
Automated Verification of
Cyber-Physical Systems

A.A. 2022/2023
Corso di Laurea Magistrale in Informatica

System Level Formal Verification

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Embedded Systems

One of the task given to computers from the very start:
monitoring and/or controlling some external system

where the “system” is anything without computational
capabilities
60s: guidance of missiles and Apollo Guidance System

In the following, we will restrict our attention to control

Thus, an embedded system is mainly composed by two parts:
a controller and a plant

the plant must accept inputs able to modify its behaviour
the plant must also expose some output

Nowadays, embedded systems are everywhere

may control something very little, like an electrical circuit
(e.g., buck DC/DC converter)
or something very big, like an automobile or an aircraft

Embedded Systems: Closed-Loop System

System Level Formal Verification

System level verification has the aim to discover errors to
some (embedded) system considered as a whole

all components are considered together
we assume they have been separately tested before

Typically done by testing

plant is nearly always replaced by a simulator
often built in Simulink or Modelica
HILS: Hardware-in-the-loop simulation

System level formal verification: we want to apply Model
Checking techniques

System Level Formal Verification

In “standard” Model Checking, we are given

a non-deterministic Kripke Structure (KS)
an LTL or CTL property to be verified

We get a PASS/FAIL response

possibly with a counterexample

When we deal with complex embedded systems, having a KS
is difficult

moreover: most plants are described by real variables, thus
they have an infinite number of states
approximation may be ok for early verification, but here we
want system level verification
with actual software involved

System Level Formal Verification

Thus, we want to apply Model Checking to the closed-loop
system (SUV, System Under Verification) as:

a black-box controller
a simulator for the plant

We are still interested in some property to be verified

let us suppose we have a safety property for starting

How to accomplish such a task?

The idea is: kind of Statistical Model Checking, but
exhaustive

that is: perform simulations of the whole system (like in HILS)
considering all possible scenarios

System Level Formal Verification

This should be impractible, how can we do this?

The idea is: if we see the system as a black-box, verification is
about

(incontrollable) interactions with the external environment
(incontrollable) “hardware” (i.e., parts of the plant) failures
(incontrollable) changes in the plant simulation parameters

Interactions between the plant and the controller are inside
the system

as a consequence of the variations listed above

We can see all of this as inputs to our closed-loop system

A system is not expected to withstand any combination of the
preceding

e.g., if we put an airplane inside a violent windshire, we cannot
expect its controller to safely land it

System Level Formal Verification: Requirements

Requirement 1: we can write a model for the meaningful
interactions between the system and the environment

“meaningful”: those we want to verify

In the following, we will call such interactions as disturbances

because they are deviations from the current behaviour
e.g., if we move an inverted pendulum while it is upright and
still, we are disturbing it
causing its controller to react and return it upright and still

As in Statistical Model Checking, we consider a bounded
verification

thus, we are interested in finite sequences of possible
disturbances
e.g., move the inverted pendulum, then move it again before it
is returned upright

System Level Formal Verification: Requirements

Requirement 2: the simulator for the plant accepts the
following commands

I d : inject disturbance d

will modify the plant behaviour
that is, the following R commands

R t: compute the evolution of the plant within t units of time

this is the main function for all simulators...

S l save the current simulator state with id l
F l free the simulator state with id l
L l load (i.e., restore) the simulator state with id l

simulator states are saved in some permanent memory, e.g.,
files on disk
S1, S l , S2, L l , S3, where Si are command sequences, is
equivalent to the command sequences S1, S2 (restart) S1, S3

System Level Formal Verification: Requirements

A sequence R t1, S l , R t2, L l , R t3 is equivalent to the
following two simulations: R t1 + t2 and R t1 + t3

in the middle, the system simulation is restarted from time 0

A sequence I d , R t is equivalent to:
modify the simulator by changing some plant parameters

each disturbance corresponds to a modification of a selection
of plant parameters
“modification”: change the value

run a simulation for t units of time with the new plant model

A sequence R t1, I d , R t2 is equivalent to:
modify the simulator so that the d parameters changing
happens after t1 units of time

e.g., in Modelica, this could be done with an if inside the
main whensample, if any

run a simulation for t1 + t2 units of time

System Level Formal Verification: Requirements

A sequence R t1, I d , S l , R t2, L l , R t3 is equivalent to:

modify the simulator for d after t1 units of time
perform simulations R t1 + t2 and R t1 + t3

A sequence R t1, S l , R t2, I d1, R t3, L l , I d2, R t4 is
equivalent to

modify the simulator for d1 after t1 + t2 units of time
modify the simulator for d2 after t1 units of time
perform simulations R t1 + t2 + t3 and R t1 + t4
is this correct????

