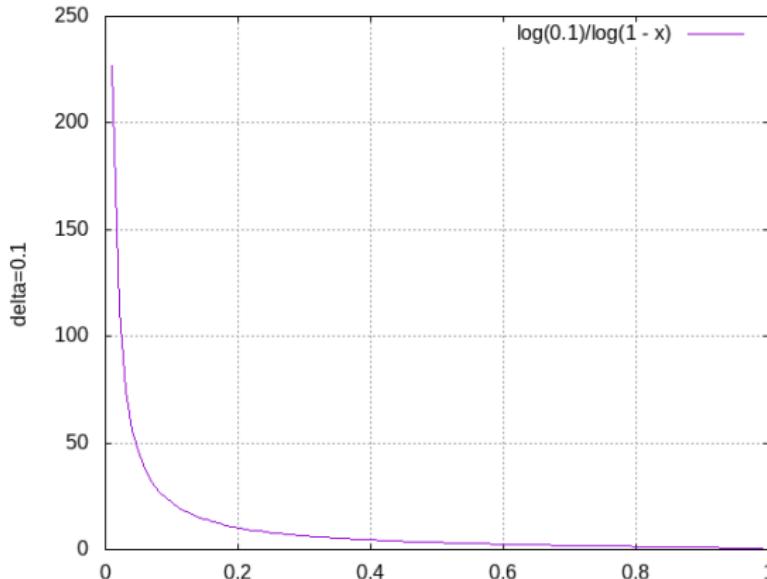
Some Background

- For fixed p_Z , N decreases with δ
 - i.e., increases with $1 - \delta$
 - you are ok if you are less confident? you can try less
 - you want to be more confident? you have to try more



Some Background

- For fixed δ , N decreases with p_Z
 - you want to detect something with big probability? you can try less
 - you want to detect something with small probability? you have to try more



UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background

- ... But we do not know p_Z
 - indeed, it is exactly what we want to estimate by making trials
- Again, getting at the precise value p_Z is too difficult, but we can choose an accuracy
 - we may choose some value $\varepsilon > 0$ of interest and test if $p_Z \geq \varepsilon$
 - ε is our *error margin*, $H_0 \equiv (p_Z \geq \varepsilon)$ is the *null hypothesis*
- We have that $M = \frac{\log(\delta)}{\log(1-\varepsilon)} \geq \frac{\log(\delta)}{\log(1-p_Z)} = N$
- Recalling the steps before, we have
$$\mathbb{P}(X_Z \leq M) \geq \mathbb{P}(X_Z \leq N) \geq 1 - \delta$$
- Thus: $p_Z \geq \varepsilon$ implies $\mathbb{P}\left(X_Z \leq \frac{\log(\delta)}{\log(1-\varepsilon)}\right) \geq 1 - \delta$
 - using conditional probabilities and putting M back in, we have
$$\mathbb{P}(X_Z \leq M \mid p_Z \geq \varepsilon) \geq 1 - \delta$$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background

- Suppose we want to decide if $H_0 \equiv p_Z \geq \varepsilon$ holds (*hypothesis testing*)
- We perform $M = \left\lceil \frac{\log(\delta)}{\log(1-\varepsilon)} \right\rceil$ trials on Z
 - if we never see $Z = 1$, then we reject H_0
 - otherwise, we accept H_0
- There are 4 possible “higher outcomes”
 - *type-I error*: H_0 is rejected, but $p_Z \geq \varepsilon$ holds
 - *type-II error*: H_0 is accepted, but $p_Z < \varepsilon$ holds
 - we were right in rejecting/accepting H_0 (2 cases)
- The probability of a type-I error is denoted by α , the probability of a type-II error is β
 - generally speaking, they could be dependent on each other
- We have $\alpha = \mathbb{P}(X > M \mid H_0) = 1 - \mathbb{P}(X \leq M \mid H_0) < \delta$
 - since $\mathbb{P}(X \leq M \mid H_0) \geq 1 - \delta$

LTL Monte-Carlo Model Checking

- Grosu, Smolka: “Monte Carlo Model Checking”, Proc. of TACAS 2005
- In LTL Monte-Carlo Model Checking, the first part of the input is as in standard LTL Model Checking:
 - a Kripke structure $\mathcal{S} = \langle S, I, R, L \rangle$
 - an LTL formula φ
 - let us say that we directly have the Büchi Automaton $B = B_{\neg\varphi} \times B_{\mathcal{S}}$
 - as it is computed by explicit on-the-fly model checkers like SPIN
- Then, we also have two additional inputs: $0 < \delta, \varepsilon < 1$
- Output as in standard LTL Model Checking:
 - either PASS...
 - ... or FAIL with a counterexample

LTL Monte-Carlo Model Checking

- If FAIL with a counterexample σ is returned, then for sure we have an error in our model
 - that is, $\mathcal{S} \not\models \varphi$ holds
 - σ is a counterexample showing that $\mathcal{S} \not\models \varphi$
- Otherwise, it may still be the case that, notwithstanding the PASS result, $\mathcal{S} \not\models \varphi$
- However, the probability that $\mathcal{S} \not\models \varphi$ is less than δ
 - indeed, this does only work with a huge assumption (which involves the remaining input ε), as we will see
 - however, the huge assumption could be made reasonable
- How is this achieved? Exactly through the steps outlined above!

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

LTL Monte-Carlo Model Checking

- Recall that a (non-deterministic) Büchi Automaton (BA) is a 5-tuple $B = \langle \Sigma, Q, \delta, Q_0, F \rangle$ where:
 - Σ is the *alphabet*, i.e., a finite set of symbols
 - Q is the finite set of states, $Q_0 \subseteq Q$ are the initial states and $F \subseteq Q$ are the final states
 - $\delta \subseteq Q \times \Sigma \times Q$ is the transition relation
- We suppose that $B = B_{\neg\varphi} \times B_S$ is the Cartesian product of the Kripke structure S and the Büchi automaton generated from φ using known algorithms
 - e.g., as it is implemented in SPIN
- A *lasso* of B is a sequence $\sigma = q_0 x_0 q_1 \dots q_n$ s.t.:
 - $\forall 0 \leq i < n. (q_i, x_i, q_{i+1}) \in \delta$
 - $\exists 0 \leq k \leq n : \forall 0 \leq i, j < n-1. q_i \neq q_j \wedge q_n = q_k$
- A lasso is *accepting* if $\exists k \leq i \leq n : q_i \in F$

LTL Monte-Carlo Model Checking

- We may easily define a probability distribution on the finite runs σ of B :
 - $\mathbb{P}(q_0) = \frac{1}{|Q_0|}$
 - $\mathbb{P}(q_0 x_0 q_1 \dots q_{n-1} x_{n-1} q_n) = \mathbb{P}(q_0 x_0 q_1 \dots q_{n-1}) \frac{1}{|\delta(q_{n-1})|}$
 - being $\delta(q) = \{(q, x, q') \mid (q, x, q') \in \delta\}$
 - that is: each time we have a (non-deterministic) choice, we choose one uniformly at random
- Such probability is well-defined: we may extend it to obtain a (discrete) probability space $(2^L, \mathbb{P})$
 - being $L = \{\sigma \mid \sigma \text{ is a lasso in } B\}$
 - furthermore, $L \supseteq L_a = \{\sigma \mid \sigma \text{ is an accepting lasso in } B\}$
 - $L_n = L \setminus L_a$ is the set of non-accepting lassos

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

LTL Monte-Carlo Model Checking

- Given $(2^L, \mathbb{P})$, our Bernoulli variable Z is defined by:
 - take one lasso σ from L , following the rules defined by \mathbb{P}
 - that is: make a random walk (see the algorithm below)
 - $Z = 1$ iff $\sigma \in L_a$ is accepting
- From a theoretical point of view, since $|L| < \infty$, we would be tempted to say that $p_Z = \frac{|L_a|}{|L|}$
- But this is not true, since lassos do not have the same probability, according to \mathbb{P}
- Thus, $p_Z = \mathbb{P}(Z = 1) = \sum_{\lambda_a \in L_a} \mathbb{P}(\lambda_a)$
 - not actually useful for computation: L_a requires generating L , which may run out of computational resources

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

LTL Monte-Carlo Model Checking

```
MC2(KS_BA  $\mathcal{SA}$ , double  $\varepsilon$ , double  $\delta$ ) {
    for i in 1.. $\left\lceil \frac{\log(\delta)}{\log(1-\varepsilon)} \right\rceil$ 
        if (SampleLasso( $\mathcal{SA}$ ) == (1,  $\sigma$ ))
            return (FAIL,  $\sigma$ );
    return PASS;
}
SampleLasso(KS_BA  $\mathcal{SA} = \langle \Sigma, Q, \delta, Q_0, F \rangle$ ) {
    (i, f, H, q) = (0, 0,  $\emptyset$ , pick_unif_random( $Q_0$ ));
    while ( $H(q) = \perp$ ) {
         $H(q) = i + 1$ ; i = i + 1;
        if ( $q \in F$ ) f = i;
        q = pick_unif_random( $\delta(q)$ );
    }
    if ( $H(q) \leq f$ ) return (1, getCurrLasso( $H$ ));
    else return (0,  $\perp$ );
}
```


UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

Nested DFS for LTL Model Checking

```
DFS(KS_BA  $\mathcal{SA}$ , state  $(s, q)$ , bool n, state a) {
    let  $\mathcal{SA} = \langle S_A, I_A, R_A, L_A \rangle$ ;
    foreach  $(s', q') \in S_A$  s.t.  $((s, q), (s', q')) \in R_A$  {
        if  $(n \wedge (s, q) == a)$ 
            exit reporting error;
        if  $((s', q', n) \notin T)$  {
             $T = T \cup \{(s', q', n)\}$ ;
            DFS( $\mathcal{SA}$ ,  $(s', q')$ , n, a);
            if  $(\neg n \wedge (s', q') \text{ is accepting})$  {
                DFS( $\mathcal{SA}$ ,  $(s', q')$ , true,  $(s', q')$ );
        }
    }
}
```

```
LTLMC(KS  $\mathcal{S}$ , LTL  $\varphi$ ) {
     $\mathcal{A} = \text{BA\_from\_LTL}(\varphi)$ ;  $T = \emptyset$ ;
    let  $\mathcal{S} = \langle S, I, R, L \rangle$ ,  $\mathcal{A} = \langle \Sigma, Q, \delta, Q_0, F \rangle$ ;
    foreach  $s \in I, q \in Q_0$ 
        DFS( $\mathcal{S} \times \mathcal{A}$ ,  $(s, q)$ , false, null);
}
```

