

Automated Verification of Cyber-Physical Systems

A.A. 2022/2023

Corso di Laurea Magistrale in Informatica

System Level Formal Verification

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

Embedded Systems

- One of the tasks given to computers from the very start: monitoring and/or controlling some external system
 - where the “system” is anything without computational capabilities
 - 60s: guidance of missiles and Apollo Guidance System
- In the following, we will restrict our attention to control
- Thus, an embedded system is mainly composed by two parts: a controller and a plant
 - the plant must accept inputs able to modify its behaviour
 - the plant must also expose some output
- Nowadays, embedded systems are everywhere
 - may control something very little, like an electrical circuit (e.g., buck DC/DC converter)
 - or something very big, like an automobile or an aircraft

Embedded Systems: Closed-Loop System



UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification

- System level verification has the aim to discover errors to some (embedded) system considered as a whole
 - all components are considered together
 - we assume they have been separately tested before
- Typically done by testing
 - plant is nearly always replaced by a *simulator*
 - often built in Simulink or Modelica
 - HILS: Hardware-in-the-loop simulation
- System level formal verification: we want to apply Model Checking techniques

System Level Formal Verification

- In “standard” Model Checking, we are given
 - a non-deterministic Kripke Structure (KS)
 - an LTL or CTL property to be verified
- We get a PASS/FAIL response
 - possibly with a counterexample
- When we deal with complex embedded systems, having a KS is difficult
 - moreover: most plants are described by *real* variables, thus they have an infinite number of states
 - approximation may be ok for early verification, but here we want system level verification
 - with actual software involved

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification

- Thus, we want to apply Model Checking to the closed-loop system (SUV, System Under Verification) as:
 - a black-box controller
 - a simulator for the plant
- We are still interested in some property to be verified
 - let us suppose we have a safety property for starting
- How to accomplish such a task?
- The idea is: kind of Statistical Model Checking, but *exhaustive*
 - that is: perform simulations of the whole system (like in HILS) considering all possible scenarios

System Level Formal Verification

- This should be impractical, how can we do this?
- The idea is: if we see the system as a black-box, verification is about
 - (incontrollable) interactions with the external environment
 - (incontrollable) “hardware” (i.e., parts of the plant) failures
 - (incontrollable) changes in the plant simulation parameters
- Interactions between the plant and the controller are inside the system
 - as a consequence of the variations listed above
- We can see all of this as *inputs* to our closed-loop system
- A system is *not* expected to withstand *any* combination of the preceding
 - e.g., if we put an airplane inside a violent windshire, we cannot expect its controller to safely land it

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Requirements

- Requirement 1: we can write a model for the meaningful interactions between the system and the environment
 - “meaningful”: those we want to verify
- In the following, we will call such interactions as *disturbances*
 - because they are deviations from the current behaviour
 - e.g., if we move an inverted pendulum while it is upright and still, we are disturbing it
 - causing its controller to react and return it upright and still
- As in Statistical Model Checking, we consider a bounded verification
 - thus, we are interested in *finite sequences* of possible disturbances
 - e.g., move the inverted pendulum, then move it again before it is returned upright

System Level Formal Verification: Requirements

- Requirement 2: the simulator for the plant accepts the following commands
 - I** d : inject disturbance d
 - will modify the plant behaviour
 - that is, the following **R** commands
 - R** t : compute the evolution of the plant within t units of time
 - this is the main function for all simulators...
 - S** / save the current simulator state with id /
 - F** / free the simulator state with id /
 - L** / load (i.e., restore) the simulator state with id /
 - simulator states are saved in some permanent memory, e.g., files on disk
 - $S_1, S_1 /, S_2, L /, S_3$, where S_i are command sequences, is equivalent to the command sequences S_1, S_2 (restart) S_1, S_3

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Requirements

- A sequence $\mathbf{R} t_1, \mathbf{S} l, \mathbf{R} t_2, \mathbf{L} l, \mathbf{R} t_3$ is equivalent to the following *two* simulations: $\mathbf{R} t_1 + t_2$ and $\mathbf{R} t_1 + t_3$
 - in the middle, the system simulation is restarted from time 0
- A sequence $\mathbf{I} d, \mathbf{R} t$ is equivalent to:
 - modify the simulator by changing some plant parameters
 - each disturbance corresponds to a modification of a selection of plant parameters
 - “modification”: change the value
 - run a simulation for t units of time with the new plant model
- A sequence $\mathbf{R} t_1, \mathbf{I} d, \mathbf{R} t_2$ is equivalent to:
 - modify the simulator so that the d parameters changing happens after t_1 units of time
 - e.g., in Modelica, this could be done with an `if` inside the `main whensample`, if any
 - run a simulation for $t_1 + t_2$ units of time

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e della Matematica

System Level Formal Verification: Requirements

- A sequence **R** t_1 , **I** d , **S** l , **R** t_2 , **L** l , **R** t_3 is equivalent to:
 - modify the simulator for d after t_1 units of time
 - perform simulations **R** $t_1 + t_2$ and **R** $t_1 + t_3$
- A sequence **R** t_1 , **S** l , **R** t_2 , **I** d_1 , **R** t_3 , **L** l , **I** d_2 , **R** t_4 is equivalent to
 - modify the simulator for d_1 after $t_1 + t_2$ units of time
 - modify the simulator for d_2 after t_1 units of time
 - perform simulations **R** $t_1 + t_2 + t_3$ and **R** $t_1 + t_4$
 - is this correct????

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Requirements

- *Simulation campaign*: any *finite* sequence of simulator commands
 - finite because we are performing bounded verification
- We assume that we can write some software which takes as input a simulation campaign and executes it on the simulator
 - we call it *driver*
 - either within the simulator or with some external script
 - e.g.: in Simulink, we may use Simulink scripts
 - e.g.: in Modelica, we have to use something external
 - we can write model-independent Simulink and Modelica drivers

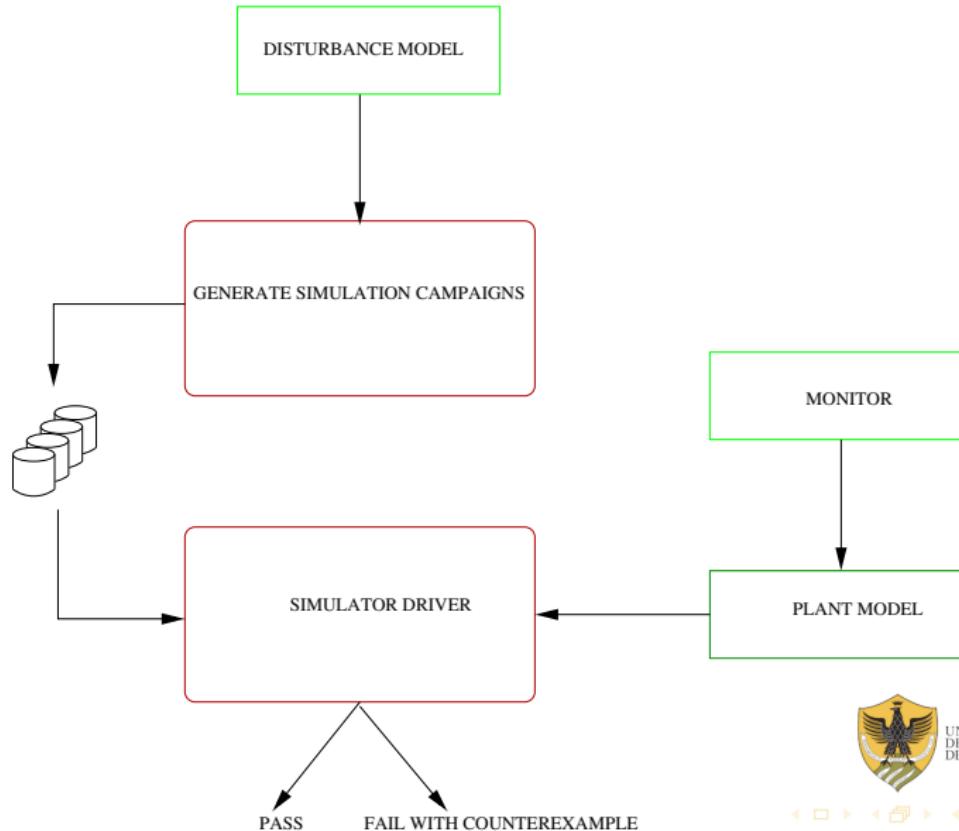
System Level Formal Verification: Modeling

- Thus, we need two models:
 - disturbance model
 - plant model
- Plus the actual software for the controller
 - which directly interacts with the plant model
 - e.g., using external functions, available both in Modelica and Simulink
 - in the following, we will consider it embedded in the plant model

System Level Formal Verification: Modeling

- In embedded systems design a simulation model for the plant is always built
- Thus, the only modeling required is that of the disturbance model
 - we are performing a kind of exhaustive functional testing
 - exhaustive w.r.t. the given disturbance model
- We also need to enlarge the existing plant model with a *monitor*
 - when an error is found, a boolean variable will become one
 - equivalent to specify a bounded safety property

System Level Formal Verification: Architecture



System Level Formal Verification: Definitions

- Let $d \in \mathbb{N}^+$ be a positive integer
 - total number of disturbances is $d + 1$
 - 0 is a special value for “no disturbance”
- A *discrete event sequence* is a function $u : \mathbb{R}^{\geq 0} \rightarrow [0, d] \cap \mathbb{N}$ s.t., for all $t \in \mathbb{R}^{\geq 0}$, $\text{card}(\{\tilde{t} \mid 0 \leq \tilde{t} \leq t \wedge d(\tilde{t}) \neq 0\}) < \infty$
 - that is: given a time t , $u(t)$ returns the disturbance at time t
 - thus, we are requiring that it is almost always without disturbances
 - i.e., some disturbance happens only in a finite number of times
- Let $\mathcal{U}_d = \{u \mid u \text{ is a discrete event sequence for } d\}$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Definitions

- An *event list* is a sequence $(u_0, \tau_0), (u_1, \tau_1), \dots$ s.t., for all $i \geq 0$, $u_i \in [0, d] \cap \mathbb{N}$, $\tau_i \in \mathbb{R}^{\geq 0}$
 - not only disturbances, but also their durations
- For each event list there is a unique discrete event sequence u defined as:
 - $u(0) = u_0$
 - $u(t) = u_h$ if $t = \sum_{i=0}^{h-1} \tau_i$ for some $h \geq 1$
 - $u(t) = 0$ otherwise
- The viceversa also holds (derive the formula by yourself)

System Level Formal Verification: Definitions

- A *Discrete Event System* (DES) is a tuple $\mathcal{H} = \langle S, s_0, d, O, \text{flow}, \text{jump}, \text{output} \rangle$ where:
 - S is a (possibly infinite) set of states; $s_0 \in S$ is the initial state
 - Cartesian product of the domains of the state variables
 - d is the number of disturbances (defines the *input space* \mathcal{U}_d)
 - O is a (possibly infinite) set of output values
 - useful to define the monitor
 - output : $S \rightarrow O$, i.e., each state defines an output
 - flow : $S \times \mathbb{R}^{\geq 0} \rightarrow S$
 - dynamics without disturbances: $\text{flow}(s, t)$ is the state reached after t units of time, starting from state s
 - w.r.t. hybrid systems, this may also result in location changes!
 - $\text{flow}(s, 0) = s$
 - jump : $S \times [0, d] \rightarrow S$
 - dynamics with disturbances: $\text{jump}(s, d)$ is the state reached when disturbance d is applied in state s
 - $\text{jump}(s, 0) = s$

