
3D Environment Modeling
for Falsification and Beyond

with Scenic 3.0

Eric Vin1(B) , Shun Kashiwa1, Matthew Rhea3, Daniel J. Fremont1 ,
Edward Kim2, Tommaso Dreossi4, Shromona Ghosh5, Xiangyu Yue6,

Alberto L. Sangiovanni-Vincentelli2, and Sanjit A. Seshia2

1 University of California, Santa Cruz, USA
{evin,shkashiw,dfremont}@ucsc.edu

2 University of California, Berkeley, USA
3 SentinelOne, Mountain View, USA

4 insitro, San Francisco, USA
5 Waymo LLC, Mountain View, USA

6 The Chinese University of Hong Kong, Hong Kong, China

Abstract. We present a major new version of Scenic, a probabilistic
programming language for writing formal models of the environments of
cyber-physical systems. Scenic has been successfully used for the design
and analysis of CPS in a variety of domains, but earlier versions are lim-
ited to environments that are essentially two-dimensional. In this paper,
we extend Scenic with native support for 3D geometry, introducing new
syntax that provides expressive ways to describe 3D configurations while
preserving the simplicity and readability of the language. We replace
Scenic’s simplistic representation of objects as boxes with precise mod-
eling of complex shapes, including a ray tracing-based visibility system
that accounts for object occlusion. We also extend the language to sup-
port arbitrary temporal requirements expressed in LTL, and build an
extensible Scenic parser generated from a formal grammar of the lan-
guage. Finally, we illustrate the new application domains these features
enable with case studies that would have been impossible to accurately
model in Scenic 2.

Keywords: Scenario description language · Synthetic data ·
Probabilistic programming · Automatic test generation · Simulation

1 Introduction

A major challenge in the design of cyber-physical systems (CPS) like autonomous
vehicles is the heterogeneity and complexity of their environments. Increasingly,
problems of perception, planning, and control in such environments have been
tackled using machine learning (ML) algorithms whose behavior is not well-
understood. This trend calls for verification techniques for ML-based CPS; how-
ever, a significant barrier has been the difficulty of constructing formal models
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that capture the diversity of these systems’ environments [25]. Indeed, building
such models is a prerequisite not only for verification but any formal analysis.

Scenic [10,12] is a probabilistic programming language that addresses this
challenge by providing a precise yet readable formalism for modeling the environ-
ments of CPS. A Scenic program defines a scenario describing physical objects
in a world, placing a probability distribution on their positions and other prop-
erties; a single program can generate many different concrete scenes by sampling
from this distribution. Scenic also allows defining a stochastic policy describing
how agents behave over time, and implementing the resulting dynamic scenarios
in a variety of external simulators. Environment models defined in Scenic can be
used for many tasks: falsification, as in the VerifAI toolkit [5], but also debugging,
training data generation, and real-world experiment design [13]. These tasks have
been successfully demonstrated in a variety of domains including autonomous
driving [29], aviation [9], and reinforcement learning agents [1].

Despite Scenic’s successes, it has several limitations that prevent its use in a
number of applications of interest. First, the original language models the world
as being two-dimensional, since this enables a substantial simplification in the
language’s syntax (e.g., orientations being a single angle) as well as optimiza-
tions in its implementation. The 2D assumption is reasonable for domains such
as driving but leaves Scenic unable to properly model environments for aerial
and underwater vehicles, for example. There can be problems even for ground
vehicles: Scenic could not generate a scene where a robot vacuum is underneath
a table, as their 2D bounding boxes would overlap and Scenic would treat them
as colliding. The use of bounding boxes rather than precise shapes also leads
Scenic to use a simplistic visibility model that ignores occlusion, making it pos-
sible for Scenic to claim objects are visible when they are not and vice versa: a
serious problem when generating training data for a perception system.

Fundamentally, verification of AI-based autonomous systems requires rea-
soning about perception and physics in a 3D world. To support such reasoning,
a formal environment modeling language must provide faithful representations
of 3D geometry. Towards this end, we present Scenic 3.01, a largely backwards-
compatible major release featuring:

– Native 3D Syntax: We update Scenic’s existing syntax to support 3D geom-
etry, and add new syntax making it possible to define complex 3D scenarios
simply. For example, an object’s orientation can be specified as being tangent
to a surface and facing another object as much as possible.