LTL Monte-Carlo Model Checking

- Standard LTL Model Checking requires both time and space to be at least $O(|S|)$
 - easily billion of states, often unaffordable for real-world systems
- Here, time is $O(MD)$ and space is $O(D)$
 - being D the diameter of S , i.e., the length of the longest lasso starting from an initial state
 - $M = \left\lceil \frac{\log(\delta)}{\log(1-\varepsilon)} \right\rceil$ as usual
- No type-II errors: if we find a counterexample, we are happy
- Given the discussion on the background, if the answer is PASS, then the probability that an error is present but came undetected through the M trials is less than δ
- However, this is only true if we assume that $p_2 > \varepsilon$

LTL Monte-Carlo Model Checking: $p_Z \geq \varepsilon$

- Recall that $Z = 1$ iff, making a random walk on the given BA, I find an accepting lasso
 - recall also that an accepting lasso is “bad”, i.e., the property does not hold in the system
- Thus, we are saying that the probability that, among all lassos I can find with a random walk, the probability that it is accepting is at least ε
- There are two cases:
 - $p_Z < \varepsilon$, e.g., because there are not errors in the starting system, thus $p_Z = 0$
 - well, if this is true, the probability of that a counterexample exists is less than ε
 - $p_Z \geq \varepsilon$, then the probability that a counterexample exists is less than δ by the discussion above
 - note however that such two probabilities are **not defined in the same way**

LTL Monte-Carlo Model Checking: Experimental Results

- Results for classical systems: dining philosophers and Needham-Schroeder protocol
 - for dining philosophers, two properties: one is false (with counterexample), one is false
 - Needham-Schroeder is the bugged version (with counterexample)
 - $\delta = 0.1, \varepsilon = 0.0018 \rightarrow M = 1257$
- Columns meaning:
 - ph: number of philosophers
 - mr: parameter in the Needham-Schroeder protocol
 - the bigger the value, the bigger the number of states
 - entr: number of entries in the hash table (RAM usage...)
 - mxl: max length of a lasso
 - cxl: length of the counterexample found
 - M: number of trials to find a counterexample

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Unfair Dining Philosophers

ph	DDFS		MC ²			
	time	entr	time	mxl	cxl	M
4	0.02	31	0.08	10	10	3
8	1.62	511	0.20	25	8	7
12	3:13	8191	0.25	37	11	11
16	>20:0:0	–	0.57	55	8	18
20	–	oom	3.16	484	9	20
30	–	oom	35.4	1478	11	100
40	–	oom	11:06	13486	10	209

ph	DDFS		MC ²			
	time	entr	time	mxl	cxl	M
4	0.17	29	0.02	8	8	2
8	0.71	77	0.01	7	7	1
12	1:08	125	0.02	9	9	1
16	7:47:0	173	0.11	18	18	1
20	–	oom	0.06	14	14	1
30	–	oom	1.12	223	223	1
40	–	oom	1.23	218	218	1

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Fair Dining Philosophers

ph	DDFS		MC^2		
	time	entr	time	mxl	avl
4	0:01	178	0:20	49	21
6	0:03	1772	0:45	116	42
8	0:58	18244	2:42	365	99
10	16:44	192476	7:20	720	234
12	—	oom	21:20	1665	564
16	—	oom	3:03:40	7358	3144
20	—	oom	19:02:00	34158	14923

ph	DDFS		MC^2		
	time	entr	time	mxl	avl
4	0:01	538	0:20	50	21
6	0:17	9106	0:46	123	42
8	7:56	161764	2:17	276	97
10	—	oom	7:37	760	240
12	—	oom	21:34	1682	570
16	—	oom	2:50:50	6124	2983
20	—	oom	22:59:10	44559	17949

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

Unfair Needham-Schroeder

mr	DDFS		MC ²				
	time	entr	time	mxl	cxl	M	
4	0.38	607	1.68	87	87	103	
8	1.24	2527	11.3	208	65	697	
16	5.87	13471	10.2	223	61	612	
24	18.7	39007	3:06	280	44	12370	
32	36.2	85279	2:54	269	63	11012	

mr	DDFS		MC ²				
	time	entr	time	mxl	cxl	M	
40	1:11	158431	1:46	325	117	7818	
48	2:03	264607	1:45	232	25	6997	
56	3:24	409951	6:54	278	133	28644	
64	5:18	600607	7:12	347	32	29982	
72	—	oom	11:53	336	63	43192	

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

LTL Quantitative Model Checking

- Grosu, Smolka: “Quantitative Model Checking”, Proc. of ISOLA 2004
- Input is the same as before: a KS \mathcal{S} , an LTL formula φ , $0 < \delta, \varepsilon < 1$
 - again, let's say we have $B = B_{\neg\varphi} \times B_{\mathcal{S}}$
- Output is the same: PASS or (FAIL, counterexample)
- FAIL is FAIL as before
- Much easier interpretation for PASS: as we will see, with confidence $1 - \delta$ we have a bound ε on the probability of $\mathcal{S} \not\models \varphi$

LTL Quantitative Model Checking

- Let Z be a random variable with values in $[0, 1]$
 - thus, Z is generally *not* a Bernoulli variable
 - but Bernoulli variables are a special case, so the methodology discussed below can be applied
- Recall that the *mean* of Z is
$$\mu_Z = \mathbb{E}[Z] = \sum_{\omega \in \Omega} p(\omega)Z(\omega) \in [0, 1]$$
 - recall that, if Z is a Bernoulli variable, $\mu_Z = p_Z$
- The purpose here is exactly to compute μ_Z
- The exact value cannot be directly computed, so let us say we output $\tilde{\mu}_Z$ instead
- The methodology proposed here ensures that
$$\mathbb{P}(\mu_Z(1 - \varepsilon) \leq \tilde{\mu}_Z \leq \mu_Z(1 + \varepsilon)) \geq 1 - \delta$$
 - so again, ε is a tolerance and δ is a confidence on the result
 - typically, they should be close to zero
 - often, this is called a (ε, δ) -approximation

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

OAA: Optimal Approximation Algorithm

- Dagum, Karp, Luby, Ross: “An Optimal Algorithm for Monte Carlo Estimation”. *SIAM Journal on Computing*, 29(5):1484–1496, 2000.
- We have Z as a random variable in $[0, 1]$: how do we compute an (ε, δ) -approximation $\tilde{\mu}_Z$ of μ_Z ?
- Idea: perform N independent trials of Z , collect results Z_1, \dots, Z_n and then output $\tilde{\mu}_Z = \frac{\sum_{i=1}^N Z_i}{N}$
- Straightforward problem: how to choose N , so as we have an (ε, δ) -approximation?

OAA: Optimal Approximation Algorithm

- We may employ an algorithm which *dynamically adjusts* the value of N on the basis of the results obtained so far
- In doing so, we use an auxiliary function SRA (Stopping Rule Algorithm)
- We also suppose to have a procedure \mathcal{P}_Z which performs an experiment on Z and returns the corresponding value in $[0, 1]$
 - of course, different calls to \mathcal{P}_Z will return different values
- Big limitation: $\mu_Z > 0$, or SRA does not terminate

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

OAA: Optimal Approximation Algorithm

```
OAA(procedure_for_Z  $\mathcal{P}_Z$ , double  $\varepsilon$ , double  $\delta$ ) {  
     $\hat{\mu}_Z$  = SRA( $\mathcal{P}_Z$ ,  $\min\{\frac{1}{2}, \sqrt{\varepsilon}\}$ ,  $\frac{\delta}{3}$ ) ;  
     $\Upsilon$  =  $2(1 + \sqrt{\varepsilon})(1 + 2\sqrt{\varepsilon}) \left(1 + \frac{\log(3) - \log(2)}{\log(2) - \log(\delta)}\right) \frac{4(e-2)(\log(2) - \log(\delta))}{\varepsilon^2}$  ;  
     $N$  =  $\frac{\varepsilon\Upsilon}{\hat{\mu}_Z}$  ;  
     $S$  =  $\frac{1}{2} \sum_{i=1}^N (\mathcal{P}_Z() - \hat{\mu}_Z)^2$  ;  
     $\rho_Z$  =  $\max\left\{\frac{S}{N}, \varepsilon\hat{\mu}_Z\right\}$  ;  
     $N$  =  $\frac{\rho_Z\Upsilon}{\hat{\mu}_Z^2}$  ;  
     $S$  =  $\frac{1}{N} \sum_{i=1}^N \mathcal{P}_Z()$  ;  
    return  $\tilde{\mu}_Z = \frac{S}{N}$  ;  
}
```


UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

SRA: Stopping Rule Algorithm

```
SRA(procedure_for_Z  $\mathcal{P}_Z$ , double  $\varepsilon$ , double  $\delta$ ) {
     $\Upsilon = 1 + (1 + \varepsilon) \frac{4(e-2)(\log(2) - \log(\delta))}{\varepsilon^2}$ ;
     $N = 1$ ;
     $S = 0$ ;
    while ( $S \leq \Upsilon$ ) {
         $N = N + 1$ ;
         $S = S + \mathcal{P}()$ ;
    }
    return  $\hat{\mu}_Z = \frac{S}{N}$ ;
}
```


DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

LTL Quantitative Model Checking

- Leveraging on OAA, we use the almost same framework used for Monte-Carlo Model Checking
 - Bernoulli variable Z s.t. $Z = 1$ iff, making a random walk, you detect an non-accepting lasso
 - note that we reversed the previous definition: we will be back on this
 - Z is a special case of the random variables of OAA, so we may apply OAA to Z
 - also the probability space $(2^L, \mathbb{P})$ is the same
- The subroutine `SampleLasso` is the same as above

LTL Quantitative Model Checking

- OAA* is a modified version of OAA: as soon as $Z = 0$ for some trial, exit with probability 0
 - i.e., if a counterexample has been found
- Thus, OAA* returns either 0 (in the previous case) or 1 (otherwise)

```
QMC(KS_BA SA, double  $\varepsilon$ , double  $\delta$ ) {  
     $\tilde{p}_Z$  = OAA*(SampleLasso(SA) ,  $\varepsilon$ ,  $\delta$ );  
    if ( $\tilde{p}_Z$  == 0) {  
         $\sigma$  = extract the accepting lasso from the  
        last trial;  
        return (FAIL,  $\sigma$ );  
    }  
    else  
        return PASS;  
}
```


LTL Quantitative Model Checking

- Why $Z = 1$ if we find a “good” lasso?
 - instead of $Z = 1$ if we find a counterexample, as it was for MC^2 ?
- Recall that OAA only works if $p_Z = \mu_Z > 0$, otherwise SRA does not terminate
- With the current definition, $p_Z > 0$ means “there is at least a good lasso”
 - with the MC^2 definition, $p_Z > 0$ means “there is at least a counterexample”: could easily be false!
- Even if “there is at least a good lasso” is false, QMC terminates as OAA* immediately exit after the first trial...