System Level Formal Verification: Definitions

- The *state function* of a DES tells us in which state we go after some simulation time
 - starting from s_0 and considering intervening disturbances in a discrete even sequence
 - our DES are *deterministic*, thus there is only one such state
- Given a DES $\mathcal{H} = \langle S, s_0, d, O, \text{flow}, \text{jump}, \text{output} \rangle$, the *state function* of \mathcal{H} is $\phi : \mathcal{U}_d \rightarrow S$ s.t.:
 - $\phi(u, 0) = \text{jump}(s_0, u(0))$
 - i.e., if there is some disturbance at time 0, let us begin from the resulting state
 - otherwise, we begin from s_0
 - for each $t > 0$, $\phi(u, t) = \text{jump}(\text{flow}(\phi(u, t^*), t - t^*), u(t))$
 - $t^* = \max\{\tilde{t} \mid \tilde{t} < t \wedge u(\tilde{t}) \neq 0\}$
 - with $\max \emptyset = 0$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

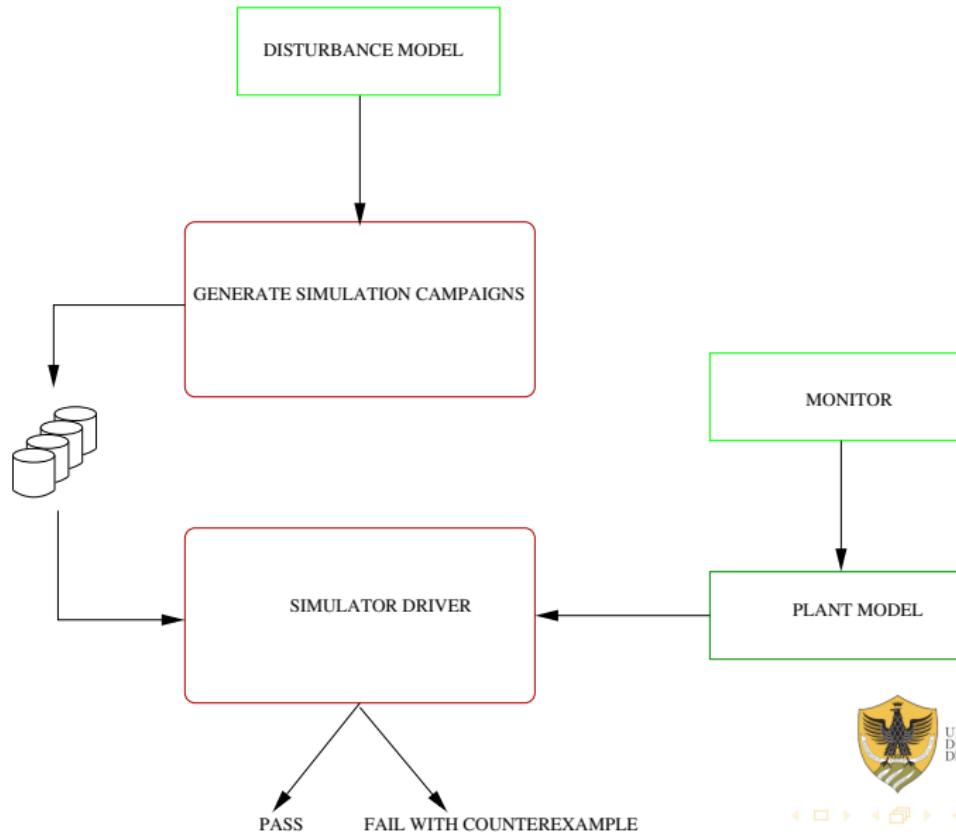
System Level Formal Verification: Definitions

- We may view the *state function* in a more computation-like way
- Given a DES $\mathcal{H} = \langle S, s_0, d, O, \text{flow}, \text{jump}, \text{output} \rangle$, a discrete event sequence u and a time t :
 - ① compute the (minimal) event list $(u_0, \tau_0), (u_1, \tau_1), \dots, (u_n, \tau_n)$ corresponding to u
 - must be finite by definition of discrete event sequence
 - ② with $s = s_0$ as initialization, for $i = 0, \dots, n$:
 - ① let s be $\text{jump}(s, u_i)$
 - ② let s be $\text{flow}(s, \tau_i)$
 - ③ output s

System Level Formal Verification: Definitions

- We also need the *output function* of a DES
 $\mathcal{H} = \langle S, s_0, d, O, \text{flow}, \text{jump}, \text{output} \rangle$
 - easy when we have the state function
- Namely, $\psi : \mathcal{U}_d \times \mathbb{R}^{\geq 0} \rightarrow O$ is defined as
 $\psi(u, t) = \text{output}(\phi(u, t))$
- Monitor: when the safety property becomes false, the output is false
 - this is the only output we need
 - once is false, it must stay false, otherwise we may not realize it
- A *monitored DES* is a tuple $\mathcal{H} = \langle S, s_0, d, \text{flow}, \text{jump}, \text{output} \rangle$ s.t.
 - $\langle S, s_0, d, \{0, 1\}, \text{flow}, \text{jump}, \text{output} \rangle$ is a DES
 - for all $u \in \mathcal{U}_d$, $\psi(u, t)$ is non-increasing w.r.t. t

System Level Formal Verification: Architecture



Modeling the Disturbances

- The system part is now ok: a Monitored DES encompasses the closed-loop system and the property monitor
 - let us go with the disturbance model
- The “Generate simulation campaign” part is divided in two parts
 - from a model of disturbances, generate all possible sequences of disturbances (*disturbance traces*) of length T
 - from sequences of disturbances, generate the optimized simulation campaigns
- Thus, we need some model able to define complex disturbance traces
 - e.g.: in a given trace, d_1 only occurs at most three times but never immediately after d_2

Modeling the Disturbances

- One possible way is using a standard Model Checker
- Here, we will use CMurphi: each rule corresponds to a disturbance
 - by suitably using rule guards, we may implement any wanted logic behind disturbance traces
 - see attached example
- By suitably modifying the CMurphi source code, we may generate disturbance traces as required
- Also a slight modification to the input language is required to introduce *final states*

Modeling the Disturbances: Definitions

- A *disturbance generator* (DG) is a tuple $\mathcal{D} = \langle Z, d, \text{dist}, \text{adm}, Z_I, Z_F \rangle$ where:
 - Z is a finite set of states
 - $Z_I, Z_F \subset Z$ are the subsets of initial and final states
 - $d \in \mathbb{N}^+$ is again the number of disturbances
 - $\text{adm} : Z \times [0, d] \cap \mathbb{N} \rightarrow \{0, 1\}$ defines the disturbances admitted at a given state
 - $\text{dist} : Z \times [0, d] \cap \mathbb{N} \rightarrow Z$ defines the deterministic transition relation
 - but CMurphi was nondeterministic!
 - yes, but here we are adding the disturbance, i.e., the rule getting fired...
- Easy to show that this is equivalent to a Kripke Structure

Modeling the Disturbances: Definitions

- Let $\mathcal{D} = \langle Z, d, \text{dist}, \text{adm}, Z_I, Z_F \rangle$ be a DG
- A *disturbance path* of length h for \mathcal{D} is a sequence $z_0 d_0 \dots z_{h-1} d_{h-1} z_h$ where:
 - $z_0 \in Z_I, z_h \in Z_F$: we start from an initial and end in a final state
 - $\forall i = 0, \dots, h-1. \text{adm}(z_i, d_i) = 1$
 - $\forall i = 0, \dots, h-1. \text{dist}(z_i, d_i) = z_{i+1}$
 - the DG semantics is preserved
- A *disturbance trace* is a sequence $\delta = d_0 \dots d_{h-1}$ s.t. there exists a disturbance path $z_0 d_0 \dots z_{h-1} d_{h-1} z_h$ for \mathcal{D}
- We define $\Delta_{\mathcal{D}}^h = \{\delta \mid \delta \text{ is a disturbance trace for } \mathcal{D} \wedge |\delta| = h\}$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification Problem

- We can now formally define the overall problem we want to verify
 - for standard model checking it was: you have a Kripke Structure and a property, tell me if the property holds
 - with suitably defined semantics for the property holding on a Kripke Structure
- Here things are slightly more complicated: we also need a *time step* τ
 - not very strange: also simulators use some simulator step to perform simulations
- τ allows us to go from disturbance traces to event lists (and discrete event sequences)
 - from $\delta = d_0, \dots, d_{h-1}$ to $(d_0, \tau) \dots (d_{h-1}, \tau)$
 - we denote with $u(\delta)$ the discrete event sequence

System Level Formal Verification Problem

- Given an MDES \mathcal{H} and a DG \mathcal{D} , a *System Level Formal Verification Problem* (SLFVP) is a tuple $\mathcal{P} = \langle \mathcal{H}, \mathcal{D}, \tau, h \rangle$ where
 - $\tau \in \mathbb{R}^+, h \in \mathbb{N}^+$
 - d is the same both in \mathcal{H} and in \mathcal{D}
- Let ψ be the output function for \mathcal{H} , then the *answer* to \mathcal{P} is
 - $\langle \text{FAIL}, \delta \rangle$ if $\delta \in \Delta_{\mathcal{D}}^h$ is s.t. $\psi(u_{\tau}(\delta), \tau h) = 0$
 - PASS if such a $\delta \in \Delta_{\mathcal{D}}^h$ does not exist

System Level Formal Verification Problem

- Two main assumptions:
 - disturbances cannot happen at any time, but only at multiple times of τ
 - disturbances traces are of length h
 - which implies that the total simulation time is $T = h\tau$
- The larger h and smaller τ , the closest we are to reality
 - as for h , it is the same of Bounded Model Checking and Statistical Model Checking
- No physical system can withstand arbitrarily (time) close disturbances
 - any operational scenario can be modelled with the desired precision by suitably choosing τ and h

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

System Level Formal Verification: Algorithms

- To simulate a MDES, we rely on existing simulators
 - Simulink, Modelica, NGSpice...
- As for the “Generate simulation campaign”, is divided in two parts
 - from a model of disturbances, generate all *disturbance traces* of length h
 - from sequences of disturbances, generate the optimized simulation campaigns
- Let us see how this is implemented

Generating all Disturbance Traces: Algorithm

```
function generateByDFS( $\mathcal{D}$ ,  $T$ ):
1:  $S_Z \leftarrow \emptyset$ ,  $S_D \leftarrow \emptyset$ ,  $DistTraces \leftarrow \emptyset$ ,  $c \leftarrow 1$ 
2: Push( $S_Z$ ,  $z_0$ ), Push( $S_D$ , 1),  $\delta_0 \leftarrow c$ ,  $c \leftarrow c + 1$ 
3: while StackIsNotEmpty( $S_Z$ ) do
4:    $z \leftarrow Top(S_Z)$ ,  $\tilde{d} \leftarrow Top(S_D)$ 
5:   if  $\tilde{d} \leq d$  then
6:      $Top(S_D) \leftarrow \tilde{d} + 1$ 
7:     if  $adm(z, \tilde{d})$  then
8:        $\delta_{|S_Z|} \leftarrow (\tilde{d}, c)$ ,  $c \leftarrow c + 1$ 
9:       if  $|S_Z| \leq T$  then
10:         Push( $S_Z$ ,  $dist(z, \tilde{d})$ ), Push( $S_D$ , 1)
11:       else
12:         if  $z \in Z_F$  then  $DistTraces \leftarrow DistTraces \cup \delta$ 
13:       else
14:         Pop( $S_Z$ ), Pop( $S_D$ )
15: return  $DistTraces$ 
```


UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

Generating all Disturbance Traces: Algorithm

- This is for one initial state only, easy to generalize
- Standard non-recursive DFS
 - two stacks, one for states, one for rules
- Main difference 1: no check for already visited states
 - we are interested in transitions, so states may and must be visited multiple times
 - the bound T guarantees termination
- Main difference 2: the disturbance traces also encompass *labels*
 - simply a growing integer c
- Will be used by the simulation campaign generator

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Generating Simulation Campaigns: Definitions

- A *DES Simulator* is a tuple $\mathcal{S} = \langle \mathcal{H}, \mathcal{L}, \mathcal{W}, m \rangle$ where:
 - $\mathcal{H} = \langle \mathcal{S}, s_0, d, \mathcal{O}, \text{flow, jump, output} \rangle$ is a DES
 - \mathcal{L} is a set of labels
 - $m \in \mathbb{N}^+$ is the maximum number of states the simulator can store
 - \mathcal{W} is a set of simulator states s.t., for all $w \in \mathcal{W}$, $w = (s, u, M)$ and:
 - $s \in \mathcal{S} \cup \perp$ (a DES state or a sink state)
 - $u \in \mathcal{U}_d$ (an event list)
 - $M \subseteq \mathcal{L} \times \mathcal{S} \times \mathcal{U}_d$ s.t., for each $l \in \mathcal{L}$, there exist at most one triple $(l, s, u) \in M$
 - $|M| \leq m$
 - the DES simulator initial state is $(s_0, \emptyset, \emptyset)$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Generating Simulation Campaigns: Definitions

- The dynamics of a DES Simulator is simulator is defined on the basis of simulation campaign commands
- That is, we need to define $\text{sim}_{\mathcal{S}} : W \times C \rightarrow W$
- Where C is the set of the following commands:
 - $\text{load}(l)$ for $l \in L$
 - $\text{store}(l)$ for $l \in L$
 - $\text{free}(l)$ for $l \in L$
 - $\text{run}(t)$ for $t \in \mathbb{N}^+$
 - $\text{inject}(\tilde{d})$ for $\tilde{d} \in [0, d] \cap \mathbb{N}$
- Thus, we define $\text{sim}_{\mathcal{S}}$ by cases

Generating Simulation Campaigns: Definitions

- $\text{sim}_{\mathcal{S}}(s, u, M, \text{load}(l)) = (s', u', M)$, being $(l, s', u') \in M$
- $\text{sim}_{\mathcal{S}}(s, u, M, \text{free}(l)) = (s, u, M \setminus \{(l, s', u')\})$
- $\text{sim}_{\mathcal{S}}(s, u, M, \text{store}(l)) = (s, u, M \cup \{(l, s, u)\})$ if $|M| < m$
- $\text{sim}_{\mathcal{S}}(s, u, M, \text{run}(t)) = (\text{flow}(s, t\tau), u \cdot (0, t), M)$
- $\text{sim}_{\mathcal{S}}(s, u, M, \text{inject}(\tilde{d})) = (\text{jump}(s, \tilde{d}), u \cdot (\tilde{d}, 0), M)$
- Plus error checking, not considered here
 - e.g., trying to free something which was not stored
 - e.g., trying to store when memory is already full
 - e.g., trying to store without freeing first (if already present)

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

Generating Simulation Campaigns: Definitions

- A simulation campaign is a sequence $\chi = c_0(a_0) \dots c_k(a_k)$ of commands as above
 - note that k and h are independent
- A χ identifies a sequence w_0, \dots, w_k s.t., for all $i = 0, \dots, k-1$, $\text{sim}_{\mathcal{S}}(w_i, c_i(a_i)) = w_{i+1}$ and $w_i = (s_i, u_i, M_i)$
 - by construction, u_i leads from s_0 to s_i
- This also defines the *output sequence*
 $\text{output}(s_0) \dots \text{output}(s_k)$
- Less straightforward: the *event list sequence* associated to χ
 - watch out: a sequence of lists...
 - $U(\chi) = u_{j_1}, \dots, u_{j_\ell}, u_k$ where ℓ is the number of load commands in χ
 - for $r = 1, \dots, \ell$, j_r is the index of the r -th load command in

UNIVERSITÀ
DELL'AQUILA

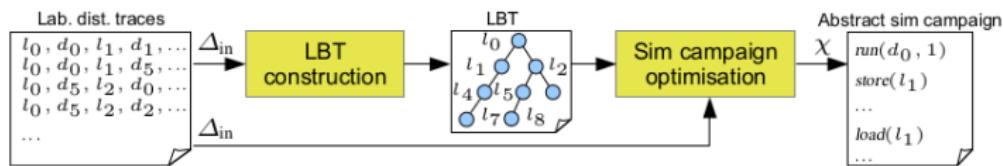
DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

Generating Simulation Campaigns: Definitions

- Let $d \in \mathbb{N}^+$ and L be countably infinite set of labels. A *labelling* is an injective $\lambda : ([0, d] \cap \mathbb{N})^* \rightarrow L$
 - from finite sequence of integers to labels
- The labelling of a disturbance trace $\delta = d_0 \dots d_{h-1}$ is $\lambda(\delta) = l_0 d_0, \dots, h_{h-1} d_{h-1} l_h$
 - for all $i = 0, \dots, h$, $l_i = \lambda(d_0, \dots, d_{i-1})$
- Thus, the algorithm for disturbance traces given above returns labelled disturbance traces
- Let us go with the simulation campaign generation

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica



Generating Simulation Campaigns: Algorithm

- A *Labels Branching Tree* (LBT) is a DAG where nodes are labels
- There is an edge (l, l') iff $\exists \delta, \delta' \in \Delta_{\text{in}}$ s.t.
 - $\delta = l_0, d_0, \dots, d_{h-1} l_h, \delta' = l'_0, d'_0, \dots, d'_{h-1} l'_h$
 - $\exists i = 0, \dots, h-1 : d_i \neq d'_i \wedge \forall j = 0, \dots, i-1. l_j = l'_j \wedge d_j = d'_j$
 - $l = l_i, l' = l'_i$
 - that is, if there are two traces which differs by (l, l') for the first time, l, l' will be siblings in the LBT
- Branching labels represent simulator states whose storing may save simulation time (by loading them back later)
- The LBT generation keeps into account that memory to store states is limited by m
 - thus, the result is optimal only for at most m states stored

Generating Simulation Campaigns: Algorithm

```
22 function buildLBT( $\Delta^\lambda$ )
23   LBT  $\leftarrow$  empty tree of labels;
    /* for each  $l \in LBT$ ,  $LBT[l].lastTrace$  stores the index of last trace
       where it is known to occur */
24   watched  $\leftarrow$  empty array [0.. $h - 1$ ] of labels;
25   let  $l_0$  be the first label common to all traces in  $\Delta^\lambda$ ;
26   set  $l_0$  as the root of LBT with  $LBT[l_0].lastTrace \leftarrow |\Delta^\lambda|$ ;
27   watched[0]  $\leftarrow l_0$ ;
28    $i \leftarrow 0$ ;
29   foreach  $\delta^\lambda = l_0, d_0, \dots, l_{h-1}, d_{h-1}, l_h$  in  $\Delta^\lambda$  do
30      $i++$ ; /*  $\delta^\lambda$  is the  $i$ -th trace in  $\Delta^\lambda$  */
31     for  $t \leftarrow 0$  to  $h - 1$  s.t.  $l_t \in LBT$  do  $LBT[l_t].lastTrace \leftarrow i$ ;
32      $t_{lbt} \leftarrow \max t$  s.t.  $l_t \in LBT$ ;
33      $t_w \leftarrow \max t$  s.t.  $l_t \in \text{watched}$ ;
34     if  $t_{lbt} \neq t_w$  then
        /* label  $l_{t_w} \notin LBT$ : add it */
35        $t_{child} \leftarrow \min t > t_w$  s.t.  $\text{watched}[t_{child}] \in LBT$  (if any);
36       add  $l_{t_w}$  to LBT as child of  $l_{t_{lbt}}$  with  $LBT[l_{t_w}].lastTrace = i$ ;
37       move  $l_{t_{child}}$  (if any) as to be child of  $l_{t_w}$  in LBT;
38     foreach  $t \leftarrow t_w + 1$  to  $h - 1$  do  $\text{watched}[t] \leftarrow l_t$ ;
        /* watched now contains labels of the last trace */
39   return LBT;
```

Generating Simulation Campaigns: Algorithm

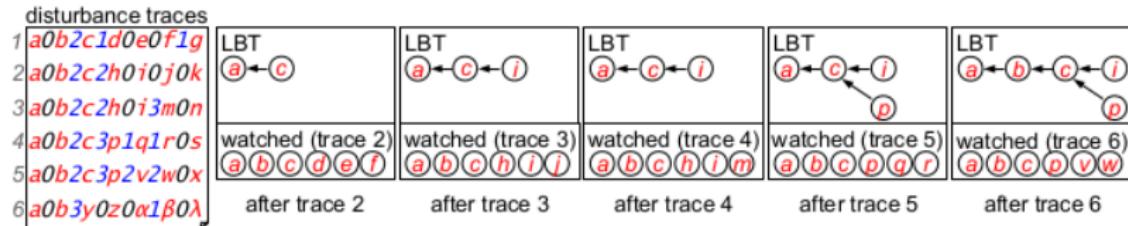
- Given the LBT \mathcal{L} , the output simulation campaign χ is computed by scanning again Δ_{in}
- For $\delta = l_0, d_0, \dots, d_{h-1}, l_h \in \Delta_{in}$, let r be the higher (i.e., rightmost) index s.t. l_r is in some already generated load command and is in the LBT
- Append to χ first $load(l_r)$ and then one of the following:
 - $inject(\tilde{d})$, $run(t)$ where:
 - in δ there is a subsequence $l_r \tilde{d} l_{r+1} 0 \dots 0 l_{r+t} \hat{d} \hat{l}$
 - $\hat{d} \neq 0$
 - $inject(\tilde{d})$, $run(t)$, $store(\hat{l})$ where:
 - in δ there is a subsequence $l_r \tilde{d} l_{r+1} 0 \dots 0 l_{r+t} \hat{d} \hat{l}$
 - \hat{l} needs to be stored, i.e., \hat{l} is in the LBT and it will occur again in another $\delta' \in \Delta_{in}$
 - $inject(\tilde{d})$, $run(t)$, $free(\bar{l})$, $store(\hat{l})$ where:
 - if memory is already full, for a suitably chosen \bar{l}