– Precise 3D Shapes: The shapes of objects (as well as surfaces and volumes)
can be given by arbitrary 3D meshes, with Scenic performing precise reasoning
about collisions, containment, tangency, etc.

– Precise Visibility: We use ray tracing for precise visibility checks that take
occlusion into account.

– Temporal Requirements: We support arbitrary Linear Temporal Logic [21]
properties to constrain dynamic scenarios (vs. only Gp and Fp in Scenic 2).

1 Available at: https://github.com/BerkeleyLearnVerify/Scenic/.
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– Rewritten Parser: We give a Parsing Expression Grammar [8] for Scenic,
using it to generate a parser with more precise error messages and better
support for new syntax and optimization passes.

We first define the new features in Scenic 3 in detail in Sect. 2, working
through several toy examples. Then, in Sect. 3, we describe two case studies
using Scenic with scenarios that could not be accurately modeled without the
new features: falsifying a specification for a robot vacuum and generating training
data constrained by an LTL formula for a self-driving car’s perception system.

Related Work. There are many tools for test and data generation [3]. Some
approaches learn from examples [7,26] and so do not provide specific control
over scenarios as Scenic does. Approaches based on rules or grammars [17,20,
26] provide some control but have difficulty enforcing requirements over the
generated data as a whole. Several probabilistic programming languages have
been used for generation of objects and scenes [15,22,23], but none of them
provide specialized syntax to lay out geometric scenarios, nor for describing
dynamic behaviors. Finally, there has been work on synthetic data generation
of 3D scenes and objects using ML techniques such as GANs (e.g., [7,14,30]),
but these lack the specificity and controllability provided by a programming
language like Scenic.

2 New Features

2.1 3D Geometry

The primary new feature in Scenic 3 is the generalization of the language to 3
dimensions. Some changes, like changing the type system so that vectors have
length 3, are obvious: here we focus on cases where the existing syntax of Scenic
does not easily generalize, using simple scenarios to motivate our design choices.

The first challenge when moving to 3D is the representation of an object’s
orientation in space: Scenic’s existing heading property, providing a single angle,
is no longer sufficient. Instead, we introduce yaw, pitch, and roll angles, using
the common convention for aircraft that these represent intrinsic rotations (i.e.,
yaw is applied first, then pitch is applied to the resulting orientation, etc.).
Using intrinsic angles makes it easy to compose rotations: for example if we
point an airplane towards a landing strip with yaw and pitch (either manually
or using Scenic’s facing toward specifier — more on this below), we can add
an additional roll by adding to that property. To further simplify composition,
we add a parentOrientation property which specifies the local coordinate sys-
tem in which the 3 angles above should be interpreted (by default, the global
coordinate system). This allows the user to specify an orientation with respect
to a previously-computed orientation, for instance that of a tilted surface.

Scenic provides a flexible system of natural language specifiers which can be
combined to define properties of objects. Consider the following Scenic 3 code:
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1 objectA = new Object at (1, 2, 3), facing (45 deg, 0, 90 deg)
2 objectB = new Object left of objectA by 1
3 objectC = new Object above objectB by 1,
4 facing (Range(0,30) deg, Range(0,30) deg, 0)

Here, we use the at specifier to define a specific position for object A;
the facing specifier defines the object’s orientation using explicit yaw, pitch,
and roll angles. We then place object B left of A by 1 unit with the left of
specifier: this specifier now not only sets the position property, but also sets
the parentOrientation property to the orientation of object A (unless explic-
itly overridden). Thus object B will be oriented the same way as A. Simi-
larly, object C is positioned relative to B and so inherits its orientation as its
parentOrientation. However, this time we use the facing specifier to define
random yaw and pitch angles, so object C will face up to 30◦ off of B.

Another way to specify an object’s orientation is the facing toward speci-
fier. This is a case where the 2D semantics become ambiguous in 3D. Consider a
scenario where the user wants an airplane to be “facing toward” a runway: the
plane’s body should be oriented toward the runway (giving its yaw), but it is not
clear whether in addition the plane should be pitched downward so that its nose
points directly toward the runway. To allow for both interpretations, Scenic 3
has facing toward only specify yaw, while the new facing directly toward
specifier also specifies pitch. This is illustrated in Fig. 1.

