

Lecture 1

Introduction

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic model checking

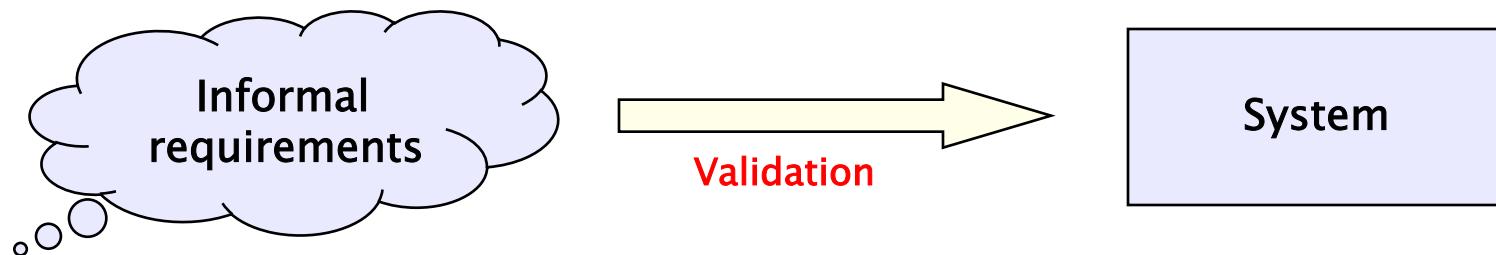
- Probabilistic model checking...
 - is a **formal verification** technique for modelling and analysing systems that exhibit **probabilistic** behaviour
- Formal verification...
 - is the application of rigorous, mathematics-based techniques to establish the correctness of computerised systems

Outline

- Introducing probabilistic model checking...
- Topics for this lecture
 - the role of automatic verification
 - what is probabilistic model checking?
 - why is it important?
 - where is it applicable?
 - what does it involve?
- About this course
 - aims and organisation
 - information and links

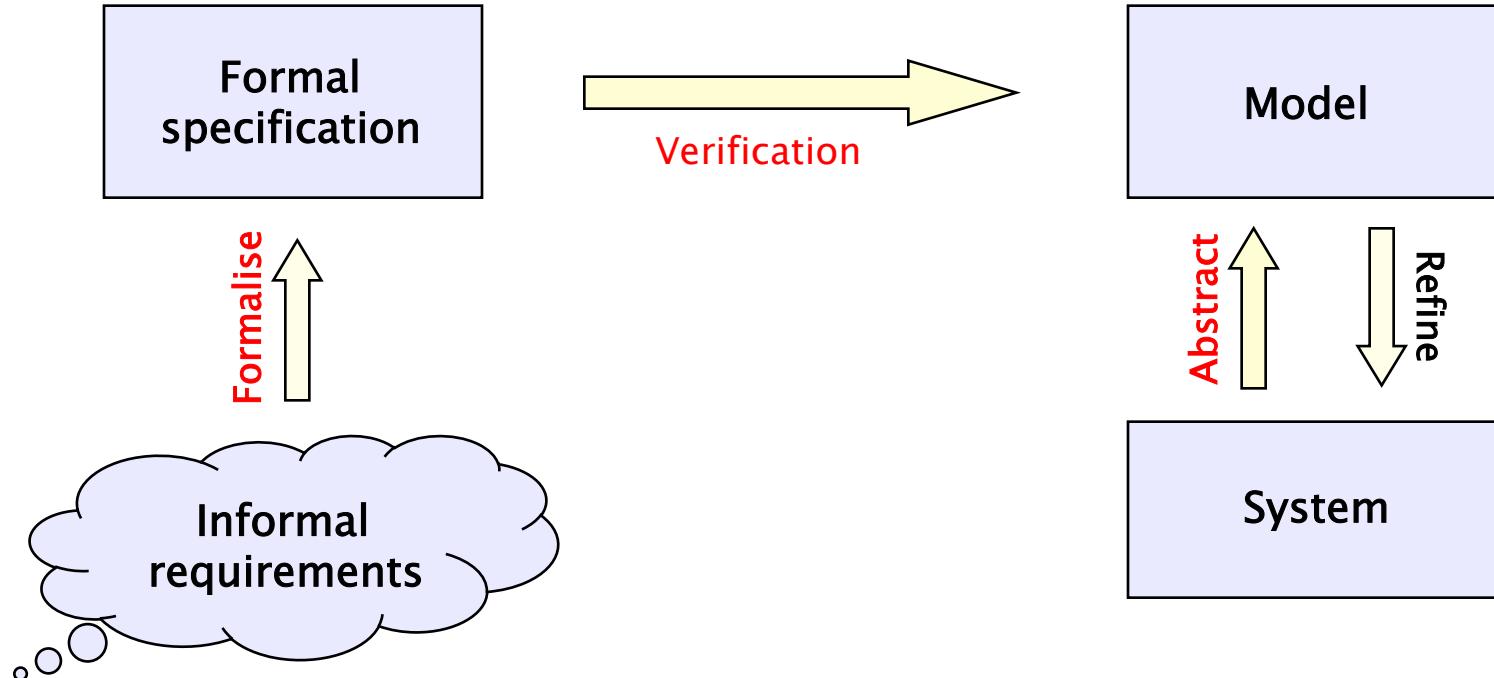
Conventional software engineering

- From requirements to software system
 - apply design methodologies
 - code directly in programming language
 - validation via testing, code walkthroughs



Formal verification

- From requirements to formal specification
 - formalise specification, derive model
 - formally **verify** correctness



But my program works!

- True, there are many successful large-scale complex computer systems...
 - online banking, electronic commerce
 - information services, online libraries, business processes
 - supply chain management
 - mobile phone networks
- Yet many new potential application domains with far greater complexity and higher expectations
 - automotive drive-by-wire
 - medical sensors: heart rate & blood pressure monitors
 - intelligent buildings and spaces, environmental sensors
- Learning from mistakes costly...

Toyota Prius

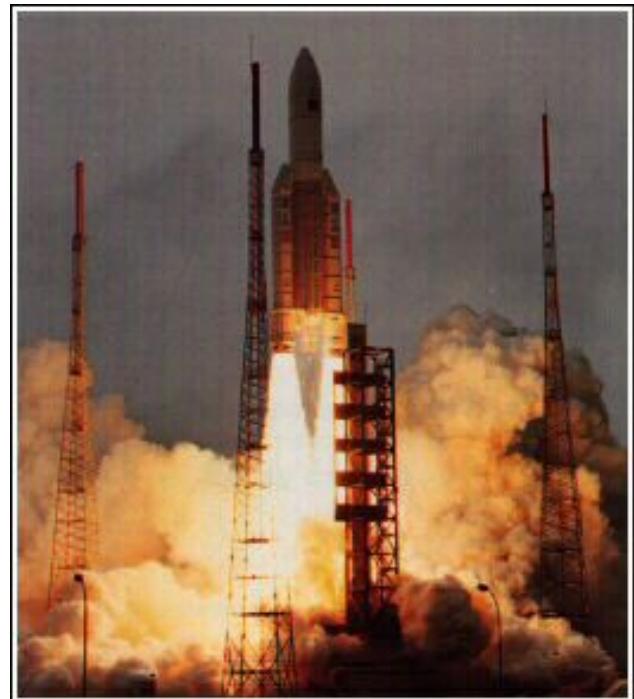
- Toyota Prius
 - first mass-produced hybrid vehicle

- February 2010
 - software “glitch” found in anti-lock braking system
 - in response to numerous complaints/accidents

- Eventually fixed via software update
 - in total 185,000 cars recalled, at huge cost
 - handling of the incident prompted much criticism, bad publicity

Ariane 5

- ESA (European Space Agency) Ariane 5 launcher
 - shown here in maiden flight on 4th June 1996
- 37secs later self-destructs
 - uncaught exception: numerical overflow in a conversion routine results in incorrect altitude sent by the on-board computer
- Expensive, embarrassing...



The London Ambulance Service

- London Ambulance Service computer aided despatch system
 - Area 600sq miles
 - Population 6.8million
 - 5000 patients per day
 - 2000–2500 calls per day
 - 1000–1200 999 calls per day

- Introduced October 1992
- Severe system failure:
 - position of vehicles incorrectly recorded
 - multiple vehicles sent to the same location
 - 20–30 people estimated to have died as a result

What do these stories have in common?

- Programmable computing devices
 - conventional computers and networks
 - software embedded in devices
 - airbag controllers, mobile phones, etc
- Programming error direct cause of failure
- Software critical
 - for safety
 - for business
 - for performance
- High costs incurred: not just financial
- Failures avoidable...

Why must we verify?

“Testing can only show the presence of errors, not their absence.”

To rule out errors need to consider **all possible executions** often not feasible mechanically!

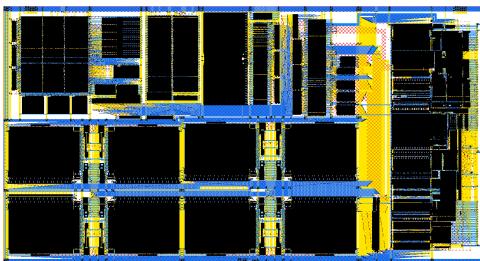
- need formal verification...

“In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, computers are without precedent in the cultural history of mankind.”

Edsger Dijkstra
1930–2002

Automatic verification

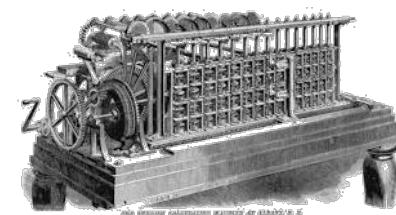
- Formal verification...
 - the application of rigorous, mathematics-based techniques to establish the correctness of computerised systems
 - essentially: proving that a program satisfies its specification
 - many techniques: manual proof, automated theorem proving, static analysis, model checking, ...



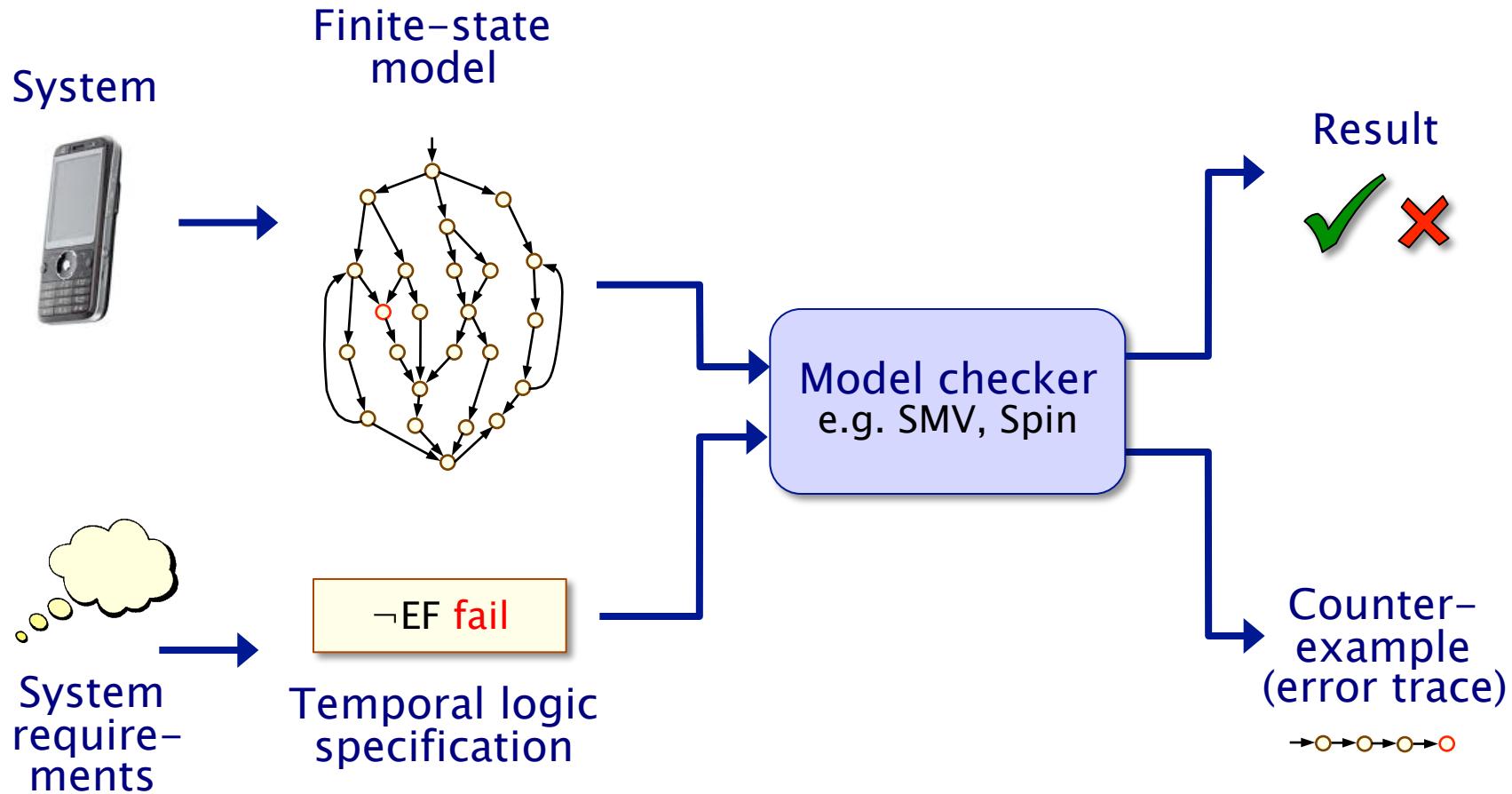
$10^{500,000}$ states

10^{70} atoms

- Automatic verification =
 - mechanical, push-button technology
 - performed without human intervention



Verification via model checking



Model checking in practice

- Model checking now routinely applied to real-life systems
 - not just “verification”...
 - model checkers used as a debugging tool
 - at IBM, bugs detected in arbiter that could not be found with simulations
- Now widely accepted in industrial practice
 - Microsoft, Intel, Cadence, Bell Labs, IBM,...
- Many software tools, both commercial and academic
 - smv, SPIN, SLAM, FDR2, FormalCheck, RuleBase, ...
 - software, hardware, protocols, ...
- Extremely active research area
 - 2008 Turing Award won by Edmund Clarke, Allen Emerson and Joseph Sifakis for their work on model checking

New challenges for verification

- Devices, ever smaller
 - laptops, phones, sensors...
- Networking, wireless, wired & global
 - wireless & internet everywhere
- New design and engineering challenges
 - adaptive computing,
ubiquitous/pervasive computing,
context-aware systems
 - trade-offs between e.g. performance,
security, power usage, battery life, ...

New challenges for verification

- Many properties other than correctness are important
- Need to guarantee...
 - safety, reliability, performance, dependability
 - resource usage, e.g. battery life
 - security, privacy, trust, anonymity, fairness
 - and much more...
- **Quantitative**, as well as qualitative requirements:
 - “how reliable is my car’s Bluetooth network?”
 - “how efficient is my phone’s power management policy?”
 - “how secure is my bank’s web-service?”
- This course: **probabilistic verification**

Why probability?

- Some systems are inherently probabilistic...
- **Randomisation**, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- Examples: real-world protocols featuring randomisation
 - Randomised back-off schemes
 - IEEE 802.3 CSMA/CD, IEEE 802.11 Wireless LAN
 - Random choice of waiting time
 - IEEE 1394 Firewire (root contention), Bluetooth (device discovery)
 - Random choice over a set of possible addresses
 - IPv4 Zeroconf dynamic configuration (link-local addressing)
 - Randomised algorithms for anonymity, contract signing, ...

Why probability?

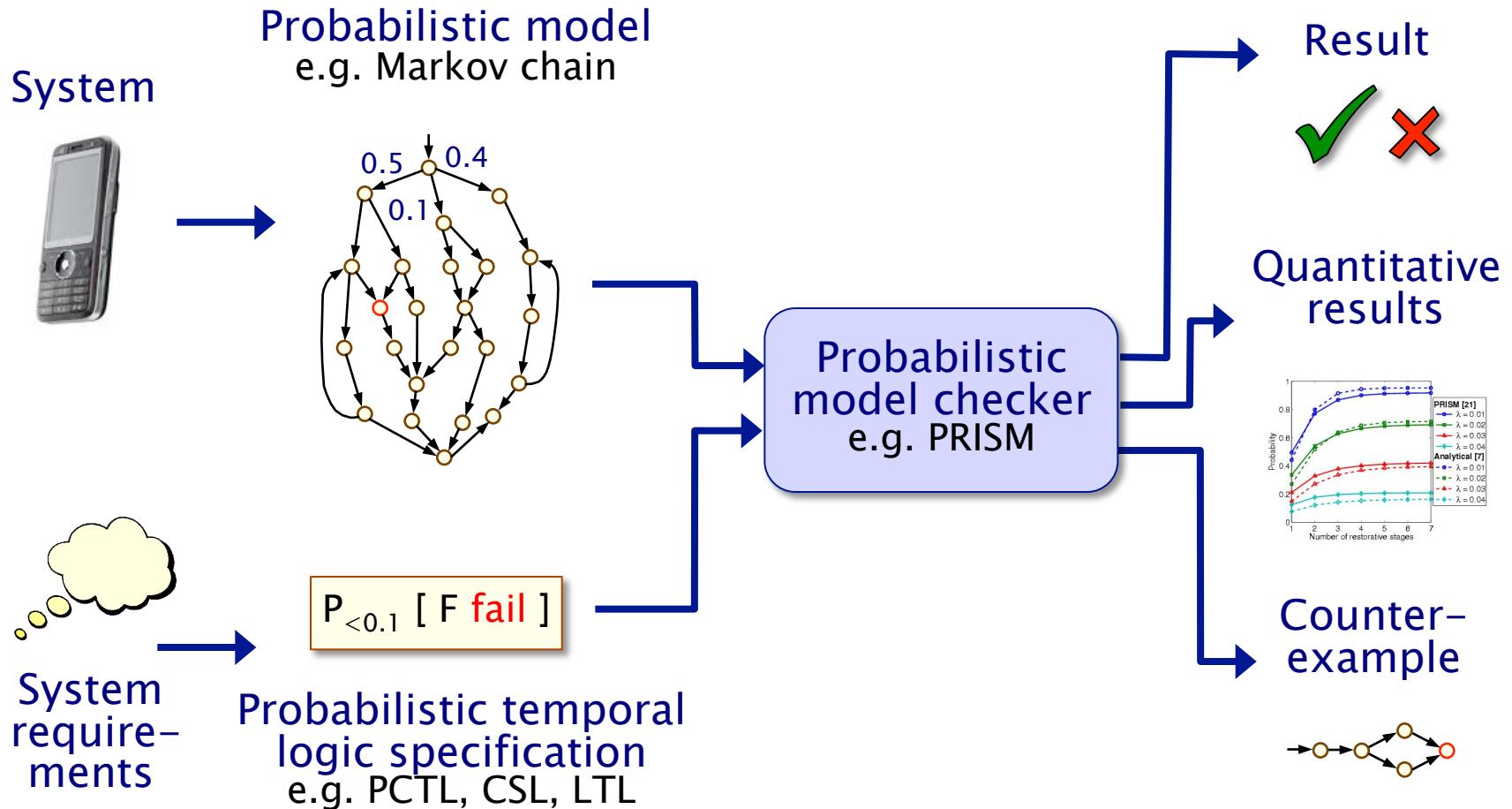
- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- Modelling uncertainty and performance
 - to quantify rate of failures, express Quality of Service

- Examples:
 - computer networks, embedded systems
 - power management policies
 - nano-scale circuitry: reliability through defect-tolerance

Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- Modelling uncertainty and performance
 - to quantify rate of failures, express Quality of Service
- For quantitative analysis of software and systems
 - to quantify resource usage given a policy
“the minimum expected battery capacity for a scenario...”
- And many others, e.g. biological processes

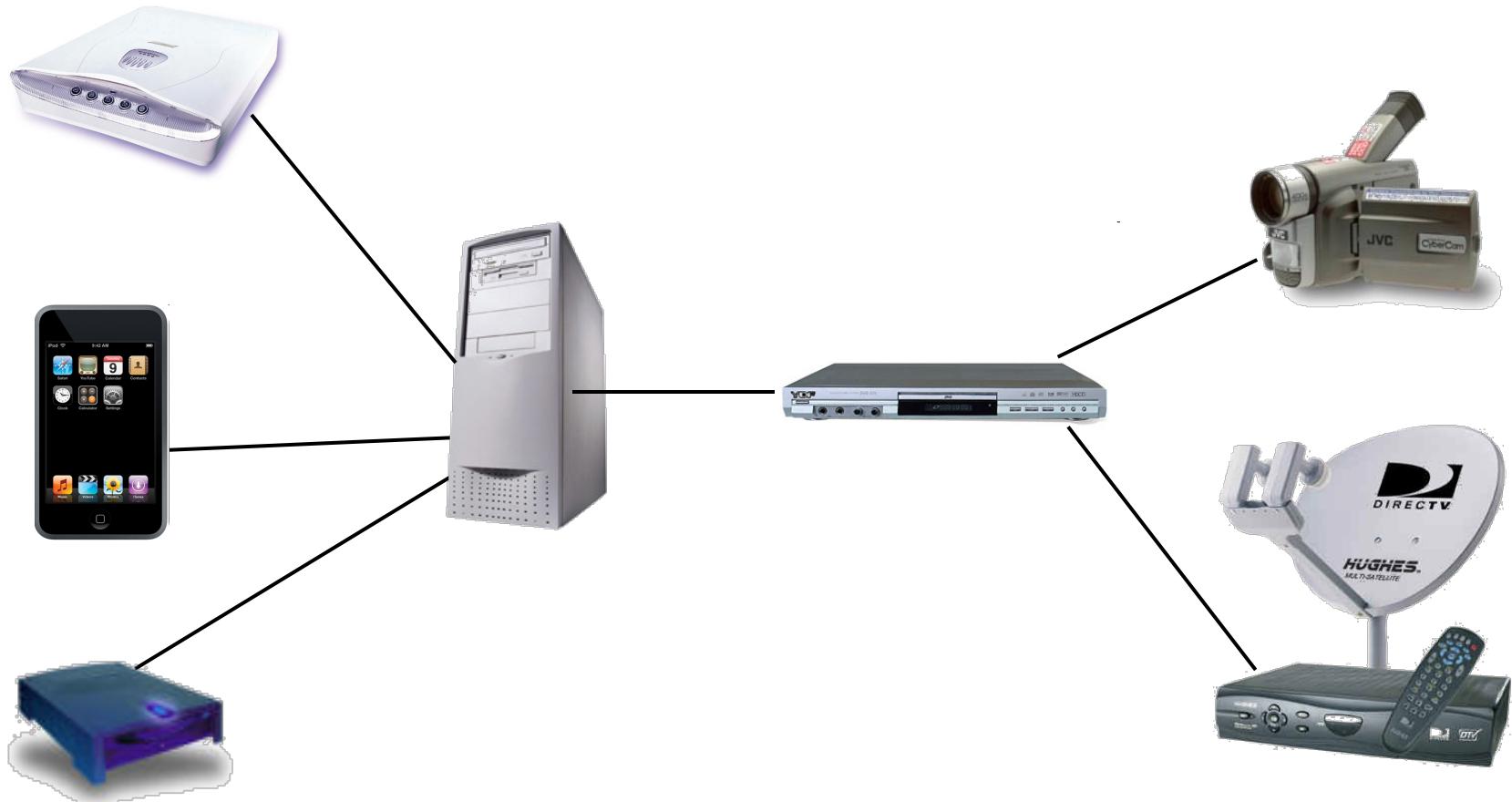
Probabilistic model checking



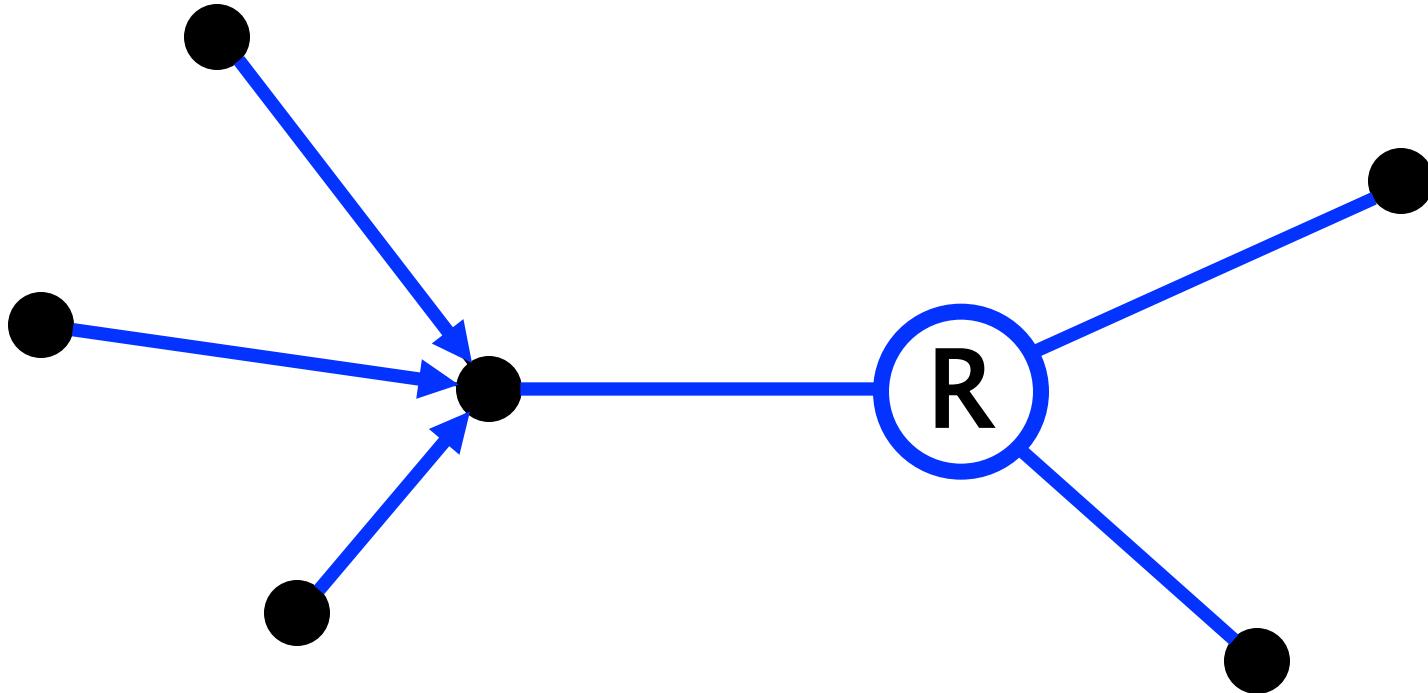
Case study: FireWire protocol

- FireWire (IEEE 1394)
 - high-performance serial bus for networking multimedia devices; originally by Apple
 - "hot-pluggable" – add/remove devices at any time
 - no requirement for a single PC (need acyclic topology)
- Root contention protocol
 - leader election algorithm, when nodes join/leave
 - symmetric, distributed protocol
 - uses electronic coin tossing and timing delays
 - nodes send messages: "be my parent"
 - root contention: when nodes contend leadership
 - random choice: "fast"/"slow" delay before retry