Generating Simulation Campaigns: Algorithm

Input: Δ^λ , a labelled lex-ordered sequence of disturbance traces

Output: χ , the computed simulation campaign, initially empty

```
1 LBT  $\leftarrow$  buildLBT( $\Delta^\lambda$ );
2 let  $l_0$  be the first label common to all traces in  $\Delta^\lambda$ ;
3 stored  $\leftarrow$  empty set of labels; /* inv: stored  $\subseteq$  LBT and  $|\text{stored}| \leq h$  */
4 append store( $l_0$ ) to  $\chi$  and add  $l_0$  to stored;
5  $i \leftarrow 0$ ;
6 foreach  $\delta^\lambda = l_0, d_0, \dots, l_{h-1}, d_{h-1}, l_h$  in  $\Delta^\lambda$  do
7    $i++$ ; /*  $\delta^\lambda$  is the  $i$ -the trace in  $\Delta^\lambda$  */
8    $t_{\text{load}} \leftarrow \max t$  s.t.  $l_t \in \text{stored}$ ;
9   append load( $l_{t_{\text{load}}}$ ) to  $\chi$ ;
10  foreach label  $\bar{l} \in \text{stored}$  s.t. LBT[ $l$ ].lastTrace  $\leq i$  do
11    append free( $\bar{l}$ ) to  $\chi$ ;
12    remove  $\bar{l}$  from stored;
13     $\hat{d} \leftarrow d_{t_{\text{load}}}$ ;  $steps \leftarrow 1$ ;
14    for  $t \leftarrow t_{\text{load}} + 1$  to  $h - 1$  do
15       $toBeStored \leftarrow (l_t \in LBT - stored \text{ and } LBT[l_t].lastTrace > i)$ ;
16      if toBeStored or  $d_t \neq 0$  then
17        append run( $\hat{d}$ ,  $steps$ ) to  $\chi$ ;  $\hat{d} \leftarrow d_t$ ;  $steps \leftarrow 1$ ;
18        if toBeStored then
19          append store( $l_t$ ) to  $\chi$  and add  $l_t$  to stored;
20      else  $steps++$ ;
21  return  $\chi$ ;
```



(a)

```
store(a)
load(a) run(0,1) store(b) run(2,1) store(c) run(1,3) run(1,1)
load(c) run(2,2) store(i) run(0,2)
load(i) free(i) run(3,2)
load(c) run(3,1) store(p) run(1,1) run(1,2)
load(p) free(p) free(c) run(2,1) run(2,2)
load(b) free(b) free(a) run(3,3) run(1,2)
```

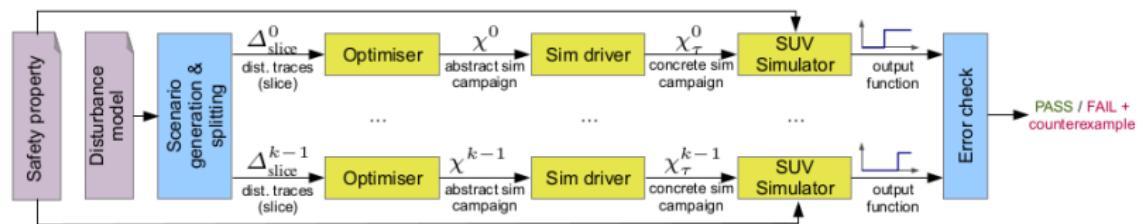
(b)

System Level Formal Verification: Theorem

- As a corollary, if an error is present in the specified disturbance traces, our method will find it
- Formally, let $\mathcal{P} = \langle \mathcal{H}, \mathcal{D}, \tau, h \rangle$ be a SLFVP, \mathcal{S} a simulator for \mathcal{H} and $\Delta_{\mathcal{D}}^h$ be the set of all labeled disturbance traces of length h . Let χ be the simulation campaign as computed above.
- Then, the answer to \mathcal{P} is FAIL iff the sequence of simulator states contains (s, u, M) s.t. $\text{output}(s) = 0$
- Thus, our approach is *sound* (no false positives) and *complete* (no false negatives)

System Level Formal Verification

For now, suppose $k = 1$



Experimental Results

SUV: Fuel Control System from Simulink; variable `fuel_air` is never 0 for more than 1s

h	time (h:m:s)	#traces	file size (MB)
50	0:13:55	448,105	195.725
60	0:3:29	805,075	420.743
70	0:6:35	1,314,145	799.584
80	0:11:41	2,002,315	1,390.157
90	0:21:34	2,896,585	2,259.642
100	0:28:39	4,023,955	3,484.489

(a) Disturbance trace generation

k	time (h:m:s)	slice size (MB)
2	0:0:14	1,742.244
4	0:0:14	871.122
8	0:0:15	435.561
16	0:0:14	217.78
32	0:0:14	108.89
64	0:0:13	54.445

(b) Instance $h = 100$ splitting

k	#traces	LBT size	$m = 1$		$m = 100,000$		%opt
			time	#cmds	time	#cmds	
2	2,011,977	670,661	0:3:14	16,040,520	3:47:57	8,047,912	79.42%
4	1,005,988	335,331	0:2:28	8,012,662	1:45:04	4,023,955	83.32%
8	502,994	167,666	0:0:35	4,001,378	0:44:27	2,011,978	86.49%
16	251,497	83,834	0:0:18	1,997,486	0:16:24	1,005,991	88.97%
32	125,748	41,918	0:0:07	996,660	0:4:50	502,996	90.87%
64	62,874	20,959	0:0:03	496,906	0:0:51	251,497	92.47%

(c) Simulation campaign optimisation ($h = 100$, time in h:m:s)

k	$m = 1$	$m = 100,000$	speedup
	time	time	
8	n/a	29, 13:50:12	$> 1.7 \times$
16	n/a	14, 6:39:09	$> 3.5 \times$
32	25, 23:07:43	6, 22:32:25	$3.8 \times$
64	12, 22:58:16	3, 9:19:18	$3.8 \times$

(d) Simulation (time in days, h:m:s)

‘n/a’ Simulation aborted after 50 days

k	offline				simulation	%offline		%online	
	gener.	split.	optimis.	total					
8	0:28:39	0:0:15	0:44:27	1:13:21	29, 13:50:12	0.17%	99.83%		
16	0:28:39	0:0:14	0:16:24	0:45:17	14, 6:39:09	0.22%	99.78%		
32	0:28:39	0:0:14	0:4:50	0:33:43	6, 22:32:25	0.34%	99.66%		
64	0:28:39	0:0:13	0:0:51	0:29:43	3, 9:19:18	0.31%	99.69%		

(e) Offline vs. online phase (time in days, h:m:s)

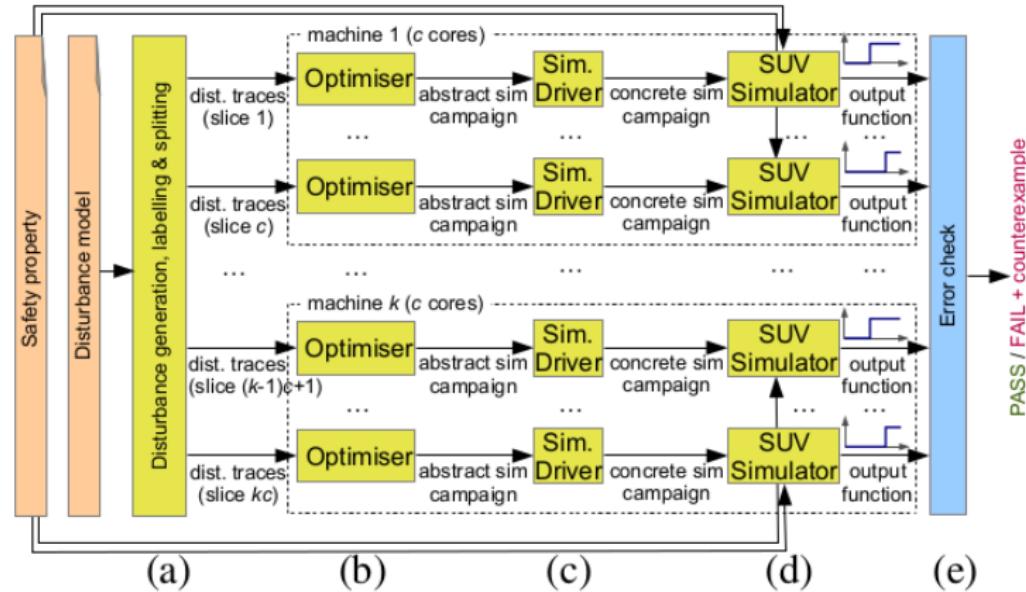
Multicore System Level Formal Verification

- If we have multiple processors, we may easily parallelize our computations
 - both with shared (multicore processors) or distributed memory (clusters)
 - also clusters where k nodes have c cores each
 - we will consider $K = kc$ as the overall number of cores available
- To start with, the generation of disturbance traces may be parallelized
 - an “orchestrator” may expand till horizon fT , for some $0 < f < 1$
 - and then leave the remaining subtree to a “slave” from the other $k - 1$ cores
- It may be shown that labels are ok
- However, this is not the main part to be improved

Multicore System Level Formal Verification

- Main advantage is in parallelizing the simulation campaign execution
 - simulation phase dominates the overall verification time
- To this aim, starting from the overall disturbances traces set Δ_{calID}^h , we must generate k simulation campaigns
- The idea is to perform this in 2 steps:
 - 1 “slice” Δ_{calID}^h in k equal parts
 - 2 for each slice, compute the corresponding simulation campaign

System Level Formal Verification



Multicore System Level Formal Verification

- Main advantage is in parallelizing the simulation campaign execution
 - simulation phase dominates the overall verification time
- To this aim, starting from the overall disturbances traces set Δ_{calD}^h , we must generate k simulation campaigns
- The idea is to perform this in 2 steps:
 - ① “slice” Δ_{calD}^h in k equal parts
 - all slices have the same length, thus this is easy
 - ② for each slice, compute the corresponding simulation campaign as before

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Multicore System Level Formal Verification

- First slicing and then optimizing is suboptimal
 - optimal would be to detect all maximal prefix of disturbance traces
 - so that they are stored once and then loaded when needed
- If two slices with a common prefix end up in different slices, no way to do this
- However, reading all disturbance traces file requires too computation time
 - easily a file of hundreds of GBs, or even TBs
- Thus, we are happy with a suboptimal solution

Multicore System Level Formal Verification: Results

#slices	#traces per slice	scSLFV optimiser	mcSLFV optimiser	time saving %
1	4,023,955	20:27:26	0:7:16	99.41%
2	2,011,977	3:47:57	0:9:43	95.74%
4	1,005,988	1:45:4	0:9:0	91.43%
8	502,994	0:44:27	0:5:27	87.74%
16	251,497	0:16:24	0:2:8	86.99%
32	125,748	0:4:50	0:0:57	80.34%
64	62,874	0:0:51	0:0:29	43.14%
128	31,437	0:0:35	0:0:17	51.43%
256	15,718	0:0:10	0:0:8	20.00%
512	7,859	0:0:5	0:0:4	20.00%

Table I: Comparison between scSLFV optimiser of [1] and our mcSLFV optimiser (time in h:m:s).

#mach	#slices	min	max	avg	stddev %	speedup	efficiency
8	64	180:3:0	205:19:57	194:17:52	4.979%	54.63×	85.35%
16	128	70:6:4	100:17:53	87:49:56	13.772%	111.56×	87.15%
32	256	44:0:27	57:57:27	48:34:6	10.323%	192.38×	75.15
64	512	18:32:36	26:49:4	23:2:19	11.110%	411.83×	80.43%

Table II: Statistics on the distributed ($k = \#machines$) multi-core ($c = 8$) execution of simulation campaigns (time in h:m:s).

Multicore System Level Formal Verification: Results

		scSLFV		mcSLFV		time saving %
#machines	#slices	time	#slices	time		
8	8	711:3:33	64	205:49:20	71.05%	
16	16	343:24:27	128	100:47:4	70.65%	
32	32	167:6:9	256	58:26:29	65.03%	
64	64	81:49:3	512	27:18:2	66.63%	

Table III: Completion time of the parallel simulation (i.e., completion time of the *longest* campaign) with respect to the approach of [1] (time in h:m:s).