Another common practice in 3D space is to place one object on another.
For example, we may want to place a chair on a floor, or a painting on a wall.
Scenic’s existing on specifier, which sets the position of an object to be a
uniformly random point in a given region, does not suffice for such cases because
it would cause the chair to intersect the floor or the painting to penetrate the
wall (or both). To fix this issue, we allow each object to define a base point,
which on positions instead of the object’s center. The default base point is the
bottom center of the object’s bounding box, suitable for cars and chairs for
example; a Painting class could override this to be the back center. Finally, to
enable placing objects on each other, objects can provide a topSurface property
specifying the surface which is considered the “top” for the purposes of the on
specifier. As before, there is a reasonable default (the upward-pointing faces of
the object’s mesh) that can be overridden. This syntax is illustrated in Fig. 2.

A final 3D complication arises when positioning objects on irregular surfaces.
Consider a pair of cars driving up an uneven mountain road, with one 10 m
behind the other. We can use the ahead of specifier to place one car 10 m ahead
of the other, but then the car will penetrate the road due to its upward slope.
Alternatively, the on specifier can correctly place the car so it is tangent to the
road, but then we cannot directly specify the distance between the cars. The
natural semantics here would be to combine the constraints from both specifiers,
but this is illegal in Scenic 2 where a given property (such as position) can
only be specified by a single specifier at a time. We enable this usage in Scenic
3 by introducing the concept of a modifying specifier that modifies the value
of a property already defined by another specifier. Specifically, if an object’s
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1 ego = new Ball at (0,0, 1.25)
2 new Plane at (2,0,0), facing toward ego

3 new Plane at (-2,0,0), facing directly toward ego

Fig. 1. Line-of-sight-based orientations in Scenic. The ego ball (highlighted green) is
placed above the origin, as seen by the RGB global coordinate axes, with one plane
facing towards the ego and another facing directly toward the ego. (Color figure online)

1 floor = Object with width 5, with length 5, with height 0.1
2 ego = new Chair on floor

Fig. 2. A Scenic program placing a chair on a floor. The Z-axis of the global coordinate
axes protrudes from the floor, indicating which direction is up.

position is already specified, the on specifier will project that position down
onto the given surface. This is illustrated by the green chair in Fig. 3.

Note that the green chair is correctly upright on the floor even though it was
positioned relative to the cube, and so should inherit parentOrientation from
the cube as discussed above. In this situation, the user has provided no explicit
orientation for the chair, and both below and on can provide one. To resolve this
ambiguity, we introduce a specifier priority system, where specifiers have differ-
ent priorities for the properties they specify (generalizing Scenic’s existing sys-
tem where a specifier could specify a property optionally). In our example, below
specifies position with priority 1 and parentOrientation with priority 3, while
on specifies these with priorities 1 and 2 respectively. So both specifiers determine
position (with on modifying the value from below as explained above), but on
takes precedence over below when specifying parentOrientation. This yields
the expected behavior while still allowing below to determine the orientation
when used in combination with other specifiers than on.
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1 floor = new Object with width 5, with length 5, with height 0.1
2 air_cube = new Object at (Range(-5,5), Range(-5,5), 3),
3 facing (Range(0,360 deg), Range(0,30 deg), 0)
4 new Chair below air_cube, with color (0,0,200) # blue chair

5 ego = new Chair below air_cube, on floor # green chair

Fig. 3. A Scenic program placing a green chair on the floor under a rotated cube in
midair. A blue chair is placed directly under the cube for clarity. (Color figure online)

2.2 Mesh Shapes and Regions

Scenic 2’s approximation of objects by their bounding boxes was adequate for 2D
driving scenarios, for example, but is wholly inadequate in 3D, where objects are
commonly far from box-shaped. For example, consider placing a chair tucked in
under a table. Since the bounding boxes of these two objects intersect, Scenic 2
would always reject this situation as a collision and try to generate a new scene,
even if the chair and table are entirely separate. In Scenic 3, each object has a
precise shape given by its shape property, which is set to an instance of the class
Shape. The most general Shape class is MeshShape, which represents an arbitrary
3D mesh and can be loaded from standard formats; classes for primitive shapes
like spheres are provided for convenience. These shapes are used to perform
precise collision and containment checks between objects and regions.

Scenic also supports mesh regions, which can either represent surfaces or
volumes in 3D space. For example, given a mesh representing an ocean we might
want to sample on the surface for a boat or in the volume for a submarine.