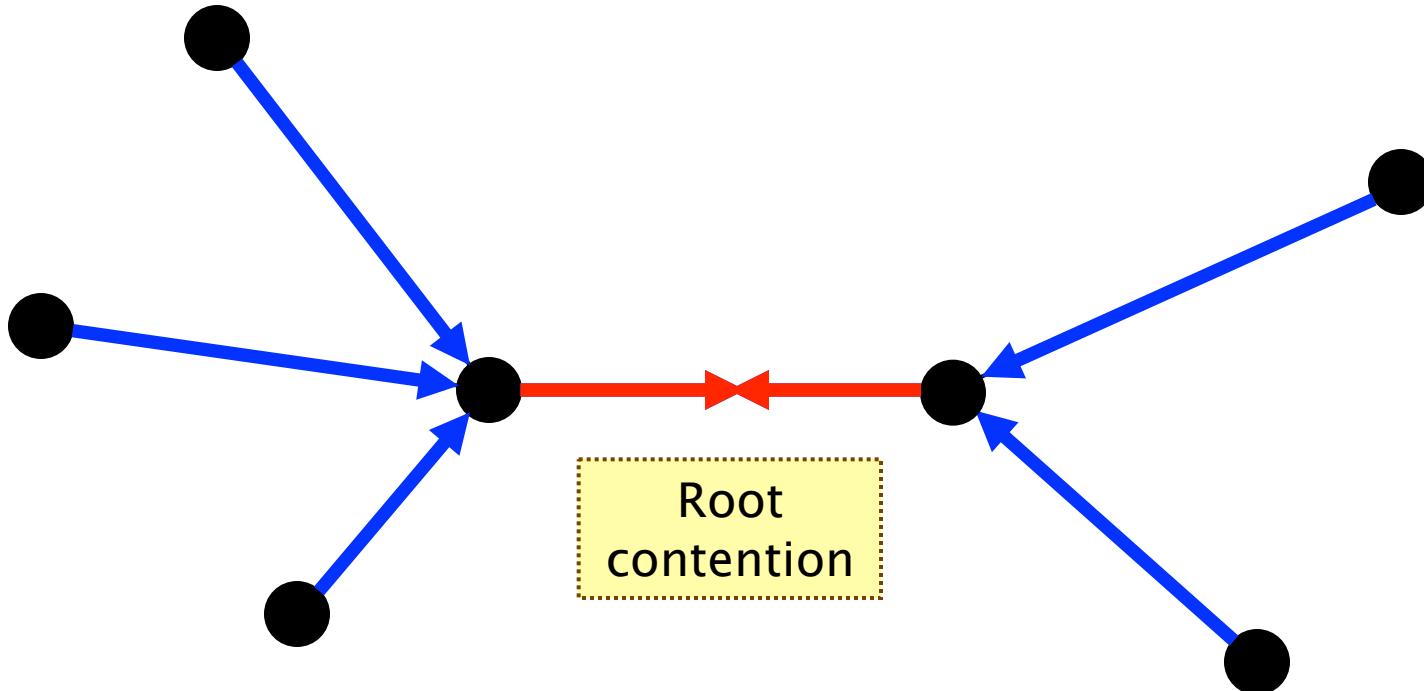
FireWire example



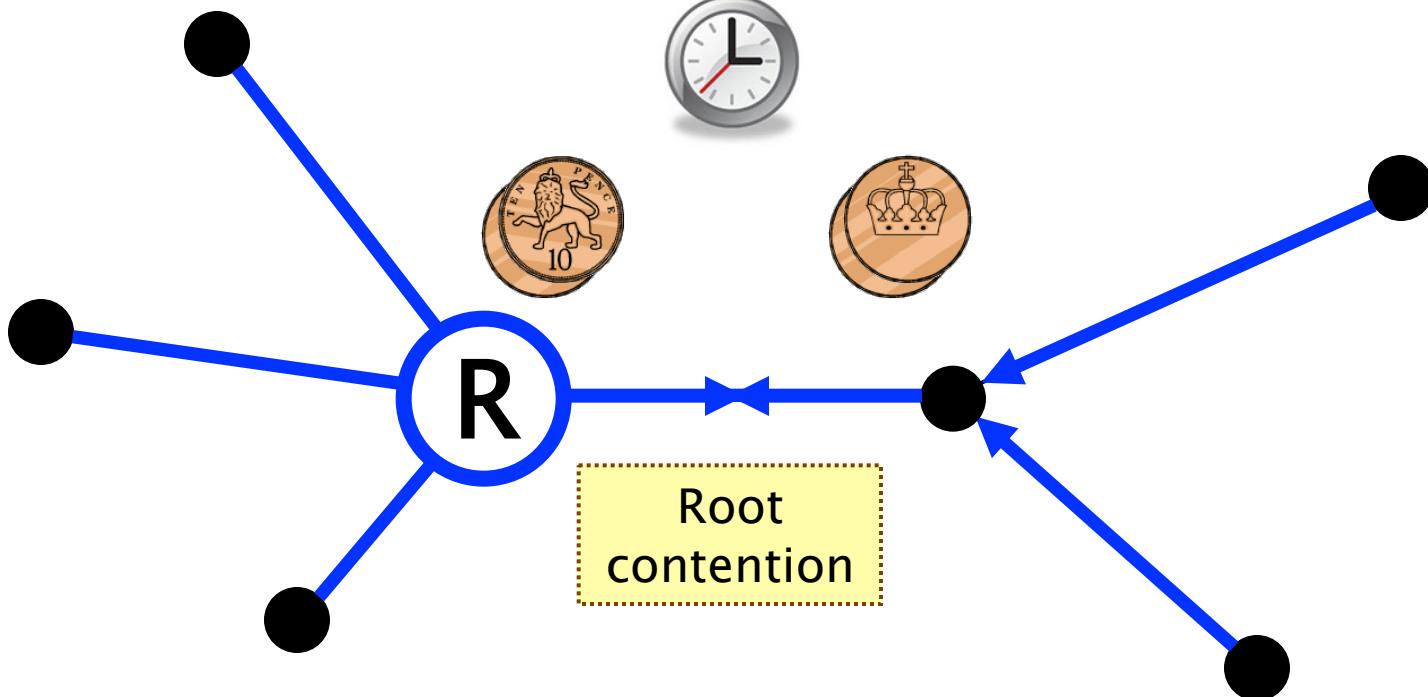
FireWire leader election



FireWire root contention

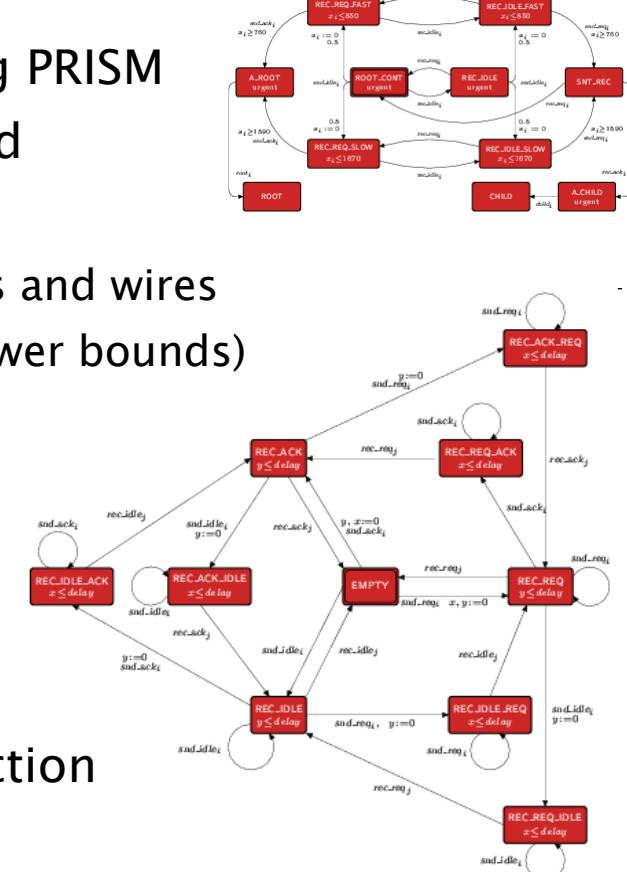


FireWire root contention

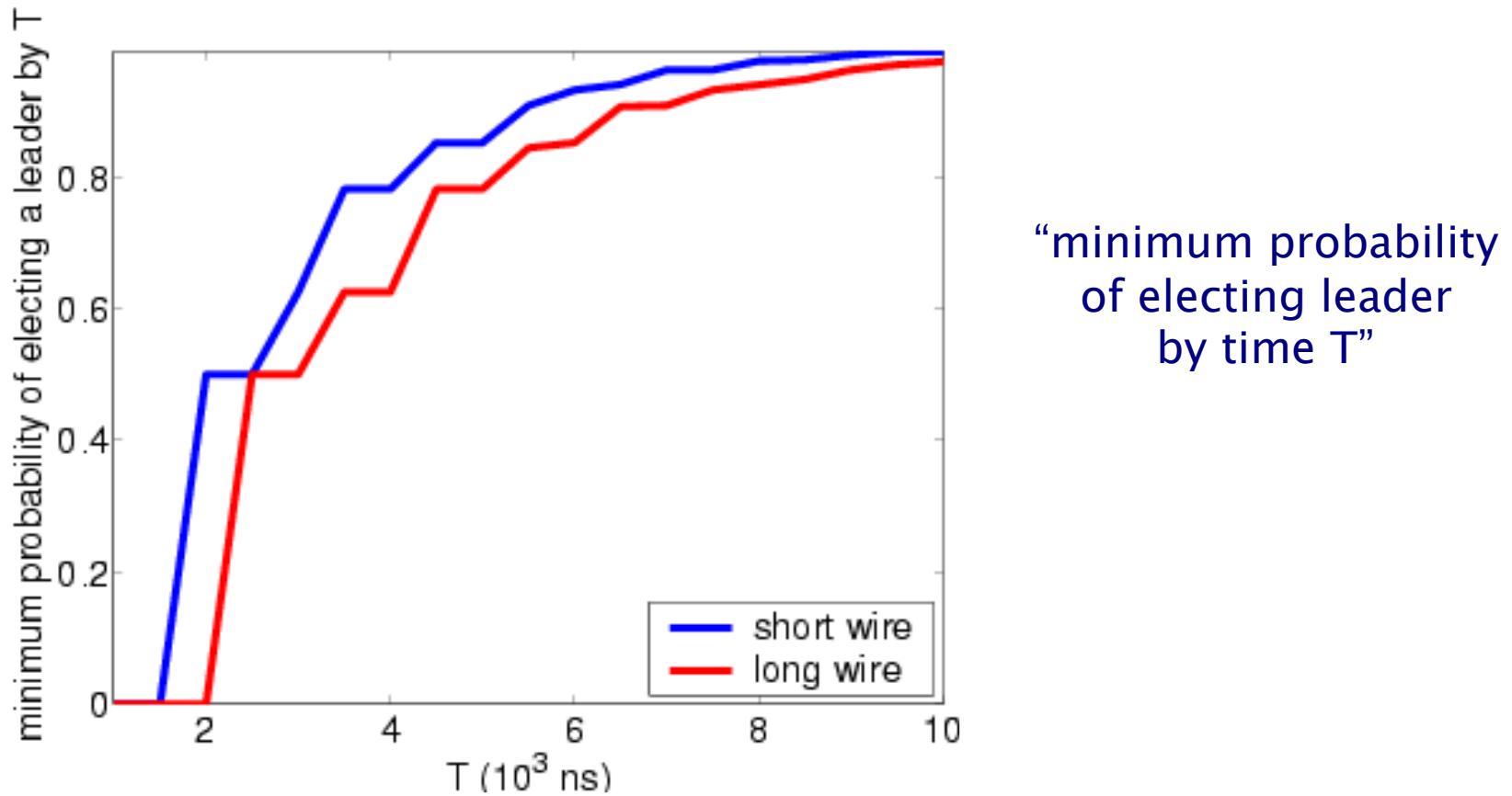


FireWire analysis

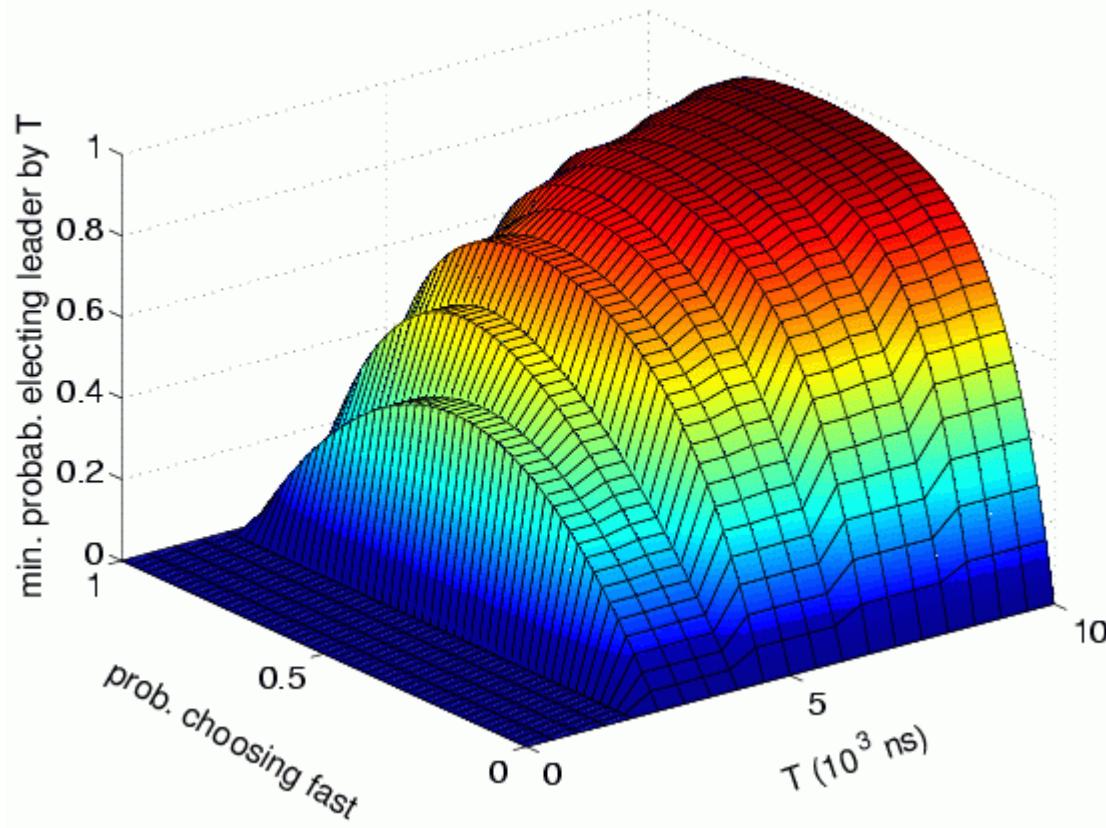
- Probabilistic model checking
 - model constructed and analysed using PRISM
 - timing delays taken from IEEE standard
 - model includes:
 - concurrency: messages between nodes and wires
 - underspecification of delays (upper/lower bounds)
 - max. model size: 170 million states
- Analysis:
 - verified that root contention always resolved with probability 1
 - investigated time taken for leader election
 - and the effect of using biased coin
 - based on a conjecture by Stoelinga



FireWire: Analysis results



FireWire: Analysis results

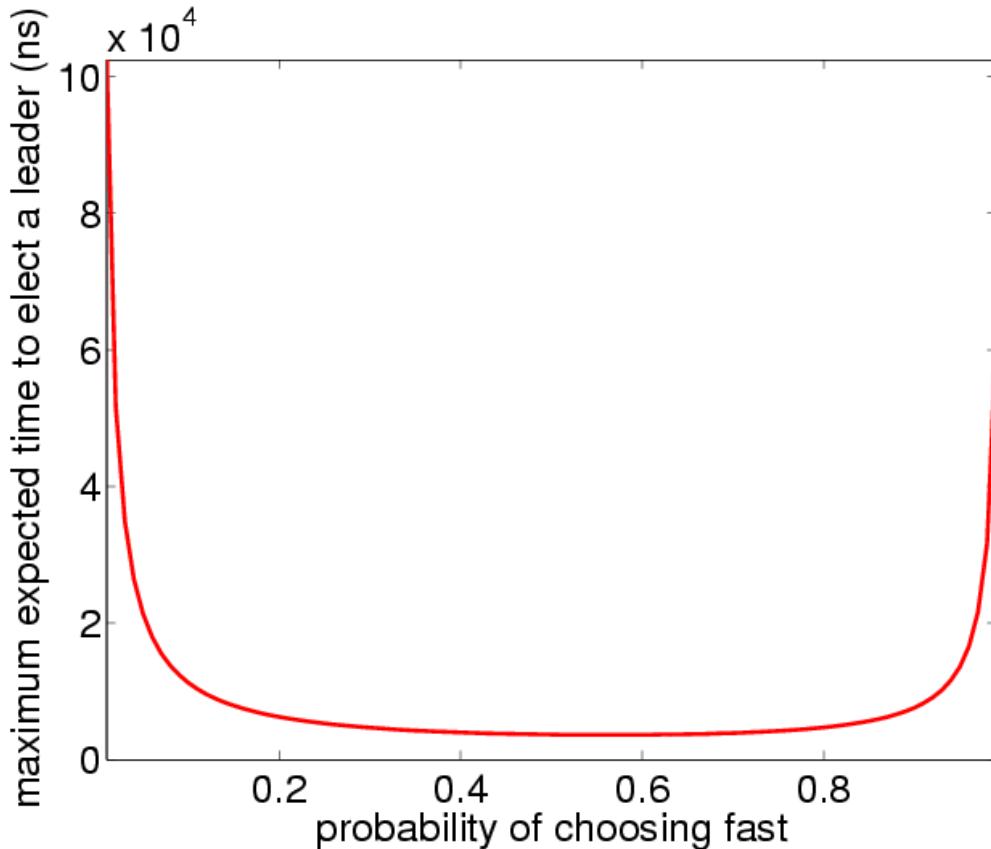


“minimum probability
of electing leader
by time T ”

(short wire length)

Using a biased coin

FireWire: Analysis results

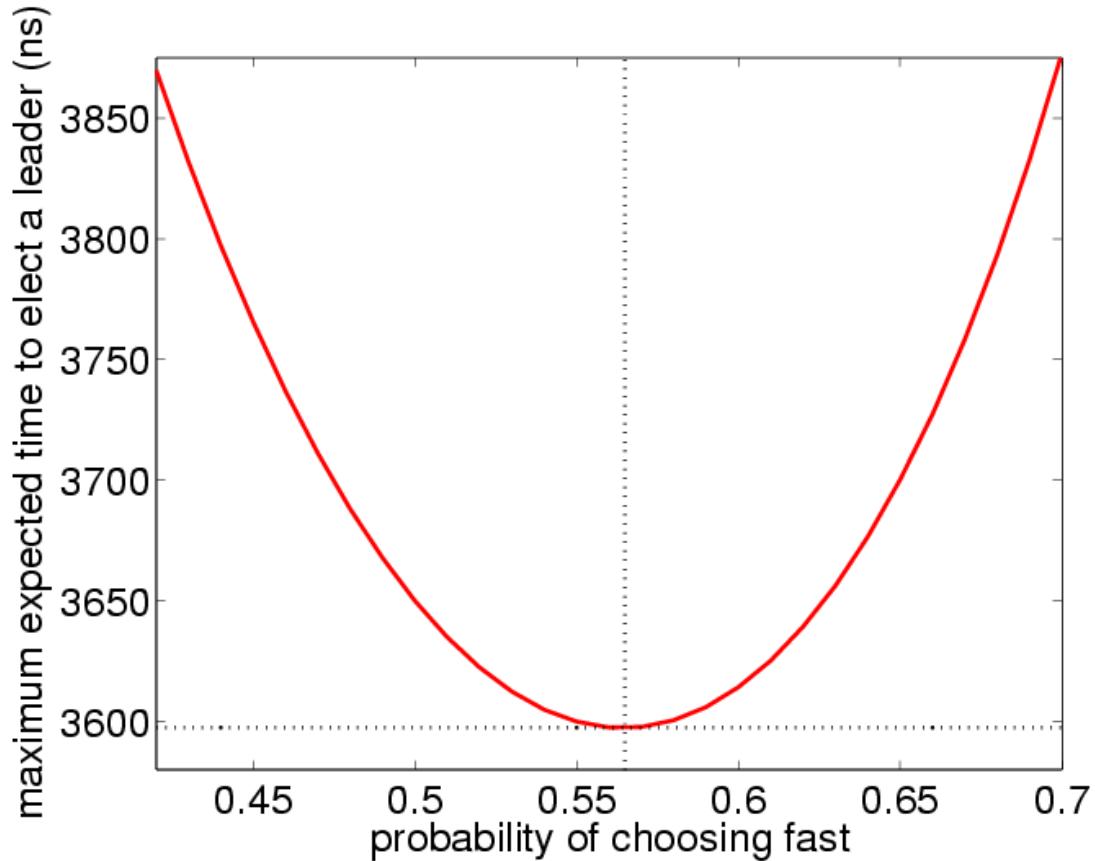


“maximum expected time to elect a leader”

(short wire length)

Using a biased coin

FireWire: Analysis results

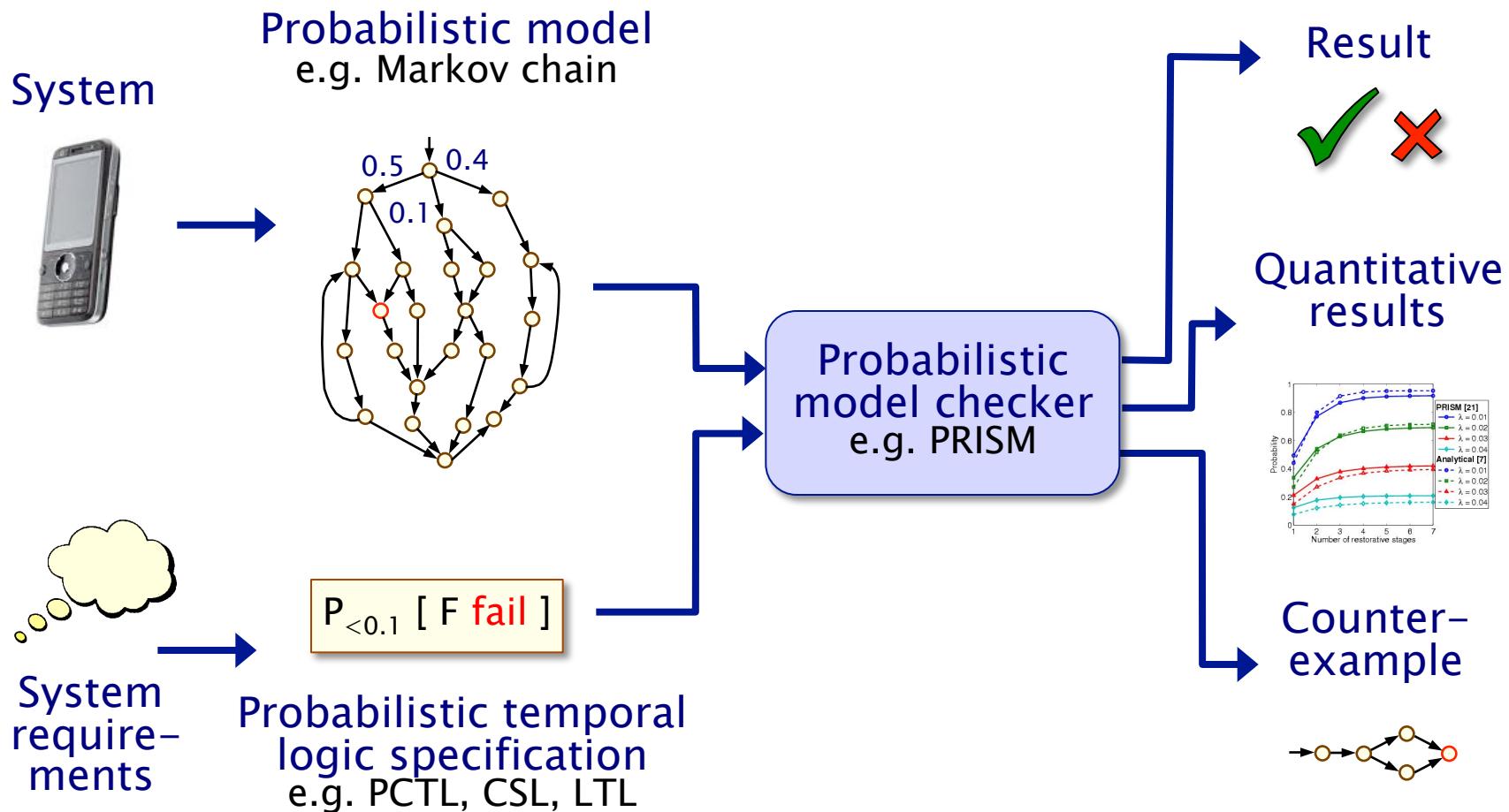


“maximum expected time to elect a leader”

(short wire length)

Using a biased coin is beneficial!

Probabilistic model checking



Probabilistic model checking inputs

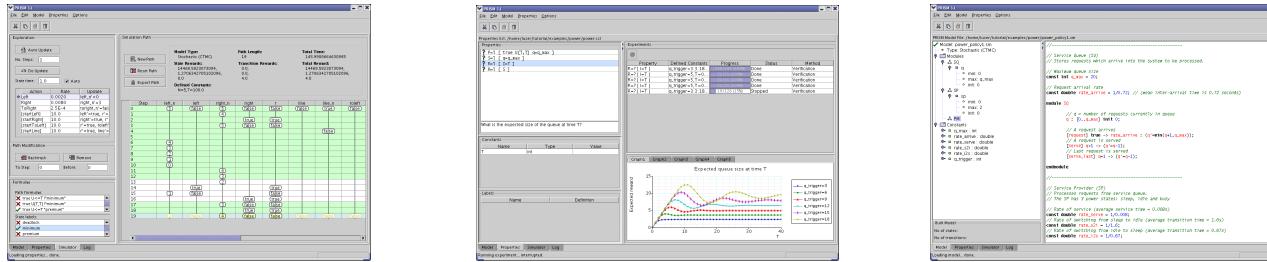
- **Models:** variants of Markov chains
 - discrete-time Markov chains (DTMCs)
 - discrete time, discrete probabilistic behaviours only
 - continuous-time Markov chains (CTMCs)
 - continuous time, continuous probabilistic behaviours
 - Markov decision processes (MDPs)
 - DTMCs, plus nondeterminism
- **Specifications**
 - informally:
 - “probability of delivery within time deadline is ...”
 - “expected time until message delivery is ...”
 - “expected power consumption is ...”
 - formally:
 - probabilistic temporal logics (PCTL, CSL, LTL, PCTL*, ...)
 - e.g. $P_{<0.05} [F \text{ err/total} > 0.1]$, $P_{=?} [F^{\leq t} \text{ reply_count} = k]$

Probabilistic model checking involves...

- Construction of models
 - from a description in a high-level modelling language
- Probabilistic model checking algorithms
 - graph-theoretical algorithms
 - e.g. for reachability, identifying strongly connected components
 - numerical computation
 - linear equation systems, linear optimisation problems
 - iterative methods, direct methods
 - uniformisation, shortest path problems
 - automata for regular languages
 - also sampling-based (statistical) for approximate analysis
 - e.g. hypothesis testing based on simulation runs

Probabilistic model checking involves...