System Level Formal Verification: Requirements

Simulation campaign: any finite sequence of simulator
commands

finite because we are performing bounded verification

We assume that we can write some software which takes as
input a simulation campaign and executes it on the simulator

we call it driver
either within the simulator or with some external script
e.g.: in Simulink, we may use Simulink scripts
e.g.: in Modelica, we have to use something external
we can write model-independent Simulink and Modelica drivers

System Level Formal Verification: Modeling

Thus, we need two models:

disturbance model
plant model

Plus the actual software for the controller

which directly interacts with the plant model
e.g., using external functions, available both in Modelica an
Simulink
in the following, we will consider it embedded in the plant
model

System Level Formal Verification: Modeling

In embedded systems design a simulation model for the plant
is always built

Thus, the only modeling required is that of the disturbance
model

we are performing a kind of exhaustive functional testing
exhaustive w.r.t. the given disturbance model

We also need to enlarge the existing plant model with a
monitor

when an error is found, a boolean variable will become one
equivalent to specify a bounded safety property

System Level Formal Verification: Architecture

MONITOR

PLANT MODELSIMULATOR DRIVER

PASS FAIL WITH COUNTEREXAMPLE

DISTURBANCE MODEL

GENERATE SIMULATION CAMPAIGNS

System Level Formal Verification: Definitions

Let d ∈ N+ be a positive integer

total number of disturbances is d + 1
0 is a special value for “no disturbance”

A discrete event sequence is a function u : R≥0 → [0, d] ∩ N
s.t., for all t ∈ R≥0, card({t̃ | 0 ≤ t̃ ≤ t ∧ d(t̃) ̸= 0}) <∞

that is: given a time t, u(t) returns the disturbance at time t
thus, we are requiring that it is almost always without
disturbances
i.e., some disturbance happens only in a finite number of times

Let Ud = {u | u is a discrete event sequence for d}

System Level Formal Verification: Definitions

An event list is a sequence (u0, τ0), (u1, τ1), . . . s.t., for all
i ≥ 0, ui ∈ [0, d] ∩ N, τi ∈ R≥0

not only disturbances, but also their durations

For each event list there is a unique discrete event sequence u
defined as:

u(0) = u0
u(t) = uh if t =

∑h−1
i=0 τi for some h ≥ 1

u(t) = 0 otherwise

The viceversa also holds (derive the formula by yourself)

System Level Formal Verification: Definitions

A Discrete Event System (DES) is a tuple
H = ⟨S , s0, d ,O, flow, jump, output⟩ where:

S is a (possibly infinite) set of states; s0 ∈ S is the initial state

Cartesian product of the domains of the state variables

d is the number of disturbances (defines the input space Ud)
O is a (possibly infinite) set of output values

useful to define the monitor

output : S → O, i.e., each state defines an output
flow : S × R≥0 → S

dynamics without disturbances: flow(s, t) is the state reached
after t units of time, starting from state s
w.r.t. hybrid systems, this may also result in location changes!
flow(s, 0) = s

jump : S × [0, d]→ S

dynamics with disturbances: jump(s, d) is the state reached
when disturbance d is applied in state s
jump(s, 0) = s

System Level Formal Verification: Definitions

The state function of a DES tells us in which state we go
after some simulation time

starting from s0 and considering intervening disturbances in a
discrete even sequence
our DES are deterministic, thus there is only one such state

Given a DES H = ⟨S , s0, d ,O, flow, jump, output⟩, the state
function of H is ϕ : Ud → S s.t.:

ϕ(u, 0) = jump(s0, u(0))

i.e., if there is some disturbance at time 0, let us begin from
the resulting state
otherwise, we begin from s0

for each t > 0, ϕ(u, t) = jump(flow(ϕ(u, t∗), t − t∗), u(t))

t∗ = max{t̃ | t̃ < t ∧ u(t̃) ̸= 0}
with max∅ = 0

System Level Formal Verification: Definitions

We may view the state function in a more computation-like
way

Given a DES H = ⟨S , s0, d ,O, flow, jump, output⟩, a discrete
event sequence u and a time t:

1 compute the (minimal) event list (u0, τ0), (u1, τ1), . . . , (un, τn)
corresponding to u

must be finite by definition of discrete event sequence

2 with s = s0 as initialization, for i = 0, . . . , n:

1 let s be jump(s, ui)
2 let s be flow(s, τi)

3 output s

System Level Formal Verification: Definitions

We also need the output function of a DES
H = ⟨S , s0, d ,O, flow, jump, output⟩

easy when we have the state function

Namely, ψ : Ud × R≥0 → O is defined as
ψ(u, t) = output(ϕ(u, t))

Monitor: when the safety property becomes false, the output
is false

this is the only output we need
once is false, it must stay false, otherwise we may not realize it

A monitored DES is a tuple H = ⟨S , s0, d , flow, jump, output⟩
s.t.