Anytime System Level Formal Verification

- Suppose we have the K simulation campaigns and we are performing the verification phase
- Can we do something better than simply wait for it to finish?
 - as an example: in SAT, there are methodologies computing the coverage achieved so far
 - at “anytime” we can get an estimate of such coverage
- Here we are not interested simply in coverage: we want the Omission Probability (OP)
 - i.e., we want an upper bound to the probability that there is an error in a yet-to-be-simulated scenario
 - to be provided at any time, during the simulation phase

Anytime System Level Formal Verification

- Main difficulty: optimization comes from lexicographically ordered $\Delta_{\mathcal{D}}^h$
- In order to enable some kind of probability on traces, we need random permutations of $\Delta_{\mathcal{D}}^h$
- How to obtain this? see in the following

Generating Simulation Campaigns: Standard Algorithm

Input: Δ^λ , a labelled lex-ordered sequence of disturbance traces

Output: χ , the computed simulation campaign, initially empty

```
1 LBT  $\leftarrow$  buildLBT( $\Delta^\lambda$ );
2 let  $l_0$  be the first label common to all traces in  $\Delta^\lambda$ ;
3 stored  $\leftarrow$  empty set of labels; /* inv: stored  $\subseteq$  LBT and  $|\text{stored}| \leq h$  */
4 append store( $l_0$ ) to  $\chi$  and add  $l_0$  to stored;
5  $i \leftarrow 0$ ;
6 foreach  $\delta^\lambda = l_0, d_0, \dots, l_{h-1}, d_{h-1}, l_h$  in  $\Delta^\lambda$  do
7    $i++$ ; /*  $\delta^\lambda$  is the  $i$ -the trace in  $\Delta^\lambda$  */
8    $t_{\text{load}} \leftarrow \max t$  s.t.  $l_t \in \text{stored}$ ;
9   append load( $l_{t_{\text{load}}}$ ) to  $\chi$ ;
10  foreach label  $\bar{l} \in \text{stored}$  s.t. LBT[ $l$ ].lastTrace  $\leq i$  do
11    append free( $\bar{l}$ ) to  $\chi$ ;
12    remove  $\bar{l}$  from stored;
13     $\hat{d} \leftarrow d_{t_{\text{load}}}$ ;  $\text{steps} \leftarrow 1$ ;
14    for  $t \leftarrow t_{\text{load}} + 1$  to  $h - 1$  do
15       $\text{toBeStored} \leftarrow (l_t \in \text{LBT} - \text{stored} \text{ and } \text{LBT}[l_t].\text{lastTrace} > i)$ ;
16      if toBeStored or  $d_t \neq 0$  then
17        append run( $\hat{d}$ ,  $\text{steps}$ ) to  $\chi$ ;  $\hat{d} \leftarrow d_t$ ;  $\text{steps} \leftarrow 1$ ;
18        if toBeStored then
19          append store( $l_t$ ) to  $\chi$  and add  $l_t$  to stored;
20      else  $\text{steps}++$ ;
21 return  $\chi$ ;
```

Anytime System Level Formal Verification: Algorithm

Algorithm 1: Optimiser pseudo-code

Input: Δ^λ , a file holding a labelled lex-ordered sequence of disturbance traces

Output: χ , the computed simulation campaign

- 1 $\chi \leftarrow$ an empty sequence of commands;
- 2 $LBT \leftarrow buildLBT(\Delta^\lambda)$;
- 3 $\Delta_{rnd}^\lambda \leftarrow rsg(\Delta^\lambda)$;
- 4 $lastTraces \leftarrow$ a map associating to each label $l \in LBT$ the index of the last trace in Δ_{rnd}^λ where l occurs;
- 5 $stored \leftarrow$ empty set of labels ; /* invariant: $stored \subseteq LBT$ */
- 6 $l_0 \leftarrow$ first label common to all traces;
- 7 append $store(l_0)$ to χ ;
- 8 $stored \leftarrow stored \cup \{l_0\}$;
- 9 **foreach** δ^λ in Δ_{rnd}^λ **do**
- 10 $l_{load} \leftarrow$ right-most label of δ^λ in $stored$;
- 11 append $load(l_{load})$ to χ ;
- 12 append $free(l)$ to χ for each label $l \in stored$ which will never occur in later traces (according to $lastTraces$);
- 13 append to χ commands to simulate δ^λ (from l_{load}) and to store any intermediate states needed to speed-up simulation of later traces;
- 14 **return** χ ;

Anytime System Level Formal Verification: Example

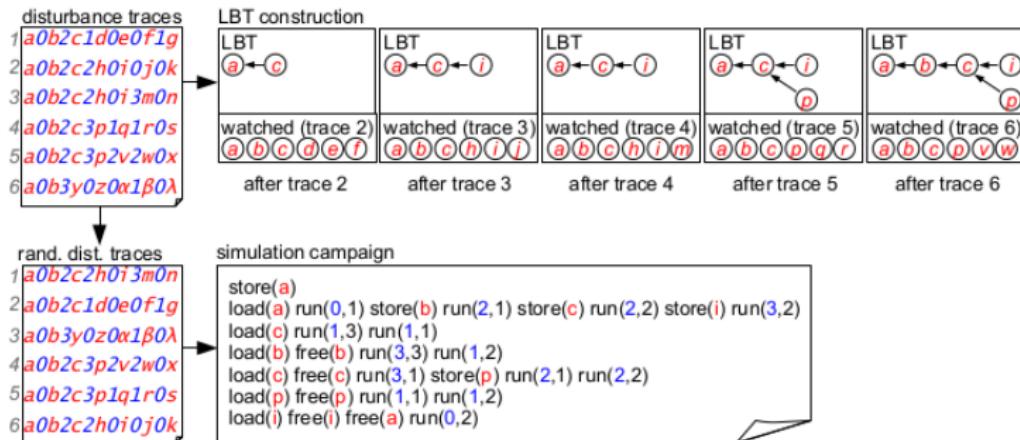


Fig. 5: Simulation campaign optimiser: construction of an LBT from 6 labelled traces in lex order, random sequence generation, and generation of the optimised campaign. Labels are shown as *red letters* and disturbances as *blue numbers*.

Anytime System Level Formal Verification: Definitions

- For a finite set $\Delta = \{\delta_0, \dots, \delta_{n-1}\}$, if denote $\text{Perm}(\Delta)$ as the set of all permutations of $\delta \in \text{Delta}$
 - i.e., $\text{Perm}(\Delta) = \{(\delta_{\pi(0)}, \dots, \delta_{\pi(n-1)}) \mid \pi : [0, n-1] \cap \mathbb{N} \rightarrow [0, n-1] \cap \mathbb{N} \text{ and } \pi \text{ is injective}\}$
 - for a $\hat{\Delta} = (\delta_0, \dots, \delta_{n-1}) \in \text{Perm}(\Delta)$, we write $\hat{\Delta}(i)$ for δ_i
 - recall that, in our setting, each δ is a disturbance sequence
- A *Random Sequence Generator* (RSG) for Δ is a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ s.t.:
 - $\Omega = \text{Perm}(\Delta)$ is the space of outcomes
 - $\mathcal{F} = 2^\Omega$ is the space of events
 - $\mathbf{P} : \mathcal{F} \rightarrow [0, 1]$ is the probability measure
 - in our setting, \mathbf{P} is uniform, thus $\mathbf{P}(\{\omega\}) = \mathbf{P}(\omega) = |\text{Perm}(\Delta)|^{-1} = (|\Delta|!)^{-1}$
 - being $|\Omega| < \infty$, $\forall E \in \mathcal{F}$. $\mathbf{P}(E) = \sum_{\omega \in E} \mathbf{P}(\omega)$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Anytime System Level Formal Verification: Definitions

- Let $\langle \mathcal{H}, \mathcal{D}, h, \tau \rangle$ be a SLFVP, let Δ be a set of disturbance traces and $(\Omega, \mathcal{F}, \mathbf{P})$ be an RSG for Δ .
- Furthermore, let $0 \leq q \leq |\Delta|$ be the current progress with the verification.
 - that is, we already simulated q out of $|\Delta|$ disturbance traces
- Then, the Omission Probability for Δ at stage q , denoted as $\text{OP}_{\mathcal{H}}(\Delta, q)$ is defined as $\mathbf{P}(\{\omega \mid A(\omega, q) \wedge B(\omega, q)\})$
 - $A(\omega, q) \equiv [\exists q < j \leq |\Delta| : \psi(\omega(j), h\tau)] = 0$
 - $B(\omega, q) \equiv [\forall 0 \leq j \leq q : \psi(\omega(j), h\tau)] = 1$
 - A stands for “after”, B stands for “before”

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

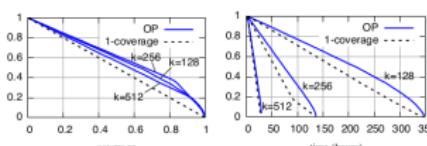
Anytime System Level Formal Verification: Theorem

- Let $\langle \mathcal{H}, \mathcal{D}, h, \tau \rangle$ be a SLFVP, let Δ be a set of disturbance traces and $(\Omega, \mathcal{F}, \mathbf{P})$ be an RSG for Δ . Furthermore, let $0 \leq q \leq |\Delta|$ be the current progress with the verification.
- Then, $\text{OP}_{\mathcal{H}}(\Delta, q) \leq 1 - \frac{q}{|\Delta|}$
 - at the end of the verification, $q = |\Delta|$...
- The previous definitions and this theorem are generalizable to k slices of Δ
- That is,
$$\text{OP}_{\mathcal{H}}(\Delta_0, \dots, \Delta_{k-1}, q_0, \dots, q_{k-1}) \leq 1 - \min_{1 \leq i < k} \frac{q_i}{|\Delta_i|}$$
 - being the k parallel verifications independent, all q_i may be different
 - taking the minimum means considering the **worst case**

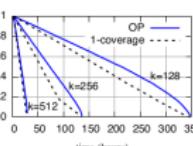
We pay the OP computation in terms of performance degradation

(a) Computation of simulation campaigns (time in h:m:s)

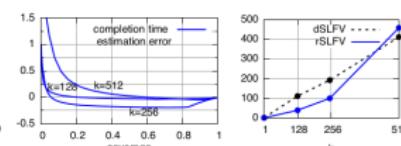
(b) Parallel execution of simulation runs using *tsLEM* and *eSLEM* (time in hours)



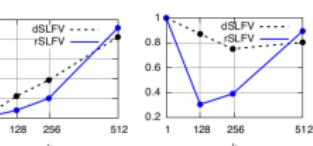
(c) OP against coverage



(d) OP & cov. against time



(e) Completion time



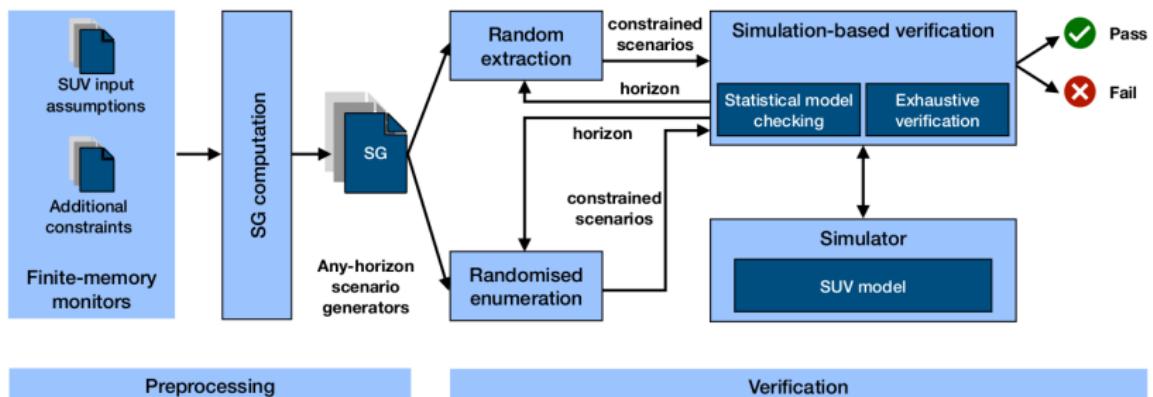
(g) Efficiency

Fig. 6: Experimental results

System Level Formal Verification: Enhancements

- Main drawbacks for the method seen so far:
 - need of a huge file holding all disturbance traces
 - to be doubled with slicing
 - CMurphi may be not easily used by testing engineers
 - preprocessing is computationally heavy
- Let us see how we can overcome such points