- Efficient implementation techniques
 - essential for scalability to real-life systems
 - **symbolic** data structures based on binary decision diagrams
 - algorithms for bisimulation minimisation, symmetry reduction
- Tool support
 - **PRISM**: free, open-source probabilistic model checker
 - currently based at Oxford University
 - supports all probabilistic models discussed here



Course aims

- Introduce main types of probabilistic models and specification notations
 - theory, syntax, semantics, examples
 - probability, expectation, costs/rewards
- Explain the working of probabilistic model checking
 - algorithms & (symbolic) implementation
- Introduce software tools
 - probabilistic model checker PRISM
- Examples from wide range of application domains
 - communication & coordination protocols, performance & reliability modelling, biological systems, ...
- Mix of theory and practice

Course outline

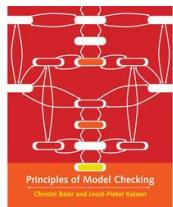
- Discrete-time Markov chains (DTMCs) and their properties
- Probabilistic temporal logics: PCTL, LTL, etc.
- PCTL model checking for DTMCs
- The PRISM model checker
- Costs & rewards
- Continuous-time Markov chains (CTMCs)
- Counterexamples & bisimulation
- Markov decision processes (MDPs)
- Probabilistic LTL model checking
- Implementation and data structures: symbolic techniques

Course information

- Prerequisites/background
 - basic computer science/maths background
 - no probability knowledge assumed
- Lectures
 - 20 lectures: Mon 2pm, Wed 3pm, Thur 12pm (wks 1–4)
- Classes/practicals (please sign up on-line)
 - 4 problem sheets + 1 hr classes
(Tue 3pm, Wed 12pm, wks 3, 5, 7, 8)
 - 4 practical exercises, based on PRISM,
4 scheduled 2 hr practical sessions (Tue 4pm, wks 3, 4, 6, 7),
+ work outside lab sessions
- Assessment
 - take-home assignment

Further information

- Course lecture notes are self-contained
 - www.cs.ox.ac.uk/teaching/materials11-12/probabilistic/
- For further reading material...
 - two online tutorial papers also cover a lot of the material
 - [Stochastic Model Checking](#)
Marta Kwiatkowska, Gethin Norman and David Parker
 - [Automated Verification Techniques for Probabilistic Systems](#)
Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker
 - DTMC/MDP material also based on Chapter 10 of:



Principles of Model Checking
Christel Baier and Joost-Pieter Katoen
MIT Press

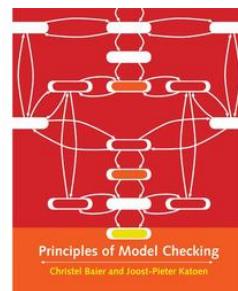
- PRISM web site: <http://www.prismmodelchecker.org/>

Next lecture(s)

- Wed 3pm
- Thur 12pm
- Discrete-time Markov chains

Acknowledgements

- Much of the material in the course is based on an existing lecture course prepared by:
 - Marta Kwiatkowska
 - Gethin Norman
 - Dave Parker
- Various material and examples also appear courtesy of:
 - Christel Baier
 - Joost-Pieter Katoen



Lecture 2

Discrete-time Markov Chains

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking

- Formal verification and analysis of systems that exhibit probabilistic behaviour
 - e.g. randomised algorithms/protocols
 - e.g. systems with failures/unreliability
- Based on the construction and analysis of precise mathematical models
- This lecture: discrete-time Markov chains

Overview

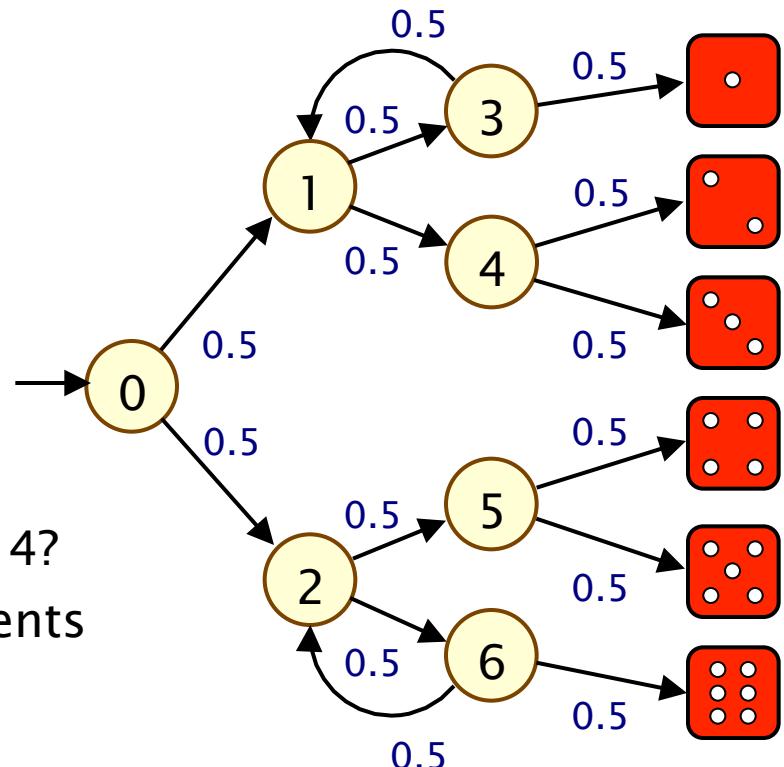
- Probability basics
- Discrete-time Markov chains (DTMCs)
 - definition, properties, examples
- Formalising path-based properties of DTMCs
 - probability space over infinite paths
- Probabilistic reachability
 - definition, computation
- Sources/further reading: Section 10.1 of [BK08]

Probability basics

- First, need an experiment
 - The **sample space** Ω is the set of possible outcomes
 - An **event** is a subset of Ω , can form events $A \cap B$, $A \cup B$, $\Omega \setminus A$
- Examples:
 - toss a coin: $\Omega = \{H, T\}$, events: “H”, “T”
 - toss two coins: $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$, event: “at least one H”
 - toss a coin ∞ -often: Ω is set of infinite sequences of H/T
event: “H in the first 3 throws”
- Probability is:
 - $\Pr(H) = \Pr(T) = 1/2$, $\Pr(\text{at least one H}) = 3/4$
 - $\Pr(\text{H in the first 3 throws}) = 1/2 + 1/4 + 1/8 = 7/8$

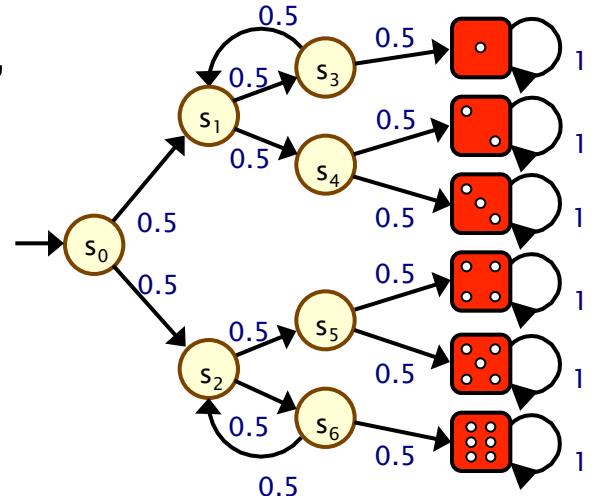
Probability example

- Modelling a 6-sided die using a fair coin
 - algorithm due to Knuth/Yao:
 - start at 0, toss a coin
 - upper branch when H
 - lower branch when T
 - repeat until value chosen
- Is this algorithm correct?
 - e.g. probability of obtaining a 4?
 - Obtain as disjoint union of events
 - THH, TTTHH, TTTTTTHH, ...
 - $\Pr(\text{"eventually 4"})$
 $= (1/2)^3 + (1/2)^5 + (1/2)^7 + \dots = 1/6$



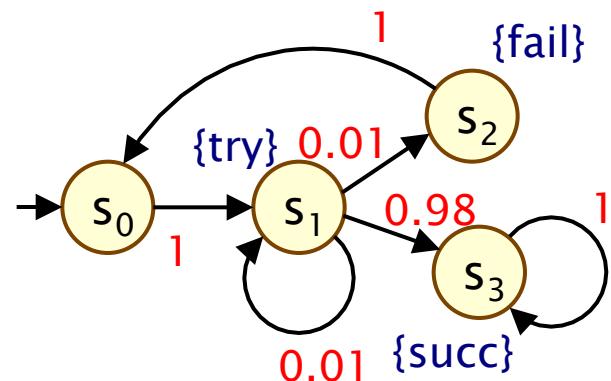
Example...

- Other properties?
 - “what is the probability of termination?”
- e.g. efficiency?
 - “what is the probability of needing more than 4 coin tosses?”
 - “on average, how many coin tosses are needed?”
- Probabilistic model checking provides a framework for these kinds of properties...
 - modelling languages
 - property specification languages
 - model checking algorithms, techniques and tools



Discrete-time Markov chains

- State-transition systems augmented with probabilities
- States
 - set of states representing possible configurations of the system being modelled
- Transitions
 - transitions between states model evolution of system's state; occur in discrete time-steps
- Probabilities
 - probabilities of making transitions between states are given by discrete probability distributions

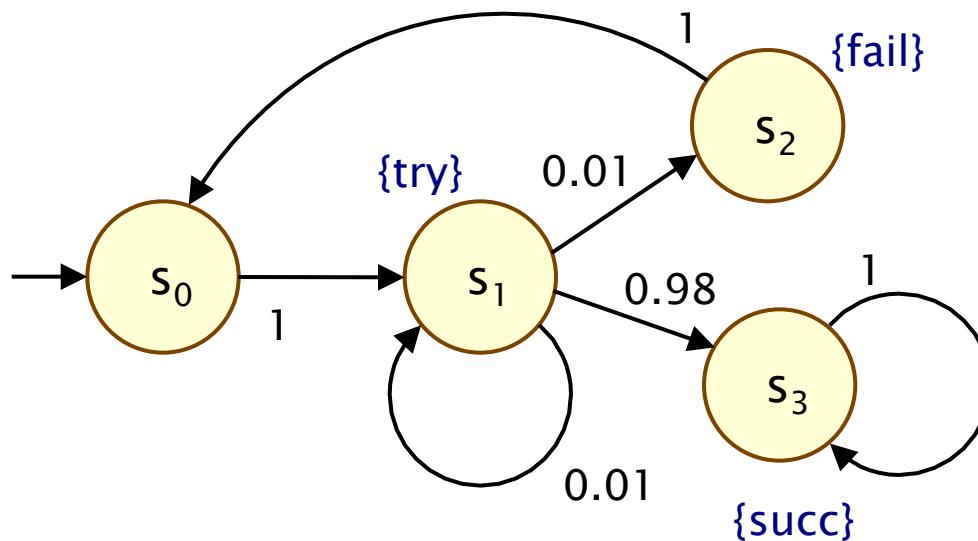


Markov property

- If the current state is known, then the future states of the system are independent of its past states
- i.e. the current state of the model contains all information that can influence the future evolution of the system
- also known as “memorylessness”

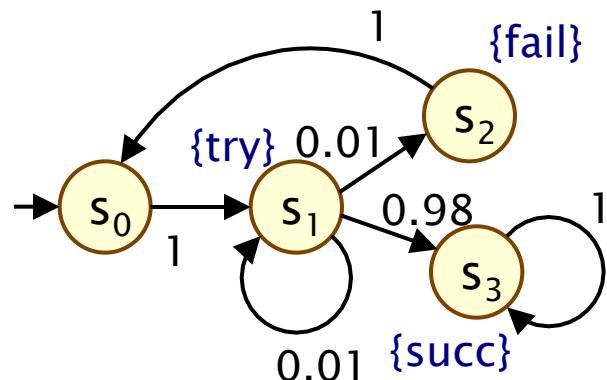
Simple DTMC example

- Modelling a very simple communication protocol
 - after one step, process starts **trying** to send a message
 - with probability 0.01, channel unready so wait a step
 - with probability 0.98, send message **successfully** and stop
 - with probability 0.01, message sending **fails**, restart



Discrete-time Markov chains

- Formally, a DTMC D is a tuple $(S, s_{\text{init}}, P, L)$ where:
 - S is a set of states (“state space”)
 - $s_{\text{init}} \in S$ is the initial state
 - $P : S \times S \rightarrow [0,1]$ is the **transition probability matrix**
where $\sum_{s' \in S} P(s, s') = 1$ for all $s \in S$
 - $L : S \rightarrow 2^{\text{AP}}$ is function labelling states with atomic propositions (taken from a set AP)



Simple DTMC example

$$D = (S, s_{\text{init}}, P, L)$$

$$S = \{s_0, s_1, s_2, s_3\}$$

$$s_{\text{init}} = s_0$$

$$AP = \{\text{try, fail, succ}\}$$

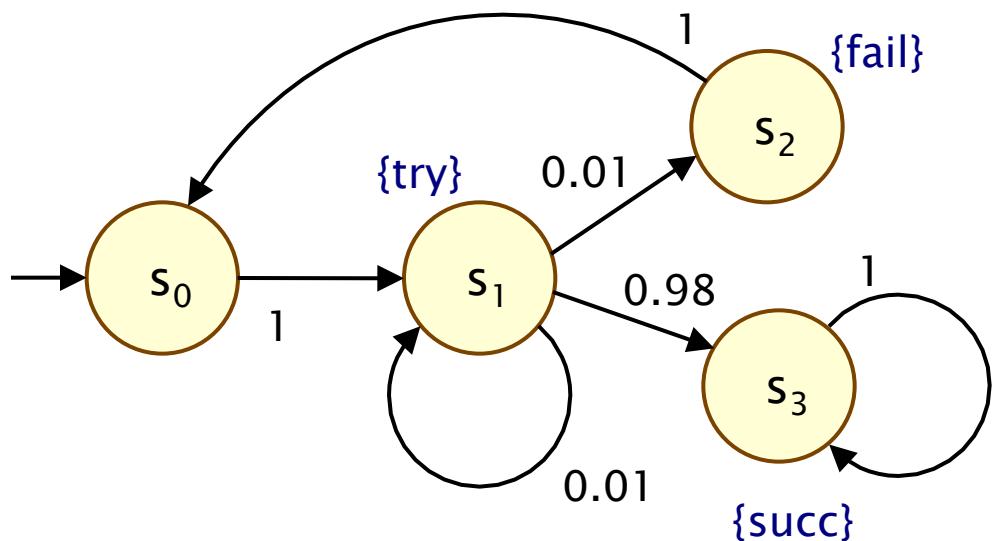
$$L(s_0) = \emptyset,$$

$$L(s_1) = \{\text{try}\},$$

$$L(s_2) = \{\text{fail}\},$$

$$L(s_3) = \{\text{succ}\}$$

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Some more terminology

- P is a **stochastic** matrix, meaning it satisfies:
 - $P(s,s') \in [0,1]$ for all $s,s' \in S$ and $\sum_{s' \in S} P(s,s') = 1$ for all $s \in S$
- A **sub-stochastic** matrix satisfies:
 - $P(s,s') \in [0,1]$ for all $s,s' \in S$ and $\sum_{s' \in S} P(s,s') \leq 1$ for all $s \in S$
- An **absorbing state** is a state s for which:
 - $P(s,s) = 1$ and $P(s,s') = 0$ for all $s \neq s'$
 - the transition from s to itself is sometimes called a **self-loop**
- Note: Since we assume P is stochastic...
 - every state has at least one outgoing transition
 - i.e. no **deadlocks** (in model checking terminology)

DTMCs: An alternative definition

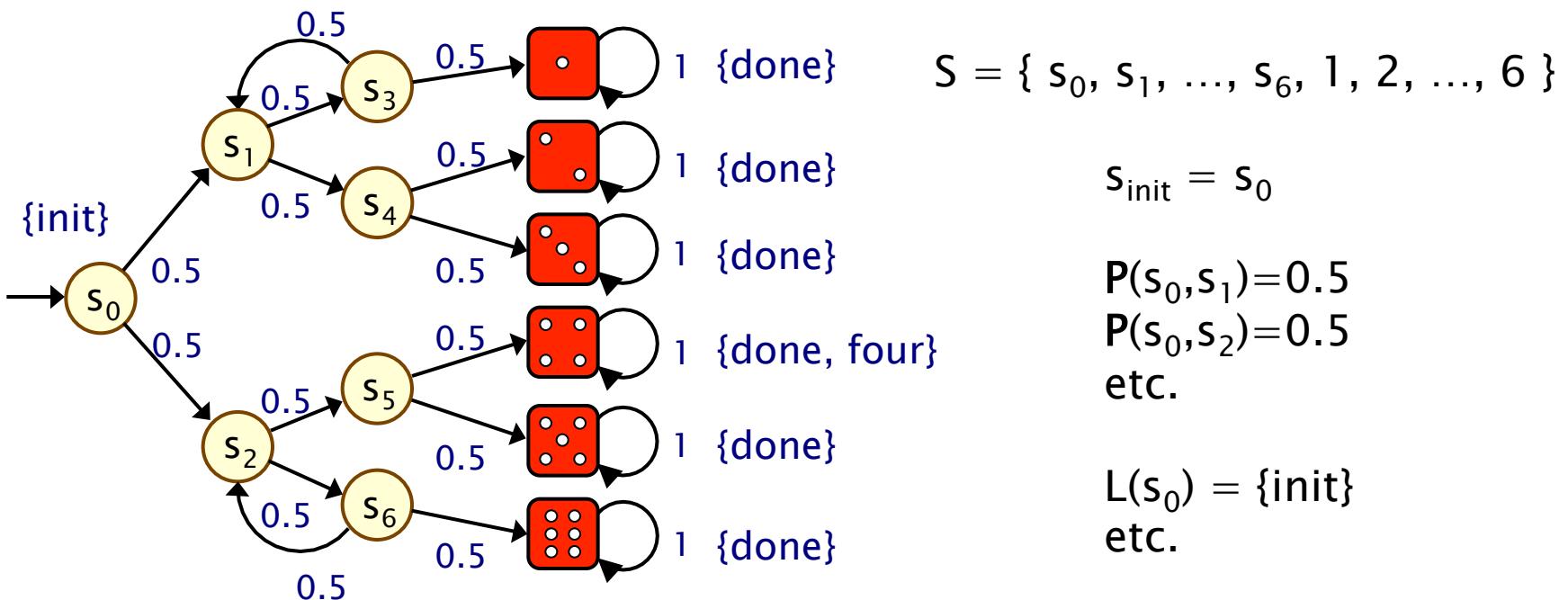
- Alternative definition... a DTMC is:
 - a **family of random variables** $\{ X(k) \mid k=0,1,2,\dots \}$
 - where $X(k)$ are observations at discrete time-steps
 - i.e. $X(k)$ is the state of the system at time-step k
 - which satisfies...
- The **Markov property** (“memorylessness”)
 - $\Pr(X(k)=s_k \mid X(k-1)=s_{k-1}, \dots, X(0)=s_0)$
 $= \Pr(X(k)=s_k \mid X(k-1)=s_{k-1})$
 - for a given current state, future states are independent of past
- This allows us to adopt the “state-based” view presented so far (which is better suited to this context)

Other assumptions made here

- We consider **time-homogenous** DTMCs
 - transition probabilities are independent of time
 - $P(s_{k-1}, s_k) = \Pr(X(k)=s_k \mid X(k-1)=s_{k-1})$
 - otherwise: time-inhomogenous
- We will (mostly) assume that the state space S is **finite**
 - in general, S can be any countable set
- Initial state $s_{\text{init}} \in S$ can be generalised...
 - to an initial probability distribution $s_{\text{init}} : S \rightarrow [0,1]$
- Transition probabilities are reals: $P(s, s') \in [0,1]$
 - but for algorithmic purposes, are assumed to be rationals

DTMC example 2 – Coins and dice

- Recall Knuth/Yao's die algorithm from earlier:

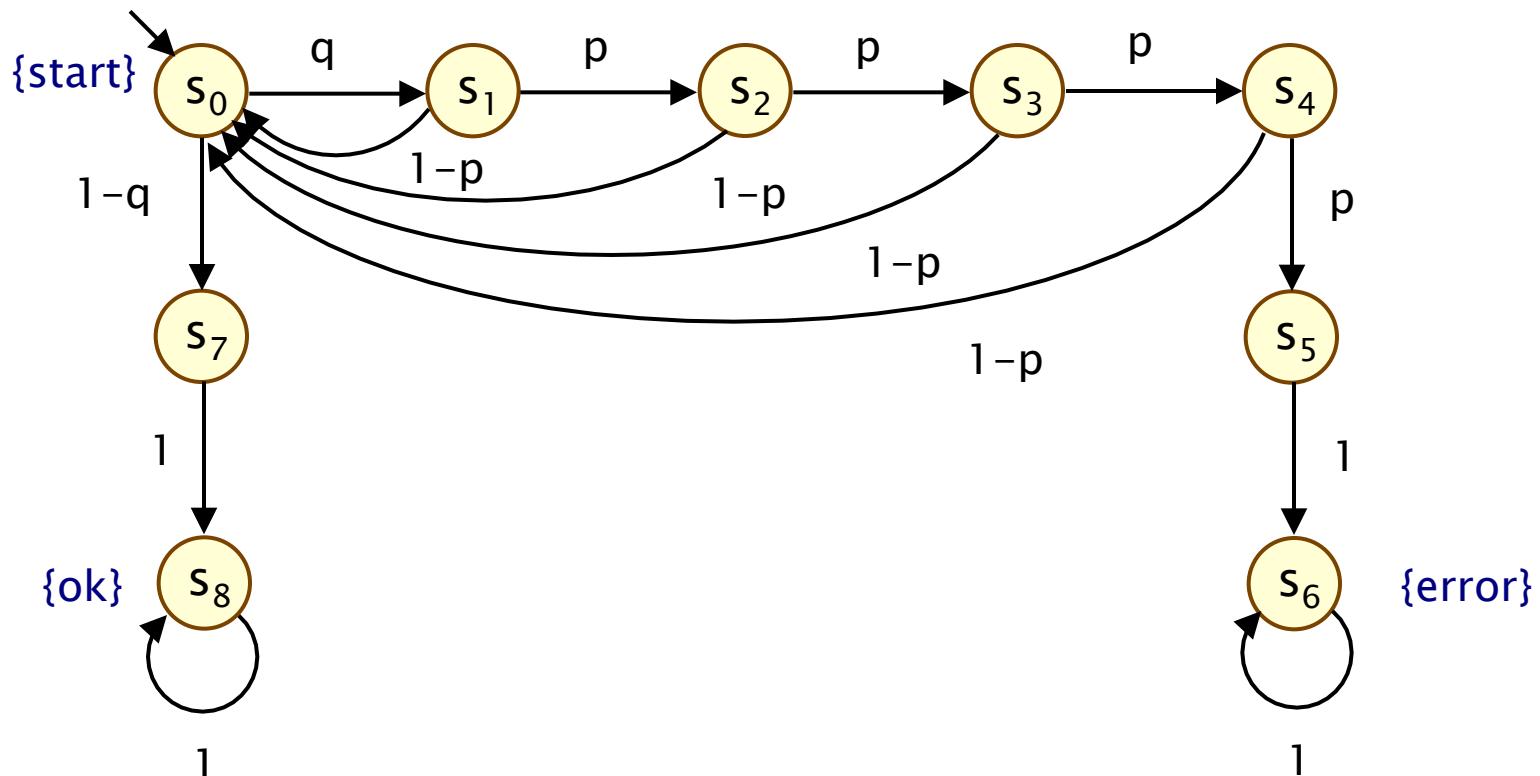


DTMC example 3 – Zeroconf

- Zeroconf = “Zero configuration networking”
 - self-configuration for local, ad-hoc networks
 - automatic configuration of unique IP for new devices
 - simple; no DHCP, DNS, ...
- Basic idea:
 - 65,024 available IP addresses (IANA-specified range)
 - new node picks address U at random
 - broadcasts “probe” messages: “Who is using U ?”
 - a node already using U replies to the probe
 - in this case, protocol is restarted
 - messages may not get sent (transmission fails, host busy, ...)
 - so: nodes send multiple (n) probes, waiting after each one

DTMC for Zeroconf

- $n=4$ probes, m existing nodes in network
- probability of message loss: p
- probability that new address is in use: $q = m/65024$

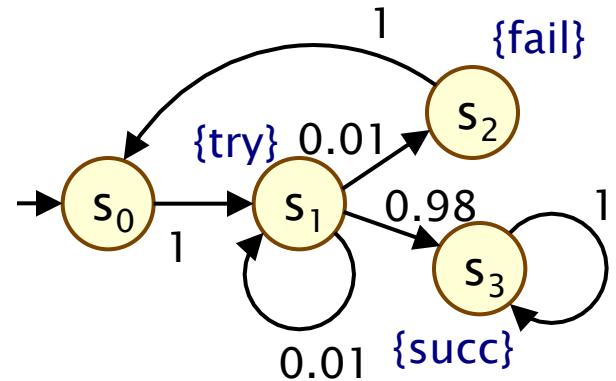


Properties of DTMCs

- Path-based properties
 - what is the probability of observing a particular behaviour (or class of behaviours)?
 - e.g. “what is the probability of throwing a 4?”
- Transient properties
 - probability of being in state s after t steps?
- Steady-state
 - long-run probability of being in each state
- Expectations
 - e.g. “what is the average number of coin tosses required?”

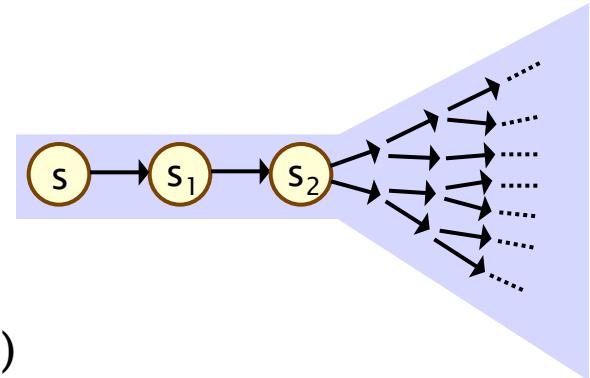
DTMCs and paths

- A **path** in a DTMC represents an **execution** (i.e. one possible behaviour) of the system being modelled
- Formally:
 - infinite sequence of states $s_0s_1s_2s_3\dots$ such that $P(s_i, s_{i+1}) > 0 \forall i \geq 0$
 - infinite unfolding of DTMC
- Examples:
 - never succeeds: $(s_0s_1s_2)^\omega$
 - tries, waits, fails, retries, succeeds: $s_0s_1s_1s_2s_0s_1(s_3)^\omega$
- Notation:
 - **Path(s)** = set of all infinite paths starting in state s
 - also sometimes use finite (length) paths
 - **Path_{fin}(s)** = set of all finite paths starting in state s



Paths and probabilities

- To reason (quantitatively) about this system
 - need to define a **probability space over paths**
- **Intuitively:**
 - sample space: $\text{Path}(s) = \text{set of all infinite paths from a state } s$
 - events: sets of infinite paths from s
 - basic events: **cylinder sets** (or “cones”)
 - cylinder set $\text{Cyl}(\omega)$, for a finite path ω
= set of **infinite paths with the common finite prefix ω**
 - for example: $\text{Cyl}(ss_1s_2)$



Probability spaces

- Let Ω be an arbitrary non-empty set
- A **σ -algebra** (or σ -field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if $A \in \Sigma$, the complement $\Omega \setminus A$ is in Σ
 - if $A_i \in \Sigma$ for $i \in \mathbb{N}$, the union $\cup_i A_i$ is in Σ
 - the empty set \emptyset is in Σ
- Elements of Σ are called **measurable sets** or **events**
- Theorem: For any family F of subsets of Ω , there exists a unique smallest σ -algebra on Ω containing F

Probability spaces

- Probability space (Ω, Σ, \Pr)
 - Ω is the sample space
 - Σ is the set of events: σ -algebra on Ω
 - $\Pr : \Sigma \rightarrow [0,1]$ is the probability measure:
 $\Pr(\Omega) = 1$ and $\Pr(\cup_i A_i) = \sum_i \Pr(A_i)$ for countable disjoint A_i

Probability space – Simple example

- Sample space Ω
 - $\Omega = \{1,2,3\}$
- Event set Σ
 - e.g. powerset of Ω
 - $\Sigma = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$
 - (closed under complement/countable union, contains \emptyset)
- Probability measure \Pr
 - e.g. $\Pr(1) = \Pr(2) = \Pr(3) = 1/3$
 - $\Pr(\{1,2\}) = 1/3 + 1/3 = 2/3$, etc.