⟨S , s0, d , {0, 1},flow, jump, output⟩ is a DES
for all u ∈ Ud , ψ(u, t) is non-increasing w.r.t. t

System Level Formal Verification: Architecture

MONITOR

PLANT MODELSIMULATOR DRIVER

PASS FAIL WITH COUNTEREXAMPLE

DISTURBANCE MODEL

GENERATE SIMULATION CAMPAIGNS

Modeling the Disturbances

The system part is now ok: a Monitored DES encompasses
the closed-loop system and the property monitor

let us go with the disturbance model

The “Generate simulation campaign” part is divided in two
parts

from a model of disturbances, generate all possible sequences
of disturbances (disturbance traces) of length T
from sequences of disturbances, generate the optimized
simulation campaigns

Thus, we need some model able to define complex disturbance
traces

e.g.: in a given trace, d1 only occurs at most three times but
never immediately after d2

Modeling the Disturbances

One possible way is using a standard Model Checker

Here, we will use CMurphi: each rule corresponds to a
disturbance

by suitably using rule guards, we may implement any wanted
logic behind disturbance traces
see attached example

By suitably modifying the CMurphi source code, we may
generate disturbance traces as required

Also a slight modification to the input language is required to
introduce final states

Modeling the Disturbances: Definitions

A disturbance generator (DG) is a tuple
D = ⟨Z , d ,dist, adm,ZI ,ZF ⟩ where:

Z is a finite set of states
ZI ,ZF ⊂ Z are the subsets of initial and final states
d ∈ N+ is again the number of disturbances
adm : Z × [0, d] ∩ N→ {0, 1} defines the disturbances
admitted at a given state
dist : Z × [0, d] ∩ N→ Z defines the deterministic transition
relation

but CMurphi was nondeterministic!
yes, but here we are adding the disturbance, i.e., the rule
getting fired...

Easy to show that this is equivalent to a Kripke Structure

Modeling the Disturbances: Definitions

Let D = ⟨Z , d , dist, adm,ZI ,ZF ⟩ be a DG

A disturbance path of length h for D is a sequence
z0d0 . . . zh−1dh−1zh where:

z0 ∈ ZI , zh ∈ ZF : we start from an initial and end in a final
state
∀i = 0, . . . , h − 1. adm(zi , di) = 1
∀i = 0, . . . , h − 1. dist(zi , di) = zi+1

the DG semantics is preserved

A disturbance trace is a sequence δ = d0 . . . dh−1 s.t. there
exists a disturbance path z0d0 . . . zh−1dh−1zh for D
We define ∆h

D = {δ | δ is a disturbance trace for D ∧ |δ| = h}

System Level Formal Verification Problem

We can now formally define the overall problem we want to
verify

for standard model checking it was: you have a Kripke
Structure and a property, tell me if the property holds
with suitably defined semantics for the property holding on a
Kripke Structure

Here things are slightly more complicated: we also need a
time step τ

not very strange: also simulators use some simulator step to
perform simulations

τ allows us to go from disturbance traces to event lists (and
discrete event sequences)

from δ = d0, . . . dh−1 to (d0, τ) . . . (dh−1, τ)
we denote with u(δ) the discrete event sequence of δ

System Level Formal Verification Problem

Given an MDES H and a DG D, a System Level Formal
Verification Problem (SLFVP) is a tuple P = ⟨H,D, τ, h⟩
where

τ ∈ R+, h ∈ N+

d is the same both in H and in D
Let ψ be the output function for H, then the answer to P is

⟨FAIL, δ⟩ if δ ∈ ∆h
D is s.t. ψ(uτ (δ), τh) = 0

PASS if such a δ ∈ ∆h
D does not exist

System Level Formal Verification Problem

Two main assumptions:

disturbances cannot happen at any time, but only at multiple
times of τ
disturbances traces are of length h

which implies that the total simulation time is T = hτ

The larger h and smaller τ , the closest we are to reality

as for h, it is the same of Bounded Model Checking and
Statistical Model Checking

No physical system can withstand arbitrarily (time) close
disturbances

any operational scenario can be modelled with the desired
precision by suitably choosing τ and h

System Level Formal Verification: Algorithms

To simulate a MDES, we rely on existing simulators

Simulink, Modelica, NGSpice...

As for the “Generate simulation campaign”, is divided in two
parts

from a model of disturbances, generate all disturbance traces
of length h
from sequences of disturbances, generate the optimized
simulation campaigns

Let us see how this is implemented

Generating all Disturbance Traces: Algorithm

function generateByDFS(D, T):
1: SZ ← ∅, SD ← ∅, DistTraces← ∅, c ← 1
2: Push(SZ , z0), Push(SD , 1), δ0 ← c, c ← c + 1
3: while StackIsNotEmpty(SZ) do
4: z ← Top(SZ), d̃ ← Top(SD)
5: if d̃ ≤ d then
6: Top(SD) ← d̃ + 1
7: if adm(z , d̃) then
8: δ|SZ | ← (d̃ , c), c ← c + 1
9: if |SZ | ≤ T then

10: Push(SZ , dist(z , d̃)), Push(SD , 1)
11: else
12: if z ∈ ZF then DistTraces← DistTraces ∪ δ
13: else
14: Pop(SZ), Pop(SD)
15: return DistTraces

Generating all Disturbance Traces: Algorithm

This is for one initial state only, easy to generalize

Standard non-recursive DFS

two stacks, one for states, one for rules

Main difference 1: no check for already visited states

we are interested in transitions, so states may and must be
visited multiple times
the bound T guarantees termination