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

LTL Quantitative Model Checking

- Recall that $\mathbb{P}(\mu_Z(1 - \varepsilon) \leq \tilde{\mu}_Z \leq \mu_Z(1 + \varepsilon)) \geq 1 - \delta$
- If $Z = 1$ for all trials, $\tilde{\mu}_Z = 1$ -
- Thus, $1 = \tilde{\mu}_Z \geq \mu_Z(1 - \varepsilon)$ always holds
- What remains is $\mathbb{P}(\mu_Z(1 + \varepsilon) \geq 1) \geq 1 - \delta$
 - better: $\mathbb{P}(\mu_Z \geq \frac{1}{1+\varepsilon}) \geq 1 - \delta$
- If we recall that $\mu_Z = p_Z = 1 - q_Z$ we have that $\mathbb{P}(q_Z \leq 1 - \frac{1}{1+\varepsilon}) = \mathbb{P}(q_Z \leq \frac{\varepsilon}{1+\varepsilon}) \geq 1 - \delta$
- Actually, for small ε , $\frac{\varepsilon}{1+\varepsilon} \approx \varepsilon$, thus we are saying that $\mathbb{P}(q_Z \leq \varepsilon) \geq 1 - \delta$!
 - q_Z is the probability that, making a random walk, we find a counterexample
 - much better than the obscure assumption of MC^2

LTL Quantitative Model Checking

- QMC seems extremely better than MC^2
- So why MC^2 has been published as an improvement of QMC one year later?
- Because the OAA methodology requires much more steps
- For MC^2 , the worst-case number of trials is $M = \frac{\log(\delta)}{\log(1-\varepsilon)}$
- For QMC, we can show that worst-case number of trials is bound by $N = O(4 \frac{\log(2) - \log(\delta)}{\varepsilon})$
 - recall that $\log(\delta) < 0$
 - $N > 5M$
 - e.g., $\delta = 0.1, \varepsilon = 0.0018 \rightarrow M = 1257$ for MC^2
 - but $N = 1257$ with $\delta = \varepsilon = 0.1$ for QMC
- RAM space is $O(D)$ for both

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Unfair Dining Philosophers

ph	DDFS		QMC				
	time	entr	time	mxl	cxl	N	
4	0.02	31	0.08	10	10	3	
8	1.62	511	0.20	25	8	7	
12	3:13	8191	0.25	37	11	11	
16	>20:0:0	–	0.57	55	8	18	
20	–	oom	3.16	484	9	20	
30	–	oom	35.4	1478	11	100	
40	–	oom	11:06	13486	10	209	

ph	DDFS		QMC				
	time	entr	time	mxl	cxl	N	
4	0.17	29	0.02	8	8	2	
8	0.71	77	0.01	7	7	1	
12	1:08	125	0.02	9	9	1	
16	7:47:0	173	0.11	18	18	1	
20	–	oom	0.06	14	14	1	
30	–	oom	1.12	223	223	1	
40	–	oom	1.23	218	218	1	

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

Fair Dining Philosophers

phi	DDFS		QMC		
	time	entries	time	mxl	avl
4	0:01	178	0:20	49	21
6	0:03	1772	0:45	116	42
8	0:58	18244	2:42	365	99
10	16:44	192476	7:20	720	234
12	—	oom	21:20	1665	564
14	—	oom	1:09:52	2994	1442
16	—	oom	3:03:40	7358	3144
18	—	oom	6:41:30	13426	5896
20	—	oom	19:02:00	34158	14923

phi	DDFS		QMC		
	time	entries	time	mxl	avl
4	0:01	538	0:20	50	21
6	0:17	9106	0:46	123	►42
8	7:56	161764	2:17	276	97
10	—	oom	7:37	760	240
12	—	oom	21:34	1682	570
14	—	oom	1:09:45	3001	1363
16	—	oom	2:50:50	6124	2983
18	—	oom	8:24:10	17962	7390
20	—	oom	22:59:10	44559	17949

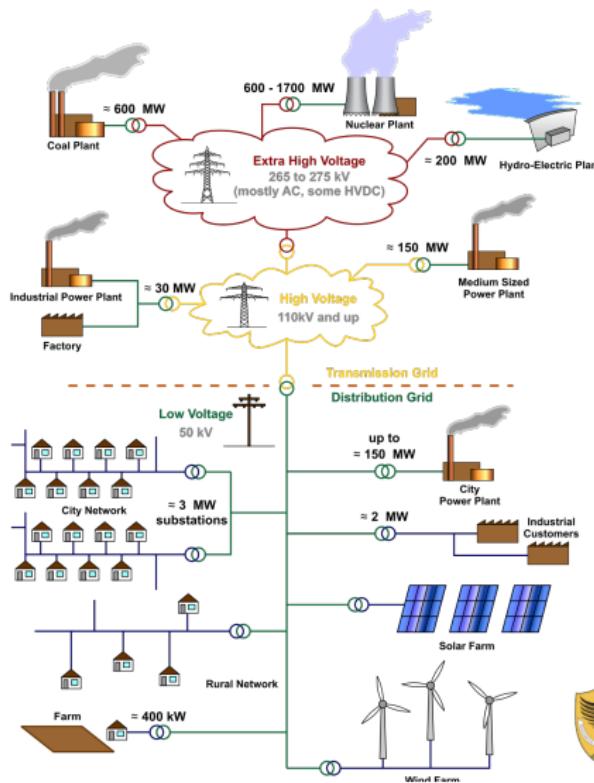
UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Combining QMC and MC²: a Case Study

- Mancini, Mari, Melatti, Salvo, Tronci, Gruber, Hayes, Prodanovic, and Elmegaard. “Parallel Statistical Model Checking for Safety Verification in Smart Grids.” In Proc. SmartGridComm 2018.
- EDN: Electric Distribution Network, also called “grid”
 - brings to residential houses, commercial buildings and industries the electricity they need
 - till some decades ago, simply based on demands
- Smart grid: usage of computational services to improve electricity distribution
 - e.g.: electricity usage is measured and then rendered in a web app

Combining QMC and MC²: a Case Study



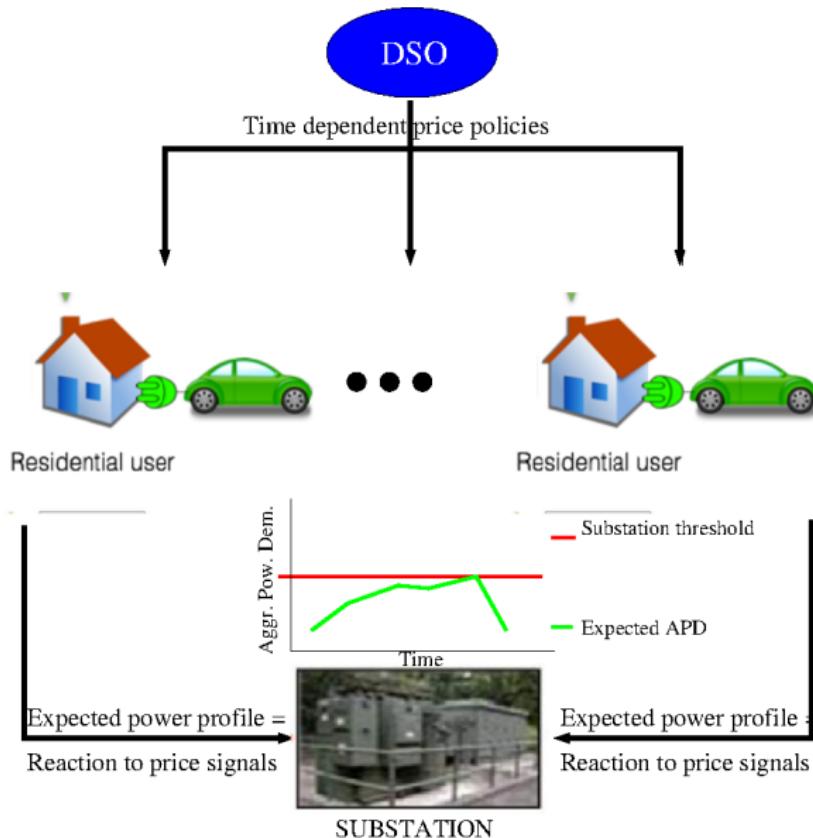
Combining QMC and MC²: a Case Study

- Distribution System Operators (DSOs) and energy retailers compute price tariffs for residential users
- Expected Power Profiles (EPPs): how residential users will respond to price tariffs
- DSOs compute price tariffs so that EPPs do not threat substations safety
 - in each t , Aggregated Power Demand (APD) must be below the substation safety power threshold (e.g., 400 kW)
 - DSOs main goal is to achieve *peak shaving*

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

Problem at a Glance



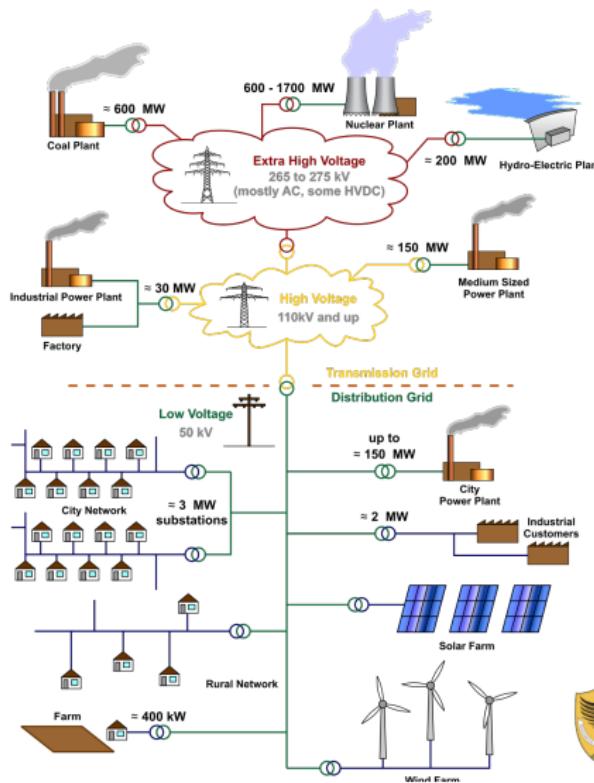
Autonomous Demand Response

- Residential users may or may not follow their corresponding Expected Power Profiles (EPPs)
 - there may be automatic tools to enforce EPPs
 - implemented on small devices on users premises
 - still, there is no guarantee, due to unexpected needs, bad forecasts, limited computational resources, etc.