Probability space – Simple example 2

- Sample space Ω
 - $\Omega = \mathbb{N} = \{ 0, 1, 2, 3, 4, \dots \}$
- Event set Σ
 - e.g. $\Sigma = \{ \emptyset, \text{"odd"}, \text{"even"}, \mathbb{N} \}$
 - (closed under complement/countable union, contains \emptyset)
- Probability measure \Pr
 - e.g. $\Pr(\text{"odd"}) = 0.5, \Pr(\text{"even"}) = 0.5$

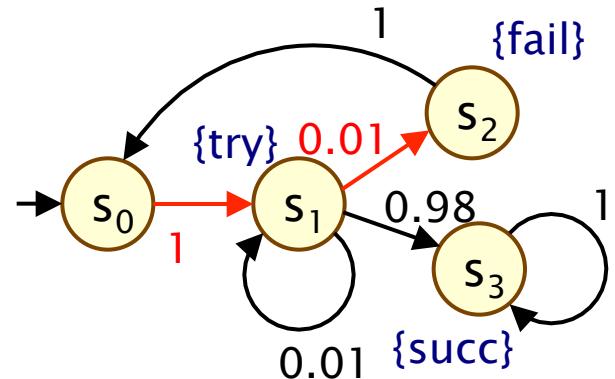
Probability space over paths

- Sample space $\Omega = \text{Path}(s)$
set of infinite paths with initial state s
- Event set $\Sigma_{\text{Path}(s)}$
 - the **cylinder set** $\text{Cyl}(\omega) = \{ \omega' \in \text{Path}(s) \mid \omega \text{ is prefix of } \omega' \}$
 - $\Sigma_{\text{Path}(s)}$ is the **least σ -algebra** on $\text{Path}(s)$ containing $\text{Cyl}(\omega)$ for all finite paths ω starting in s
- Probability measure Pr_s
 - define probability $\text{P}_s(\omega)$ for finite path $\omega = ss_1\dots s_n$ as:
 - $\text{P}_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $\text{P}_s(\omega) = \text{P}(s, s_1) \cdot \dots \cdot \text{P}(s_{n-1}, s_n)$ otherwise
 - define $\text{Pr}_s(\text{Cyl}(\omega)) = \text{P}_s(\omega)$ for all finite paths ω
 - Pr_s extends **uniquely** to a probability measure $\text{Pr}_s : \Sigma_{\text{Path}(s)} \rightarrow [0, 1]$
- See [KSK76] for further details

Paths and probabilities – Example

- Paths where sending fails immediately

- $\omega = s_0 s_1 s_2$
- $\text{Cyl}(\omega) = \text{all paths starting } s_0 s_1 s_2 \dots$
- $\mathbf{P}_{s_0}(\omega) = \mathbf{P}(s_0, s_1) \cdot \mathbf{P}(s_1, s_2)$
 $= 1 \cdot 0.01 = 0.01$
- $\Pr_{s_0}(\text{Cyl}(\omega)) = \mathbf{P}_{s_0}(\omega) = 0.01$



- Paths which are eventually successful and with no failures

- $\text{Cyl}(s_0 s_1 s_3) \cup \text{Cyl}(s_0 s_1 s_1 s_3) \cup \text{Cyl}(s_0 s_1 s_1 s_1 s_3) \cup \dots$
- $\Pr_{s_0}(\text{Cyl}(s_0 s_1 s_3) \cup \text{Cyl}(s_0 s_1 s_1 s_3) \cup \text{Cyl}(s_0 s_1 s_1 s_1 s_3) \cup \dots)$
 $= \mathbf{P}_{s_0}(s_0 s_1 s_3) + \mathbf{P}_{s_0}(s_0 s_1 s_1 s_3) + \mathbf{P}_{s_0}(s_0 s_1 s_1 s_1 s_3) + \dots$
 $= 1 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.01 \cdot 0.98 + \dots$
 $= 0.9898989898\dots$
 $= 98/99$

Reachability

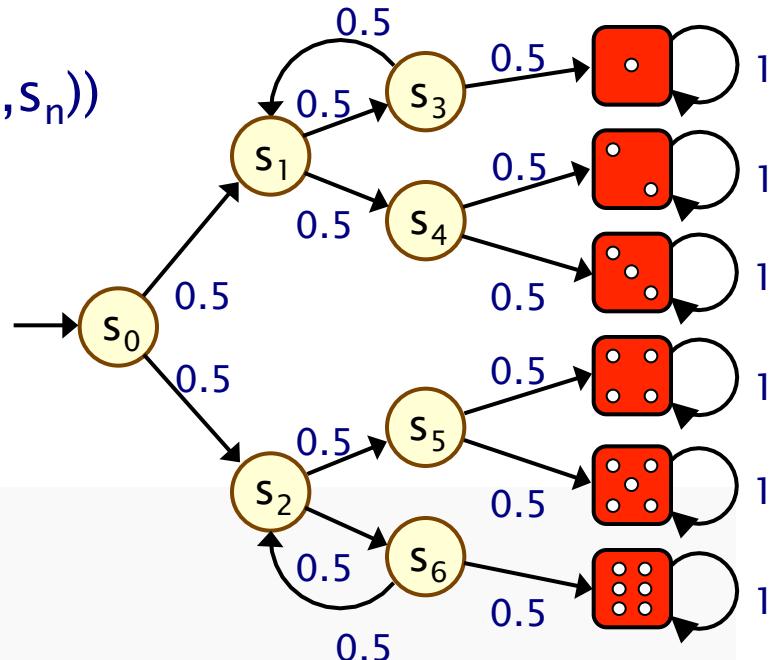
- Key property: **probabilistic reachability**
 - probability of a path reaching a state in some target set $T \subseteq S$
 - e.g. “probability of the algorithm terminating successfully?”
 - e.g. “probability that an error occurs during execution?”
- Dual of reachability: **invariance**
 - probability of remaining within some class of states
 - $\Pr(\text{“remain in set of states } T\text{”}) = 1 - \Pr(\text{“reach set } S \setminus T\text{”})$
 - e.g. “probability that an error never occurs”
- We will also consider other variants of reachability
 - **time-bounded**, constrained (“until”), ...

Reachability probabilities

- Formally: $\text{ProbReach}(s, T) = \Pr_s(\text{Reach}(s, T))$
 - where $\text{Reach}(s, T) = \{ s_0s_1s_2 \dots \in \text{Path}(s) \mid s_i \text{ in } T \text{ for some } i \}$
- Is $\text{Reach}(s, T)$ measurable for any $T \subseteq S$? Yes...
 - $\text{Reach}(s, T)$ is the union of all basic cylinders $\text{Cyl}(s_0s_1\dots s_n)$ where $s_0s_1\dots s_n$ in $\text{Reach}_{\text{fin}}(s, T)$
 - $\text{Reach}_{\text{fin}}(s, T)$ contains all finite paths $s_0s_1\dots s_n$ such that:
 $s_0 = s$, $s_0, \dots, s_{n-1} \notin T$, $s_n \in T$
 - set of such finite paths $s_0s_1\dots s_n$ is countable
- Probability
 - in fact, the above is a disjoint union
 - so probability obtained by simply summing...

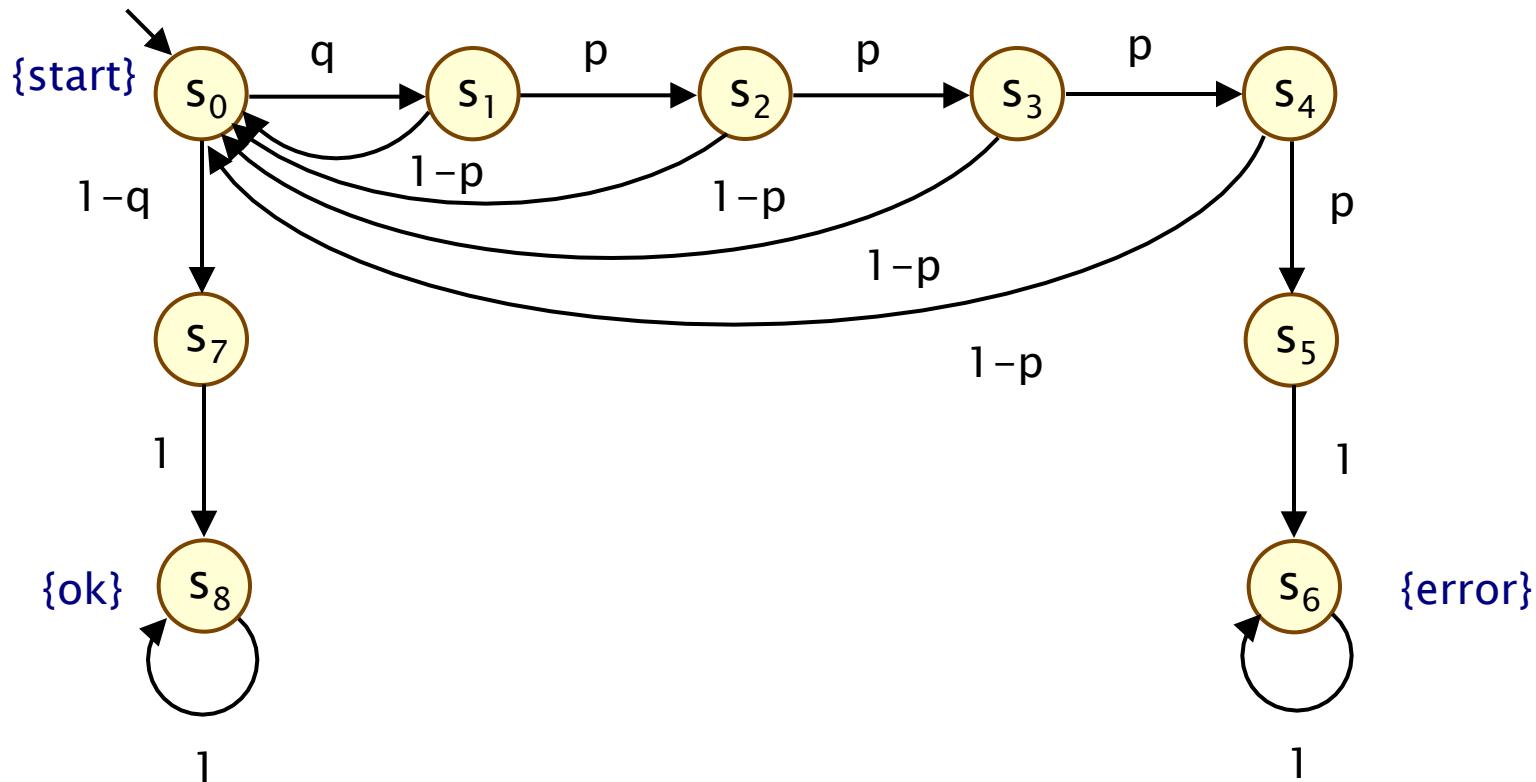
Computing reachability probabilities

- Compute as (infinite) sum...
- $\sum_{s_0, \dots, s_n \in \text{Reachfin}(s, T)} \Pr_{s_0}(\text{Cyl}(s_0, \dots, s_n))$
 $= \sum_{s_0, \dots, s_n \in \text{Reachfin}(s, T)} P(s_0, \dots, s_n)$
- Example:
 - $\text{ProbReach}(s_0, \{4\})$



Computing reachability probabilities

- $\text{ProbReach}(s_0, \{s_6\})$: compute as infinite sum?
 - doesn't scale...



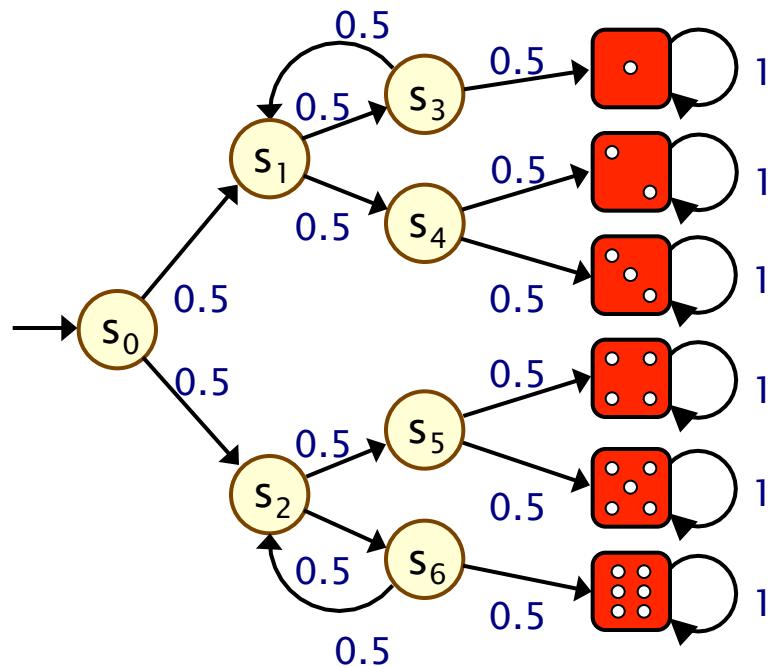
Computing reachability probabilities

- Alternative: derive a **linear equation system**
 - solve for all states simultaneously
 - i.e. compute vector ProbReach(T)
- Let x_s denote ProbReach(s, T)
- Solve:

$$x_s = \begin{cases} 1 & \text{if } s \in T \\ 0 & \text{if } T \text{ is not reachable from } s \\ \sum_{s' \in S} P(s, s') \cdot x_{s'} & \text{otherwise} \end{cases}$$

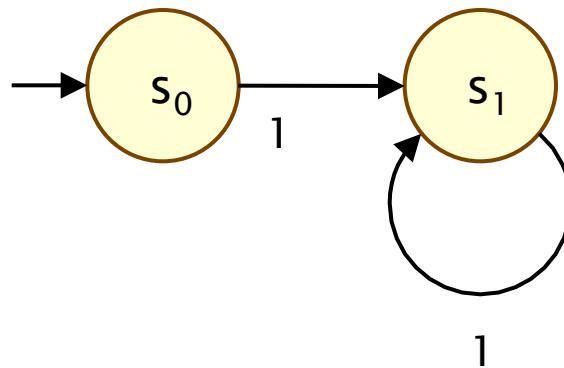
Example

- Compute $\text{ProbReach}(s_0, \{s_4, s_6\})$



Unique solutions

- Why the need to identify states that cannot reach T?
- Consider this simple DTMC:
 - compute probability of reaching $\{s_0\}$ from s_1



- linear equation system: $x_{s_0} = 1$, $x_{s_1} = x_{s_1}$
- multiple solutions: $(x_{s_0}, x_{s_1}) = (1, p)$ for any $p \in [0, 1]$

Computing reachability probabilities

- Another alternative: **least fixed point characterisation**
- Consider functions of the form:
 - $F : [0,1]^S \rightarrow [0,1]^S$
- And define:
 - $\underline{y} \leq \underline{y}'$ iff $y(s) \leq y'(s)$ for all s
- \underline{y} is a **fixed point** of F if $F(\underline{y}) = \underline{y}$
- A fixed point \underline{x} of F is the **least fixed point** of F if $\underline{x} \leq \underline{y}$ for any other fixed point \underline{y}

vectors of
probabilities
for each state

Least fixed point

- ProbReach(T) is the least fixed point of the function F:

$$F(\underline{y})(s) = \begin{cases} 1 & \text{if } s \in T \\ \sum_{s' \in S} P(s, s') \cdot \underline{y}(s') & \text{otherwise.} \end{cases}$$

- This yields a simple iterative algorithm to approximate ProbReach(T):

- $\underline{x}^{(0)} = \underline{0}$ (i.e. $\underline{x}^{(0)}(s) = 0$ for all s)
- $\underline{x}^{(n+1)} = F(\underline{x}^{(n)})$

- $\underline{x}^{(0)} \leq \underline{x}^{(1)} \leq \underline{x}^{(2)} \leq \underline{x}^{(3)} \leq \dots$
- ProbReach(T) = $\lim_{n \rightarrow \infty} \underline{x}^{(n)}$

in practice, terminate when for example:
 $\max_s |\underline{x}^{(n+1)}(s) - \underline{x}^{(n)}(s)| < \varepsilon$
for some user-defined tolerance value ε

Least fixed point

- Expressing ProbReach as a least fixed point...
 - corresponds to solving the linear equation system using the power method
 - other iterative methods exist (see later)
 - power method is guaranteed to converge
 - generalises non-probabilistic reachability
 - can be generalised to:
 - constrained reachability (see PCTL “until”)
 - reachability for Markov decision processes
 - also yields bounded reachability probabilities...

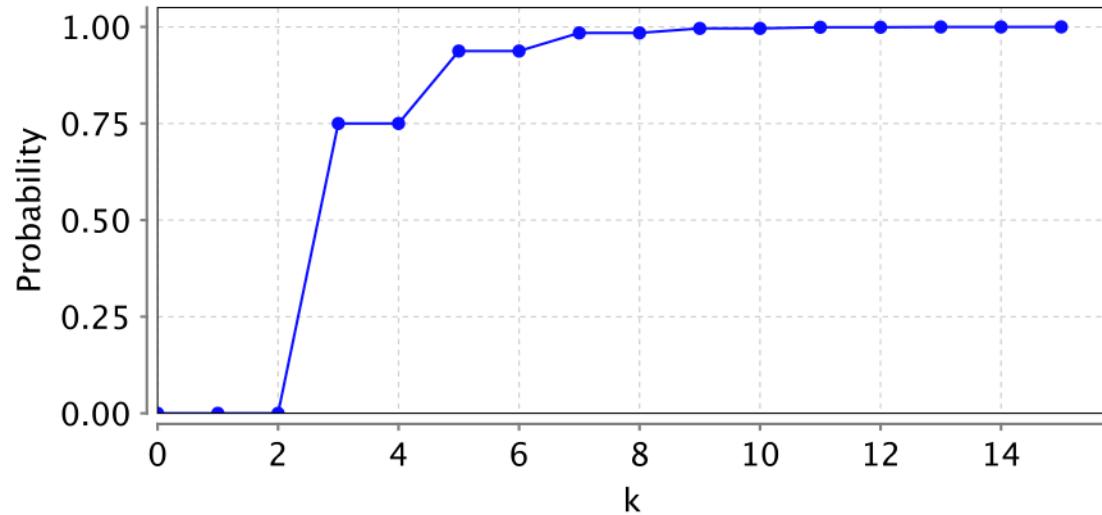
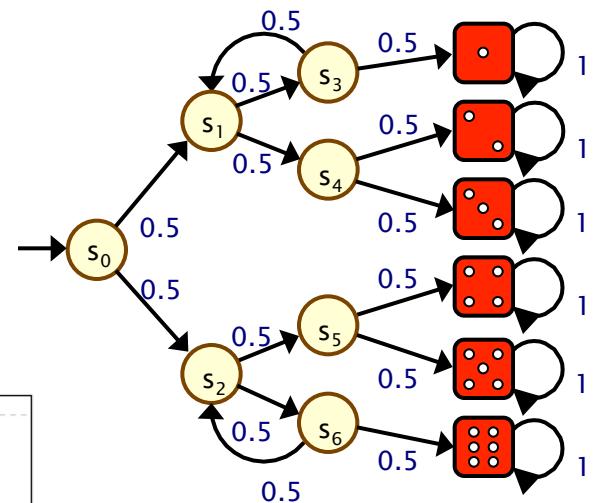
Bounded reachability probabilities

- Probability of reaching T from s within k steps
- Formally: $\text{ProbReach}^{\leq k}(s, T) = \Pr_s(\text{Reach}^{\leq k}(s, T))$ where:
 - $\text{Reach}^{\leq k}(s, T) = \{ s_0 s_1 s_2 \dots \in \text{Path}(s) \mid s_i \text{ in } T \text{ for some } i \leq k \}$
- $\text{ProbReach}^{\leq k}(T) = \underline{x}^{(k+1)}$ from the previous fixed point
 - which gives us...

$$\text{ProbReach}^{\leq k}(s, T) = \begin{cases} 1 & \text{if } s \in T \\ 0 & \text{if } k = 0 \text{ \& } s \notin T \\ \sum_{s' \in S} P(s, s') \cdot \text{ProbReach}^{\leq k-1}(s', T) & \text{if } k > 0 \text{ \& } s \notin T \end{cases}$$

(Bounded) reachability

- $\text{ProbReach}(s_0, \{1,2,3,4,5,6\}) = 1$
- $\text{ProbReach}^{\leq k}(s_0, \{1,2,3,4,5,6\}) = \dots$



Summing up...

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- Formalising path-based properties of DTMCs
 - probability space over infinite paths
- Probabilistic reachability
 - infinite sum
 - linear equation system
 - least fixed point characterisation
 - bounded reachability

Next lecture

- Thur 12pm
- Discrete-time Markov chains...
 - transient
 - steady-state
 - long-run behaviour

Lecture 3

Discrete-time Markov Chains...

Dr. Dave Parker

Department of Computer Science
University of Oxford

Next few lectures...

- Today:
 - Discrete-time Markov chains (continued)
- Mon 2pm:
 - Probabilistic temporal logics
- Wed 3pm:
 - PCTL model checking for DTMCs
- Thur 12pm:
 - PRISM

Overview

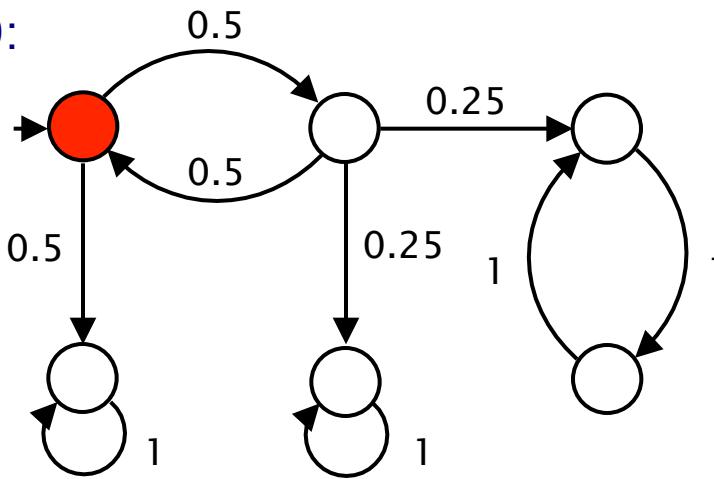
- Transient state probabilities
- Long-run / steady-state probabilities
- Qualitative properties
 - repeated reachability
 - persistence

Transient state probabilities

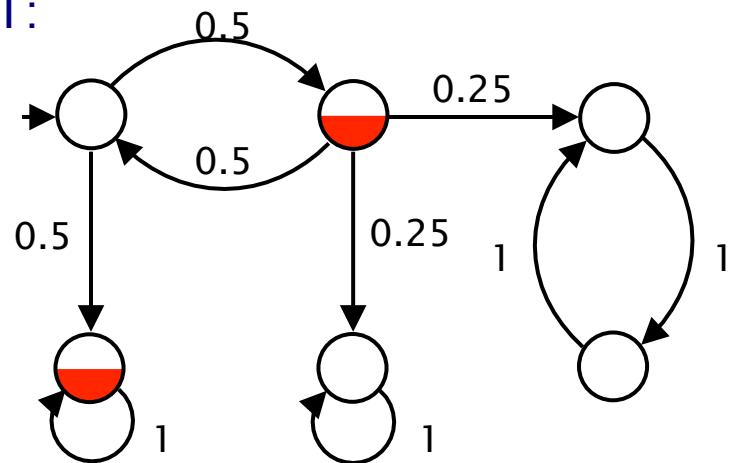
- What is the probability, having started in state s , of being in state s' at time k ?
 - i.e. after exactly k steps/transitions have occurred
 - this is the **transient state probability**: $\pi_{s,k}(s')$
- Transient state distribution: $\underline{\pi}_{s,k}$
 - vector $\underline{\pi}_{s,k}$ i.e. $\pi_{s,k}(s')$ for all states s'
- Note: this is a **discrete probability distribution**
 - so we have $\underline{\pi}_{s,k} : S \rightarrow [0,1]$
 - rather than e.g. $\Pr_s : \Sigma_{\text{Path}(s)} \rightarrow [0,1]$ where $\Sigma_{\text{Path}(s)} \subseteq 2^{\text{Path}(s)}$

Transient distributions

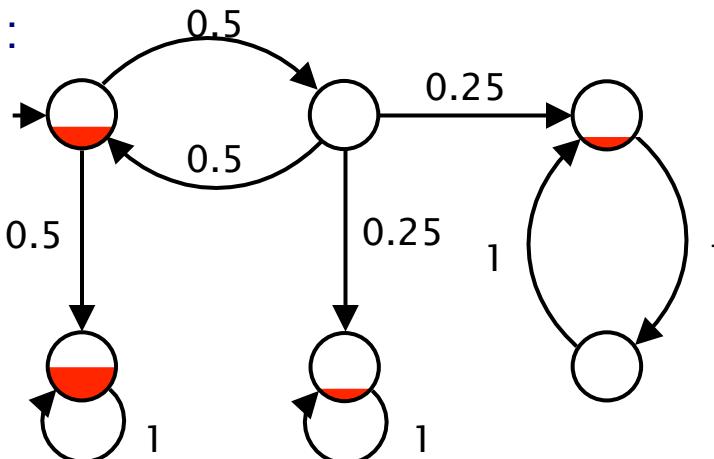
$k=0:$



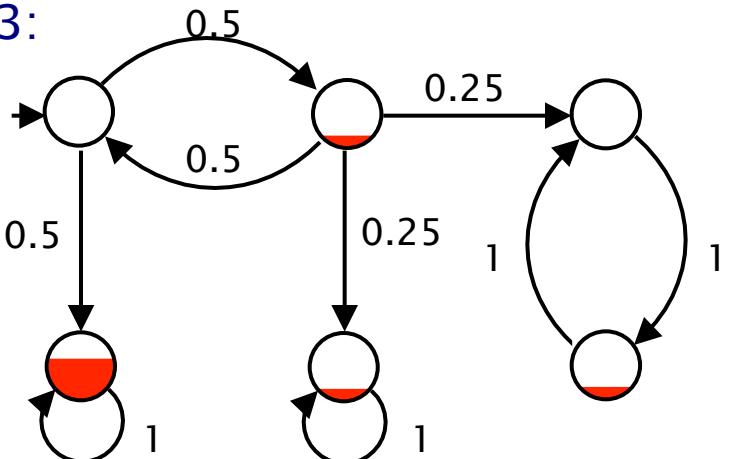
$k=1:$



$k=2:$



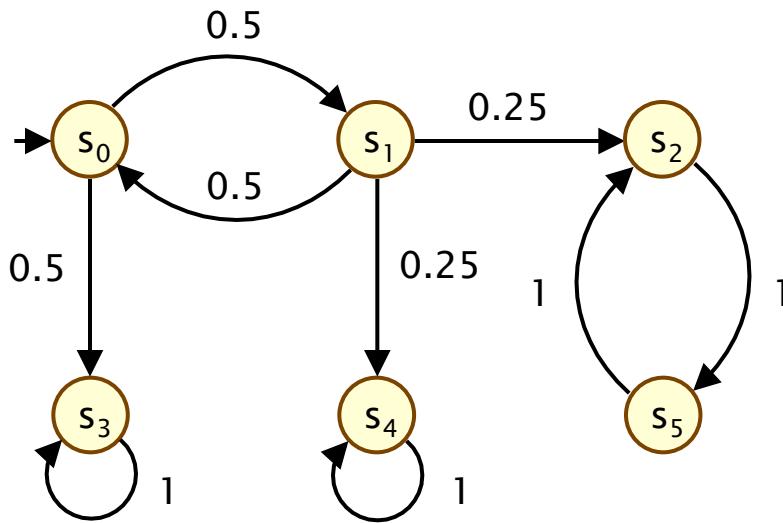
$k=3:$



Computing transient probabilities

- Transient state probabilities:
 - $\pi_{s,k}(s') = \sum_{s'' \in S} P(s'', s') \cdot \pi_{s,k-1}(s'')$
 - (i.e. look at incoming transitions)
- Computation of transient state distribution:
 - $\underline{\pi}_{s,0}$ is the initial probability distribution
 - e.g. in our case $\underline{\pi}_{s,0}(s') = 1$ if $s' = s$ and $\underline{\pi}_{s,0}(s') = 0$ otherwise
 - $\underline{\pi}_{s,k} = \underline{\pi}_{s,k-1} \cdot P$
- i.e. successive vector–matrix multiplications