Main difference 2: the disturbance traces also encompass
labels

simply a growing integer c

Will be used by the simulation campaign generator

Generating Simulation Campaigns: Definitions

A DES Simulator is a tuple S = ⟨H, L,W ,m⟩ where:
H = ⟨S , s0, d ,O,flow, jump, output⟩ is a DES
L is a set of labels
m ∈ N+ is the maximum number of states the simulator can
store
W is a set of simulator states s.t., for all w ∈W ,
w = (s, u,M) and:

s ∈ S∪ ⊥ (a DES state or a sink state)
u ∈ Ud (an event list)
M ⊆ L× S × Ud s.t., for each l ∈ L, there exist at most one
triple (l , s, u) ∈ M
|M| ≤ m

the DES simulator initial state is (s0,∅,∅)

Generating Simulation Campaigns: Definitions

The dynamics of a DES Simulator is simulator is defined on
the basis of simulation campaign commands

That is, we need to define simS : W × C →W

Where C is the set of the following commands:

load(l) for l ∈ L
store(l) for l ∈ L
free(l) for l ∈ L
run(t) for t ∈ N+

inject(d̃) for d̃ ∈ [0, d] ∩ N
Thus, we define simS by cases

Generating Simulation Campaigns: Definitions

simS(s, u,M, load(l)) = (s ′, u′,M), being (l , s ′, u′) ∈ M

simS(s, u,M, free(l)) = (s, u,M \ {(l , s ′, u′)})
simS(s, u,M, store(l)) = (s, u,M ∪ {(l , s, u)}) if |M| < m

simS(s, u,M, run(t)) = (flow(s, tτ), u · (0, t),M)

simS(s, u,M, inject(d̃)) = (jump(s, d̃), u · (d̃ , 0),M)

Plus error checking, not considered here

e.g., trying to free something which was not stored
e.g., trying to store when memory is already full
e.g., trying to store without freeing first (if already present)

Generating Simulation Campaigns: Definitions

A simulation campaign is a sequence χ = c0(a0) . . . ck(ak) of
commands as above

note that k and h are independent

A χ identifies a sequence w0, . . . ,wk s.t., for all
i = 0, . . . , k − 1, simS(wi , ci (ai)) = wi+1 and wi = (si , ui ,Mi)

by construction, ui leads from s0 to si

This also defines the output sequence
output(s0) . . . output(sk)

Less strightforward: the event list sequence associated to χ

watch out: a sequence of lists...
U(χ) = uj1 , . . . , ujℓ , uk where ℓ is the number of load
commands in χ
for r = 1, . . . , ℓ, jr is the index of the r -th load command in χ

Generating Simulation Campaigns: Definitions

Let d ∈ N+ and L be countably infinite set of labels. A
labelling is an injective λ : ([0, d] ∩ N)∗ → L

from finite sequence of integers to labels

The labelling of a disturbance trace δ = d0 . . . dh−1 is
λ(δ) = l0d0, . . . , hh−1dh−1lh

for all i = 0, . . . , h, li = λ(d0, . . . , di−1)

Thus, the algorithm for disturbance traces given above returns
labelled disturbance traces

Let us go with the simulation campaign generation

Generating Simulation Campaigns: Idea

Generating Simulation Campaigns: Algorithm

A Labels Branching Tree (LBT) is a DAG where nodes are
labels

There is an edge (l , l ′) iff ∃δ, δ′ ∈ ∆in s.t.

δ = l0, d0, . . . , dh−1lh, δ
′ = l ′0, d

′
0, . . . , d

′
h−1l

′
h

∃i = 0, . . . , h− 1 : di ̸= d ′
i ∧∀j = 0, . . . , i − 1. lj = l ′j ∧ dj = d ′

j

l = li , l
′ = l ′i

that is, if there are two traces which differs by (l , l ′) for the
first time, l , l ′ will be siblings in the LBT

Branching labels represent simulator states whose storing may
save simulation time (by loading them back later)

The LBT generation keeps into account that memory to store
states is limited by m

thus, the result is optimal only for at most m states stored

Generating Simulation Campaigns: Algorithm

Generating Simulation Campaigns: Algorithm

Given the LBT L, the output simulation campaign χ is
computed by scanning again ∆in

For δ = l0, d0, . . . , dh−1lh ∈ ∆in, let r be the higher (i.e.,
rightmost) index s.t. lr is in some already generated load
command and is in the LBT

Append to χ first load(lr) and then one of the following:

inject(d̃), run(t) where:

in δ there is a subsequence lr d̃ lr+10 . . . 0lr+t d̂ l̂
d̂ ̸= 0

inject(d̃), run(t), store(l̂) where:

in δ there is a subsequence lr d̃ lr+10 . . . 0lr+t d̂ l̂
l̂ needs to be stored, i.e., l̂ is in the LBT and it will occur
again in another δ′ ∈ ∆in

inject(d̃), run(t), free(l̄), store(l̂) where:

if memory is already full, for a suitably chosen l̄

Generating Simulation Campaigns: Algorithm

Generating Simulation Campaigns: Example

System Level Formal Verification: Theorem

As a corollary, if an error is present in the specified
disturbance traces, our method will find it

Formally, let P = ⟨H,D, τ, h⟩ be a SLFVP, S a simulator for
H and ∆h

D be the set of all labeled disturbance traces of
length h. Let χ be the simulation campaign as computed
above.