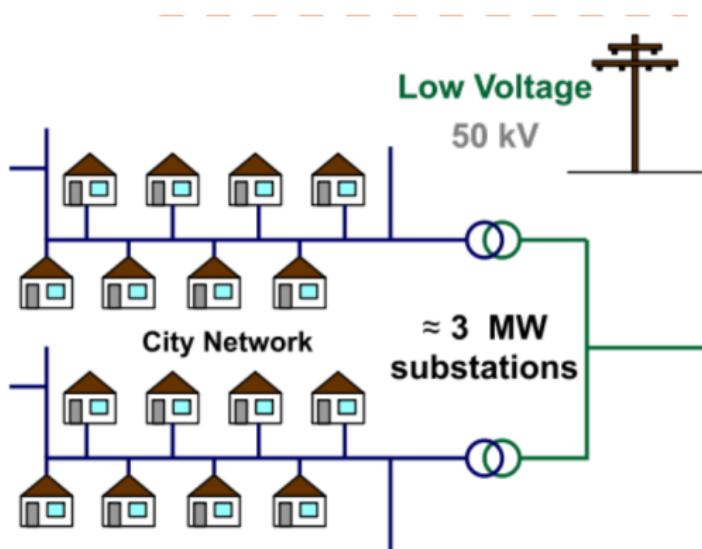
Problem

Given that users may deviate from EPPs with a given probability distribution, what is the resulting probability distribution for the aggregated power demand (APD)?

Combining QMC and MC²: a Case Study



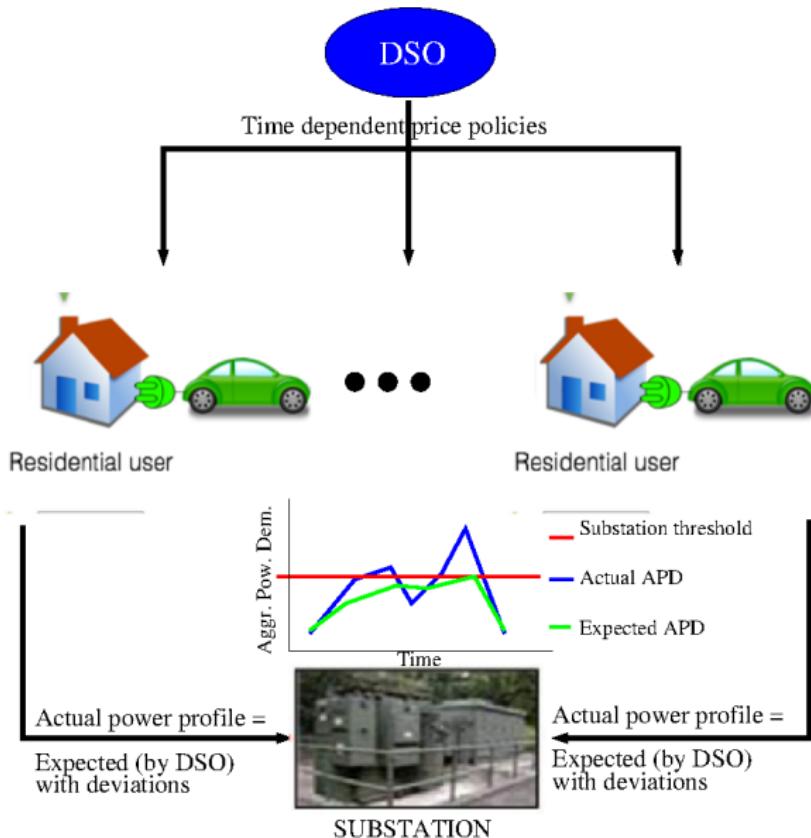
Combining QMC and MC²: a Case Study



UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

Problem at a Glance



APD-Analyser

- We present the APD-Analyser tool
 - APD: Aggregated Power Demand
- Main goal: compute the probability distribution for the APD
 - given probability distributions on each residential user
Expected Power Profile (EPP)

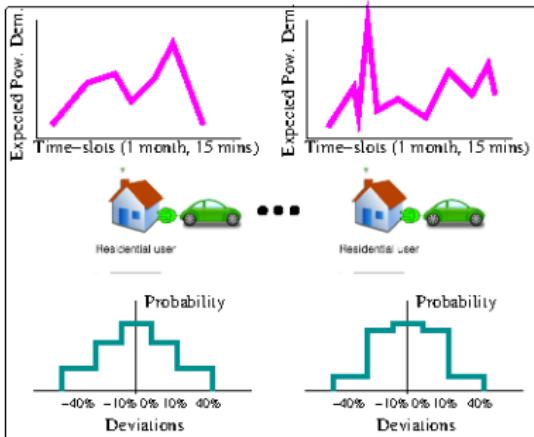
APD-Analyser: Input and Output

$0 < \varepsilon < 1$: tolerance

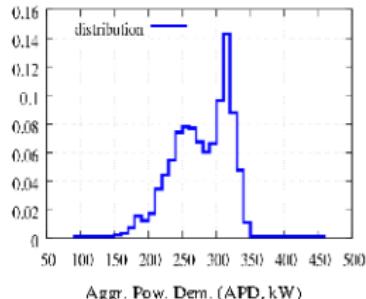
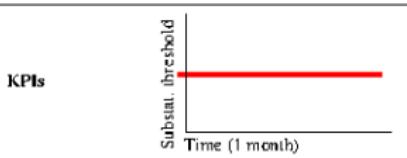
$0 < \delta < 1$: numerical accuracy

$\gamma \in \mathbb{R}^+$: discretisation for APD

INPUT FOR HOUSES



APD-Analyser



INPUT FOR SUBSTATION

APD-Analyser: Input

- Set of residential users U connected to the same substation
- Set of time-slots T (e.g., one month with 15 minutes step)
- Expected Power Profiles (EPP)
 - one for each user $u \in U$: for each time-slot $t \in T$, the expected power demand of u in t
 - $p_u : T \rightarrow \mathbb{R}$
- A probabilistic model for users deviations from EPPs
 - a real function $dev_u : \mathbb{R} \rightarrow [0, 1]$, for each user $u \in U$
 - $\int_{-\infty}^{+\infty} dev_u(x)dx = 1$
 - $\int_a^b dev_u(x)dx =$ probability that actual power demand of u in any time-slot $t \in T$ is in $[(1 + a)p_u(t), (1 + b)p_u(t)]$
 - e.g.: $\int_{-0.02}^{0.02} dev_u(x)dx =$ probability that actual power demand of u in any time-slot $t \in T$ deviates at most by 2% from EPP of u

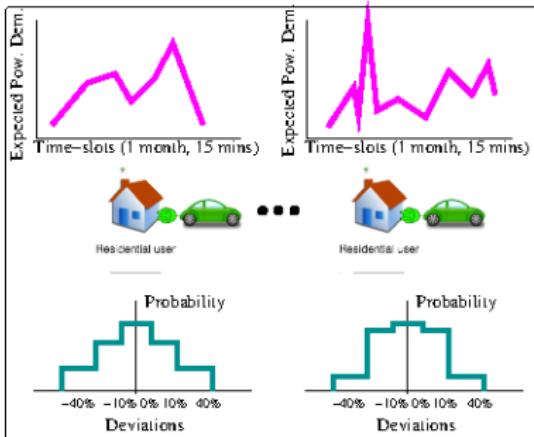
APD-Analyser: Input and Output

$0 < \varepsilon < 1$: tolerance

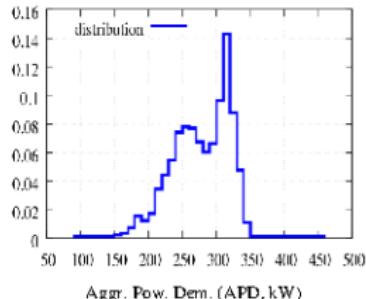
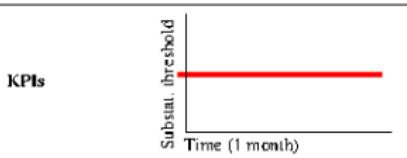
$0 < \delta < 1$: numerical accuracy

$\gamma \in \mathbb{R}^+$: discretisation for APD

INPUT FOR HOUSES



APD-Analyser



INPUT FOR SUBSTATION

APD-Analyser: Input

- Substation safety requirements
 - $p_s : T \rightarrow \mathbb{R}$
 - for each $t \in T$, DSO wants the APD to be below $p_s(t)$
 - that is, $\forall t \in T \rightarrow \sum_{u \in U} [(1 + \text{deviation}_u) p_u(t)] \leq p_s(t)$
- Key Performance Indicators (KPIs)
 - e.g., probability distribution that $p_s(t)$ is exceeded in any $t \in T$
- Parameters
 - $0 < \delta, \varepsilon < 1$: as for output probability distributions, the values must be correct up to tolerance ε with statistical confidence δ
 - $\Pr[(1 - \varepsilon)\mu \leq \tilde{\mu} \leq (1 + \varepsilon)\mu] \geq 1 - \delta$
 - μ : (unknown) correct value, $\tilde{\mu}$: computed value
 - $\gamma \in \mathbb{R}^+$: discretisation step for output probability distribution