Computing transient probabilities



$$\underline{\pi}_{s0,0} = [1, 0, 0, 0, 0, 0]$$

$$\underline{\pi}_{s0,1} = \left[0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0 \right]$$

$$\underline{\pi}_{s0,2} = \left[\frac{1}{4}, 0, \frac{1}{8}, \frac{1}{2}, \frac{1}{8}, 0 \right]$$

$$\underline{\pi}_{s0,3} = \left[0, \frac{1}{8}, 0, \frac{5}{8}, \frac{1}{8}, \frac{1}{8} \right]$$

...

$$P = \begin{bmatrix} 0 & 0.5 & 0 & 0.5 & 0 & 0 \\ 0.5 & 0 & 0.25 & 0 & 0.25 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Computing transient probabilities

- $\underline{\Pi}_{s,k} = \underline{\Pi}_{s,k-1} \cdot P = \underline{\Pi}_{s,0} \cdot P^k$
- k^{th} matrix power: P^k
 - P gives one-step transition probabilities
 - P^k gives probabilities of k -step transition probabilities
 - i.e. $P^k(s,s') = \pi_{s,k}(s')$
- A possible optimisation: iterative squaring
 - e.g. $P^8 = ((P^2)^2)^2$
 - only requires $\log k$ multiplications
 - but potentially inefficient, e.g. if P is large and sparse
 - in practice, successive vector-matrix multiplications preferred

Notion of time in DTMCs

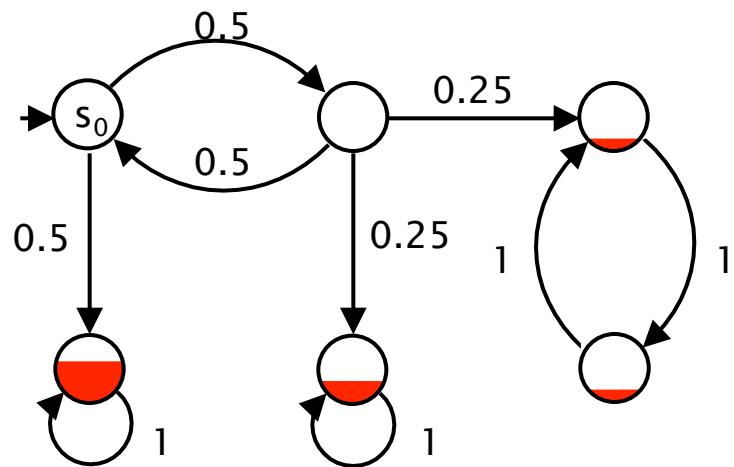
- Two possible views on the timing aspects of a system modelled as a DTMC:
- Discrete time-steps model time accurately
 - e.g. clock ticks in a model of an embedded device
 - or like dice example: interested in number of steps (tosses)
- Time-abstract
 - no information assumed about the time transitions take
 - e.g. simple Zeroconf model
- In the latter case, transient probabilities are not very useful
- In both cases, often beneficial to study long-run behaviour

Long-run behaviour

- Consider the limit: $\underline{\pi}_s = \lim_{k \rightarrow \infty} \underline{\pi}_{s,k}$
 - where $\underline{\pi}_{s,k}$ is the transient state distribution at time k having starting in state s
 - this limit, where it exists, is called the **limiting distribution**
- Intuitive idea
 - the percentage of time, in the long run, spent in each state
 - e.g. reliability: “in the long-run, what percentage of time is the system in an operational state”

Limiting distribution

- Example:



$$\underline{\pi}_{s0,0} = [1, 0, 0, 0, 0, 0]$$

$$\underline{\pi}_{s0,1} = \left[0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0 \right]$$

$$\underline{\pi}_{s0,2} = \left[\frac{1}{4}, 0, \frac{1}{8}, \frac{1}{2}, \frac{1}{8}, 0 \right]$$

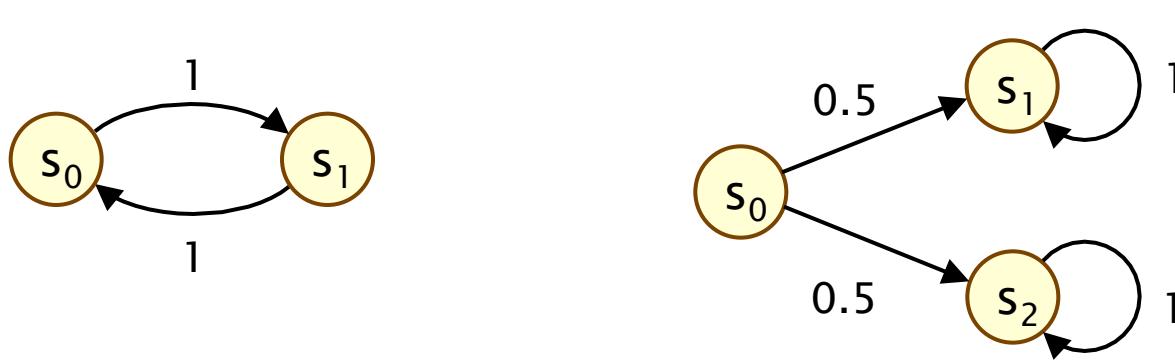
$$\underline{\pi}_{s0,3} = \left[0, \frac{1}{8}, 0, \frac{5}{8}, \frac{1}{8}, \frac{1}{8} \right]$$

...

$$\underline{\pi}_{s0} = \left[0, 0, \frac{1}{12}, \frac{2}{3}, \frac{1}{6}, \frac{1}{12} \right]$$

Long-run behaviour

- Questions:
 - when does this limit exist?
 - does it depend on the initial state/distribution?



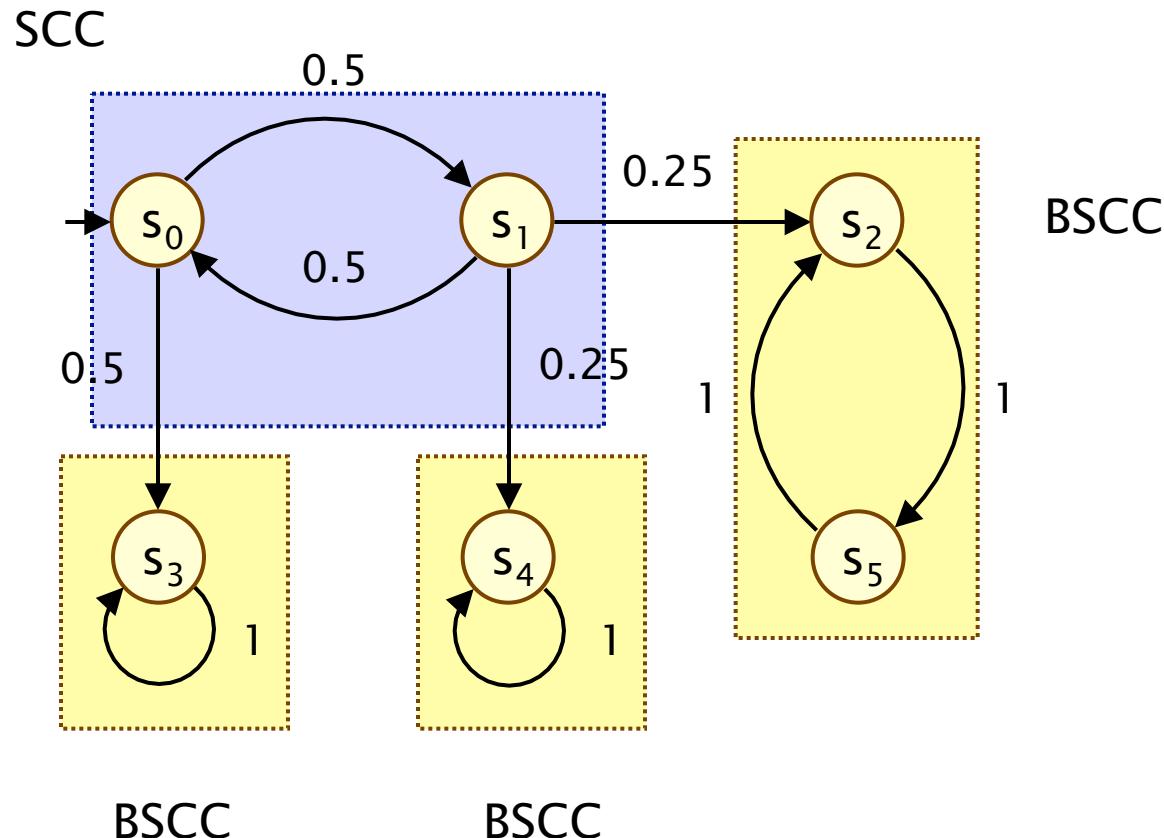
- Need to consider underlying graph
 - (V, E) where V are vertices and $E \subseteq V \times V$ are edges
 - $V = S$ and $E = \{ (s, s') \text{ s.t. } P(s, s') > 0 \}$

Graph terminology

- A state s' is **reachable** from s if there is a finite path starting in s and ending in s'
- A subset T of S is **strongly connected** if, for each pair of states s and s' in T , s' is reachable from s passing only through states in T
- A **strongly connected component (SCC)** is a maximally strongly connected set of states (i.e. no superset of it is also strongly connected)
- A **bottom strongly connected component (BSCC)** is an SCC T from which no state outside T is reachable from T

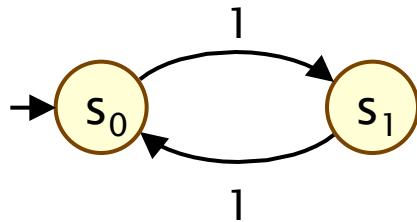
- Alternative terminology: “ s communicates with s' ”, “communicating class”, “closed communicating class”

Example – (B)SCCs



Graph terminology

- Markov chain is **irreducible** if all its states belong to a single BSCC; otherwise reducible



- A state s is **periodic**, with period d , if
 - the greatest common divisor of the set $\{ n \mid f_s^{(n)} > 0 \}$ equals d
 - where $f_s^{(n)}$ is the probability of, when starting in state s , returning to state s in exactly n steps
- A Markov chain is **aperiodic** if its period is 1

Steady-state probabilities

- For a finite, irreducible, aperiodic DTMC...
 - limiting distribution always exists
 - and is independent of initial state/distribution
- These are known as steady-state probabilities
 - (or equilibrium probabilities)
 - effect of initial distribution has disappeared, denoted $\underline{\pi}$
- These probabilities can be computed as the unique solution of the linear equation system:

$$\underline{\pi} \cdot P = \underline{\pi} \quad \text{and} \quad \sum_{s \in S} \underline{\pi}(s) = 1$$

Steady-state – Balance equations

- Known as **balance equations**

$$\underline{\pi} \cdot P = \underline{\pi} \quad \text{and} \quad \sum_{s \in S} \underline{\pi}(s) = 1$$

- That is:

$$-\underline{\pi}(s') = \sum_{s \in S} \underline{\pi}(s) \cdot P(s, s')$$

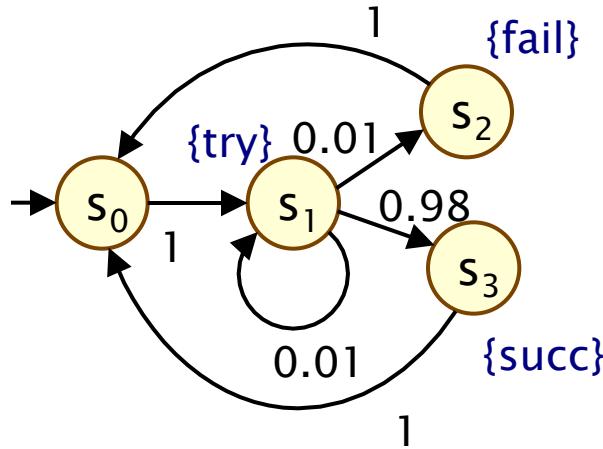
balance the probability of leaving and entering a state s'

$$-\sum_{s \in S} \underline{\pi}(s) = 1$$

normalisation

Steady-state – Example

- Let $\underline{x} = \underline{\pi}$
- Solve: $\underline{x} \cdot \mathbf{P} = \underline{x}, \sum_s \underline{x}(s) = 1$



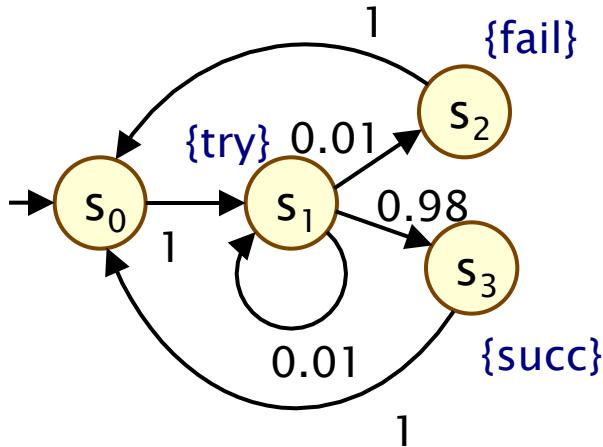
$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\underline{x} \approx [0.332215, 0.335570, 0.003356, 0.328859]$$

Steady-state – Example

- Let $\underline{x} = \underline{\pi}$
- Solve: $\underline{x} \cdot \mathbf{P} = \underline{x}$, $\sum_s \underline{x}(s) = 1$

$$\underline{x} \approx [0.332215, 0.335570, 0.003356, 0.328859]$$



Long-run percentage of time spent in the state “try”
 $\approx 33.6\%$

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Long-run percentage of time spent in “fail”/“succ”
 $\approx 0.003356 + 0.328859$
 $\approx 33.2\%$

Periodic DTMCs

- For (finite, irreducible) periodic DTMCs, this limit:

$$\underline{\pi}_s(s') = \lim_{k \rightarrow \infty} \underline{\pi}_{s,k}(s')$$



- does not exist, but this limit does:

$$\lim_{n \rightarrow \infty} \frac{1}{n} \cdot \sum_{k=1}^n \underline{\pi}_{s,k}(s')$$

(and where both limits exist,
e.g. for aperiodic DTMCs,
these 2 limits coincide)

- Steady-state probabilities for these DTMCs can be computed by solving the same set of linear equations:

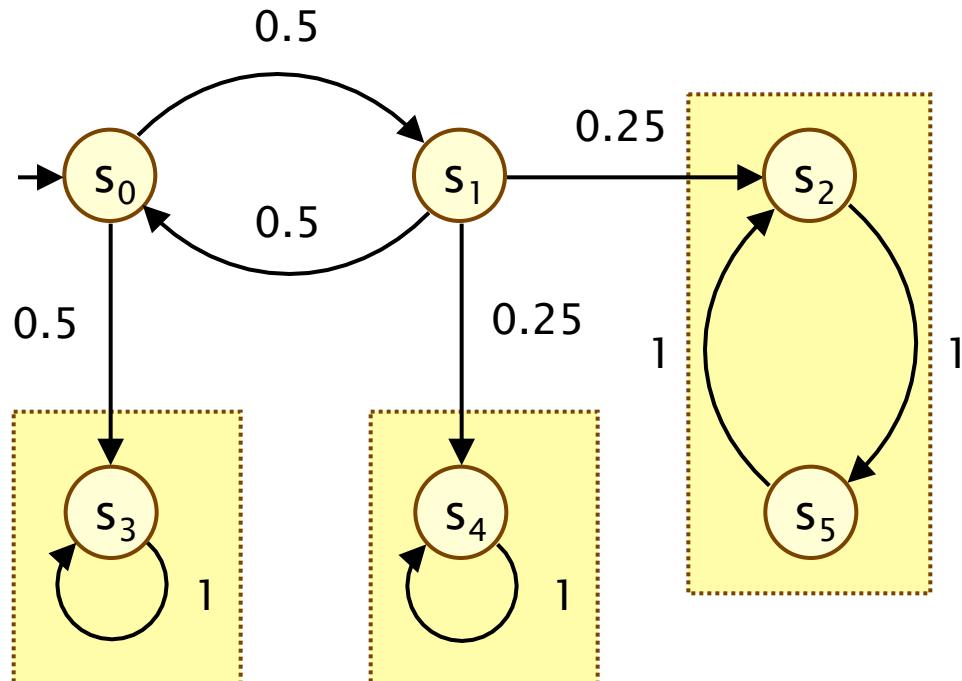
$$\underline{\pi} \cdot P = \underline{\pi} \quad \text{and} \quad \sum_{s \in S} \underline{\pi}(s) = 1$$

Steady-state – General case

- General case: reducible DTMC
 - compute vector $\underline{\pi}_s$
 - (note: distribution depends on initial state s)
- Compute BSCCs for DTMC; then two cases to consider:
- (1) s is in a BSCC T
 - compute steady-state probabilities \underline{x} in sub-DTMC for T
 - $\underline{\pi}_s(s') = \underline{x}(s')$ if s' in T
 - $\underline{\pi}_s(s') = 0$ if s' not in T
- (2) s is not in any BSCC
 - compute steady-state probabilities \underline{x}_T for sub-DTMC of each BSCC T and combine with reachability probabilities to BSCCs
 - $\underline{\pi}_s(s') = \text{ProbReach}(s, T) \cdot \underline{x}_T(s')$ if s' is in BSCC T
 - $\underline{\pi}_s(s') = 0$ if s' is not in a BSCC

Steady-state – Example 2

- $\underline{\pi}_s$ depends on initial state s



$$\underline{\pi}_{s3} = [0 \ 0 \ 0 \ 1 \ 0 \ 0]$$

$$\underline{\pi}_{s4} = [0 \ 0 \ 0 \ 0 \ 1 \ 0]$$

$$\underline{\pi}_{s2} = \underline{\pi}_{s5} = \left[0, 0, \frac{1}{2}, 0, 0, \frac{1}{2}\right]$$

$$\underline{\pi}_{s0} = \left[0, 0, \frac{1}{12}, \frac{2}{3}, \frac{1}{6}, \frac{1}{12}\right]$$

$$\underline{\pi}_{s1} = \dots$$

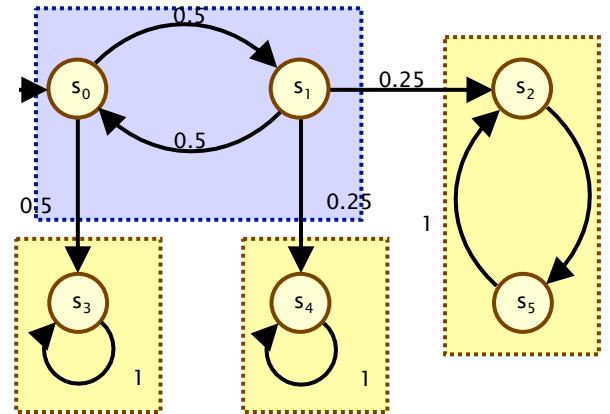
Qualitative properties

- Quantitative properties:
 - “what is the probability of event A?”
- Qualitative properties:
 - “the probability of event A is 1” (“almost surely A”)
 - or: “the probability of event A is > 0 ” (“possibly A”)
- For finite DTMCs, qualitative properties do not depend on the transition probabilities – only need underlying graph
 - e.g. to determine “is target set T reached with probability 1?” (see DTMC model checking lecture)
 - computing BSCCs of a DTMCs yields information about long-run qualitative properties...

Fundamental property

- Fundamental property of (finite) DTMCs...

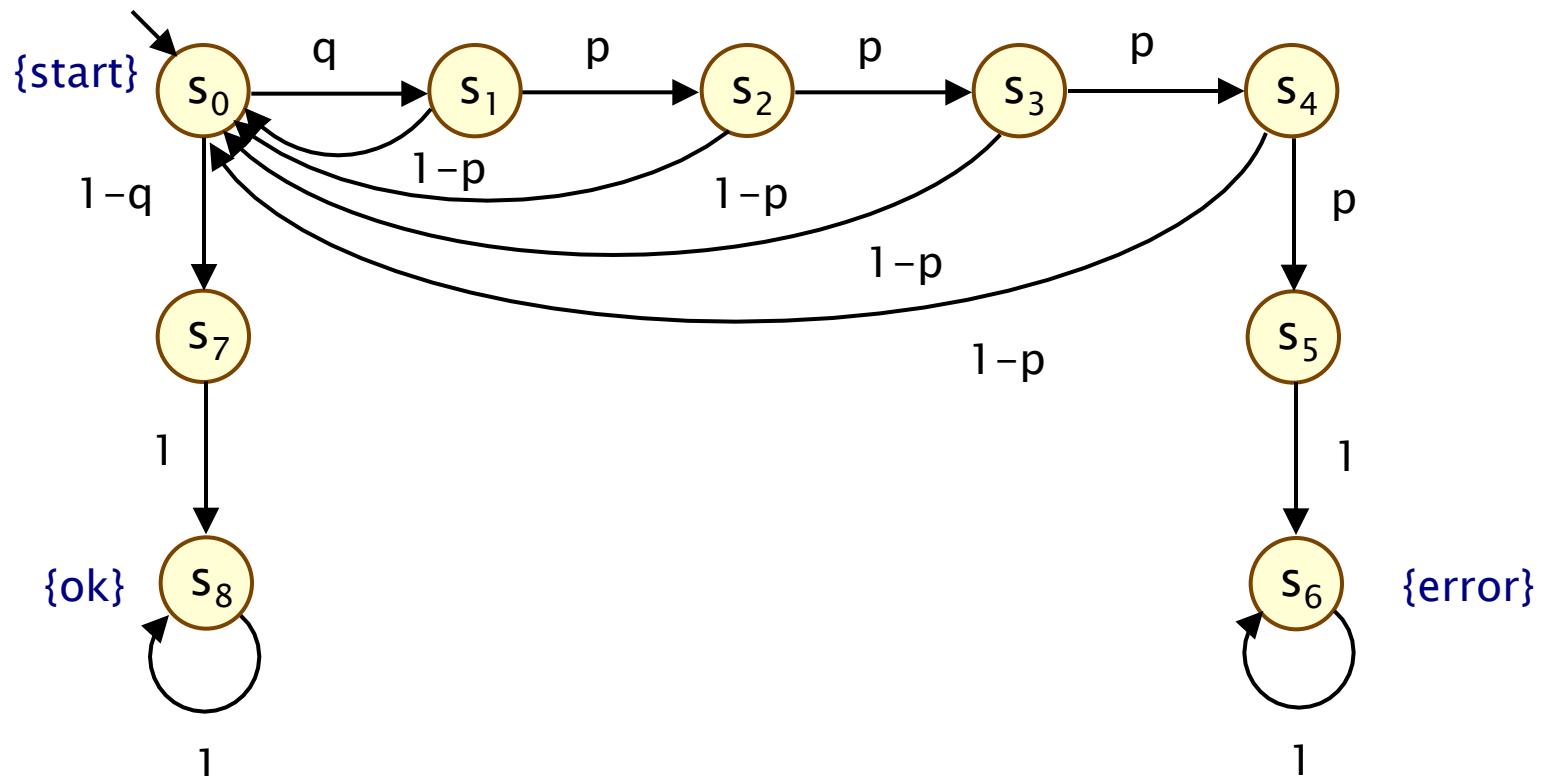
- With probability 1,
a BSCC will be reached
and all of its states
visited infinitely often



- Formally:
 - $\Pr_{s_0} (s_0 s_1 s_2 \dots \mid \exists i \geq 0, \exists \text{ BSCC } T \text{ such that } \forall j \geq i s_j \in T \text{ and } \forall s \in T s_k = s \text{ for infinitely many } k) = 1$

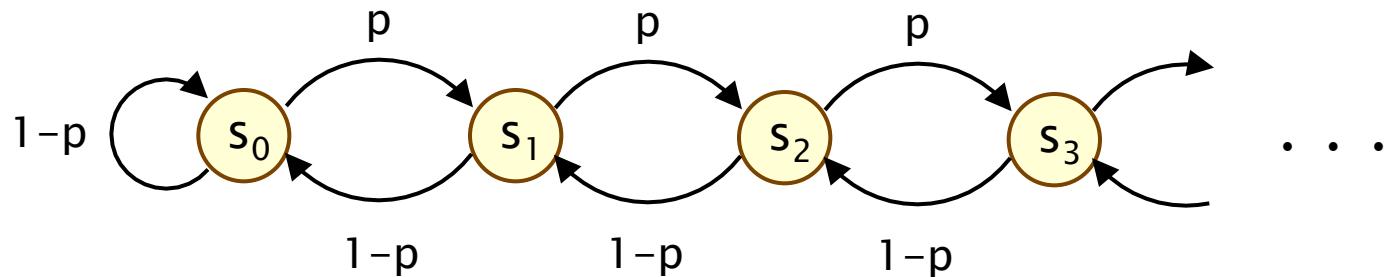
Zeroconf example

- 2 BSCCs: $\{s_6\}$, $\{s_8\}$
- Probability of trying to acquire a new address infinitely often is 0



Aside: Infinite Markov chains

- Infinite-state random walk



- Value of probability p **does** affect qualitative properties
 - $\text{ProbReach}(s, \{s_0\}) = 1$ if $p \leq 0.5$
 - $\text{ProbReach}(s, \{s_0\}) < 1$ if $p > 0.5$

Repeated reachability

- Repeated reachability:
 - “always eventually...”, “infinitely often...”
- $\Pr_{s_0} (s_0 s_1 s_2 \dots \mid \forall i \geq 0 \exists j \geq i s_j \in B)$
 - where $B \subseteq S$ is a set of states
- e.g. “what is the probability that the protocol successfully sends a message infinitely often?”
- Is this measurable? Yes...
 - set of satisfying paths is: $\bigcap_{n \geq 0} \bigcup_{m \geq n} C_m$
 - where C_m is the union of all cylinder sets $Cyl(s_0 s_1 \dots s_m)$ for finite paths $s_0 s_1 \dots s_m$ such that $s_m \in B$

Qualitative repeated reachability

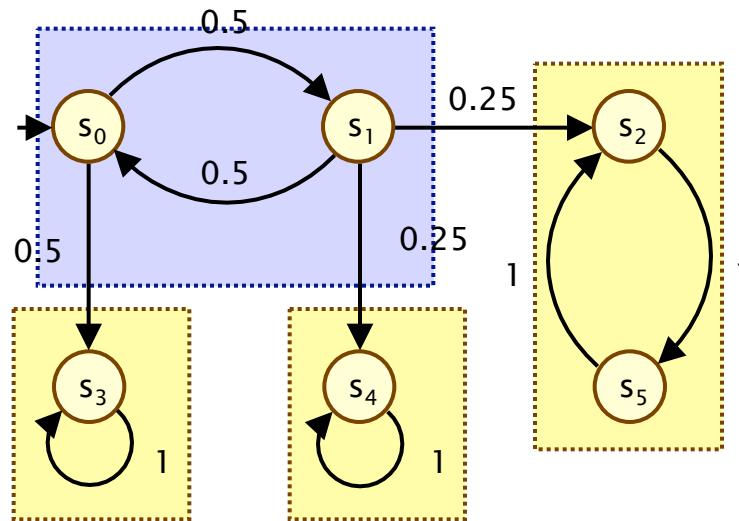
- $\Pr_{s_0} (s_0 s_1 s_2 \dots \mid \forall i \geq 0 \exists j \geq i s_j \in B) = 1$
 $\Pr_{s_0} (\text{"always eventually } B \text{"}) = 1$

if and only if

- $T \cap B \neq \emptyset$ for each BSCC T that is reachable from s_0

Example:

$$B = \{ s_3, s_4, s_5 \}$$



Persistence

- Persistence properties:
 - “eventually forever...”
- $\Pr_{s_0} (s_0 s_1 s_2 \dots \mid \exists i \geq 0 \ \forall j \geq i \ s_j \in B)$
 - where $B \subseteq S$ is a set of states
- e.g. “what is the probability of the leader election algorithm reaching, and staying in, a stable state?”
- e.g. “what is the probability that an irrecoverable error occurs?”
- Is this measurable? Yes...