Then, the answer to P is FAIL iff the sequence of simulator
states contains (s, u,M) s.t. output(s) = 0

Thus, our approach is sound (no false positives) and complete
(no false negatives)

System Level Formal Verification

For now, suppose k = 1

Experimental Results

SUV: Fuel Control System from Simulink; variable fuel air is
never 0 for more than 1s

Multicore System Level Formal Verification

If we have multiple processors, we may easily parallelize our
computations

both with shared (multicore processors) or distributed memory
(clusters)
also clusters where k nodes have c cores each
we will consider K = kc as the overall number of cores
available

To start with, the generation of disturbance traces may be
parallelized

an “orchestrator” may expand till horizon fT , for some
0 < f < 1
and then leave the remaining subtree to a “slave” from the
other k − 1 cores

It may be shown that labels are ok

However, this is not the main part to be improved

Multicore System Level Formal Verification

Main advantage is in parallelizing the simulation campaign
execution

simulation phase dominates the overall verification time

To this aim, starting from the overall disturbances traces set
∆h

calD , we must generate k simulation campaigns

The idea is to perform this is 2 steps:
1 “slice” ∆h

calD in k equal parts
2 for each slice, compute the corresponding simulation campaign

System Level Formal Verification

Multicore System Level Formal Verification

Main advantage is in parallelizing the simulation campaign
execution

simulation phase dominates the overall verification time

To this aim, starting from the overall disturbances traces set
∆h

calD , we must generate k simulation campaigns

The idea is to perform this is 2 steps:
1 “slice” ∆h

calD in k equal parts

all slices have the same length, thus this is easy

2 for each slice, compute the corresponding simulation campaign
as before

Multicore System Level Formal Verification

First slicing and then optimizing is suboptimal

optimal would be to detect all maximal prefix of disturbance
traces
so that they are stored once and then loaded when needed

If two slices with a common prefix end up in different slices,
no way to do this

However, reading all disturbance traces file requires too
computation time

easily a file of hundreds of GBs, or even TBs

Thus, we are happy with a suboptimal solution

Multicore System Level Formal Verification: Results

Multicore System Level Formal Verification: Results

Anytime System Level Formal Verification

Suppose we have the K simulation campaigns and we are
performing the verification phase

Can we do something better than simply wait for it to finish?

as an example: in SAT, there are methodologies computing the
coverage achieved so far
at “anytime” we can get an estimate of such coverage

Here we are not interested simply in coverage: we want the
Omission Probability (OP)

i.e., we want an an upper bound to the probability that there is
an error in a yet-to-be-simulated scenario
to be provided at any time, during the simulation phase

Anytime System Level Formal Verification

Main difficulty: optimization comes from lexicographically
ordered ∆h

D
In order to enable some kind of probability on traces, we need
random permutations of ∆h

D
How to obtain this? see in the following

Generating Simulation Campaigns: Standard Algorithm

Anytime System Level Formal Verification: Algorithm

Anytime System Level Formal Verification: Example

Anytime System Level Formal Verification: Definitions

For a finite set ∆ = {δ0, . . . , δn−1}, if denote Perm(∆) as the
set of all permutations of δ ∈ Delta

i.e., Perm(∆) = {(δπ(0), . . . , δπ(n−1)) | π : [0, n − 1] ∩ N→
[0, n − 1] ∩ N and π is injective}
for a ∆̂ = (δ0, . . . , δn−1) ∈ Perm(∆), we write ∆̂(i) for δi
recall that, in our setting, each δ is a disturbance sequence

A Random Sequence Generator (RSG) for ∆ is a probability
space (Ω,F ,P) s.t.:

Ω = Perm(∆) is the space of outcomes
F = 2Ω is the space of events
P : F → [0, 1] is the probability measure
in our setting, P is uniform, thus
P({ω}) = P(ω) = |Perm(∆)|−1 = (|∆|!)−1

being |Ω| <∞, ∀E ∈ F . P(E) =
∑

ω∈E P(ω)

Anytime System Level Formal Verification: Definitions

Let ⟨H,D, h, τ⟩ be a SLFVP, let ∆ be a set of disturbance
traces and (Ω,F ,P) be an RSG for ∆.

Furthermore, let 0 ≤ q ≤ |∆| be the current progress with the
verification.

that is, we already simulated q out of |∆| disturbance traces

Then, the Omission Probability for ∆ at stage q, denoted as
OPH(∆, q) is defined as P({ω | A(ω, q) ∧ B(ω, q)})

A(ω, q) ≡ [∃q < j ≤ |∆| : ψ(ω(j), hτ)] = 0
B(ω, q) ≡ [∀0 ≤ j ≤ q : ψ(ω(j), hτ)] = 1
A stands for “after”, B stands for “before”

Anytime System Level Formal Verification: Theorem

Let ⟨H,D, h, τ⟩ be a SLFVP, let ∆ be a set of disturbance
traces and (Ω,F ,P) be an RSG for ∆. Furthermore, let
0 ≤ q ≤ |∆| be the current progress with the verification.