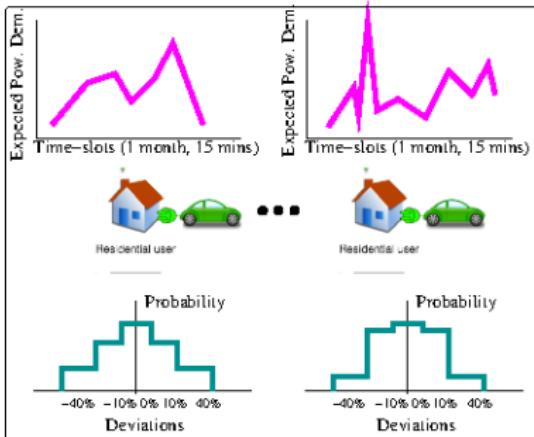
APD-Analyser: Input and Output

$0 < \varepsilon < 1$: tolerance

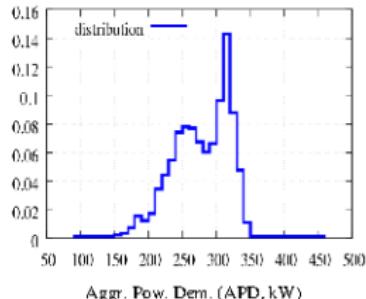
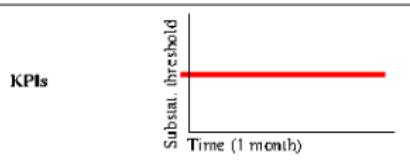
$0 < \delta < 1$: numerical accuracy

$\gamma \in \mathbb{R}^+$: discretisation for APD

INPUT FOR HOUSES



APD-Analyser



INPUT FOR SUBSTATION

APD-Analyser: Output

- Probability distribution for APD resulting from EPPs disturbed with given probabilistic disturbance model
 - easy to evaluate KPIs once such distribution is computed
 - formally: $\Psi(W)$ is the probability that APD takes a value in interval W in any time-slot $t \in T$
- Exactly computing Ψ is infeasible, thus we compute $\tilde{\Psi}$ as a (ε, δ) approximation of a γ -discretisation of the APD
- For each γ -discretised value $w = \text{APD}_{min} + k\gamma$, we compute $\tilde{\Psi}(w)$ s.t., with confidence at least $1 - \delta$:
 - if $\tilde{\Psi}(w) = \perp \notin [0, 1]$ then $\Psi([w, w + \gamma]) < \varepsilon$
 - otherwise, $\tilde{\Psi}([w, w + \gamma])$ is within $(1 \pm \varepsilon)\Psi(w)$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

APD-Analyser: Algorithm

- *Monte-Carlo model checking*
 - goal: estimate the mean of a 0/1 random variable Z_w
 - $Z_w = 1$ iff, taken at random a $t \in T$, the value of the APD is in $[w, w + \gamma]$, when EPPs are perturbed using deviations model dev_u
 - then, the mean is exactly our $\tilde{\Psi}(w)$
- Method: perform N independent experiments (samples) for Z_w , and then the mean of Z_w is $\frac{\sum_{i=1}^N \hat{Z}_i}{N} \in [0, 1]$
 - Optimal Approximation Algorithm (OAA) by Dagum & al. (2000) + Monte-Carlo Model Checking (MCMC) by Grosu & Smolka (2005)
 - *sequential analysis*: use outcomes of previous experiments to compute N
 - the value of N is automatically adjusted, at run-time, while performing the samples
 - so that the desired tolerance ε is achieved with desired accuracy δ

Optimal Approximation Algorithm (OAA)

1 Phase 1

- 1 Perform $N_1 = f_1(\varepsilon, \delta)$ experiments $\hat{Z}_{1,1}, \dots, \hat{Z}_{1,N_1}$
- 2 Compute mean of successful experiments $\hat{\mu}_Z = \frac{1}{N_1} \sum_{i=1}^{N_1} \hat{Z}_{1,i}$

2 Phase 2

- 1 Perform $2N_2 = 2f_2(\varepsilon, \delta, \hat{\mu}_Z)$ experiments $\hat{Z}_{2,0}, \dots, \hat{Z}_{2,2N_2-1}$
- 2 Compute $S = \frac{1}{N_2} \sum_{i=0}^{N_2-1} \frac{|\hat{Z}_{2,2i} - \hat{Z}_{2,2i+1}|}{2}$

3 Phase 3

- 1 Perform $N_3 = f_3(\varepsilon, \delta, \hat{\mu}_Z, S, N_2)$ experiments $\hat{Z}_{3,1}, \dots, \hat{Z}_{3,N_3}$
- 2 Return mean of successful experiments $\tilde{\mu}_Z = \frac{1}{N_3} \sum_{i=1}^{N_3} \hat{Z}_{3,i}$
 - It holds that $\Pr[(1 - \varepsilon)\mu_Z \leq \tilde{\mu}_Z \leq (1 + \varepsilon)\mu_Z] \geq 1 - \delta$

OAA + Monte-Carlo Model Checking (MCMC)

- Correct phase 1 using statistical hypothesis testing
- If $\sum_{i=1}^M \hat{Z}_{1,i} = 0$ for $M = f_4(\varepsilon, \delta) = \left\lceil \frac{\ln(\delta)}{\ln(1-\varepsilon)} \right\rceil$, terminate the computation
- Return $\tilde{\mu}_Z = 0$
- It holds that $\Pr[\mu_Z < \varepsilon] \geq 1 - \delta$

APD-Analyser: HPC Algorithm

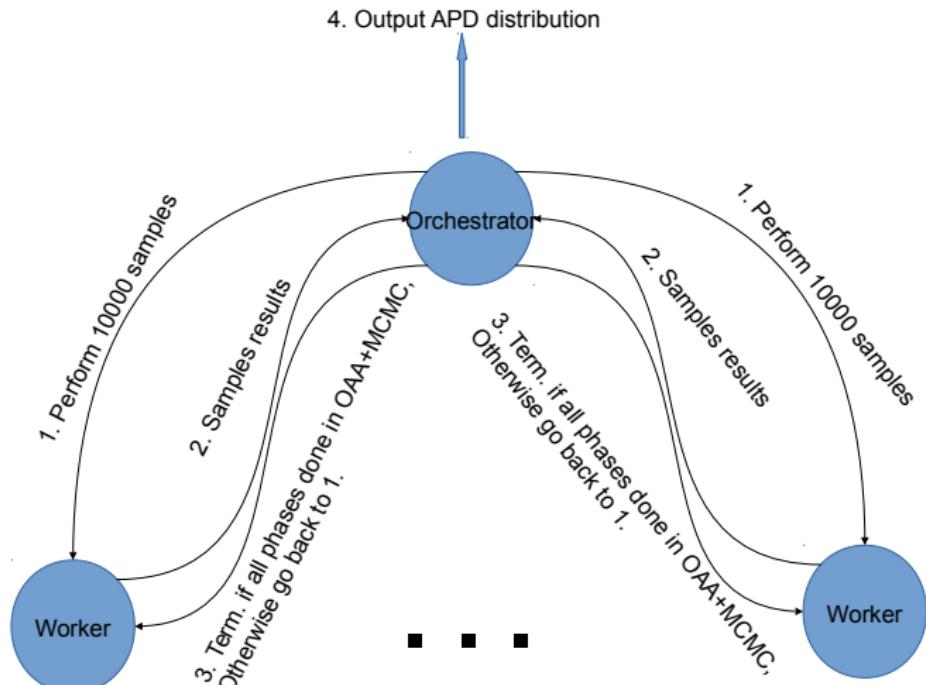
- $N = N_1 + N_2 + N_3$ can be prohibitively high
 - easily order of 10^9 in our experiments
 - OAA+MCMC to be run for each different value of w
 - if performed with a sequential algorithm, order of 1 month for the computation time
- We re-engineer the OAA to be run on a HPC infrastructure, i.e., a cluster (distributed memory)
 - main obstacle: value of N depends on samples outcomes! To be computed at run-time
- One *orchestrator* node instructs *worker* nodes to perform given number of samples
 - worker nodes perform samples in parallel and send results to the orchestrator
 - the orchestrator keeps track of phases of each worker and of different values of w
- As a result, less than 2 hours of computation with 89 workers