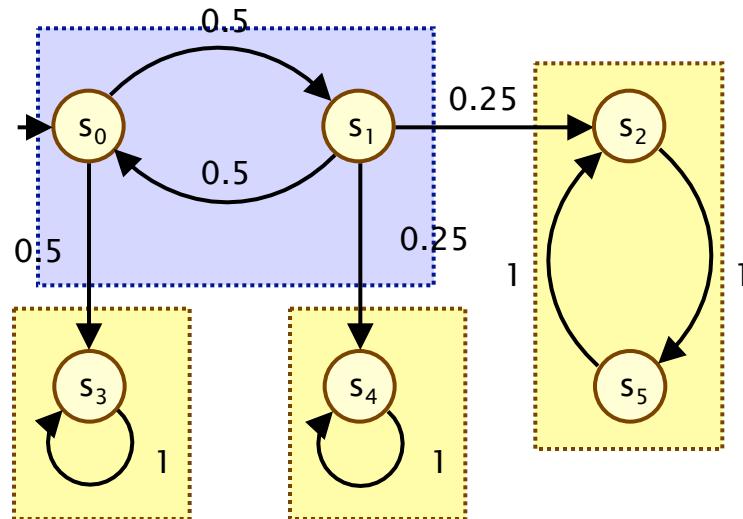
Qualitative persistence

- $\Pr_{s_0} (s_0 s_1 s_2 \dots \mid \exists i \geq 0 \ \forall j \geq i \ s_j \in B) = 1$
 $\Pr_{s_0} (\text{"eventually forever } B \text{"}) = 1$

if and only if

- $T \subseteq B$ for each BSCC T that is reachable from s_0

Example:
 $B = \{ s_2, s_3, s_4, s_5 \}$



Summing up...

- Transient state probabilities
 - successive vector-matrix multiplications
- Long-run/steady-state probabilities
 - requires graph analysis
 - irreducible case: solve linear equation system
 - reducible case: steady-state for sub-DTMCs + reachability
- Qualitative properties
 - repeated reachability
 - persistence

Lecture 4

Probabilistic temporal logics

Dr. Dave Parker

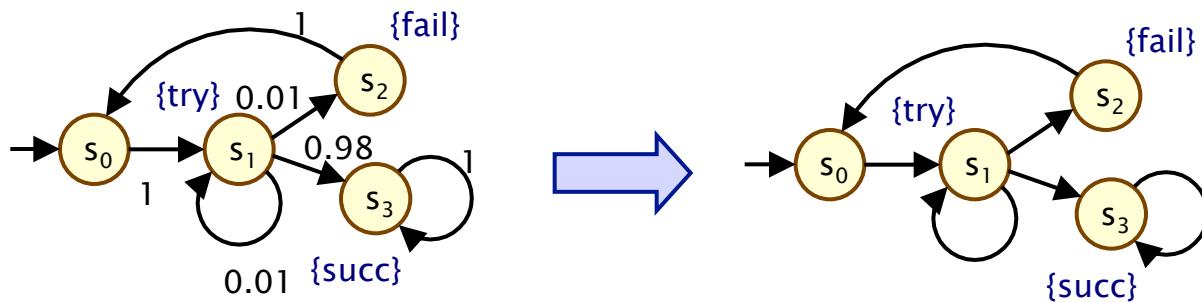
Department of Computer Science
University of Oxford

Overview

- Temporal logic
- Non-probabilistic temporal logic
 - CTL
- Probabilistic temporal logic
 - PCTL = CTL + probabilities
- Qualitative vs. quantitative
- Linear-time properties
 - LTL, PCTL*

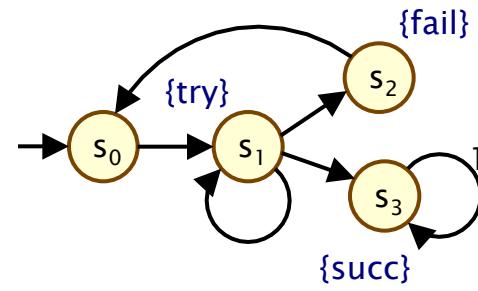
Temporal logic

- Temporal logic
 - formal language for specifying and reasoning about how the behaviour of a system changes over time
 - extends propositional logic with modal/temporal operators
 - one important use: representation of system properties to be checked by a model checker
- Logics used in this course are probabilistic extensions of temporal logics devised for non-probabilistic systems
 - So we revert briefly to (labelled) state-transition diagrams



State–transition systems

- Labelled state–transition system (LTS) (or Kripke structure)
 - is a tuple $(S, s_{\text{init}}, \rightarrow, L)$ where:
 - S is a set of states (“state space”)
 - $s_{\text{init}} \in S$ is the initial state
 - $\rightarrow \subseteq S \times S$ is the **transition relation**
 - $L : S \rightarrow 2^{\text{AP}}$ is function labelling states with atomic propositions (taken from a set AP)
- DTMC $(S, s_{\text{init}}, P, L)$ has underlying LTS $(S, s_{\text{init}}, \rightarrow, L)$
 - where $\rightarrow = \{ (s, s') \text{ s.t. } P(s, s') > 0 \}$



Paths – some notation

- Path $\omega = s_0s_1s_2\dots$ such that $(s_i, s_{i+1}) \in \rightarrow$ for $i \geq 0$
 - we write $s_i \rightarrow s_{i+1}$ as shorthand for $(s_i, s_{i+1}) \in \rightarrow$
- $\omega(i)$ is the $(i+1)$ th state of ω , i.e. s_i
- $\omega[\dots i]$ denotes the (finite) **prefix** ending in the $(i+1)$ th state
 - i.e. $\omega[\dots i] = s_0s_1\dots s_i$
- $\omega[i\dots]$ denotes the **suffix** starting from the $(i+1)$ th state
 - i.e. $\omega[i\dots] = s_i s_{i+1} s_{i+2} \dots$
- As for DTMCs, $\text{Path}(s) = \text{set of all infinite paths from } s$

CTL

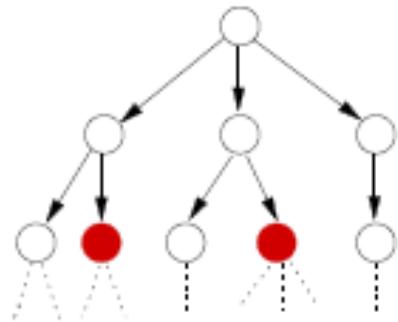
- CTL – Computation Tree Logic
- Syntax split into state and path formulae
 - specify properties of states/paths, respectively
 - a CTL formula is a state formula
- State formulae:
 - $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg\phi \mid A \psi \mid E \psi$
 - where $a \in AP$ and ψ is a path formula
- Path formulae
 - $\psi ::= X \phi \mid F \phi \mid G \phi \mid \phi \cup \phi$
 - where ϕ is a state formula

Some of these operators (e.g. A, F, G) are derivable...

X = “next”
F = “future”
G = “globally”
U = “until”

CTL semantics

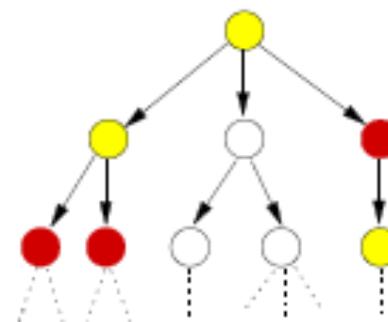
- Intuitive semantics:
 - of quantifiers (A/E) and temporal operators (F/G/U)



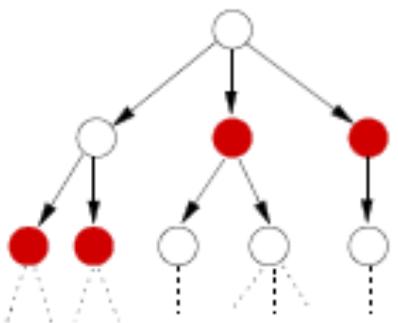
EF red



EG red



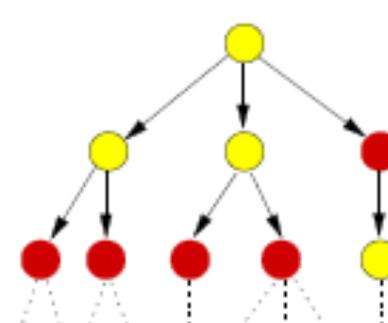
E [yellow U red]



AF red



AG red



A [yellow U red]

CTL semantics

- **Semantics of state formulae:**
 - $s \models \phi$ denotes “ s satisfies ϕ ” or “ ϕ is true in s ”
- For a state s of an LTS $(S, s_{\text{init}}, \rightarrow, L)$:
 - $s \models \text{true}$ always
 - $s \models a \iff a \in L(s)$
 - $s \models \phi_1 \wedge \phi_2 \iff s \models \phi_1 \text{ and } s \models \phi_2$
 - $s \models \neg \phi \iff s \not\models \phi$
 - $s \models A \psi \iff \omega \models \psi \text{ for all } \omega \in \text{Path}(s)$
 - $s \models E \psi \iff \omega \models \psi \text{ for some } \omega \in \text{Path}(s)$

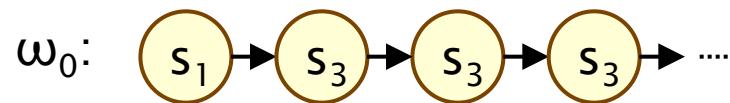
CTL semantics

- Semantics of path formulae:
 - $\omega \models \psi$ denotes “ ω satisfies ψ ” or “ ψ is true along ω ”
- For a path ω of an LTS $(S, s_{\text{init}}, \rightarrow, L)$:
 - $\omega \models X \phi \iff \omega(1) \models \phi$
 - $\omega \models F \phi \iff \exists k \geq 0 \text{ s.t. } \omega(k) \models \phi$
 - $\omega \models G \phi \iff \forall i \geq 0 \omega(i) \models \phi$
 - $\omega \models \phi_1 \cup \phi_2 \iff \exists k \geq 0 \text{ s.t. } \omega(k) \models \phi_2 \text{ and } \forall i < k \omega(i) \models \phi_1$

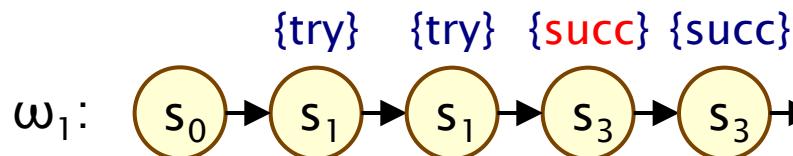
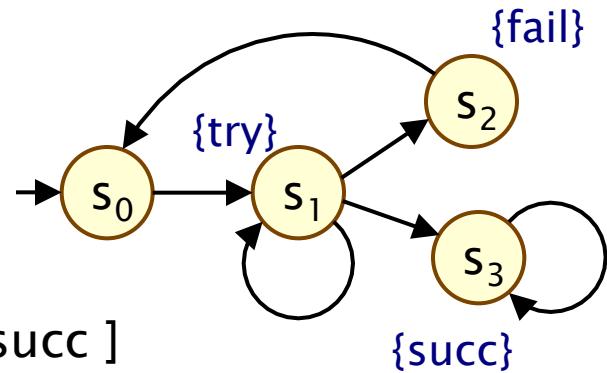
CTL examples

- Some examples of satisfying paths:

– $\omega_0 \models X \text{ succ}$ {try} {succ} {succ} {succ}



– $\omega_1 \models \neg \text{fail} U \text{ succ}$



- Example CTL formulas:

– $s_1 \models \text{try} \wedge \neg \text{fail}$

– $s_1 \models E [X \text{ succ}]$ and $s_1, s_3 \models A [X \text{ succ}]$

– $s_0 \models E [\neg \text{fail} U \text{ succ}]$ but $s_0 \not\models A [\neg \text{fail} U \text{ succ}]$

CTL examples

- $AG (\neg(crit_1 \wedge crit_2))$
 - mutual exclusion
- $AG EF \text{ initial}$
 - for every computation, it is always possible to return to the initial state
- $AG (\text{request} \rightarrow AF \text{ response})$
 - every request will eventually be granted
- $AG AF crit_1 \wedge AG AF crit_2$
 - each process has access to the critical section infinitely often

CTL equivalences

- Basic logical equivalences:

- $\text{false} \equiv \neg \text{true}$ (false)
- $\phi_1 \vee \phi_2 \equiv \neg(\neg \phi_1 \wedge \neg \phi_2)$ (disjunction)
- $\phi_1 \rightarrow \phi_2 \equiv \neg \phi_1 \vee \phi_2$ (implication)

- Path quantifiers:

- $\text{A } \psi \equiv \neg \text{E}(\neg \psi)$
- $\text{E } \psi \equiv \neg \text{A}(\neg \psi)$

For example:

$$\text{AG } \phi \equiv \neg \text{EF}(\neg \phi)$$

- Temporal operators:

- $\text{F } \phi \equiv \text{true} \cup \phi$
- $\text{G } \phi \equiv \neg \text{F}(\neg \phi)$

CTL – Alternative notation

- Some commonly used notation...

- Temporal operators:

- $F \phi \equiv \diamond \phi$ (“diamond”)
- $G \phi \equiv \square \phi$ (“box”)
- $X \phi \equiv \circ \phi$

- Path quantifiers:

- $A \psi \equiv \forall \psi$
- $E \psi \equiv \exists \psi$

- Brackets: none/round/square

- $AF \psi$
- $A(\psi_1 \cup \psi_2)$
- $A[\psi_1 \cup \psi_2]$

PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94]
 - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is **probabilistic operator P**
 - quantitative extension of CTL's A and E operators
- Example
 - $\text{send} \rightarrow P_{\geq 0.95} [F^{\leq 10} \text{ deliver}]$
 - “if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95”

PCTL syntax

- PCTL syntax:

– $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg\phi \mid P_{\sim p} [\psi]$ (state formulae)

ψ is true with probability $\sim p$

– $\psi ::= X\phi \mid \phi U^{\leq k} \phi \mid \phi U \phi$ (path formulae)

“next”

“bounded until”

“until”

– where a is an atomic proposition, $p \in [0,1]$ is a probability bound, $\sim \in \{<, >, \leq, \geq\}$, $k \in \mathbb{N}$

- A PCTL formula is always a state formula

– path formulae only occur inside the P operator

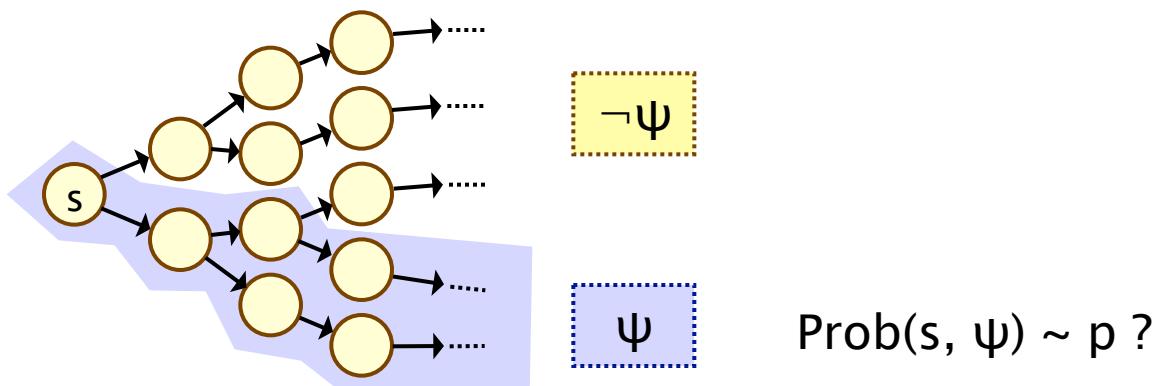
PCTL semantics for DTMCs

- Semantics for non-probabilistic operators same as for CTL:
 - $s \models \phi$ denotes “ s satisfies ϕ ” or “ ϕ is true in s ”
 - $\omega \models \psi$ denotes “ ω satisfies ψ ” or “ ψ is true along ω ”
- For a state s of a DTMC $(S, s_{\text{init}}, P, L)$:
 - $s \models \text{true}$ always
 - $s \models a$ $\Leftrightarrow a \in L(s)$
 - $s \models \phi_1 \wedge \phi_2$ $\Leftrightarrow s \models \phi_1$ and $s \models \phi_2$
 - $s \models \neg\phi$ $\Leftrightarrow s \not\models \phi$
- For a path ω of a DTMC $(S, s_{\text{init}}, P, L)$:
 - $\omega \models X \phi$ $\Leftrightarrow \omega(1) \models \phi$
 - $\omega \models \phi_1 U^{\leq k} \phi_2$ $\Leftrightarrow \exists i \leq k \text{ such that } \omega(i) \models \phi_2$ and $\forall j < i, \omega(j) \models \phi_1$
 - $\omega \models \phi_1 U \phi_2$ $\Leftrightarrow \exists k \geq 0 \text{ s.t. } \omega(k) \models \phi_2 \text{ and } \forall i < k \omega(i) \models \phi_1$

$U^{\leq k}$ not in CTL
(but could easily
be added)

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - informal definition: $s \models P_{\sim p} [\psi]$ means that “**the probability, from state s , that ψ is true for an outgoing path satisfies $\sim p$** ”
 - example: $s \models P_{<0.25} [X \text{ fail}] \Leftrightarrow$ “the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25”
 - formally: $s \models P_{\sim p} [\psi] \Leftrightarrow \text{Prob}(s, \psi) \sim p$
 - where: $\text{Prob}(s, \psi) = \Pr_s \{ \omega \in \text{Path}(s) \mid \omega \models \psi \}$



PCTL equivalences for DTMCs

- Basic logical equivalences:
 - $\text{false} \equiv \neg \text{true}$ (false)
 - $\phi_1 \vee \phi_2 \equiv \neg(\neg \phi_1 \wedge \neg \phi_2)$ (disjunction)
 - $\phi_1 \rightarrow \phi_2 \equiv \neg \phi_1 \vee \phi_2$ (implication)
- Negation and probabilities
 - e.g. $\neg P_{>p} [\phi_1 \cup \phi_2] \equiv P_{\leq p} [\phi_1 \cup \phi_2]$

Reachability and invariance

- Derived temporal operators, like CTL...
- **Probabilistic reachability:** $P_{\sim p} [F \phi]$
 - the probability of reaching a state satisfying ϕ
 - $F \phi \equiv \text{true} U \phi$
 - “ ϕ is **eventually** true”
 - bounded version: $F^{\leq k} \phi \equiv \text{true} U^{\leq k} \phi$
- **Probabilistic invariance:** $P_{\sim p} [G \phi]$
 - the probability of ϕ always remaining true
 - $G \phi \equiv \neg(F \neg\phi) \equiv \neg(\text{true} U \neg\phi)$
 - “ ϕ is **always** true”
 - bounded version: $G^{\leq k} \phi \equiv \neg(F^{\leq k} \neg\phi)$

strictly speaking,
 $G \phi$ cannot be
derived from the
PCTL syntax in
this way since
there is no
negation of path
formulae

Derivation of $P_{\sim p} [G \phi]$

- In fact, we can derive $P_{\sim p} [G \phi]$ directly in PCTL...

PCTL examples

- $P_{<0.05} [F \text{ err/total} > 0.1]$
 - “with probability at most 0.05, more than 10% of the NAND gate outputs are erroneous?”
- $P_{\geq 0.8} [F^{\leq k} \text{ reply_count} = n]$
 - “the probability that the sender has received n acknowledgements within k clock-ticks is at least 0.8”
- $P_{<0.4} [\neg \text{fail}_A \cup \text{fail}_B]$
 - “the probability that component B fails before component A is less than 0.4”
- $\neg \text{oper} \rightarrow P_{\geq 1} [F (P_{>0.99} [G^{\leq 100} \text{ oper}])]$
 - “if the system is not operational, it almost surely reaches a state from which it has a greater than 0.99 chance of staying operational for 100 time units”

PCTL and measurability

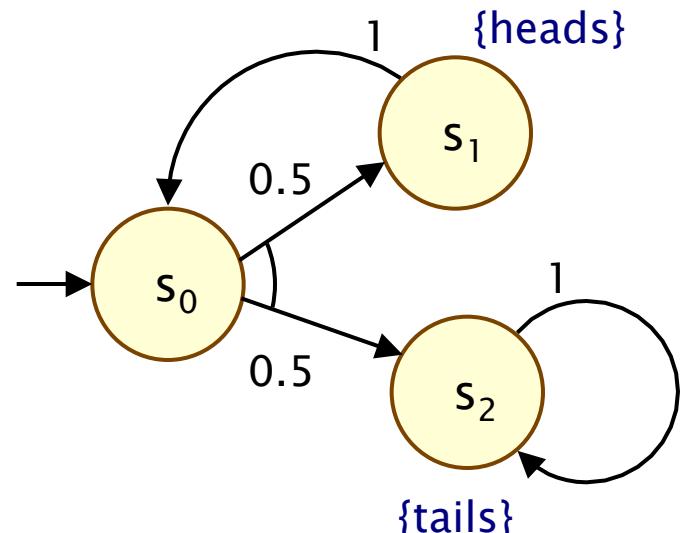
- All the sets of paths expressed by PCTL are **measurable**
 - i.e. are elements of the σ -algebra $\Sigma_{\text{Path}(s)}$
 - see for example **[Var85]** (for a stronger result in fact)
- Recall: probability space $(\text{Path}(s), \Sigma_{\text{Path}(s)}, \Pr_s)$
 - $\Sigma_{\text{Path}(s)}$ contains cylinder sets $C(\omega)$ for all finite paths ω starting in s and is closed under complementation, countable union
- **Next** ($X \phi$)
 - cylinder sets constructed from paths of length one
- **Bounded until** ($\phi_1 \mathbin{U^{\leq k}} \phi_2$)
 - (finite number of) cylinder sets from paths of length at most k
- **Until** ($\phi_1 \mathbin{U} \phi_2$)
 - countable union of paths satisfying $\phi_1 \mathbin{U^{\leq k}} \phi_2$ for all $k \geq 0$

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a **quantitative** analogue of the CTL operators A (for all) and E (there exists)
- **Qualitative** PCTL properties
 - $P_{\sim p} [\psi]$ where p is either 0 or 1
- **Quantitative** PCTL properties
 - $P_{\sim p} [\psi]$ where p is in the range (0,1)
- $P_{>0} [F \phi]$ is identical to $EF \phi$
 - there exists a finite path to a ϕ -state
- $P_{\geq 1} [F \phi]$ is (similar to but) weaker than $AF \phi$
 - a ϕ -state is reached “almost surely”
 - see next slide...

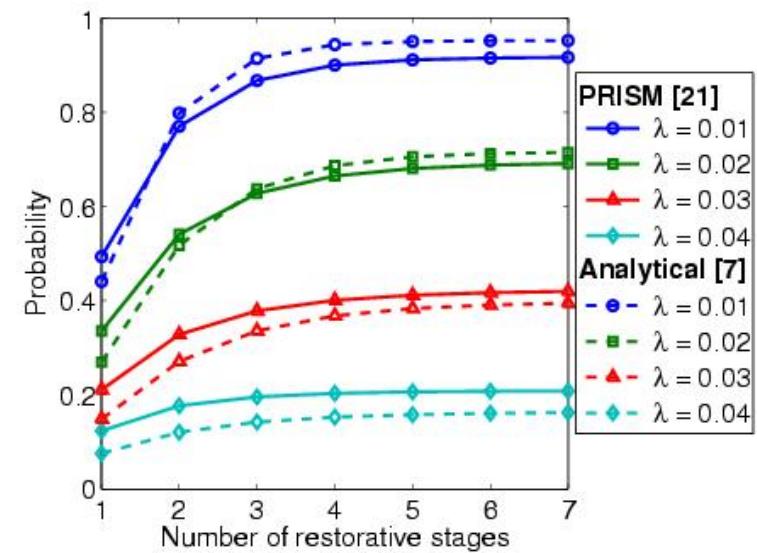
Example: Qualitative/quantitative

- Toss a coin repeatedly until “tails” is thrown
- Is “tails” always eventually thrown?
 - CTL: $\text{AF} \text{ ``tails''}$
 - Result: **false**
 - Counterexample: $s_0s_1s_0s_1s_0s_1\dots$
- Does the probability of eventually throwing “tails” equal one?
 - PCTL: $\text{P}_{\geq 1} [\text{F} \text{ ``tails''}]$
 - Result: **true**
 - Infinite path $s_0s_1s_0s_1s_0s_1\dots$ has **zero probability**



Quantitative properties

- Consider a PCTL formula $P_{\sim p} [\psi]$
 - if the probability is **unknown**, how to choose the bound p ?
- When the outermost operator of a PTCL formula is P
 - PRISM allows formulae of the form $P_{=?} [\psi]$
 - “**what is the probability that path formula ψ is true?**”
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $P_{=?} [F \text{ err/total} > 0.1]$
 - “**what is the probability that 10% of the NAND gate outputs are erroneous?**”



Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77], the non-probabilistic **linear-time** temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
- To introduce these logics, we return briefly again to non-probabilistic logics and models...

Branching vs. Linear time

- In CTL, temporal operators always appear inside A or E
 - in LTL, temporal operators can be combined
- LTL but not CTL:
 - $F [\text{req} \wedge X \text{ ack}]$
 - “eventually a request occurs, followed immediately by an acknowledgement”
- CTL but not LTL:
 - AG EF initial
 - “for every computation, it is always possible to return to the initial state”

LTL

LTL

- LTL semantics
 - implicit universal quantification over paths
 - i.e. for an LTS $M = (S, s_{\text{init}}, \rightarrow, L)$ and LTL formula ψ
 - $s \models \psi$ iff $\omega \models \psi$ for all paths $\omega \in \text{Path}(s)$
 - $M \models \psi$ iff $s_{\text{init}} \models \psi$
- e.g:
 - $\text{A F} [\text{req} \wedge \text{X ack}]$
 - “it is **always** the case that, eventually, a request occurs, followed immediately by an acknowledgement”
- Derived operators like CTL, for example:
 - $F \psi \equiv \text{true} \cup \psi$
 - $G \psi \equiv \neg F(\neg \psi)$

LTL + probabilities

- Same idea as PCTL: probabilities of sets of path formulae
 - for a state s of a DTMC and an LTL formula ψ :
 - $\text{Prob}(s, \psi) = \Pr_s \{ \omega \in \text{Path}(s) \mid \omega \models \psi \}$
 - all such path sets are measurable (see later)
- Examples (from DTMC lectures)...
- Repeated reachability: “always eventually...”
 - $\text{Prob}(s, \text{GF send})$
 - e.g. “what is the probability that the protocol successfully sends a message infinitely often?”
- Persistence properties: “eventually forever...”
 - $\text{Prob}(s, \text{FG stable})$
 - e.g. “what is the probability of the leader election algorithm reaching, and staying in, a stable state?”