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica



System Level Formal Verification: Definitions

- System contract: assumptions for inputs, guarantees for outputs
 - if the SUV is fed with inputs satisfying the assumptions...
 - ...then it must provide outputs satisfying the guarantees
- Monitors for assumptions
 - takes an input sequence, and rejects it if violates assumptions
 - assumptions are typically time-unbounded, but a monitor must be an algorithm with finite memory
 - on the other hand, \mathbb{U}_V is finite
 - that is, we have a finite set of disturbances
 - for continuous disturbances, a discretization is required

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Definitions

- We have a finite set $\mathbb{V} = \{v_1, \dots, v_n\}$
 - each v_i is an *input variable*
 - may have different domains: values (assignments) for v_i are $u \in \mathbb{U}_{v_i}$
 - for $V \subseteq \mathbb{V}$, $\mathbb{U}_V = \times_{v \in V} \mathbb{U}_v$
 - for $u \in \mathbb{U}_V$ and $V' \subseteq V$, $w = u_{V'} \in \mathbb{U}_{V'}$ is s.t. $u_v = w_v$ for $v \in V'$ and $w_v = \perp$ otherwise
- At time t , an assignment is provided for all $v \in \mathbb{V}$ (*input time functions*)

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

System Level Formal Verification: Definitions

- A *monitor* is a Finite State Machine (FSM)
 $\mathcal{M} = (V, X, x_0, f)$ where:
 - V is the set of input variables as above
 - \mathbb{U}_V is the *monitor input space*
 - X is a finite set of monitor states, $x_0 \in X$ being the initial one
 - $f : X \times \mathbb{U}_V \rightarrow X$ is the monitor transition function
 - possibly partial: if it does not result in an infinite path, it is violating the assumptions
- A *trace* is an infinite sequence (u_0, u_1, \dots) s.t.
 - each u_i is an assignment to variables in V (i.e., $u_i \in \mathbb{U}_V$)
 - there is an infinite path $x_0 u_0 x_1 u_1 \dots$ in \mathcal{M}
- $\text{Traces}(\mathcal{M})$ is the set of all (infinite) traces
- $\text{Traces}|_h(\mathcal{M})$ is the set of all prefixes of length $h \in \mathbb{N}$ of some trace in $\text{Traces}(\mathcal{M})$

System Level Formal Verification: Definitions

- Systems (and their contracts) may be discrete-time or continuous-time
 - in the former case, we have $\mathbb{T} = \mathbb{N}$, in the latter, $\mathbb{T} = \mathbb{R}$
- Provided that we choose a time-step $\tau \in \mathbb{T}^+$, a monitor may be used for both
 - typically, for discrete-time systems, $\tau \gg 1$, whilst for continuous-time systems $\tau \ll 1$
- In fact, a trace u_0, u_1, \dots of a monitor \mathcal{M} may be translated in an input time function $u(t) = u_{\lfloor \tau^{-1} \rfloor}$
- For our purposes, monitors may also be black-box: it is sufficient we may repeatedly invoke f
- Note that monitors behave like supervisory controllers

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

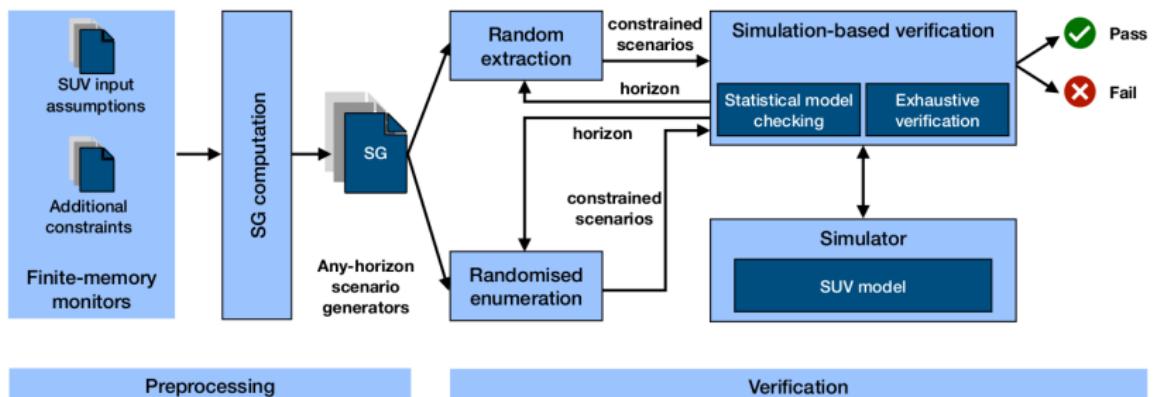
DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Definitions

- Suppose we have two monitors $\mathcal{M}_1, \mathcal{M}_2$ with possibly overlapping input variables. The *conjoint monitor* $\mathcal{M} = \mathcal{M}_1 \bowtie \mathcal{M}_2$ is a monitor s.t.
 - $V = V_1 \cup V_2$
 - $X = X_1 \times X_2, x_0 = (x_{0,1}, x_{0,2})$
 - $f = f_1 \bowtie f_2$ s.t. $f((x_1, x_2), u) = (f_1(x_1, u|_{V_1}), f_2(x_2, u|_{V_2}))$ if both components are defined
 - the formula holds $\forall x_1 \in X_1, x_2 \in X_2, u \in \mathbb{U}_{V_1 \cup V_2}$
- Note that, for each $(u_0, u_1, \dots) \in \text{Traces}(\mathcal{M})$, we have that $(u_0|_{V_1}, u_1|_{V_1}, \dots) \in \text{Traces}(\mathcal{M}_1)$ and $(u_0|_{V_2}, u_1|_{V_2}, \dots) \in \text{Traces}(\mathcal{M}_2)$
- This allows to define monitors basing on sub-monitors (*compositional modeling*)
 - e.g., assumptions may be implemented conjoining monitors on separate subsets of variables...
 - ... and then monitors for additional constraints on wider variables subsets

UNIVERSITÀ
DEGLI STUDI
DI PALERMO

DISIM
Dipartimento di Ingegneria
e Scienze Matematica



System Level Formal Verification: Algorithms

- Let us go towards the verification phase: as all black-box approaches, it will be with a finite horizon
- We have monitors which consider disturbance traces of infinite length
- For verification purposes, we need to extract prefixes with a given length h
 - the verification may be carried out either exhaustively or by statistical model checking
 - thus, extraction must be possible also in a random way
- As usual, a uniform time step for actual verification is added afterwards
- We want to perform this “online”, without storing all traces in a file
 - essentially, monitors are a way to compactly represent disturbance traces

System Level Formal Verification: Algorithms

- It is sufficient to provide two functions:
 - $\text{nb_traces} : \mathbb{N} \rightarrow \mathbb{N}$
 - given h , overall number of disturbance traces of length h accepted by the monitor
 - $\text{trace} : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{U}_V^*$
 - given h and an index $1 \leq i \leq h$, the i -th disturbance trace of length h accepted by the monitor
 - lexicographic order: for a random enumeration, simply extract at random i
- We will show an implementation with time:
 - $O(|\mathbb{U}_V| \cdot |X|^2)$ for initialization
 - $O(1)$ for each subsequent `nb_traces` call
 - $O(h \log |\mathbb{U}_V|)$ for each subsequent `trace` call

System Level Formal Verification: Definitions

- The monitor defined by testing engineers may contain finite paths
 - corresponding to non-legal disturbance sequences
 - note that a finite path of length $h + 1$ is not to be considered when performing verification with horizon h ...
- This is ok for modeling purposes, but we want to get rid of this for the computation
- Thus, we define a new monitor which discards finite paths
 - retaining infinite ones
 - and not introducing other (spurious) paths, of course

System Level Formal Verification: Definitions

- Let $\mathcal{M} = \langle V, X, x_0, f \rangle$ be a monitor. The *safe state function* $\Phi_f : X \rightarrow \{0, 1\}$ is defined as the greatest fixed point of

$$\Phi_f(x) \equiv [\exists u, x' : x' = f(x, u) \wedge \Phi_f(x')]$$

- easier if seen backwards: first, all states such that $\forall u. f(x, u) = \perp$ are s.t. $\Phi_f(x) = 0$
 - deadlock states
- then, for all other states x , which *only* goes in x' s.t. $\Phi_f(x') = 0$, we have $\Phi_f(x) = 0$ as well
 - that is, if $\forall u. \Phi_f(f(x, u)) = 0$, then $\Phi_f(x) = 0$
- for all other states x , $\Phi_f(x) = 1$
- A state $x \in X$ is *safe* for \mathcal{M} iff $\Phi_f(x)$ holds
 - all paths starting from x are of infinite length

System Level Formal Verification: Definitions

- Let $\mathcal{M} = \langle V, X, x_0, f \rangle$ be a monitor. The *Scenario Generator* (SG) of \mathcal{M} is a monitor $\text{Gen}(\mathcal{M}) = \langle V, X, x_0, f_{\text{gen}} \rangle$ s.t.
 $f_{\text{gen}}(x, u) = f(x_u)$ if $\Phi_f(f(x, u)) = 1$ and $f_{\text{gen}}(x, u) = \perp$ otherwise
 - i.e., we remove transitions towards non-safe states
 - by theorems on fixed points, a SG always exists and it is unique
 - may not contain any transition...
 - using controller theory parlance, the scenario generator is the most liberal supervisory controller for \mathcal{M}
- Given \mathcal{M} , $\text{Gen}(\mathcal{M})$ can be computed in time $O(|\mathbb{U}_V| \cdot |X|^2)$

System Level Formal Verification: Definitions

- Monitors may be accessed as *black-box* code, provided that they:
 - provide functions to get and set the current internal state
 - as some possibly non-interpretable bytes sequence
 - start from some initial internal state
 - provide a function which, given the current internal state, returns the list of admissible actions
 - provide a function which, given the current internal state and an admissible action, changes its internal state
 - provide a function which, given an action, provide a possibly non-interpretable encoding for such action
- As an example, this is easy to do with Python

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Definitions

- Let $\mathcal{M} = \langle V, X, x_0, f \rangle$ be a monitor and $\text{Gen}(\mathcal{M}) = \langle V, X, x_0, f_{\text{gen}} \rangle$ be its SG. Then:
 - each finite path in $\text{Gen}(\mathcal{M})$ may be extensible to an infinite path
 - otherwise phrased: the last state of the path always has at least one successor state
 - non-blocking* property
 - $\text{traces}(\mathcal{M}) = \text{traces}(\text{Gen}(\mathcal{M}))$
 - recall that “traces” mean an infinite sequence...
- Such properties follow directly from the definition