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

APD-Analyser: HPC Implementation Sketch

Different workers may be in different phases and different workers

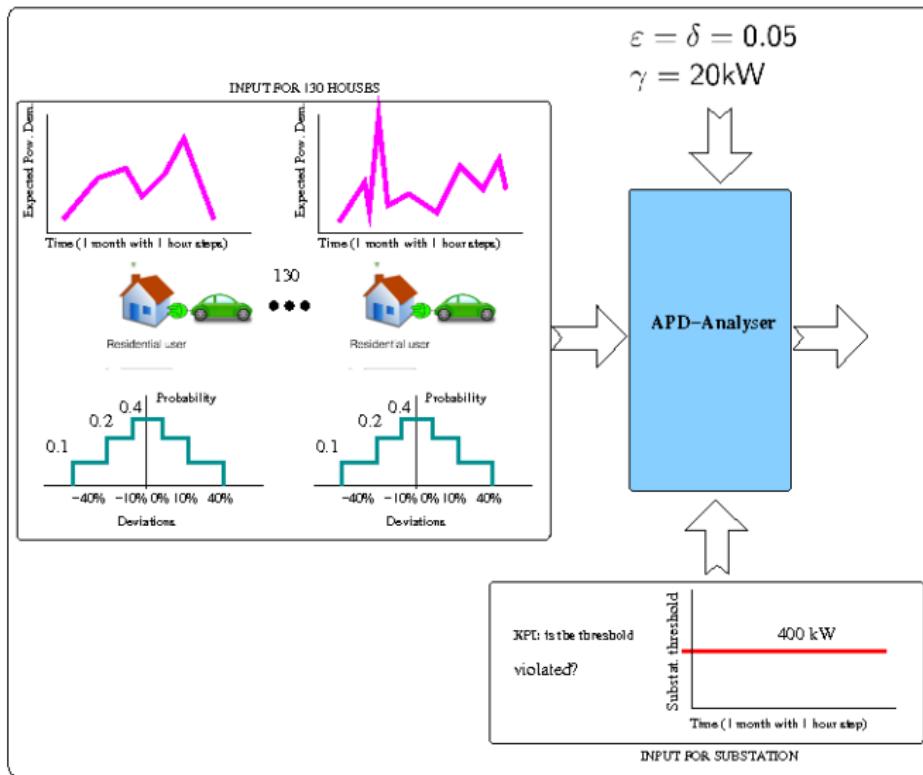


Experimental Evaluation: Case Study

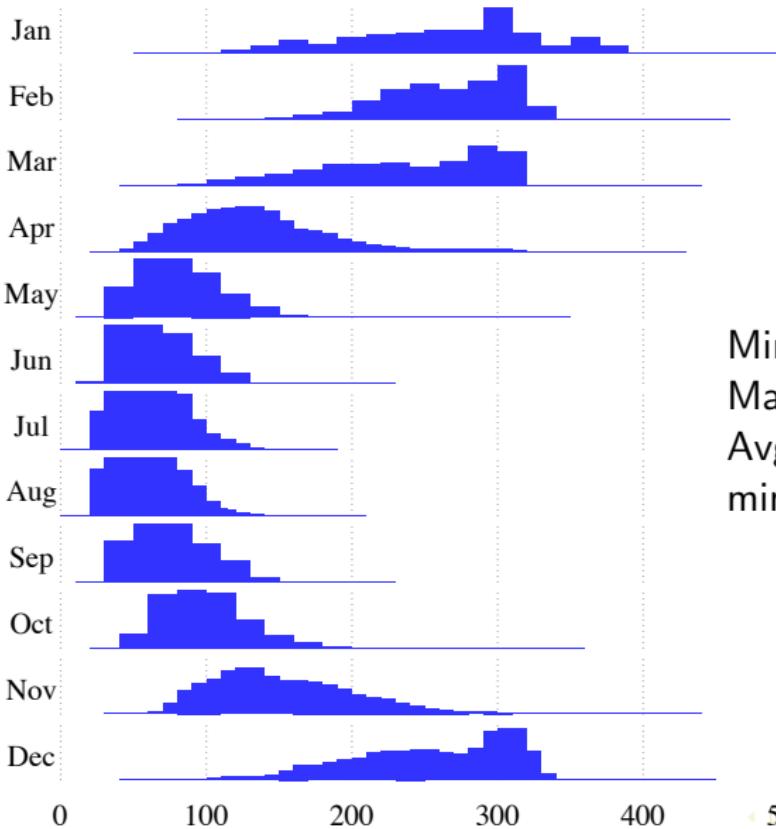
- 130 houses in Denmark, all connected to the same substation
- EPPs computed by using methodologies from the literature
 - starting point: historical data collected on those houses for one year (SmartHG FP7 project)
 - computed as shifts within given flexibilities so as to collaboratively respond to price policies
- Very liberal deviation model: up to $\pm 40\%$ variations with 10% probability, up to $\pm 20\%$ variations with 20% probability
- We want to compute the APD for each month of the year
 - by using time-slots of 1 day, we have $5^{30 \times 130}$ overall number of deviations

Experimental Evaluation: Case Study

PERFORMED ONCE FOR EACH MONTH IN ONE YEAR



Experimental Results



Min exec time: 4782 secs
Max exec time: 6448 secs
Avg exec time: 1 hour, 28 minutes and 7 seconds

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione e
Matematica

Experimental Results: HPC Scalability

# workers	samples/sec	speedup	efficiency
1	5924.89	1 ×	100%
20	79275.028	13.38 ×	66.90%
40	162578.98	27.44 ×	68.60%
60	257791.96	43.51 ×	72.52%
80	335823.24	56.68 ×	70.85%

$$\text{speedup} = \frac{s_k}{s_1}, \text{ efficiency} = \frac{s_k}{ks_1}$$

Conclusions

- We presented the HPC-based tool APD-Analyser
- Main purpose: support DSOs in analysing effects of price policies on aggregated power demand (APD) at substation level
 - especially for highly-fluctuating and individualised price policies
- From expected power profiles disturbed by probabilistic deviations (input) to probability distribution for APD (output)
- As a result, APD-Analyser enables safety assessment of price policies in highly dynamic ADR schemas

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Statistical Model Checking for Everything

- Zuliani, Platzer, Clarke: “Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification”, Formal Methods in System Design vol. 43, 2013
- In the works above, it was necessary to have some simple language defining the system
 - e.g., Promela of SPIN, though they use a different language
 - needed to perform the Cartesian product of the property and the system itself
 - and also to actually make a random walk of the system
 - actually, such a limitation is not difficult to overcome, but it is presented in this way
 - especially ok for systems already expressed in the language, but which went out of resources
- Here, we directly use simulators
 - Simulink, but conceptually also Modelica

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background

- As before, we have to define our probability space; this time is not easy
- Given a set X , a σ -algebra on X is $\mathcal{Y} \subseteq 2^X$ s.t. \mathcal{Y} is closed for complements, countable unions and countable intersections, i.e.:
 - $\forall Y \in \mathcal{Y}. \bar{Y} \in \mathcal{Y}$, with $\bar{Y} = \{x \in X \mid x \notin Y\}$ being the complement of Y
 - $\forall I \subseteq \mathbb{N}$ s.t. $Y_i \in \mathcal{Y}$:
 - $\forall i, j \in I. Y_i \cup Y_j \in \mathcal{Y}$
 - $\forall i, j \in I. Y_i \cap Y_j \in \mathcal{Y}$
- Example: $\mathcal{Y}_1 = 2^X$ and $\mathcal{Y}_2 = \{\emptyset, X\}$ are always σ -algebras
- Example: for $X = \{a, b\}$, $\mathcal{Y} = \{\{a\}, \{b\}, \{a, b\}\}$ is not a σ -algebra since $\{a\} \cap \{b\} = \emptyset \notin \mathcal{Y}$

Some Background

- If $X \subseteq \mathbb{R}^n$, the *Borel set* on X , denoted by $\mathcal{B}(X)$, is the smallest σ -algebra of X which contains all open sets of X
 - recall that a set $A \subseteq \mathbb{R}^n$ is open iff, for all $a \in A$, there exists a n -dimensional ball (border excluded) centered in a which is contained in A
 - that is, $\exists \varepsilon > 0 : \forall x \in \mathbb{R}^n. |a - x| < \varepsilon \Rightarrow x \in A$
- The pair $(X, \mathcal{B}(X))$ is called *measureable space*
- Thus, given $X \subseteq \mathbb{R}^n$, $\mathcal{B}(X)$ retains all open sets already in X and ensures that intersection, union and complementation are still in $\mathcal{B}(X)$
- We are interested in this since our systems are defined via variables on real intervals
 - sets of states are subsets of \mathbb{R}^n

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background

- A *stochastic kernel* on $(X, \mathcal{B}(X))$ is a function $K : X \times \mathcal{B}(X) \rightarrow [0, 1]$ s.t.:
 - for all $x \in X$, the function $K_x : \mathcal{B}(X) \rightarrow [0, 1]$ defined by $K_x(B) = K(x, B)$ is a probability measure on \mathcal{B}
 - that is, the three Kolmogorov axioms are true
 - note that K_x actually takes subsets...
 - for all $B \in \mathcal{B}(X)$, the function $K_B : X \rightarrow [0, 1]$ is a measurable function on X
 - we are less interested on this point

Some Background

- Since each state is a point $x \in X \subseteq \mathbb{R}$, execution traces are sequences $\sigma \in X^\omega$
 - for finite (terminated) runs, we may add a loop on the last state (*stuttering*)
- We want to define probabilities on traces, thus $\Omega = X^\omega$
- Usually, we define the probability on $(\Omega, 2^\Omega)$
- For these types of Ω , we are happy with something contained in 2^Ω , namely \mathcal{F} as the cylindric σ -algebra built on Ω
 - essentially, such sequences behave “well”

Some Background

- We suppose to have a stochastic kernel K defined on (Ω, \mathcal{F})
- Together with an initial state $x \in X$, this defines a probability on (Ω, \mathcal{F})
 - $\mathbb{P}(X_1 \in B) = 1$ if $x \in B$ and 0 otherwise;
 - $\mathbb{P}(X_{i+1} \in B) = K(x_i, B)$
 - K defines the outgoing transitions probability
- Thus, if we are able to define a K , we have a probability space for our SMC methodology

Discrete Time Hybrid Automaton

- Giving a precise semantics of Simulink (or Modelica) is difficult, but the following definition is quite close
- A *Discrete Time Hybrid Automaton* (DTHA) is defined as $\mathcal{D} = \langle Q, E, n, q_0, x_0, \Phi, J \rangle$ where:
 - n is the dimension of the state space, which is understood to be \mathbb{R}^n
 - (Q, E) is a directed graph
 - Q is a set of *locations*, E is a set of *control switches* or *modalities*
 - (q_0, x_0) is the *starting state*, $(q_0, x_0) \in Q \times \mathbb{R}^n$
 - $\Phi = \{\phi_q : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n \mid q \in Q\}$
 - $J = \{j_e : \mathbb{R}^n \rightarrow \mathbb{R}^n \mid e \in E\}$

Discrete Time Hybrid Automaton Semantics

- The *transition relation* δ of a DTHA \mathcal{D} defines when we go from a state in $Q \times \mathbb{R}^n$ to another
 - not simple as for Kripke structures, where one step is one step: here, also time passing is important
- 2 underling ideas:
 - time only passes within locations, handled by Φ
 - jumps within locations happen in time 0, defined by E with conditions given by J
 - either the time pass within a location, or a jump between locations is performed
- $\delta \in Q \times \mathbb{R}^n \times (\mathbb{R}^+ \dot{\cup} E) \times Q \times \mathbb{R}^n$

Discrete Time Hybrid Automaton Semantics

- $\delta \in Q \times \mathbb{R}^n \times (\mathbb{R}^+ \dot{\cup} E) \times Q \times \mathbb{R}^n$
- $(q, x, t, q, x') \in \delta \equiv (q, x) \rightarrow_t (q, x')$ iff $x' = \phi_q(t, x)$
 - note that q does not change
- $(q, x, e, q', x') \in \delta \equiv (q, x) \rightarrow_e (q', x')$ iff
 $x' = j_e(x) \wedge e = (q, q')$
 - note that time does not pass
- $\Delta : Q \times \mathbb{R}^n \rightarrow (\mathbb{R}^+ \dot{\cup} E)$ is the *simulation function*
 - decides if, in a given state, a location jump or a time pass has to be performed
 - if time passes, decides how much
 - unified notation $(q, x) \rightarrow_{\Delta(q, x)} (q', x')$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Discrete Time Hybrid Automaton Semantics

- δ may be non-deterministic
 - in a given state (q, x) , both some j_e and ϕ_q could be enabled
 - even if only ϕ_q is enabled, many values for t may apply
- Δ is deterministic; in Simulink:
 - if both a discrete and a continuous transition can be taken, take the discrete one
 - if continuous, stay for the maximum time allowed before a location change
 - an ordering on outgoing edge is always available, so the first one is selected when multiple edges are present

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Discrete Time Hybrid Automaton Semantics