PCTL*

- PCTL* subsumes both (probabilistic) LTL and PCTL
- State formulae:
 - $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg\phi \mid P_{\sim p} [\psi]$
 - where $a \in AP$ and ψ is a path formula
- Path formulae:
 - $\psi ::= \phi \mid \psi \wedge \psi \mid \neg\psi \mid X\psi \mid \psi U \psi$
 - where ϕ is a state formula
- A PCTL* formula is a state formula ϕ
 - e.g. $P_{>0.1} [GF \text{ crit}_1] \wedge P_{>0.1} [GF \text{ crit}_2]$

Summing up...

- **Temporal logic:**
 - formal language for specifying and reasoning about how the behaviour of a system changes over time

CTL	Φ	non-probabilistic (e.g. LTSs)
LTL	Ψ	
PCTL	Φ	
LTL + prob.	Prob(s, Ψ)	probabilistic (e.g. DTMCs)
PCTL*	Φ	

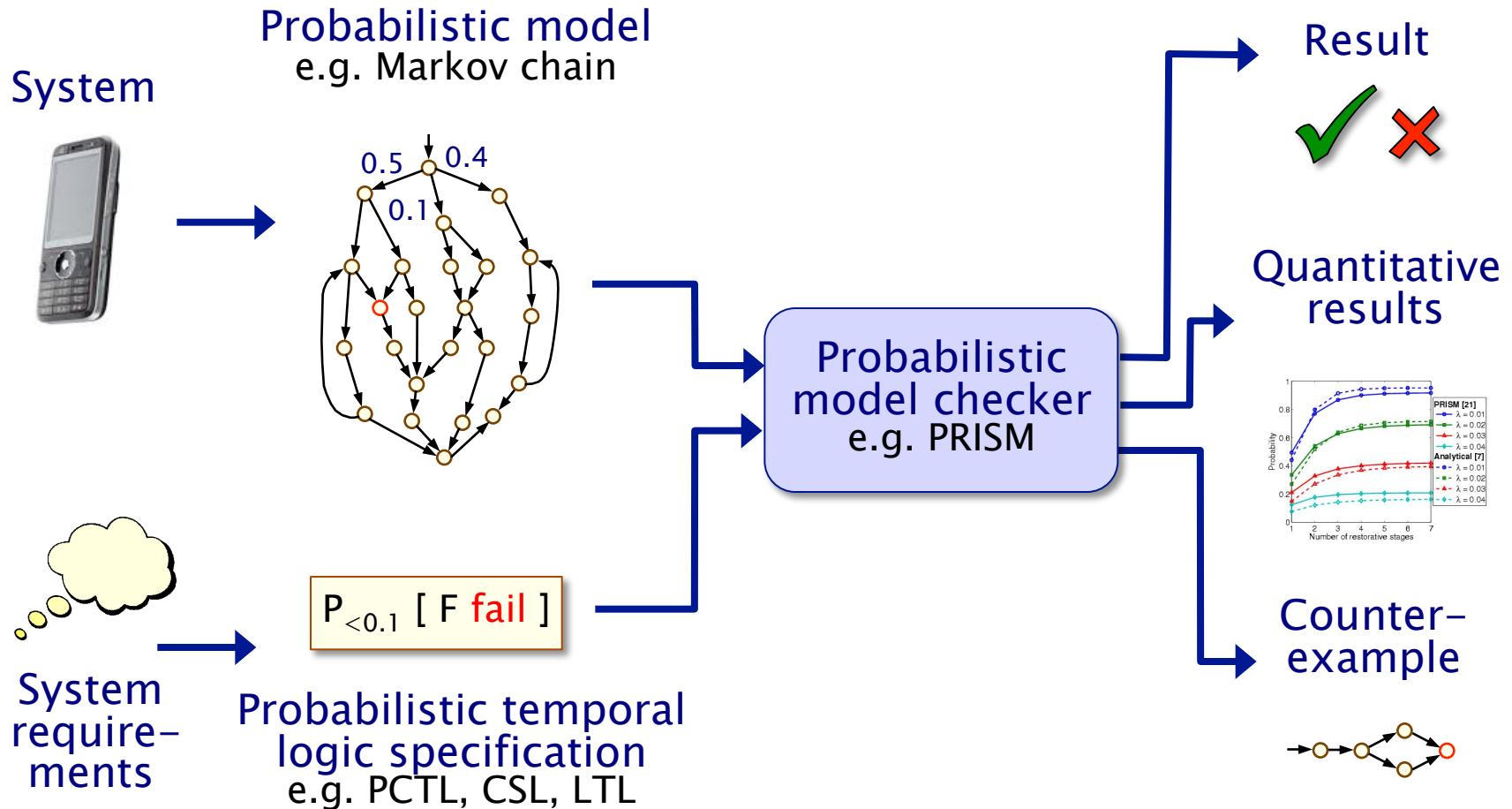
Lecture 5

PCTL Model Checking for DTMCs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic model checking



Overview

- PCTL model checking for DTMCs
- Computation of probabilities for PCTL formulae
 - next
 - bounded until
 - (unbounded) until
- Solving large linear equation systems
 - direct vs. iterative methods
 - iterative solution methods

PCTL

- PCTL syntax:

– $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg \phi \mid P_{\sim p} [\psi]$ (state formulae)

– $\psi ::= X \phi \mid \phi U^{\leq k} \phi \mid \phi U \phi$ (path formulae)

“next”

“bounded until”

“until”

ψ is true with probability $\sim p$

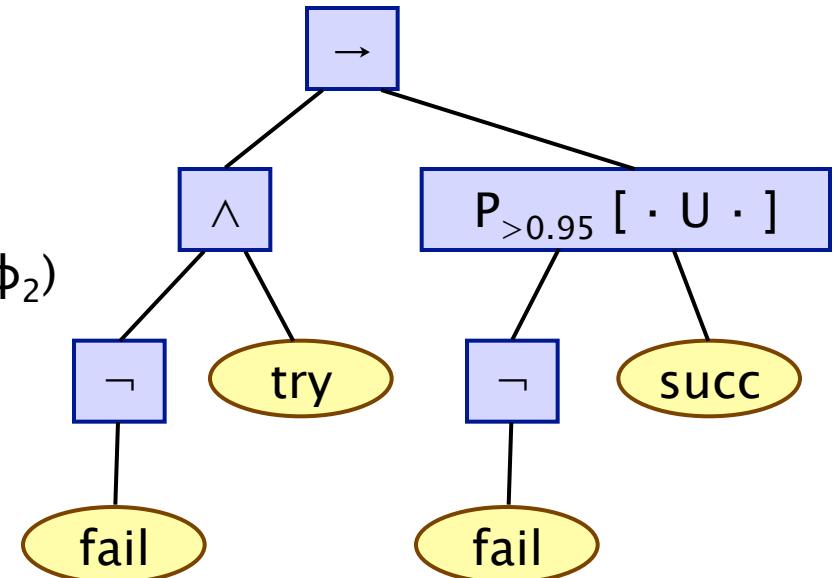
- where a is an atomic proposition, $p \in [0,1]$ is a probability bound, $\sim \in \{<, >, \leq, \geq\}$, $k \in \mathbb{N}$
- Remaining operators can be derived (false, \vee , \rightarrow , F , G , ...)
 - hence will not be discussed here

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC $D=(S, s_{\text{init}}, P, L)$, PCTL formula ϕ
 - output: $\text{Sat}(\phi) = \{ s \in S \mid s \models \phi \} = \text{set of states satisfying } \phi$
- What does it mean for a DTMC D to satisfy a formula ϕ ?
 - often, just want to know if $s_{\text{init}} \models \phi$, i.e. if $s_{\text{init}} \in \text{Sat}(\phi)$
 - sometimes, want to check that $s \models \phi \ \forall s \in S$, i.e. $\text{Sat}(\phi) = S$
- Sometimes, focus on quantitative results
 - e.g. compute result of $P_{=?} [F \text{ error}]$
 - e.g. compute result of $P_{=?} [F^{\leq k} \text{ error}]$ for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ϕ
 - example: $\phi = (\neg \text{fail} \wedge \text{try}) \rightarrow P_{>0.95} [\neg \text{fail} \cup \text{succ}]$
- For the non-probabilistic operators:
 - $\text{Sat}(\text{true}) = S$
 - $\text{Sat}(a) = \{ s \in S \mid a \in L(s) \}$
 - $\text{Sat}(\neg \phi) = S \setminus \text{Sat}(\phi)$
 - $\text{Sat}(\phi_1 \wedge \phi_2) = \text{Sat}(\phi_1) \cap \text{Sat}(\phi_2)$
- For the $P_{\sim p} [\psi]$ operator:
 - need to compute the probabilities $\text{Prob}(s, \psi)$ for all states $s \in S$
 - $\text{Sat}(P_{\sim p} [\psi]) = \{ s \in S \mid \text{Prob}(s, \psi) \sim p \}$

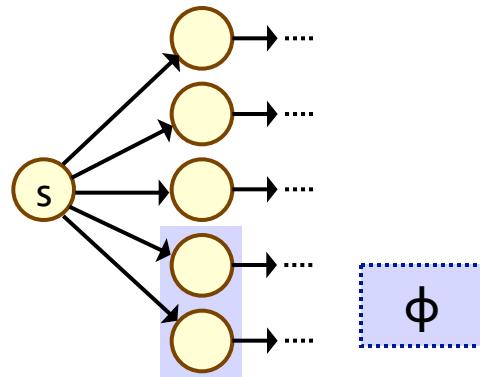


Probability computation

- Three temporal operators to consider:
- Next: $P_{\sim p}[X \phi]$
- Bounded until: $P_{\sim p}[\phi_1 \mathbf{U}^{\leq k} \phi_2]$
 - adaptation of bounded reachability for DTMCs
- Until: $P_{\sim p}[\phi_1 \mathbf{U} \phi_2]$
 - adaptation of reachability for DTMCs
 - graph-based “precomputation” algorithms
 - techniques for solving large linear equation systems

PCTL next for DTMCs

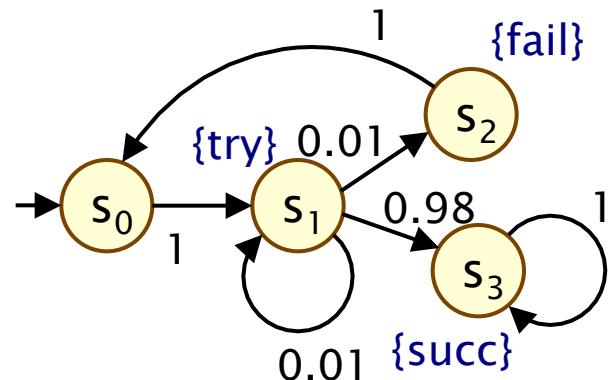
- Computation of probabilities for PCTL next operator
 - $\text{Sat}(P_{\sim p}[X \phi]) = \{ s \in S \mid \text{Prob}(s, X \phi) \sim p \}$
 - need to compute $\text{Prob}(s, X \phi)$ for all $s \in S$
- Sum outgoing probabilities for transitions to ϕ -states
 - $\text{Prob}(s, X \phi) = \sum_{s' \in \text{Sat}(\phi)} P(s, s')$
- Compute vector $\text{Prob}(X \phi)$ of probabilities for all states s
 - $\text{Prob}(X \phi) = P \cdot \underline{\phi}$
 - where $\underline{\phi}$ is a 0-1 vector over S with $\underline{\phi}(s) = 1$ iff $s \models \phi$
 - computation requires a single matrix–vector multiplication



PCTL next – Example

- Model check: $P_{\geq 0.9} [X (\neg \text{try} \vee \text{succ})]$
 - $\text{Sat}(\neg \text{try} \vee \text{succ}) = (S \setminus \text{Sat}(\text{try})) \cup \text{Sat}(\text{succ})$
 $= (\{s_0, s_1, s_2, s_3\} \setminus \{s_1\}) \cup \{s_3\} = \{s_0, s_2, s_3\}$
 - Prob($X (\neg \text{try} \vee \text{succ})$) = $P \cdot (\neg \text{try} \vee \text{succ}) = \dots$

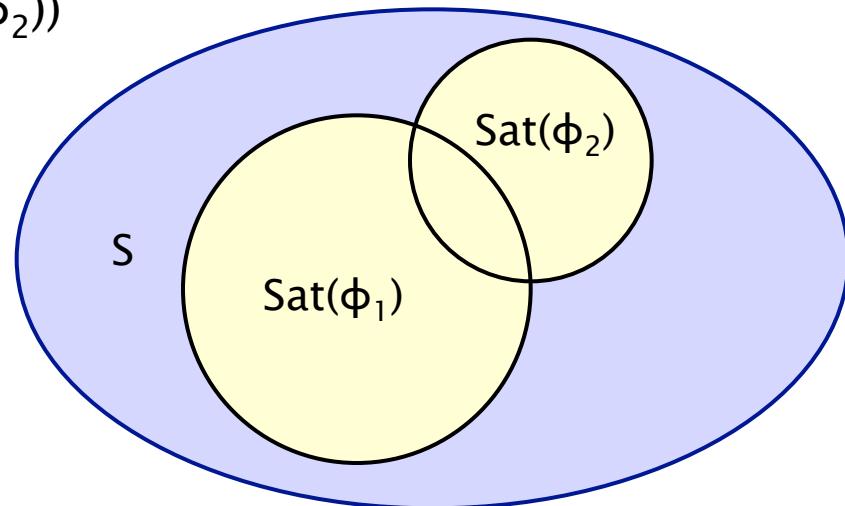
$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{bmatrix}$$



- Results:
 - Prob($X (\neg \text{try} \vee \text{succ})$) = [0, 0.99, 1, 1]
 - $\text{Sat}(P_{\geq 0.9} [X (\neg \text{try} \vee \text{succ})]) = \{s_1, s_2, s_3\}$

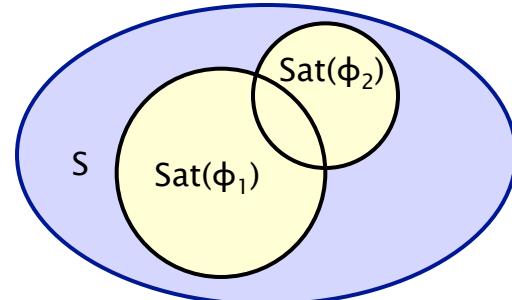
PCTL bounded until for DTMCs

- Computation of probabilities for PCTL $U^{\leq k}$ operator
 - $\text{Sat}(P_{\sim p}[\phi_1 \ U^{\leq k} \ \phi_2]) = \{ s \in S \mid \text{Prob}(s, \phi_1 \ U^{\leq k} \ \phi_2) \sim p \}$
 - need to compute $\text{Prob}(s, \phi_1 \ U^{\leq k} \ \phi_2)$ for all $s \in S$
- First identify (some) states where probability is trivially 1/0
 - $S^{\text{yes}} = \text{Sat}(\phi_2)$
 - $S^{\text{no}} = S \setminus (\text{Sat}(\phi_1) \cup \text{Sat}(\phi_2))$



PCTL bounded until for DTMCs

- Let:
 - $S^{\text{yes}} = \text{Sat}(\phi_2)$
 - $S^{\text{no}} = S \setminus (\text{Sat}(\phi_1) \cup \text{Sat}(\phi_2))$
- And let:
 - $S^? = S \setminus (S^{\text{yes}} \cup S^{\text{no}})$



- Compute solution of recursive equations:

$$\text{Prob}(s, \phi_1 \text{ U}^{\leq k} \phi_2) = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ 0 & \text{if } s \in S^? \text{ and } k = 0 \\ \sum_{s' \in S} P(s, s') \cdot \text{Prob}(s', \phi_1 \text{ U}^{\leq k-1} \phi_2) & \text{if } s \in S^? \text{ and } k > 0 \end{cases}$$

PCTL bounded until for DTMCs

- Simultaneous computation of vector $\underline{\text{Prob}}(\phi_1 \text{ U}^{\leq k} \phi_2)$
 - i.e. probabilities $\text{Prob}(s, \phi_1 \text{ U}^{\leq k} \phi_2)$ for all $s \in S$
- Iteratively define in terms of matrices and vectors
 - define matrix P' as follows: $P'(s,s') = P(s,s')$ if $s \in S^?$,
 $P'(s,s') = 1$ if $s \in S^{\text{yes}}$ and $s=s'$, $P'(s,s') = 0$ otherwise
 - $\underline{\text{Prob}}(\phi_1 \text{ U}^{\leq 0} \phi_2) = \underline{\Phi}_2$
 - $\underline{\text{Prob}}(\phi_1 \text{ U}^{\leq k} \phi_2) = P' \cdot \underline{\text{Prob}}(\phi_1 \text{ U}^{\leq k-1} \phi_2)$
 - requires **k matrix–vector multiplications**
- Note that we could express this in terms of matrix powers
 - $\underline{\text{Prob}}(\phi_1 \text{ U}^{\leq k} \phi_2) = (P')^k \cdot \underline{\Phi}_2$ and compute $(P')^k$ in $\log_2 k$ steps
 - but this is actually inefficient: $(P')^k$ is much less sparse than P'

PCTL bounded until – Example

- Model check: $P_{>0.98} [F^{\leq 2} \text{ succ}] \equiv P_{>0.98} [\text{true} \cup^{\leq 2} \text{ succ}]$
 - $\text{Sat}(\text{true}) = S = \{s_0, s_1, s_2, s_3\}$, $\text{Sat}(\text{succ}) = \{s_3\}$
 - $S^{\text{yes}} = \{s_3\}$, $S^{\text{no}} = \emptyset$, $S^? = \{s_0, s_1, s_2\}$, $P' = P$
 - Prob(true $\cup^{\leq 0}$ succ) = succ = $[0, 0, 0, 1]$

$$\text{Prob}(\text{true } \cup^{\leq 1} \text{ succ}) = P' \cdot \text{Prob}(\text{true } \cup^{\leq 0} \text{ succ}) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix}$$

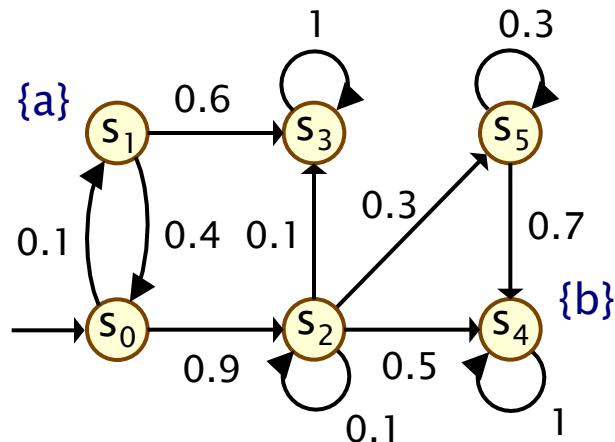
$$\text{Prob}(\text{true } \cup^{\leq 2} \text{ succ}) = P' \cdot \text{Prob}(\text{true } \cup^{\leq 1} \text{ succ}) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.98 \\ 0.9898 \\ 0 \\ 1 \end{bmatrix}$$

- $\text{Sat}(P_{>0.98} [F^{\leq 2} \text{ succ}]) = \{s_1, s_3\}$

PCTL until for DTMCs

- Computation of probabilities $\text{Prob}(s, \phi_1 \cup \phi_2)$ for all $s \in S$
- First, identify **all** states where the **probability** is 1 or 0
 - $S^{\text{yes}} = \text{Sat}(P_{\geq 1} [\phi_1 \cup \phi_2])$
 - $S^{\text{no}} = \text{Sat}(P_{\leq 0} [\phi_1 \cup \phi_2])$
- Then solve linear equation system for remaining states
- Running example:

$$P_{>0.8} [\neg a \cup b]$$

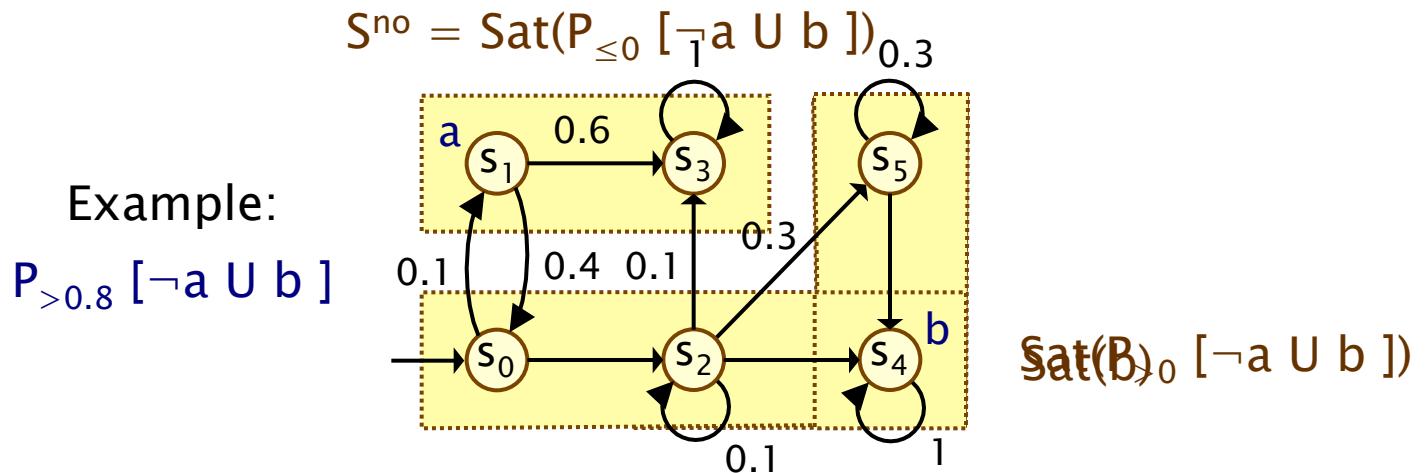


Precomputation

- We refer to the first phase (identifying sets S^{yes} and S^{no}) as “precomputation”
 - two algorithms: Prob0 (for S^{no}) and Prob1 (for S^{yes})
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - ensures **unique** solution to linear equation system
 - only need Prob0 for uniqueness, Prob1 is optional
 - **reduces** the set of states for which probabilities must be computed numerically
 - gives **exact results** for the states in S^{yes} and S^{no} (no round-off)
 - for model checking of **qualitative** properties ($P_{\sim p}[\cdot]$ where p is 0 or 1), no further computation required

Precomputation – Prob0

- Prob0 algorithm to compute $S^{\text{no}} = \text{Sat}(P_{\leq 0} [\phi_1 \cup \phi_2])$:
 - first compute $\text{Sat}(P_{> 0} [\phi_1 \cup \phi_2]) \equiv \text{Sat}(E[\phi_1 \cup \phi_2])$
 - i.e. find all states which can, **with non-zero probability**, reach a ϕ_2 -state **without leaving ϕ_1 -states**
 - i.e. find all states from which there is a finite path through ϕ_1 -states to a ϕ_2 -state: simple **graph-based computation**
 - subtract the resulting set from S



Prob0 algorithm

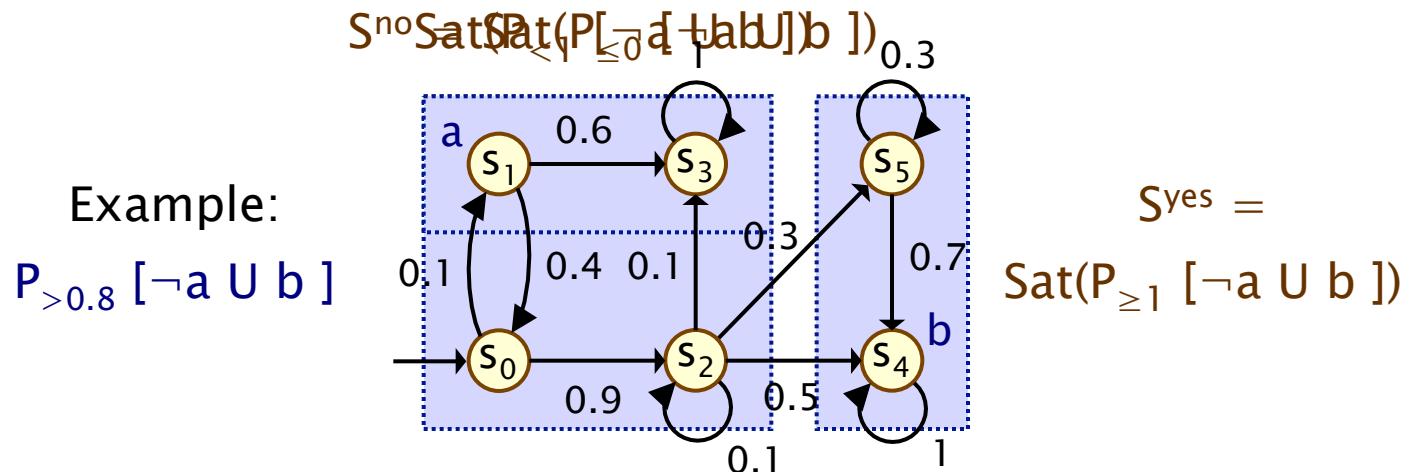
```
PROB0( $Sat(\phi_1), Sat(\phi_2)$ )
```

```
1.  $R := Sat(\phi_2)$ 
2.  $done := \text{false}$ 
3. while ( $done = \text{false}$ )
4.    $R' := R \cup \{s \in Sat(\phi_1) \mid \exists s' \in R. \mathbf{P}(s, s') > 0\}$ 
5.   if ( $R' = R$ ) then  $done := \text{true}$ 
6.    $R := R'$ 
7. endwhile
8. return  $S \setminus R$ 
```

- Note: can be formulated as a least fixed point computation
 - also well suited to computation with binary decision diagrams

Precomputation – Prob1

- Prob1 algorithm to compute $S^{\text{yes}} = \text{Sat}(P_{\geq 1} [\phi_1 \cup \phi_2])$:
 - first compute $\text{Sat}(P_{< 1} [\phi_1 \cup \phi_2])$, reusing S^{no}
 - this is equivalent to the set of states which have a **non-zero probability of reaching S^{no} , passing only through ϕ_1 -states**
 - again, this is a simple **graph-based computation**
 - subtract the resulting set from S



Prob1 algorithm

```
PROB1( $Sat(\phi_1), Sat(\phi_2), S^{no}$ )
```

1. $R := S^{no}$
2. $done := \text{false}$
3. **while** ($done = \text{false}$)
 4. $R' := R \cup \{s \in (Sat(\phi_1) \setminus Sat(\phi_2)) \mid \exists s' \in R . \mathbf{P}(s, s') > 0\}$
 5. **if** ($R' = R$) **then** $done := \text{true}$
 6. $R := R'$
7. **endwhile**
8. **return** $S \setminus R$