Then, OPH(∆, q) ≤ 1− q
|∆|

at the end of the verification, q = |∆|...
The previous definitions and this theorem are generalizable to
k slices of ∆

That is,
OPH(∆0, . . . ,∆k−1, q0, . . . , qk−1) ≤ 1−min1l≤i<k

qi
|∆i |

being the k parallel verifications independent, all qi may be
different
taking the minimum means considering the worst case

Anytime System Level Formal Verification: Results

We pay the OP computation in terms of performance degradation

System Level Formal Verification: Enhancements

Main drawbacks for the method seen so far:
need of a huge file holding all disturbance traces

to be doubled with slicing

CMurphi may be not easily used by testing engineers
preprocessing is computationally heavy

Let us see how we can overcome such points

System Level Formal Verification: New Architecture

System Level Formal Verification: Definitions

System contract: assumptions for inputs, guarantees for
outputs

if the SUV is fed with inputs satisfying the assumptions...
...then it must provide outputs satisfying the guarantees

Monitors for assumptions

takes an input sequence, and rejects it if violates assumptions
assumptions are typically time-unbounded, but a monitor must
be an algorithm with finite memory
on the other hand, UV is finite
that is, we have a finite set of disturbances
for continuous disturbances, a discretization is required

System Level Formal Verification: Definitions

We have a finite set V = {v1, . . . , vn}
each vi is an input variable
may have different domains: values (assignments) for vi are
u ∈ Uvi

for V ⊆ V, UV = ×v∈VUv

for u ∈ UV and V ′ ⊆, w = uV ′ ∈ UV ′ is s.t. uv = wv for
v ∈ V ′ and wv =⊥ otherwise

At time t, an assignment is provided for all v ∈ V (input time
functions)

System Level Formal Verification: Definitions

A monitor is a Finite State Machine (FSM)
M = (V ,X , x0, f) where:

V is the set of input variables as above
UV is the monitor input space
X is a finite set of monitor states, x0 ∈ X being the initial one
f : X × UV → X is the monitor transition function

possibly partial: if it does not result in an infinite path, it is
violating the assumptions

A trace is an infinite sequence (u0, u1, . . .) s.t.

each ui is an assignment to variables in V (i.e., ui ∈ UV)
there is an infinite path x0u0x1u1 . . . inM

Traces(M) is the set of all (infinite) traces

Traces|h(M) is the set of all prefixes of length h ∈ N of some
trace in Traces(M)

System Level Formal Verification: Definitions

Systems (and their contracts) may be discrete-time or
continuous-time

in the former case, we have T = N, in the latter, T = R
Provided that we choose a time-step τ ∈ T+, a monitor may
be used for both

typically, for discrete-time systems, τ >> 1, whilst for
continuous-time systems τ << 1

In fact, a trace u0, u1, . . . of a monitorM may be translated
in an input time function u(t) = u⌊τ−1⌋

For our purposes, monitors may also be black-box: it is
sufficient we may repeatedly invoke f

Note that monitors behave like supervisory controllers

System Level Formal Verification: Definitions

Suppose we have two monitorsM1,M2 with possibly
overlapping input variables. The conjoint monitor
M =M1 ▷◁M2 is a monitor s.t.

V = V1 ∪ V2

X = X1 × X2, x0 = (x0,1, x0,2)
f = f1 ▷◁ f2 s.t. f ((x1, x2), u) = (f1(x1, u|V1), f2(x2, u|V2)) if
both components are defined
the formula holds ∀x1 ∈ X1, x2 ∈ X2, u ∈ UV1∪V2

Note that, for each (u0, u1, . . .) ∈ Traces(M), we have that
(u0|V1 , u1|V1 , . . .) ∈ Traces(M1) and
(u0|V2 , u1|V2 , . . .) ∈ Traces(M2)
This allows to define monitors basing on sub-monitors
(compositional modeling)

e.g., assumptions may be implemented conjoining monitors on
separate subsets of variables...
... and then monitors for additional constraints on wider
variables subsets

System Level Formal Verification: New Architecture

System Level Formal Verification: Algorithms

Let us go towards the verification phase: as all black-box
approaches, it will be with a finite horizon

We have monitors which considers disturbance traces of
infinite length

For verification purposes, we need to extract prefixes with a
given length h

the verification may be carried out either exhaustively or by
statistical model checking
thus, extraction must be possible also in a random way

As usual, a uniform time step for actual verification is added
afterwards

We want to perform this “online”, without storing all traces in
a file

essentially, monitors are a way to compactly represent
disturbance traces

System Level Formal Verification: Algorithms

It is sufficient to provide two functions:
nb traces : N→ N

given h, overall number of disturbance traces of length h
accepted by the monitor

trace : N× N→ U∗
V

given h and an index 1 ≤ i ≤ h, the i-th disturbance trace of
length h accepted by the monitor
lexicographic order: for a random enumeration, simply extract
at random i

We will show an implementation with time:

O(|UV | · |X |2) for initialization
O(1) for each subsequent nb traces call
O(h logUV) for each subsequent trace call

System Level Formal Verification: Definitions

The monitor defined by testing engineers may contain finite
paths

corresponding to non-legal disturbance sequences
note that a finite path of length h + 1 is not to be considered
when performing verification with horizon h...