System Level Formal Verification: Definitions

- Let $\mathcal{M}_1, \mathcal{M}_2$ be two monitors. Then:
 - $\text{Gen}(\mathcal{M}_1) = \text{Gen}(\text{Gen}(\mathcal{M}_1))$
 - blocking paths only need to be removed once
 - if $V_1 \cap V_2 = \emptyset$, then
 $\text{Gen}(\mathcal{M}_1 \bowtie \mathcal{M}_2) = \text{Gen}(\mathcal{M}_1) \bowtie \text{Gen}(\mathcal{M}_2)$
 - i.e., if $\mathcal{M}_1, \mathcal{M}_2$ are *independent* monitors
 - if there is some common variable, then \mathcal{M}_1 could restrict something which is allowed in \mathcal{M}_2 , thus...
 - $\text{Gen}(\mathcal{M}_1 \bowtie \mathcal{M}_2) = \text{Gen}(\text{Gen}(\mathcal{M}_1) \bowtie \text{Gen}(\mathcal{M}_2))$
 - general case
- Such properties allow incremental combination of monitors

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Definitions

- The following is needed to compute nb_traces and trace
- Let $\mathcal{M} = \langle V, X, x_0, f \rangle$ be a monitor and $\text{Gen}(\mathcal{M}) = \langle V, X, x_0, f_{\text{gen}} \rangle$ be its SG. Then:
 - $\text{ext} : X \times \mathbb{N} \rightarrow \mathbb{N}$ is s.t.
 - $\text{ext}(x, 0) = 1$ for all $x \in X$
 - $\text{ext}(x, k) = \sum_{u \in \mathbb{U}_V} \text{ext}(f_{\text{gen}}(x, u), k - 1)$ for all $x \in X, k \in \mathbb{N}^+$
 - of course, $\text{ext}(\perp, k) = 0$ for all $k \in \mathbb{N}$
 - $\text{ext}(x, k) = \#\text{all distinct paths of length } k \text{ starting from } x$
 - $\xi : X \times \mathbb{U}_V \times \mathbb{N} \rightarrow \mathbb{N}$ is s.t., for all $x \in X, u \in \mathbb{U}_V, k \in \mathbb{N}$,
 $\xi(x, u, k) = \sum_{\hat{u} < u} \text{ext}(f_{\text{gen}}(x, \hat{u}), k)$
 - of course, some ordering is required in each \mathbb{U}_V , so we can take the lexicographic one for \mathbb{U}_V
 - $\xi(x, u, k) = \#\text{distinct paths of length } k \text{ starting from } x \text{ with some action preceding } u$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Algorithms

```
1 global
2  $Gen(\mathcal{M}) = (V, X, x_0, f_{gen});$ 
3  $h_{\max} \in \mathbb{N} \cup \{\text{undef}\}$ , initially undef;
4  $ext$ , a map of the form  $X \times \mathbb{N} \rightarrow \mathbb{N}$ , initially empty;
5  $\xi$ , a map of the form  $X \times \mathbb{U}_V \times \mathbb{N} \rightarrow \mathbb{N}$ , init. empty;
// Invariant:  $ext(x, h) \& \xi(x, u, h)$  defined iff  $h \leq h_{\max}$ 
6 function  $nb\_traces(h)$ 
  Input:  $h \in \mathbb{N}$ 
7 if  $h_{\max} = \text{undef}$  or  $h > h_{\max}$  then
8   incrementally compute  $ext$  and  $\xi$  up to  $h$ ;
9    $h_{\max} \leftarrow h$ ;
10 return  $ext(x_0, h)$ ;
```

System Level Formal Verification: Algorithms

11 **function** $trace(i, h)$

Input: $i \in \mathbb{N}$, $h \in \mathbb{N}$

Output: $(u_0, u_1, u_2, \dots, u_{h-1})$, i -th trace of len. h

12 **if** $i \geq nb_traces(h)$ **then** **error** *index out of bounds*;

13 $x \leftarrow x_0$; $k \leftarrow h$; $m \leftarrow i$;

14 **for** j from 0 to $h - 1$ **do**

15 $u_j \leftarrow \max \{u \mid \xi(x, u, k - 1) \leq m\};$

16 $m \leftarrow m - \xi(x, u_j, k - 1);$

17 $x \leftarrow f_{\text{gen}}(x, u_j);$

18 $k \leftarrow k - 1;$

19 **return** $(u_0, u_1, u_2, \dots, u_{h-1})$;

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Algorithms

- The above algorithms are correct, that is the following holds
- Let $\mathcal{M} = \langle V, X, x_0, f \rangle$ be a monitor and $\text{Gen}(\mathcal{M}) = \langle V, X, x_0, f_{\text{gen}} \rangle$ be its SG. Then:
 - for all $h \in \mathbb{N}$, $\text{nb_traces}(h) = \text{card}(\text{traces}(\text{Gen}(\mathcal{M}))|_h)$
 - for all $h \in \mathbb{N}$, $i \in [0, \text{nb_traces}(h) - 1] \cap \mathbb{N}$, $\text{trace}(i, h)$ returns the i -th element of $\text{traces}(\text{Gen}(\mathcal{M}))|_h$
 - lexicographic order

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Algorithms

- Let $\mathcal{M}_1, \mathcal{M}_2$ be two independent monitors. Then, for all $h \in \mathbb{N}$:
 - $\text{nb_traces}_{\mathcal{M}_1 \bowtie \mathcal{M}_2}(h) = \text{nb_traces}_{\mathcal{M}_1}(h) \cdot \text{nb_traces}_{\mathcal{M}_2}(h)$
 - for all $i \in [0, \text{nb_traces}_{\mathcal{M}_1 \bowtie \mathcal{M}_2}(h) - 1] \cap \mathbb{N}$,
 $\text{trace}_{\mathcal{M}_1 \bowtie \mathcal{M}_2}(i, h) = \text{trace}_{\mathcal{M}_1}(\text{sel}(i, 1), h) \cdot \text{trace}_{\mathcal{M}_2}(\text{sel}(i, 2), h)$,
where:
 - $\text{sel}(i, 1) = \left\lfloor \frac{i}{\text{nb_traces}_{\mathcal{M}_2}(h)} \right\rfloor$
 - $\text{sel}(i, 2) = i \bmod \text{nb_traces}_{\mathcal{M}_2}(h)$
 - operator \cdot is the pairing of two traces:
 $(u_{0,1}, \dots, u_{h-1,1}) \cdot (u_{0,2}, \dots, u_{h-1,2}) =$
 $((u_{0,1}, u_{0,2}), \dots, (u_{h-1,1}, u_{h-1,2}))$
- This means that we may compute $\text{nb_traces}_{\mathcal{M}_1 \bowtie \mathcal{M}_2}(h)$ and $\text{trace}_{\mathcal{M}_1 \bowtie \mathcal{M}_2}(h)$ without computing $\mathcal{M}_1 \bowtie \mathcal{M}_2$
 - only the (typically much smaller) $\mathcal{M}_1, \mathcal{M}_2$ are required (separately)

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Case Studies

- Fuel control system (FCS): classical example from Simulink distribution
 - also used in papers for Statistical Model Checking
- Controller for a fault tolerant gasoline engine
 - goal: keep the air-fuel ratio close to 14.6
 - that is, a stoichiometric ratio representing a good compromise between power, fuel economy and emissions
 - air-fuel ratio is between the air mass flow rate pumped from the intake manifold and the fuel mass flow rate injected at the valves
- *Experiment scenario*: a full set of disturbance traces to be verified

FCS Experiment Scenarios

- For FCS, we are interested in its 4 sensors:
 - throttle angle, speed, residual oxygen in exhaust gas (EGO) and manifold absolute pressure (MAP)
- All of them may fail
 - fortunately, they are typically repaired (i.e., restarted) within a few seconds
- FCS is expected to withstand one failure at a time
 - by compensating with internal commands
- From the verification point of view, we want to exercise the system with multiple (non-contemporary) failures and repairs

FCS Experiment Scenarios

- Base assumptions, which are valid for all experiment scenarios:
 - each of the four sensor may fail at any time
 - each sensor, once failed, is repaired within a given time: 3–5 (throttle), 5–7 (speed), 10–15 (EGO), 13–17 (MAP)
 - but for each time, only one sensor may be in “failed” state
 - e.g., if in a disturbance trace throttle fails at step 1 and is repaired at time 4, there cannot be any other failure in [1, 4]
- If we have separate monitors for each sensor, many non-valid traces can be generated
 - to be discarded when computing the SG of the conjoint monitor also considering the above assumptions
- However, here it is easier to implement all such constraints within one monitor
- Experiment scenarios are obtained by adding one or more monitors (i.e., constraints) from the following table

FCS Experiment Scenarios

constraint monitor	description
1	Each sensor will fail every 15–20 t.u.
2	Whenever a fault on the throttle sensor occurs, a fault on the speed sensor will occur within 9–11 t.u.
3	Whenever a fault on the throttle sensor occurs, a fault on the speed sensor will occur within 13–15 t.u.
4	Whenever a fault on the throttle sensor occurs, a fault on the speed sensor will occur within 18 or 19 t.u.
5	Whenever a fault on the EGO sensor occurs, a fault on the MAP sensor will occur within 16 or 17 t.u.
6	Whenever a fault on the EGO sensor occurs, a fault on the MAP sensor will occur within 20 or 21 t.u.

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Case Studies

- Buck DC/DC Converter: another classical example used in literature
 - also used in papers for controllers generation
- Mixed-mode analog circuit converting the DC input voltage V_i to a desired DC output voltage V_o
 - e.g., used inside laptop battery
 - to do this, it is equipped with a microcontroller activating a switch u
 - to react to changes in the input voltage and other parameters (e.g., the load R)

Buck DC/DC Converter Experiment Scenarios

- We are interested in the following two parameters: V_i and R
 - disturbances act by modifying the parameter value
 - in an bounded way: it may be modified so as to take values in a n -steps discretized interval $[m, M]$, i.e.,
$$\{m + is \mid i = 0, \dots, n-1 \wedge s = \frac{M-m}{n}\}$$
 - we have $n = 12$ for V_i and $n = 6$ for R
 - for both V_i and R , $[m, M]$ is the corresponding nominal range: $[70, 130]V$ for V_i and $[70, 130]\Omega$ for R
- Base assumptions: the changes as above and
 - no changes for the first 2 steps
 - once a change is made, do not modify further for the following 6 steps for V_i and 5 steps for R

Buck DC/DC Converter Experiment Scenarios

- Differently from FCS, buck actually has two independent monitors
 - one for V_i and one for R
- As discussed before, they can be computed separately and then conjoined in the “easy” way
- Experiment scenarios are obtained by adding one or more monitors (i.e., constraints) from the following table