All meshes in Scenic are handled using Trimesh [4], a Python library for
triangular meshes, which internally calls out to the tools Blender [27] and Open-
SCAD [28] for several operations. These operations tend to be expensive, so
Scenic uses several heuristics to cheaply determine simple cases; these can give
between a 10x–1000x speedup when sampling scenes.
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2.3 Precise Visibility Model

Scenic 2’s visibility system simply checks if the bounding box corners of objects
are contained in the view cone of the viewing object, which is no longer adequate
for 3D scenarios with complex shapes. Visibility checks are now done using ray
tracing, and account for objects being able to occlude visibility. In addition to
standard pyramidal view cones used for cameras, Scenic correctly handles wrap-
around view regions such as those of common LiDAR sensors. Visibility checks
use a configurable density of rays, and are optimized to only send rays in areas
where they could feasibly hit the object.

2.4 Temporal Requirements

A key feature of Scenic is the ability to declaratively impose constraints on
generated scenes using require statements. However, Scenic 2 only provides
limited support for temporal requirements constraining how a dynamic scenario
evolves over time, with the require always and require eventually state-
ments. Slightly more complex examples, like “cars A and B enter the intersec-
tion after car C”, require the user to explicitly encode them as monitors, which
is error-prone and yields verbose hard-to-read imperative code: this property
requires an 8-line monitor in [12].

Scenic 3 extends require to arbitrary properties in Linear Temporal
Logic [21], allowing natural properties like this to be concisely expressed:

1 require (carA not in intersection and carB not in intersection
2 until carC in intersection)

The semantics of the operators always, eventually, next, and until are
taken from RV-LTL [2] to properly model the finite length of Scenic simulations.

2.5 Rewritten Parser

For interoperability with Python libraries, Scenic is compiled to Python, and
the original Scenic parser was implemented on top of the Python parser. This
approach imposed serious restrictions on the language design (e.g., forcing non-
intuitive operator precedences), made extending the parser difficult, and led to
misleading error messages which pointed to the wrong part of the program.

Scenic 3 uses a parser automatically generated from a Parsing Expression
Grammar (PEG) [8] for the language. The parser is based on Pegen [24], the
parser generator developed for CPython, and the grammar itself was obtained
by extending the Python PEG. The new parser outputs an abstract syntax tree
representing the structure of the original Scenic code (unlike the old parser),
ensuring that syntax errors are correctly localized and simplifying the task of
writing analysis and optimization passes for Scenic.

This new parser gives us flexibility in designing and implementing the lan-
guage. For example, we carefully assigned precedence to the four new temporal
operators so that users can naturally express temporal requirements without
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unnecessary parentheses. There are additional benefits from having a precise
machine-readable grammar for Scenic: for instance, as we wrote the grammar,
we discovered ambiguities that had previously been unnoticed and made minor
changes to the language to eliminate them. The grammar could also be be used
to fuzz test the compiler and other tools operating on Scenic programs.

3 Case Studies

In this section, we discuss two case studies in the robotics simulator Webots [19].
The code for both case studies is available in the Scenic GitHub repository [11].
The first case study, performing falsification of a robot vacuum, illustrates a
domain that could not be modeled in Scenic 2 due to the lack of 3D support.
The second case study, generating data constrained by an LTL formula for testing
or training the perception system of an autonomous vehicle, is an example of
how the new features in Scenic 3 can significantly improve effectiveness even in
one of Scenic’s original target domains.

3.1 Falsification of a Robot Vacuum

In this example we evaluate the iRobot Create [16], a robot vacuum, on its
ability to effectively clean a room filled with objects. We use a specification
stating that the robot must clean at least a third of the room within 5min: in
Signal Temporal Logic [18], the formula ϕ = F[0,300](coverage > 1/3). We use
Scenic to generate a complete room and export it to Webots for simulation. The
room is surrounded by four walls and contains two main sections: in the dining
room section, we place a table of varied width and length randomly on the floor,
with 3 chairs tucked in around it and another chair fallen over. In the living
room section, we place a couch with a coffee table in front of it, both leaving
randomly-sized spaces roughly the diameter of the robot vacuum. We then add
a variable number of toys, modeled as small boxes, cylinders, cones, and spheres,
placed randomly around the room; for a taller obstacle, we place a stack of 3
box toys somewhere in the room. Finally, we place the vacuum randomly on the
floor, and use Scenic’s mutate statement to add noise to the positions and yaw
of the furniture. Several scenes sampled from this scenario are shown in Fig. 4.