This is ok for modeling purposes, but we want to get rid of
this for the computation

Thus, we define a new monitor which discards finite paths

retaining infinite ones
and not introducing other (spurious) paths, of course

System Level Formal Verification: Definitions

LetM = ⟨V ,X , x0, f ⟩ be a monitor. The safe state function
Φf : X → {0, 1} is defined as the greatest fixed point of

Φf (x) ≡ [∃u, x ′ : x ′ = f (x , u) ∧ Φf (x
′)]

easier if seen backwards: first, all states such that
∀u. f (x , u) =⊥ are s.t. Φf (x) = 0

deadlock states

then, for all other states x , which only goes in x ′ s.t.
Φf (x

′) = 0, we have Φf (x) = 0 as well

that is, if ∀u. Φf (f (x , u)) = 0, then Φf (x) = 0

for all other states x , Φf (x) = 1

A state x ∈ X is safe forM iff Φf (x) holds

all paths starting from x are of infinite length

System Level Formal Verification: Definitions

LetM = ⟨V ,X , x0, f ⟩ be a monitor. The Scenario Generator
(SG) ofM is a monitor Gen(M) = ⟨V ,X , x0, fgen⟩ s.t.
fgen(x , u) = f (xu) if Φf (f (x , u)) = 1 and fgen(x , u) =⊥
otherwise

i.e., we remove transitions towards non-safe states
by theorems on fixed points, a SG always exists and it is unique
may not contain any transition...
using controller theory parlance, the scenario generator is the
most liberal supervisory controller forM

GivenM, Gen(M) can be computed in time O(|UV | · |X |2)

System Level Formal Verification: Definitions

Monitors may be accessed as black-box code, provided that
they:

provide functions to get and set the current internal state

as some possibly non-interpretable bytes sequence

start from some initial internal state
provide a function which, given the current internal state,
returns the list of admissible actions
provide a function which, given the current internal state and
an admissible action, changes its internal state
provide a function which, given an action, provide a possibly
non-interpretable encoding for such action

As an example, this is easy to do with Python

System Level Formal Verification: Definitions

LetM = ⟨V ,X , x0, f ⟩ be a monitor and
Gen(M) = ⟨V ,X , x0, fgen⟩ be its SG. Then:

each finite path in Gen(M) may be extensible to an infinite
path

otherwise phrased: the last state of the path always has at
least one successor state
non-blocking property

traces(M) = traces(GenM))

recall that “traces” mean an infinite sequence...

Such properties follow directly from the definition

System Level Formal Verification: Definitions

LetM1,M2 be two monitors. Then:
Gen(M1) = Gen(Gen(M1))

blocking paths only need to be removed once

if V1 ∩ V2 = ∅, then
Gen(M1 ▷◁M2) = Gen(M1) ▷◁ Gen(M2)

i.e., if M1,M2 are independent monitors
if there is some common variable, then M1 could restrict
something which is allowed in M2, thus...

Gen(M1 ▷◁M2) = Gen(Gen(M1) ▷◁ Gen(M2))

general case

Such properties allow incremental combination of monitors

System Level Formal Verification: Definitions

The following is needed to compute nb traces and trace

LetM = ⟨V ,X , x0, f ⟩ be a monitor and
Gen(M) = ⟨V ,X , x0, fgen⟩ be its SG. Then:

ext : X × N→ N is s.t.

ext(x , 0) = 1 for all x ∈ X
ext(x , k) =

∑
u∈UV

ext(fgen(x , u), k − 1) for all x ∈ X , k ∈ N+

of course, ext(⊥, k) = 0 for all k ∈ N
ext(x , k) = #all distinct paths of length k starting from x

ξ : X × UV × N→ N is s.t., for all x ∈ X , u ∈ UV , k ∈ N,
ξ(x , u, k) =

∑
û<u ext(fgen(x , û), k)

of course, some ordering is required in each Uv , so we can
take the lexicographic one for UV

ξ(x , u, k) = #distinct paths of length k starting from x with
some action preceding u

System Level Formal Verification: Algorithms

System Level Formal Verification: Algorithms

System Level Formal Verification: Algorithms

The above algorithms are correct, that is the following holds

LetM = ⟨V ,X , x0, f ⟩ be a monitor and
Gen(M) = ⟨V ,X , x0, fgen⟩ be its SG. Then:

for all h ∈ N, nb traces(h) = card(traces(Gen(M))|h)
for all h ∈ N, i ∈ [0,nb traces(h)− 1] ∩ N, trace(i , h) returns
the i-th element of traces(Gen(M))|h

lexicographic order

System Level Formal Verification: Algorithms

LetM1,M2 be two independent monitors. Then, for all
h ∈ N:

nb tracesM1▷◁M2(h) = nb tracesM1(h)nb tracesM2(h)
for all i ∈ [0,nb tracesM1▷◁M2(h)− 1] ∩ N,
traceM1▷◁M2(i , h) = traceM1(sel(i , 1), h)·traceM2(sel(i , 2), h),
where:

sel(i , 1) =
⌊

i
nb tracesM2

(h)

⌋
sel(i , 2) = i mod nb tracesM2(h)
operator · is the pairing of two traces:
(u0,1, . . . , uh−1,1) · (u0,2, . . . , uh−1,2) =
((u0,1, u0,2), . . . , (uh−1,1, uh−1,2))