- A *trace* is a sequence $\sigma = (s_0, t_0), \dots, (s_i, t_i), \dots$ s.t.
 - $s_0 = (q_0, x_0)$
 - $\forall i \geq 0. s_i \in Q \times \mathbb{R}^n, t_i \in \mathbb{R}^+$
 - $\forall i \geq 0. s_i \rightarrow_{\Delta(s_i)} s_{i+1}$
 - $\forall i \geq 0. t_i = \Delta(s_i)$ if $\Delta(s_i) \in \mathbb{R}^+$
 - $\forall i \geq 0. t_i = 0$ if $\Delta(s_i) \in E$
- At step $\sigma_i = (s_i, t_i)$, the global time is $\sum_{j=0}^{i-1} t_j$
- For an infinite trace σ , $\sum_{j=0}^{\infty} t_j = \infty$
 - there must be finitely many location switches in finite time

Probabilistic Discrete Time Hybrid Automaton Semantics

- For a set X , let $D(X) = \{f \mid f \text{ is a probability density function on } X\}$
 - for $X = \{x_1, \dots, x_n\}$, $f(t) = \sum_{i=1}^n p_i \delta(t - x_i)$, for any choice of $p_i \in [0, 1]$ s.t. $\sum_{i=1}^n p_i = 1$
 - here δ is the Dirac function, i.e. $\delta(0) = 1, \forall x \neq 0. \delta(x) = 0$
 - otherwise, for continuous X , $f(t)$ is s.t. $\int_a^b f(x)dx \in [0, 1]$ for any $[a, b] \subseteq X$ and $\int_X f(x)dx = 1$
- A *probabilistic transition function* Π for a DTHA \mathcal{D} is a function $\Pi : Q \times \mathbb{R}^n \rightarrow D(\{0, 1\}) \times D(\mathbb{R}^+) \times D(E)$
 - since Π returns 3 values, we will denote its components by $\Pi(s) = \langle \Pi_a(s), \Pi_c(s), \Pi_d(s) \rangle$
 - the following must be true:
$$\forall (q, q') \in E, r \in Q, x \in \mathbb{R}^n. q \neq r \rightarrow \Pi_d(r, x)(q, q') = 0$$

Probabilistic Discrete Time Hybrid Automaton Semantics

- Informally, a probabilistic transition function Π has the goal of defining a (possibly non-uniform) “random walk” on a DTHA
 - suppose we are in a state $s = (q, x)$
 - both a location change and a continuous move may be taken?
choose at random with probability $\Pi_a(s)$
 - if a location change must take place, choose one at random with probability $\Pi_d(s)$
 - if time must pass, decide how much with probability $\pi_c(s)$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Probabilistic Discrete Time Hybrid Automaton Semantics

- Thus, $K((q, x), B) = p_a \sum_{e \in E(B, q, x)} \Pi_d(q, x)(e) + (1 - p_a) \int_0^\infty \Pi_c(q, x)(t) I_B(q, \phi_q(t, x)) dt$
 - B is a Borel set over $Q \times \mathbb{R}^n$
 - $p_a = \Pi_a(q, x)(0)$
 - arbitrary choice, could also have been $p_a = \Pi_a(q, x)(1)$
 - $E \supseteq E(B, q, x) = \{(q, q') \in E \mid (q', j_{(q, q')}(x)) \in B\}$
 - to be well-defined, we must stay in the same Borel set
 - I_B is the indicator function of B , i.e. $I_B(q, x) = 1$ iff $(q, x) \in B$, and 0 otherwise
 - again, to be well-defined, we must stay in the same Borel set
- It may be shown that K is a stochastic kernel, so probability is well-defined over infinite traces

Probabilistic DTHA in Simulink/Stateflow

- n is the number of variables in a Simulink/Stateflow model
 - some of them may be discrete, but \mathbb{R}^n is for sure a superclass
- Q corresponds to “states” of Stateflow and E are states transitions
- Simulink only perform deterministic transitions, so probability density function output by Π all consists in just one point being defined
- Differently from the Grosu & Smolka works, here we cannot provide a deterministic model and let the methodology turn it probabilistic
 - the user must define something probabilistic
 - typically done by introducing probabilistic blocks in the design
 - Uniform Random Number block

Bayes Theorem

- Conditional probability: $\mathbb{P}(A|B)$ is the probability of event A , under the assumption that event B already occurred
 - by definition, $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Which is the relationship between $\mathbb{P}(A|B)$ and $\mathbb{P}(B|A)$?
- The well-known Bayes Theorem states that
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$
 - $\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{i=1}^n \mathbb{P}(B|A_i)\mathbb{P}(A_i)}$ for $\cup_{i=1}^n A_i = B$
- Here we need a more refined version of the Bayes Theorem
- First of all, the conditional probability density function of a Bernoulli random variable X and a random variable U with values in $(0, 1)$ is $f(x_i|u) = u^{x_i}(1-u)^{1-x_i}$
 - then, $f(x_i = 1|u) = u$ and $f(x_i = 0|u) = 1 - u$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Bayes Theorem

- Our refined version of the Bayes Theorem states that

$$f(u|x_1 \dots x_n) = \frac{f(x_1 \dots x_n|u)g(u)}{\int_0^1 f(x_1 \dots x_n|v)g(v)dv}$$

- u is the unknown probability that we have an error in our system
- x_i are “observations” of u : we make a simulation and see if it fails or not
- g is the probability *prior* distribution of u
 - prior as opposed to *posterior* $f(u|x_1 \dots x_n)$: without having taken samples
 - we will assume it to have a given shape
- since we assume observations to be independent,
$$f(x_1 \dots x_n|u) = \prod_{i=1}^n f(x_i|u)$$

- We want to know p as the probability of the posterior
 $f(u|x_1 \dots x_n)$
- We use the *posterior Bayes estimator* of p

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

Bayes Theorem

- From the Bayes theorem it follows that

$$\int_{t_0}^{t_1} f(u|x_1 \dots x_n) du = F_{(x+\alpha, n-x+\beta)}(t_1) - F_{(x+\alpha, n-x+\beta)}(t_0)$$

where:

- $t_0, t_1 \in (0, 1)$
- $x = \sum_{i=1}^n x_i$ is the number of successes in the n trials
- $\alpha, \beta \in \mathbb{R}^+$ are given parameters
- $F_{A,B}(t) = \int_0^t g_{A,B}(u) du$ is a Beta distribution function
- g above is the prior density, here we assume it to be

$$g_{A,B}(u) = \frac{u^{A-1}(1-u)^{B-1}}{\int_0^1 t^{A-1}(1-t)^{B-1} dt}$$

- thus, $F_{A,B}(t) = \frac{\int_0^t u^{A-1}(1-u)^{B-1} du}{\int_0^1 t^{A-1}(1-t)^{B-1} dt}$

- F may be easily made explicit, or simply computed using mathematical tools like MATLAB

- When sampling from a Bernoulli distribution with a Beta prior of parameters α, β , it is known that the mean of the posterior is $\hat{p} = \frac{x+\alpha}{n+\alpha+\beta}$

The Algorithm for BSMC

- BSMC: Bayes-based Statistical Model Checking
- The input is as follows:
 - \mathcal{S} as the simulator model for the system to be verified
 - may be black-box, Simulink, Modelica or proprietary
 - must have some probabilistic behaviour, i.e., 2 consecutive simulations may have different results
 - φ as the BLTL property to be verified
 - Bounded LTL: all **U** operators must be bounded, i.e., they are of the form $\mathbf{U}^{\leq t}$, with $t > 0$
 - hence, also **F** and **G** must be bounded too
 - $\alpha, \beta \in \mathbb{R}^+$ as the parameters for the prior Beta distribution
 - $\delta \in (0, 1)$ as the desired size of the output interval
 - $c \in (\frac{1}{2}, 1)$ as the desired interval coverage coefficient

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

The Algorithm for BSMC

- The output is as follows:
 - (t_0, t_1) such that $t_1 - t_0 = \delta$
 - \hat{p} as the estimate of the probability p that $\mathcal{S} \models \varphi$
- It holds that:
 - (t_0, t_1) is a $100c$ *Bayesian interval estimate*
 - $\hat{p} \in (t_0, t_1)$
 - usually at half interval, but with some adjustments
- Thus, we want δ to be small
 - implies our output interval is narrow, and the estimate is accurate
- We want c to be high
 - implies we are confident on the estimate
- Needless to say, the smaller δ and the higher c , the higher computation time required

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

The Algorithm

```
BSMC(ProbModel  $\mathcal{S}$ , BLTL property  $\varphi$ ,  
      double  $\alpha, \beta, c, \delta$ ) {  
  ( $n, x$ ) = (0, 0);  
  do {  
     $\sigma$  = simulate( $\mathcal{S}$ , time( $\varphi$ ));  
     $n$  =  $n + 1$ ; if ( $\sigma \models \varphi$ )  $x$  =  $x + 1$ ;  
     $\hat{p}$  =  $\frac{x+\alpha}{n+\alpha+\beta}$ ; ( $t_0, t_1$ ) = ( $\hat{p} - \frac{\delta}{2}, \hat{p} + \frac{\delta}{2}$ );  
    if ( $t_1 > 1$ ) ( $t_0, t_1$ ) = ( $1 - \delta, 1$ );  
    if ( $t_0 < 0$ ) ( $t_0, t_1$ ) = ( $0, \delta$ );  
     $\gamma$  =  $F_{(x+\alpha, n-x+\beta)}(t_1) - F_{(x+\alpha, n-x+\beta)}(t_0)$ ;  
  } while ( $\gamma < c$ );  
  return  $\langle(t_0, t_1), \hat{p}\rangle$ ;  
}
```


UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

BLTL Logic, Formally

$$\Phi ::= p \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid (\Phi) \mid \Phi_1 \mathbf{U}^{\leq t} \Phi_2$$

- $t \in \mathbb{Q}^+$ is a time
- Atomic propositions p are of the form $y \sim v$, being y a variable in the model, $\sim \in \{<, >, \leq, \geq, =\}$ and $v \in \mathbb{Q}$
- Some other derived operators:
 - of course true, false, OR and other propositional logic connectors
 - future (or eventually): $\mathbf{F}^{\leq t} \Phi = \text{true } \mathbf{U}^{\leq t} \Phi$
 - globally: $\mathbf{G}^{\leq t} \Phi = \neg(\text{true } \mathbf{U}^{\leq t} \neg \Phi)$
- As for LTL, $\mathcal{S} \models \varphi$ when, for all executions σ of \mathcal{S} , σ satisfies φ
- For a given σ , $\sigma \models \varphi$ iff $\sigma, 0 \models \varphi$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