Buck DC/DC Converter Experiment Scenarios

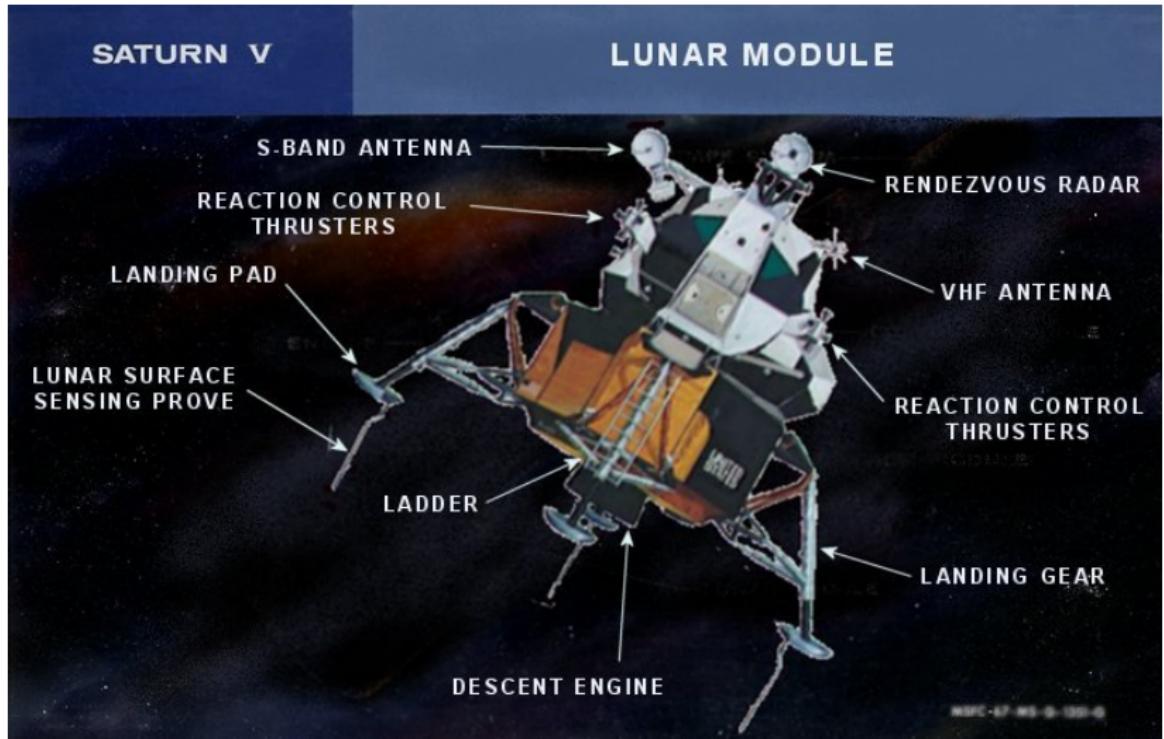
constraint monitor	description
1	V_i changes at least every 6 t.u.
2	V_i changes at least every 7 t.u.
3	R changes at least every 5 t.u.
4	R changes at least every 6 t.u.
5	V_i and R do not change simultaneously
6	Whenever V_i changes, R will change after 8 or 9 t.u.
7	Whenever V_i changes, R will change after 2 t.u.

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

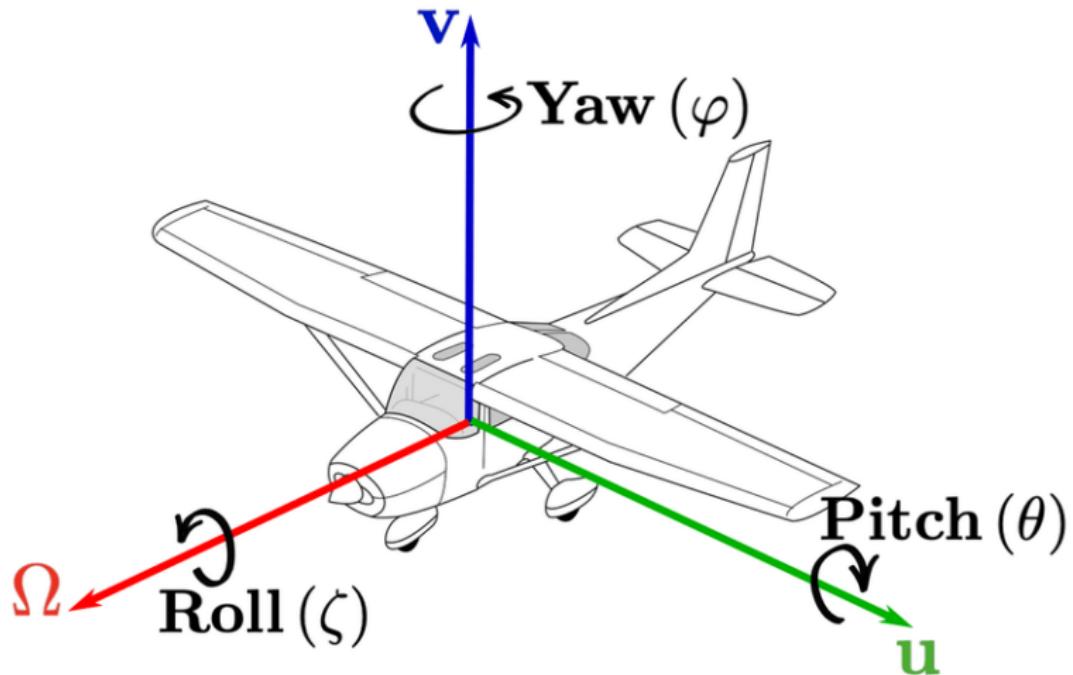
DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

System Level Formal Verification: Case Studies

- Apollo: other classical example from Simulink distribution
- Phase-plane controller for the autopilot of the LEM (Lunar Excursion Module) in the Apollo 11 mission
 - goal: given a request to change attitude, actuate jets so as to achieve it
- 3 sensors and 16 jets
 - sensors detect the attitude of the module: yaw, roll and pitch
 - jets to change the attitude



System Level Formal Verification: Case Studies



Apollo Experiment Scenarios

- We disturb both the sensors and the jets
- Sensors are disturbed in 6 possible ways
 - for our purposes, a number from 1 to 6
 - such number is then translated at verification time in a one of 6 predefined continuous-time signal noise
- Jets may become unavailable for 2 or 3 time units
 - control will have to compensate...
- External request of change attitude may be any in any of the 3 directions
 - only 3 values: $\{-1, 0, 1\}$
 - no requests undoing the immediately preceding one
- Experiment scenarios are obtained by adding one or more monitors (i.e., constraints) from the following table

Apollo Experiment Scenarios

constraint monitor	description
1	Only jets number 15 and 16 may be temporarily unavailable
2	Whenever a jet is actuated for 2 consecutive t.u., it will certainly become unavailable within 3 or 4 t.u.
3	At most 1 jet is unavailable at any time
4	Rotation requests regard at most 1 axis each
5	Rotation requests regard at most 2 axes each
6	Noise signal changes for at most 1 sensor at any time
7	Noise signal for each sensor remains stable for at least 5 and at most 10 t.u. and changes by ± 1 position in the given order

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Results for Generating SGs

SUV	SG nb.	\mathcal{M}			$ Gen(\mathcal{M}) $
		assumptions monitor	constraint monitors	size of input space	
FCS	1	\mathcal{A}_{FCS}	–	6	0.1
	2	\mathcal{A}_{FCS}	1	6	7.99
	3	\mathcal{A}_{FCS}	1, 3	6	4.92
	4	\mathcal{A}_{FCS}	1, 2	6	4.61
	5	\mathcal{A}_{FCS}	1, 4	6	6.34
	6	\mathcal{A}_{FCS}	1, 4, 5	6	5.92
	7	\mathcal{A}_{FCS}	1, 4, 6	6	6.55
BDC	1	\mathcal{A}_i	–	5	0.19
	2	\mathcal{A}_R	–	5	0.17
	3	$\mathcal{A}_i \bowtie \mathcal{A}_R$	–	25	0.36
	4	\mathcal{A}_i	1	5	0.12
	5	\mathcal{A}_i	2	5	0.17
	6	\mathcal{A}_R	3	5	0.11
	7	\mathcal{A}_R	4	5	0.16
	8	$\mathcal{A}_i \bowtie \mathcal{A}_R$	5	25	37.34
	9	$\mathcal{A}_i \bowtie \mathcal{A}_R$	2, 4, 5	25	29.68
	10	$\mathcal{A}_i \bowtie \mathcal{A}_R$	2, 4, 5, 6	25	1.94
	11	$\mathcal{A}_i \bowtie \mathcal{A}_R$	1, 3, 5, 7	25	2.16
ALMA	1	\mathcal{A}_{ij}	–	1769 472	0.44
	2	\mathcal{A}_{ij}	1	108	0.44
	3	\mathcal{A}_{ij}	1, 2	108	448.88
	4	\mathcal{A}_{ij}	1, 2, 3	108	247.27
	5	\mathcal{A}_{ij}	1, 2, 3, 4	108	55.19
	6	\mathcal{A}_{ij}	1, 2, 3, 5	108	188.3
	7	\mathcal{A}_s	–	27	2.94
	8	\mathcal{A}_s	6	27	1.33
	9	\mathcal{A}_s	6, 7	27	782.2
	10	\mathcal{A}_{ALMA}	1, 2, 3, 4, 6, 7	2916	837.39

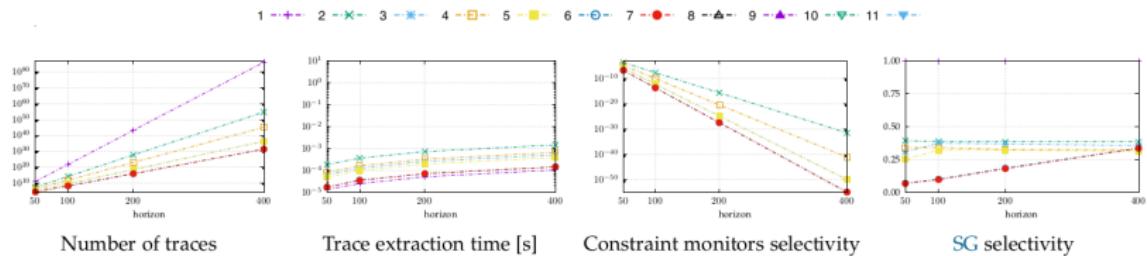
Experimental Results: Presentation

- For each case study, we show, as a function of some meaningful values of the verification horizon h :
 - the number returned by $\text{nb_traces}(h)$, i.e., the overall number of traces fulfilling the given monitors
 - trace extraction time: computation time, in seconds, to compute $\text{trace}(i, h)$
 - 1000 values for i are chosen in a uniformly random way in $[0, \text{nb_traces}(h) - 1]$
 - the average value for the computation time is then shown
 - this allows to amortize computation of ext, ξ
 - selectivity of monitors:
$$\frac{\#\text{traces with all constraints}}{\#\text{traces with base assumptions}}$$
 - having tiny values shows SGs selects *important* experiments scenario
 - errors, if any, are discovered first
 - selectivity of SGs:
$$\frac{\#\text{traces with } \text{Gen}(\mathcal{M})}{\#\text{traces with } \mathcal{M}}$$
 - at the denominator, we consider possibly **blocking** (i.e., non-valid) traces

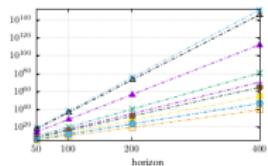
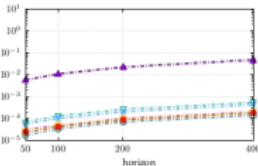
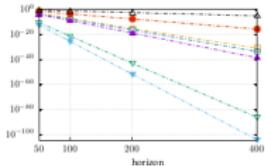
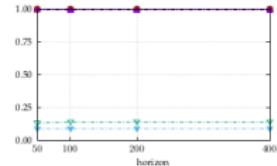
UNIVERSITÀ
degli Studi
di Genova

DISIM
Dipartimento di Ingegneria
e Scienze Matematica

Experimental Results for FCS



Experimental Results for Buck



Experimental Results for Apollo