We tested the default controller for the vacuum against 0, 1, 2, 4, 8, and
16-toy variants of our Scenic scenario, running 25 simulations for each variant.
For each simulation, we computed the robustness value [6] of our spec ϕ. The
average values are plotted in Fig. 5, showing a clear decline as the number of
toys increases. Many of the runs actually falsified ϕ: up to 44% with 16 toys.

There are several aspects of this example that would not be possible in Scenic
2. First, the new syntax in Scenic 3 allows for convenient placement of objects,
specifically the use of on in combination with left of and right of, to place
the chairs on the appropriate side of the dining table but on the floor. Many
of the objects are also above others and have overlapping bounding boxes, but
because Scenic now models shapes precisely, it is able to properly register these
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Fig. 4. Several sampled scenes from the robot vacuum scenario.
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Fig. 5. Spec. robustness value vs. number of toys, averaged over 25 simulations.

objects as non-intersecting and place them in truly feasible locations (e.g., in
Fig. 4, the toy under the dining table in the top left scene and the robot under
the coffee table in the bottom right scene).

3.2 Constrained Data Generation for an Autonomous Vehicle

In this example we generate instances of a potentially-unsafe driving scenario
for use in training or testing the perception system of an AV. Consider a car
passing in front of the AV in an intersection where the AV must yield, and so
needs to detect the other car before it becomes too late to brake and avoid a
collision. We want to generate time series of images labeled with whether or
not the crossing car is visible, for a variety of different scenes with different city
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(a) 2 seconds: not visible (b) 2.5 seconds: visible

(c) 4 seconds: visible (d) 4.5 seconds: not visible

Fig. 6. Intersection simulation images, with visibility label for the crossing car.

layouts to provide various openings and backdrops. Our scenario places both the
ego car (the AV) and the crossing car randomly on the appropriate road ahead
of the intersection. We place several buildings along the crossing road that block
visibility, allowing some randomness in their position and yaw values. We also
place several buildings completely randomly behind the crossing road to provide
a diverse backdrop of buildings in the images. Finally, we want to constrain data
generation to instances of this scenario where the crossing car is not visible until
it is close to the AV, as these will be the most challenging for the perception
system. Using the new LTL syntax, we simply write:

1 require (not ego can see car) until distance to car < 75

Figure 6 shows a simulation sampled from this scenario. In Scenic 2, the
crossing car would be wrongly labeled as visible in image (a), since the occluding
buildings would not be taken into account. This would introduce significant
error into the generated training set, which in previous uses of Scenic had to
be addressed by manually filtering out spurious images; this is avoided with the
new system.

4 Conclusion

In this paper we presented Scenic 3, a major new version of the Scenic pro-
gramming language that provides full native support for 3D geometry, a precise
occlusion-aware visibility system, support for more expressive temporal opera-
tors, and a rewritten extensible parser. These new features extend Scenic’s use
cases for developing, testing, debugging, and verifying cyber-physical systems to
a broader range of application domains that could not be accurately modeled in
Scenic 2. Our case study in Sect. 3.1 demonstrated how Scenic 3 makes it easier
to perform falsification for CPS with complex 3D environments. Our case study
in Sect. 3.2 further showed that even in domains that could already be modeled in
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Scenic 2, like autonomous driving, Scenic 3 allows for significantly more precise
specifications due to its ability to reason accurately about 3D orientations, colli-
sions, visibility, etc.; these concepts are often relevant to the properties we seek
to prove about a system or an environment we want to specify. We expect the
improvements to Scenic we describe in this paper will impact the formal meth-
ods community both by extending Scenic’s proven use cases in simulation-based
verification and analysis to a much wider range of application domains, and by
providing a 3D environment specification language which is general enough to
allow a variety of new CPS verification tools to be built on top of it.

In future work, we plan to develop 3D scenario optimization techniques (com-
plementing the 2D methods Scenic already uses) and explore additional 3D appli-
cation domains such as drones. We also plan to leverage the new parser to allow
users to define their own custom specifiers and pruning techniques.
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