BLTL Logic, Formally

- To define when $\sigma, i \models \varphi$, a recursive definition over the recursive syntax of BLTL is provided
 - recall that $\sigma = (s_0, t_0), \dots, (s_i, t_i), \dots$
 - at step $\sigma_i = (s_i, t_i)$, the global time is $\sum_{j=0}^{i-1} t_j$
- $\sigma, i \models y \sim v$ iff $\sigma(i)(y) \sim v$
- $\sigma, i \models \Phi_1 \wedge \Phi_2$ iff $\sigma, i \models \Phi_1 \wedge \sigma, i \models \Phi_2$
- $\sigma, i \models \neg \Phi$ iff $\sigma, i \not\models \Phi$
- $\sigma, i \models \Phi_1 \mathbf{U}^{\leq t} \Phi_2$ iff
$$\exists k \geq i : \sigma, k \models \Phi_2 \wedge \forall i \leq j < k. \sigma, j \models \Phi_1 \text{ and } \sum_{j=i}^{k-1} t_j \leq t$$
- Note this is different from the bounded semantics of LTL used in Bounded Model Checking

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

On BSMC Algorithm

- Crucial steps in BSMC algorithm:
 - simulate, i.e., invoking our simulator, whatever it is
 - evaluating $\sigma \models \varphi$
- Does simulate actually returns σ ?
 - typically, simulators output is a log with lines $(t_i, v_{i1}, \dots, v_{in})$
 - being v_{i1}, \dots, v_{in} the values at time t_i for each of the n variables used in the simulator model
 - usually, state locations may be inferred from v_{i1}, \dots, v_{in}
 - usually, $t_{i+1} = t_i + \Delta t$ for a fixed (and small) $\Delta t > 0$
 - thus, a simple postprocess computation may translate the log in an execution $\sigma = (s_0, t_0), \dots, (s_i, t_i), \dots$
 - this also allows to compute $\sigma(i)(y)$ for any variable y

On BSMC Algorithm

- The first 2 inputs of the BSMC algorithm are straightforward
 - if I want to verify something, of course I need a model and a property
- We may understand δ, c : they control accuracy and confidence of the result
 - the more accuracy/confidence is required, the longer the computation
- What about α, β ?
 - informally, it is a measure of the “weight” we *believe* passes and fails should have
 - if none is known, it is probably good to choose a *uniform* Beta distribution, i.e., $\alpha = \beta$
 - e.g., $\alpha = \beta = 1$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

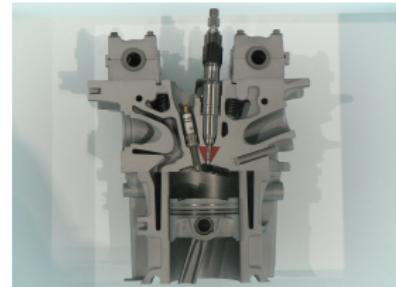
DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

On BSMC Algorithm

- It may be proven that BSMC nearly always terminates:
 - for all possible valid inputs, BSMC terminates with probability 1
 - no, this does not imply that BSMC always terminates (we are in an infinite space)
 - but it is enough for practical applications
- It may be proven that errors on BSMC output are unlikely
 - let our null hypothesis be $p \in (t_0, t_1)$
 - both type-I and type-II errors are bounded by $\frac{\pi_0(1-c)}{c(1-\pi_0)}$
 - recall: type-I is saying that $p \notin (t_0, t_1)$ when instead $p \in (t_0, t_1)$
 - recall: type-II is saying that $p \in (t_0, t_1)$ when instead $p \notin (t_0, t_1)$
 - c is the coverage input as in BSMC
 - π_0 is the actual (prior) probability that $p \in (t_0, t_1)$

BSMC Results

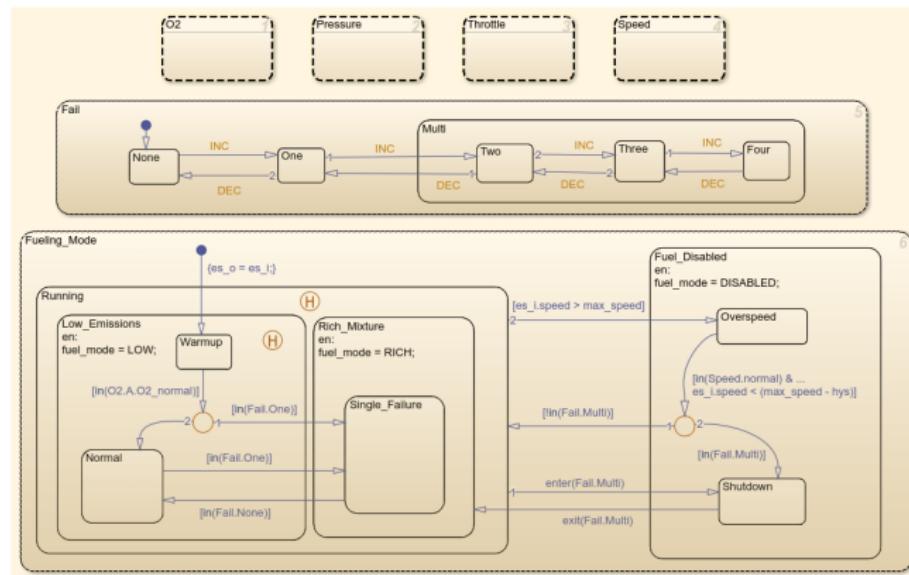
- Case study: Fault-Tolerant Fuel Control System
 - for details, see
<http://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html>
- Gasoline engine (e.g., used in avionics), must provide power for vehicle operations
- This model focuses on a critical parameter: the air/fuel rate, which must be kept close to a reference value, i.e., 14.6
 - air is pumped away by intake manifold, fuel is pumped in by injectors



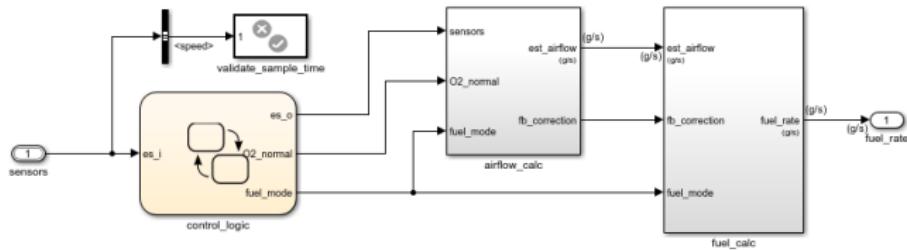
BSMC Results

- The model uses sensors for some key measurements: EGO (exhaust gas residual oxygen), engine speed, throttle, pressure
- If all sensors work well, it is rather easy to control the actuators so that the air/fuel ratio is 14.6
 - the actuator is on the fuel rate
- But sensors may fail: the controller is able to detect such failures and adjust actuators accordingly
- If more than one sensor fail, the engine is shut down
- We need a stochastic system, thus sensor failures are made probabilistic
 - independent Poisson processes with different arrival rates:
$$\mathbb{P}(N(t) = n) = \frac{\lambda^n t^n}{n! e^{\lambda t}}$$
- The other parts of the system are deterministic
 - there should be the throttle command as input, but it is replaced by a triangular deterministic input

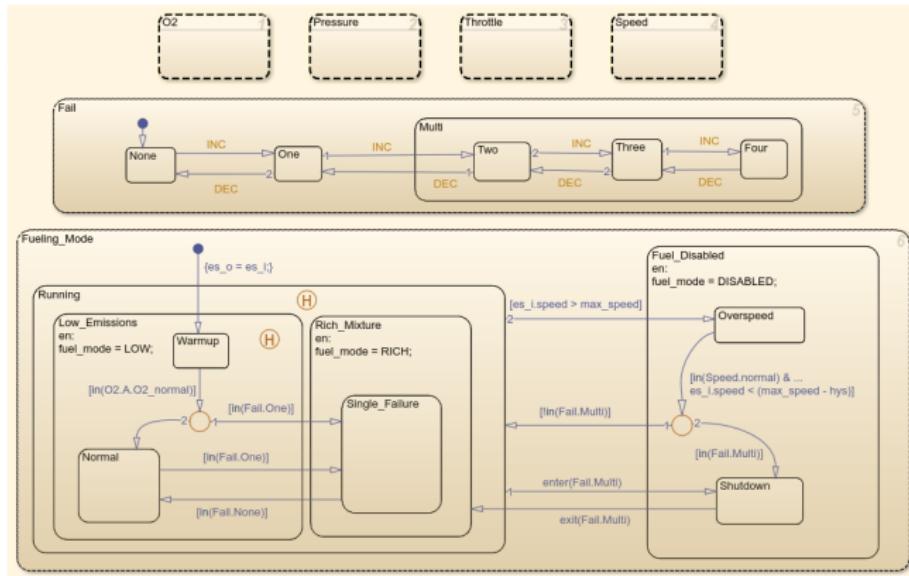
BSMC Results



BSMC Results



BSMC Results



BSMC Results

- BLTL formula to be checked: $\neg \mathbf{F}^{100} \mathbf{G}^1 \text{FuelFlowRate} = 0$
 - it must not happen that, within 100 seconds, the fuel flow rate becomes zero for 1 second
- Different experiments varying:
 - $(\delta, c) \in \{0.05, 0.01\} \times \{0.99, 0.999\}$ (4 possible pairs)
 - fault rates for sensors in $\{(3, 7, 8), (10, 8, 9), (20, 10, 20), (30, 30, 30)\}$
- The C-H bound is also computed: how many experiments should be done with the Chernoff-Hoeffding methodology

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

BSMC Results

Table 3 Posterior mean/number of samples for estimating probability of (15) with uniform prior and $\delta = 0.05$, and sample size required by the Chernoff-Hoeffding bound [27]

		Interval coverage c	
		0.99	0.999
Fault rates	(3 7 8)	0.3569/606	0.3429/972
	(10 8 9)	0.8785/286	0.8429/590
	(20 10 20)	0.9561/112	0.9625/158
	(30 30 30)	0.9778/43	0.9851/65
C-H bound		922	1382

Table 4 Posterior mean/number of samples when estimating probability of (15) with uniform prior and $\delta = 0.01$, and sample size required by the Chernoff-Hoeffding bound [27]

		Interval coverage c	
		0.99	0.999
Fault rates	(3 7 8)	0.3558/15205	0.3563/24830
	(10 8 9)	0.8528/8331	0.8534/13569
	(20 10 20)	0.9840/1121	0.9779/2583
	(30 30 30)	0.9956/227	0.9971/341
C-H bound		23026	34539