This means that we may compute nb tracesM1▷◁M2(h) and
traceM1▷◁M2(h) without computingM1 ▷◁M2

only the (typically much smaller)M1,M2 are required
(separately)

System Level Formal Verification: Case Studies

Fuel control system (FCS): classical example from Simulink
distribution

also used in papers for Statistical Model Checking

Controller for a fault tolerant gasoline engine

goal: keep the air-fuel ratio close to 14.6
that is, a stoichiometric ratio representing a good compromise
between power, fuel economy and emissions
air-fuel ratio is between the air mass flow rate pumped from
the intake manifold and the fuel mass flow rate injected at the
valves

Experiment scenario: a full set of disturbance traces to be
verified

FCS Experiment Scenarios

For FCS, we are interested in its 4 sensors:

throttle angle, speed, residual oxygen in exhaust gas (EGO)
and manifold absolute pressure (MAP)

All of them may fail

fortunately, they are typically repaired (i.e., restarted) within a
few seconds

FCS is expected to withstand one failure at a time

by compensating with internal commands

From the verification point of view, we want to exercise the
system with multiple (non-contemporary) failures and repairs

FCS Experiment Scenarios

Base assumptions, which are valid for all experiment
scenarios:

each of the four sensor may fail at any time
each sensor, once failed, is repaired within a given time: 3–5
(throttle), 5–7 (speed), 10–15 (EGO), 13–17 (MAP)
but for each time, only one sensor may be in “failed” state
e.g., if in a disturbance trace throttle fails at step 1 and is
repaired at time 4, there cannot be any other failure in [1, 4]

If we have separate monitors for each sensor, many non-valid
traces can be generated

to be discarded when computing the SG of the conjoint
monitor also considering the above assumptions

However, here it is easier to implement all such constraints
within one monitor

Experiment scenarios are obtained by adding one or more
monitors (i.e., constraints) from the following table

FCS Experiment Scenarios

System Level Formal Verification: Case Studies

Buck DC/DC Converter: another classical example used in
litarature

also used in papers for controllers generation

Mixed-mode analog circuit converting the DC input voltage
Vi to a desired DC output voltage Vo

e.g., used inside laptop battery
to do this, it is equipped with a microcontroller activating a
switch u
to react to changes in the input voltage and other parameters
(e.g., the load R)

Buck DC/DC Converter Experiment Scenarios

We are interested in the following two parameters: Vi and R

disturbances act by modifying the parameter value
in an bounded way: it may be modified so as to take values in
a n-steps discretized interval [m,M], i.e.,
{m + is | i = 0, . . . , n − 1 ∧ s = M−n

n }
we have n = 12 for Vi and n = 6 for R
for both Vi and R, [m,M] is the corresponding nominal range:
[70, 130]V for Vi and [70, 130]Ω for R

Base assumptions: the changes as above and

no changes for the first 2 steps
once a change is made, do not modify further for the following
6 steps for Vi and 5 steps for R

Buck DC/DC Converter Experiment Scenarios

Differently from FCS, buck actually has two independent
monitors

one for Vi and one for R

As discussed before, they can be computed separately and
then conjoined in the “easy” way

Experiment scenarios are obtained by adding one or more
monitors (i.e., constraints) from the following table

Buck DC/DC Converter Experiment Scenarios

System Level Formal Verification: Case Studies

Apollo: other classical example from Simulink distribution

Phase-plane controller for the autopilot of the LEM (Lunar
Excursion Module) in the Apollo 11 mission

goal: given a request to change attitude, actuate jets so as to
achieve it

3 sensors and 16 jets

sensors detect the attitude of the module: yaw, roll and pitch
jets to change the attitude

System Level Formal Verification: Case Studies

System Level Formal Verification: Case Studies

Apollo Experiment Scenarios

We disturb both the sensors and the jets

Sensors are disturbed in 6 possible ways

for our purposes, a number from 1 to 6
such number is then translated at verification time in a one of
6 predefined continuous-time signal noise

Jets may become unavailable for 2 or 3 time units

control will have to compensate...

External request of change attitude may be any in any of the
3 directions

only 3 values: {−1, 0, 1}
no requests undoing the immediately preceding one

Experiment scenarios are obtained by adding one or more
monitors (i.e., constraints) from the following table

Apollo Experiment Scenarios

Results for Generating SGs

Experimental Results: Presentation

For each case study, we show, as a function of some
meaningful values of the verification horizon h:

the number returned by nb traces(h), i.e., the overall number
of traces fulfilling the given monitors
trace extraction time: computation time, in seconds, to
compute trace(i , h)

1000 values for i are chosen in a uniformly random way in
[0, nb traces(h)− 1]
the average value for the computation time is then shown
this allows to amortize computation of ext, ξ

selectivity of monitors: #traces with all constraints
#traces with base assumptions

having tiny values shows SGs selects important experiments
scenario
errors, if any, are discovered first

selectivity of SGs: #traces with Gen(M)
#traces with M

at the denominator, we consider possibly blocking (i.e.,
non-valid) traces

Experimental Results for FCS

Experimental Results for Buck

Experimental Results for Apollo