Prob 1 explanation

PCTL until – linear equations

- Probabilities $\text{Prob}(s, \phi_1 \cup \phi_2)$ can now be obtained as the unique solution of the following set of **linear equations**
 - essentially the same as for probabilistic reachability

$$\text{Prob}(s, \phi_1 \cup \phi_2) = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ \sum_{s' \in S} P(s, s') \cdot \text{Prob}(s', \phi_1 \cup \phi_2) & \text{otherwise} \end{cases}$$

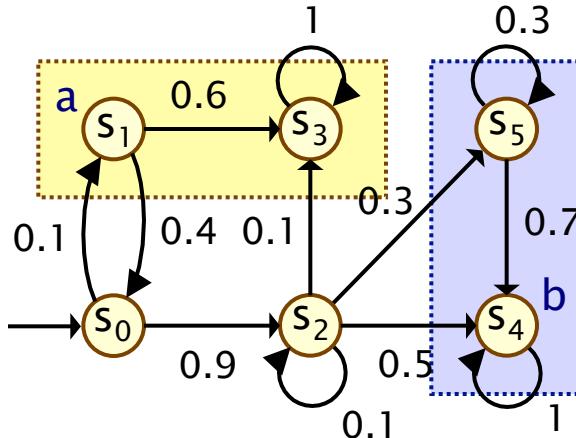
- Can also be reduced to a system in $|S?|$ unknowns instead of $|S|$ where $S? = S \setminus (S^{\text{yes}} \cup S^{\text{no}})$

PCTL until – linear equations

- Example: $P_{>0.8} [\neg a \text{ U } b]$
- Let $x_i = \text{Prob}(s_i, \neg a \text{ U } b)$

$S^{\text{no}} =$

$\text{Sat}(P_{\leq 0} [\neg a \text{ U } b])$



$S^{\text{yes}} =$

$\text{Sat}(P_{\geq 1} [\neg a \text{ U } b])$

$$x_1 = x_3 = 0$$

$$x_4 = x_5 = 1$$

$$x_2 = 0.1x_1 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$$

$$x_0 = 0.1x_1 + 0.9x_2 = 0.8$$

$$\text{Prob}(\neg a \text{ U } b) = \underline{x} = [0.8, 0, 8/9, 0, 1, 1]$$

$$\text{Sat}(P_{>0.8} [\neg a \text{ U } b]) = \{s_2, s_4, s_5\}$$

PCTL Until - Example 2

- Example: $P_{>0.5} [G\neg b]$
- $\text{Prob}(s_i, G\neg b)$
 $= 1 - \text{Prob}(s_i, \neg(G\neg b))$
 $= 1 - \text{Prob}(s_i, F b)$
- Let $x_i = \text{Prob}(s_i, F b)$

$$x_3 = 0 \text{ and } x_4 = x_5 = 1$$

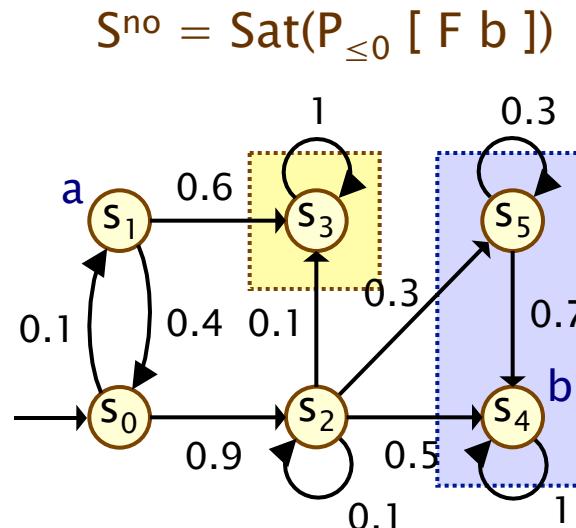
$$x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$$

$$x_1 = 0.6x_3 + 0.4x_0 = 0.4x_0$$

$$x_0 = 0.1x_1 + 0.9x_2 = 5/6 \text{ and } x_1 = 1/3$$

$$\text{Prob}(G\neg b) = \underline{x} = [1/6, 2/3, 1/9, 1, 0, 0]$$

$$\text{Sat}(P_{>0.5} [G\neg b]) = \{ s_1, s_3 \}$$



$S^{\text{yes}} =$
 $\text{Sat}(P_{\geq 1} [F b])$

Linear equation systems

- Solution of **large** (sparse) linear equation systems
 - size of system (number of variables) typically $O(|S|)$
 - state space S gets very large in practice
- Two main classes of solution methods:
 - **direct** methods – compute exact solutions in fixed number of steps, e.g. Gaussian elimination, L/U decomposition
 - **iterative** methods, e.g. Power, Jacobi, Gauss–Seidel, ...
 - the latter are preferred in practice due to scalability

- General form: $\mathbf{A} \cdot \underline{x} = \underline{b}$
 - indexed over integers,
 - i.e. assume $S = \{ 0, 1, \dots, |S|-1 \}$

$$\sum_{j=0}^{|S|-1} \mathbf{A}(i, j) \cdot \underline{x}(j) = \underline{b}(i)$$

Iterative solution methods

- Start with an initial estimate for the vector \underline{x} , say $\underline{x}^{(0)}$
- Compute successive (increasingly accurate) approximations
 - approximation (**solution vector**) at k^{th} iteration denoted $\underline{x}^{(k)}$
 - computation of $\underline{x}^{(k)}$ uses values of $\underline{x}^{(k-1)}$
- Terminate when solution vector has converged sufficiently
- Several possibilities for **convergence criteria**, e.g.:
 - maximum **absolute** difference

$$\max_i |\underline{x}^{(k)}(i) - \underline{x}^{(k-1)}(i)| < \varepsilon$$

- maximum **relative** difference

$$\max_i \left(\frac{|\underline{x}^{(k)}(i) - \underline{x}^{(k-1)}(i)|}{|\underline{x}^{(k)}(i)|} \right) < \varepsilon$$

Jacobi method

- Based on fact that:

$$\sum_{j=0}^{|S|-1} \mathbf{A}(i, j) \cdot \underline{x}(j) = \underline{b}(i)$$

For probabilistic model checking,
 $\mathbf{A}(i, i)$ is always non-zero

- can be rearranged as:

$$\underline{x}(i) = \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}(j) \right) / \mathbf{A}(i, i)$$

- yielding this update scheme:

$$\underline{x}^{(k)}(i) := \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j) \right) / \mathbf{A}(i, i)$$

Gauss–Seidel

- The update scheme for Jacobi:

$$\underline{x}^{(k)}(i) := \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j) \right) / \mathbf{A}(i, i)$$

- can be improved by using the most up-to-date values of $\underline{x}^{(j)}$ that are available
- This is the Gauss–Seidel method:

$$\underline{x}^{(k)}(i) := \left(\underline{b}(i) - \sum_{j < i} \mathbf{A}(i, j) \cdot \underline{x}^{(k)}(j) - \sum_{j > i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j) \right) / \mathbf{A}(i, i)$$

Over-relaxation

- Over-relaxation:
 - compute new values with existing schemes (e.g. Jacobi)
 - but use weighted average with previous vector
- Example: Jacobi + over-relaxation

$$\begin{aligned}\underline{x}^{(k)}(i) &:= (1 - \omega) \cdot \underline{x}^{(k-1)}(i) \\ &+ \omega \cdot \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j) \right) / \mathbf{A}(i, i)\end{aligned}$$

- where $\omega \in (0, 2)$ is a parameter to the algorithm

Comparison

- Gauss–Seidel typically outperforms Jacobi
 - i.e. faster convergence
 - also: only need to store a single solution vector
- Both Gauss–Seidel and Jacobi usually outperform the Power method (see least fixed point method from Lecture 2)
- However Power method has guaranteed convergence
 - Jacobi and Gauss–Seidel do not
- Over-relaxation methods may converge faster
 - for well chosen values of ω
 - need to rely on heuristics for this selection

Model checking complexity

- Model checking of DTMC $(S, s_{\text{init}}, P, L)$ against PCTL formula Φ complexity is **linear in $|\Phi|$** and **polynomial in $|S|$**
- Size $|\Phi|$ of Φ is defined as number of logical connectives and **temporal operators plus sizes of temporal operators**
 - model checking is performed for each operator
- **Worst-case operator** is $P_{\sim p} [\Phi_1 \cup \Phi_2]$
 - main task: **solution of linear equation system** of size $|S|$
 - can be solved with Gaussian elimination: **cubic** in $|S|$
 - and also precomputation algorithms (max $|S|$ steps)
- **Strictly speaking**, $U^{\leq k}$ could be worse than U for large k
 - but in practice k is usually small

Summing up...

- Model checking a PCTL formula ϕ on a DTMC
 - i.e. determine set $\text{Sat}(\phi)$
 - recursive: bottom-up traversal of parse tree of ϕ
- Atomic propositions and logical connectives: trivial
- Key part: computing probabilities for $P_{\sim_p} [\dots]$ formulae
 - $X \Phi$: one matrix–vector multiplications
 - $\Phi_1 U^{\leq k} \Phi_2$: k matrix–vector multiplications
 - $\Phi_1 U \Phi_2$: graph-based precomputation algorithms + solution of linear equation system in at most $|S|$ variables
- Iterative methods for solving large linear equation systems

Lecture 6

PRISM

Dr. Dave Parker

Department of Computer Science
University of Oxford

Practicals

- 4 practical exercises
- 4 scheduled 2 hour practical sessions:
 - Tuesday 4–6pm, room 379, weeks 3, 4, 6 and 7
 - demonstrator: Aistis Simaitis
- Note:
 - you will also be expected to complete some of the practical work outside these hours
 - final assignment will include practical (PRISM) exercises

<http://www.prismmodelchecker.org/courses/pmc1112/>

Overview

- Tool support for probabilistic model checking
 - motivation, existing tools
- The PRISM model checker
 - functionality, features
 - modelling language
 - property specification
- Running example
 - leader election protocol
- PRISM tool demo

Motivation

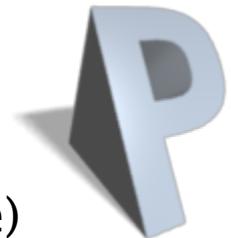
- Complexity of PCTL model checking
 - generally polynomial in model size (number of states)
- State space explosion problem
 - models for realistic case studies are typically huge
- Clearly (efficient) tool support is required
- Benefits:
 - fully automated process
 - high-level languages/formalisms for building models
 - visualisation of quantitative results

Probabilistic model checkers

- PRISM (this lecture): DTMCs, MDPs, CTMCs, PTAs + rewards
- Markov chain model checkers
 - MRMC: DTMCs, CTMCs + reward extensions
 - PEPA toolset: CTMCs + CSL
- Markov decision process (MDP) tools
 - LiQuor: LTL verification for MDPs (Probmela language)
 - RAPTURE: prototype for abstraction/refinement of MDPs
 - ProbDiVinE: parallel/distributed LTL model checking of MDPs
- Simulation-based probabilistic model checking:
 - APMC, Ymer (both based on PRISM language), VESTA
- And more
 - APNN-Toolbox, SMART, CADP, Möbius, PASS, PARAM, ...
 - see: <http://www.prismmodelchecker.org/other-tools.php>

The PRISM tool

- PRISM: Probabilistic symbolic model checker
 - developed at Birmingham/Oxford University, since 1999
 - free, open source (GPL)
 - versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs
- Modelling of:
 - DTMCs, CTMCs, MDPs + costs/rewards
 - probabilistic timed automata (PTAs) (not covered here)
- Model checking of:
 - PCTL, CSL, LTL, PCTL* + extensions + costs/rewards

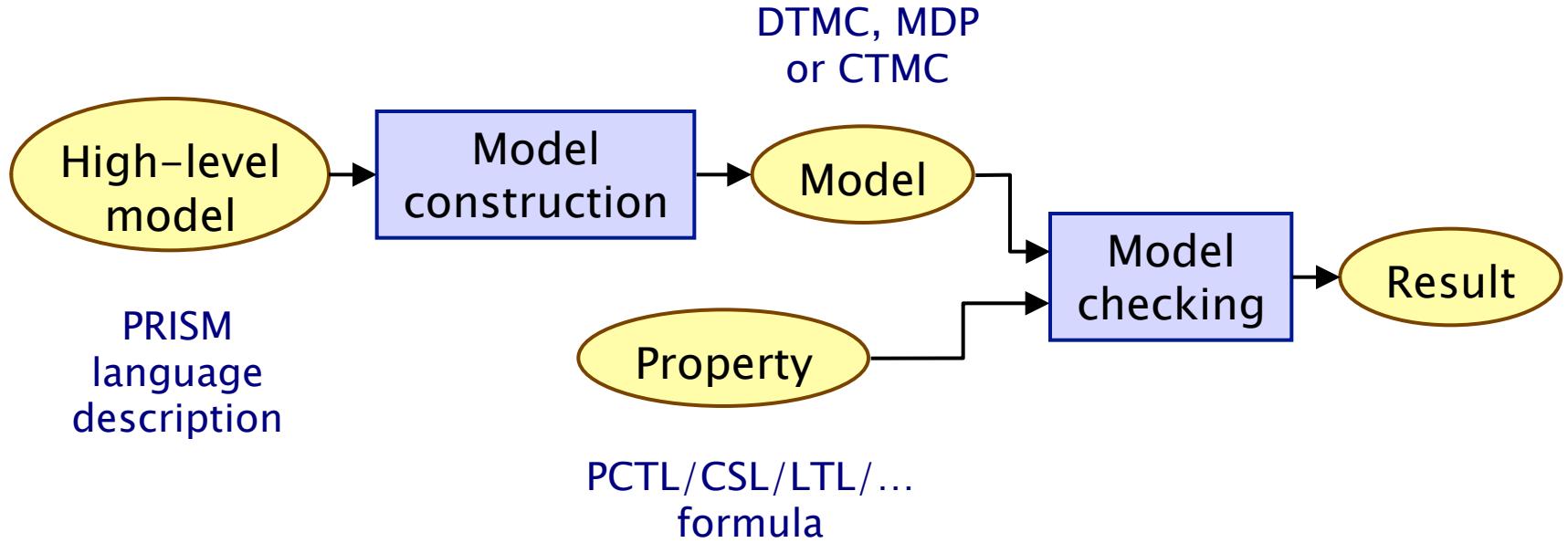


PRISM functionality

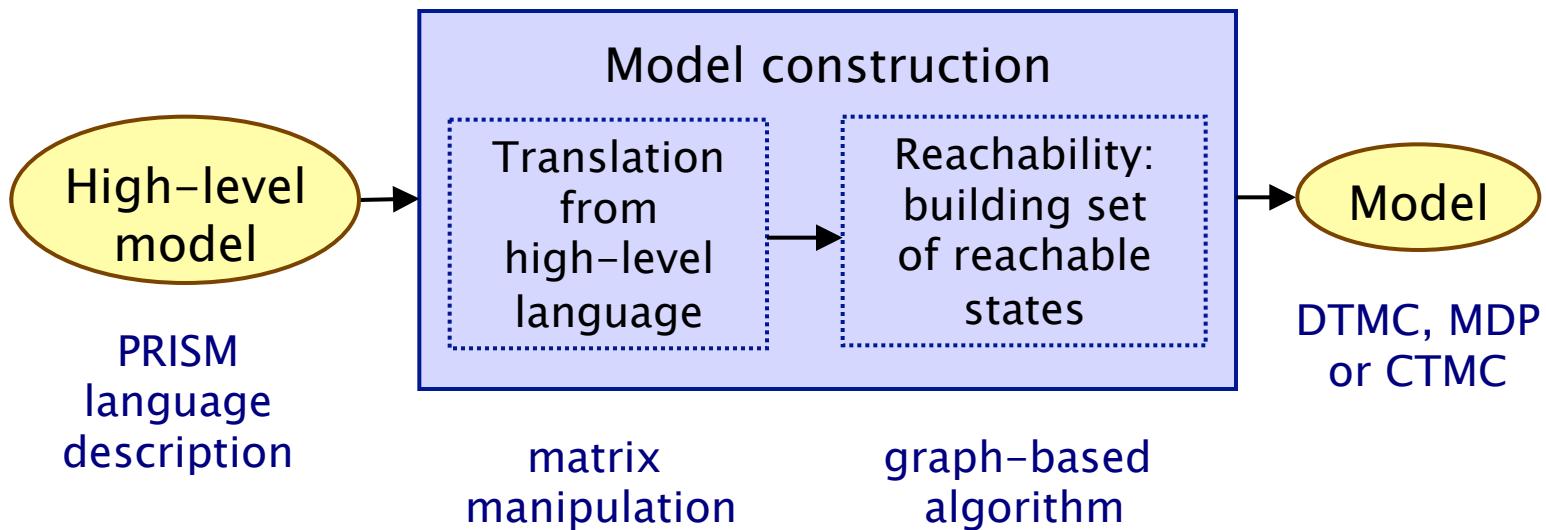
- High-level modelling language
- Wide range of model analysis methods
 - efficient symbolic implementation techniques
 - also: approximate verification using simulation + sampling
- Graphical user interface
 - model/property editor
 - discrete-event simulator – model traces for debugging, etc.
 - easy automation of verification experiments
 - graphical visualisation of results
- Command-line version
 - same underlying verification engines
 - useful for scripting, batch jobs

Probabilistic model checking

- Overview of the probabilistic model checking process
 - two distinct phases: **model construction**, **model checking**



Model construction



Modelling languages/formalisms

- Many high-level modelling languages, formalisms available
- For example:
 - probabilistic/stochastic process algebras
 - stochastic Petri nets
 - stochastic activity networks
- Custom languages for tools, e.g.:
 - PRISM modelling language
 - Probmela (probabilistic variant of Promela, the input language for the model checker SPIN) – used in LiQuor

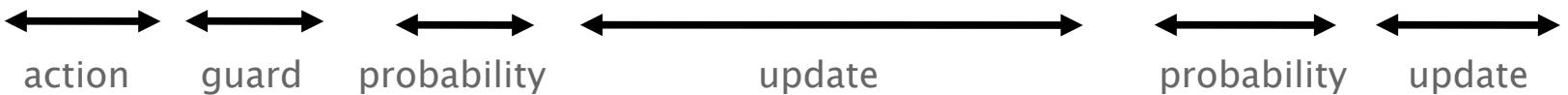
PRISM modelling language

- Simple, textual, state-based language
 - modelling of DTMCs, CTMCs, MDPs, ...
 - based on Reactive Modules [AH99]
- Basic components...
- Modules:
 - components of system being modelled
 - composed in parallel
- Variables
 - finite (integer ranges or Booleans)
 - local or global
 - all variables public: anyone can read, only owner can modify

PRISM modelling language

- Guarded commands
 - describe behaviour of each module
 - i.e. the changes in state that can occur
 - labelled with probabilities (or, for CTMCs, rates)
 - (optional) action labels

[send] $(s=2) \rightarrow p_{\text{loss}} : (s'=3) \& (\text{lost}'=\text{lost}+1) + (1-p_{\text{loss}}) : (s'=4);$



PRISM modelling language

- **Parallel composition**
 - model multiple components that can execute independently
 - for DTMC models, mostly assume components operate synchronously, i.e. move in lock-step
- **Synchronisation**
 - simultaneous transitions in more than one module
 - guarded commands with matching action-labels
 - probability of combined transition is product of individual probabilities for each component
- **More complex parallel compositions can be defined**
 - using process-algebraic operators
 - other types of parallel composition, action hiding/renaming

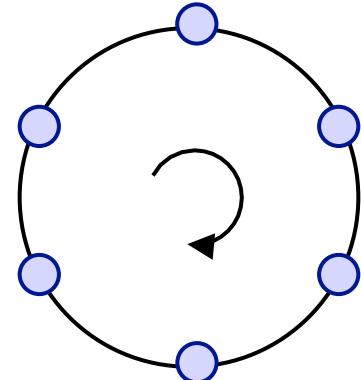
Simple example

```
module M1
  x : [0..3] init 0;
  [a] x=0 -> (x'=1);
  [b] x=1 -> 0.5:(x'=2) + 0.5:(x'=3);
endmodule
```

```
module M2
  y : [0..3] init 0;
  [a] y=0 -> (y'=1);
  [b] y=1 -> 0.4:(y'=2) + 0.6:(y'=3);
endmodule
```

Example: Leader election

- Randomised leader election protocol
 - due to Itai & Rodeh (1990)
- Set-up: N nodes, connected in a ring
 - communication is synchronous (lock-step)
- Aim: elect a leader
 - i.e. one uniquely designated node
 - by passing messages around the ring
- Protocol operates in rounds. In each round:
 - each node choose a (uniformly) random id $\in \{0, \dots, k-1\}$
 - (k is a parameter of the protocol)
 - all nodes pass their id around the ring
 - if there is (maximum) unique id, node with this id is the leader
 - if not, try again with a new round



PRISM code

PRISM property specifications

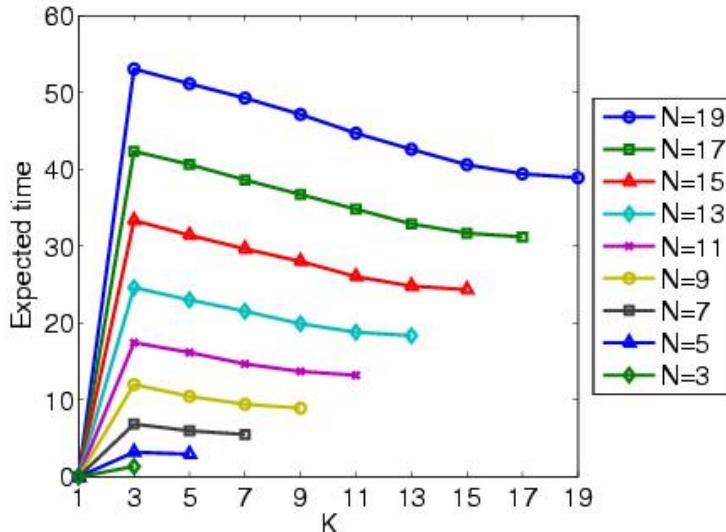
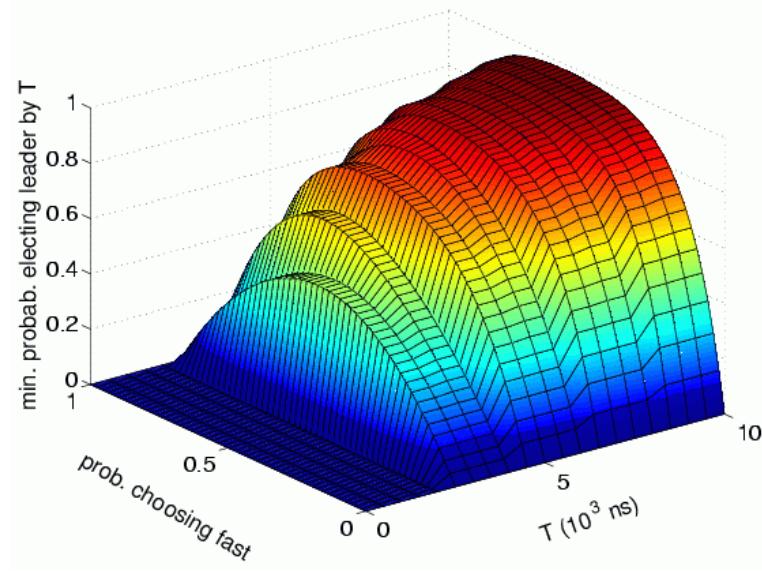
- Based on (probabilistic extensions of) temporal logic
 - incorporates PCTL, CSL, LTL, PCTL*
 - also includes: quantitative extensions, costs/rewards
- Leader election properties
 - $P_{\geq 1} [F \text{ elected}]$
 - with probability 1, a leader is eventually elected
 - $P_{>0.8} [F^{\leq k} \text{ elected}]$
 - with probability greater than 0.8, a leader is elected within k steps
- Usually focus on quantitative properties:
 - $P_{=?} [F^{\leq k} \text{ elected}]$
 - what is the probability that a leader is elected within k steps?

PRISM property specifications

- Best/worst-case scenarios
 - combining “quantitative” and “exhaustive” aspects
- e.g. computing values for a range of states...
- $P_{=?} [F^{\leq t} \text{ elected } \{ \text{tokens} \leq k \} \{ \text{min} \}]$ –
 - “minimum probability of the leader election algorithm completing within t steps from any state where there are at most k tokens”
- $R_{=?} [F \text{ end } \{ \text{"init"} \} \{ \text{max} \}]$ –
 - “maximum expected run-time over all possible initial configurations”

PRISM property specifications

- Experiments:
 - ranges of model/property parameters
 - e.g. $P_{=?} [F^{\leq T} \text{ error}]$ for $N=1..5$, $T=1..100$
where N is some model parameter and T a time bound
 - identify **patterns, trends, anomalies** in **quantitative** results



PRISM...

More info on PRISM

- PRISM website: <http://www.prismmodelchecker.org/>
 - tool download: binaries, source code (GPL)
 - on-line example repository (50+ case studies)
 - on-line documentation:
 - PRISM manual
 - PRISM tutorial
 - support: help forum, bug tracking, feature requests
 - related publications, talks, tutorials, links
- Course practicals info at:
 - <http://www.prismmodelchecker.org/courses/pmc1112/>

Lecture 7

Costs & Rewards

Dr. Dave Parker

Department of Computer Science
University of Oxford

Overview

- Specifying costs and rewards
 - DTMCs
 - PRISM language
- Properties: expected reward values
 - instantaneous
 - cumulative
 - reachability
 - temporal logic extensions
- Model checking
 - computing reward values
- Case study
 - randomised contract signing

Costs and rewards

- We augment DTMCs with **rewards** (or, conversely, **costs**)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- Costs? or rewards?
 - mathematically, no distinction between rewards and costs
 - when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 - we will consistently use the terminology “rewards” regardless

Reward-based properties

- Properties of DTMCs augmented with rewards
 - allow a wide range of quantitative measures of the system
 - basic notion used here: **expected** value of rewards
 - formal property specifications will be in an extension of PCTL
- More precisely, we use two distinct classes of property...
- **Instantaneous** properties
 - e.g. the expected value of the reward at some time point
- **Cumulative** properties
 - e.g. the expected cumulated reward over some period

DTMC reward structures

- For a DTMC $(S, s_{\text{init}}, P, L)$, a **reward structure** is a pair (ρ, ι)
 - $\rho : S \rightarrow \mathbb{R}_{\geq 0}$ is the **state reward** function (vector)
 - $\iota : S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the **transition reward** function (matrix)
- Example (for use with instantaneous properties)
 - “size of message queue”: ρ maps each state to the number of jobs in the queue in that state, ι is not used
- Examples (for use with cumulative properties)
 - “time–steps”: ρ returns 1 for all states and ι is zero (equivalently, ρ is zero and ι returns 1 for all transitions)
 - “number of messages lost”: ρ is zero and ι maps transitions corresponding to a message loss to 1
 - “power consumption”: ρ is defined as the per-time-step energy consumption in each state and ι as the energy cost of each transition

Rewards in the PRISM language

```
rewards "total_queue_size"
  true : queue1+queue2;
endrewards
```

(instantaneous, state rewards)

```
rewards "time"
  true : 1;
endrewards
```

(cumulative, state rewards)

```
rewards "dropped"
  [receive] q=q_max : 1;
endrewards
```

(cumulative, transition rewards)
(q = queue size, q_{\max} = max. queue size, **receive** = action label)

```
rewards "power"
  sleep=true : 0.25;
  sleep=false : 1.2 * up;
  [wake] true : 3.2;
endrewards
```

(cumulative, state/trans. rewards)
(up = num. operational components, **wake** = action label)

Expected reward properties

- Expected (“average”) values of rewards...
- Instantaneous
 - “the expected value of the state reward at time-step k ”
 - e.g. “the expected queue size after exactly 90 seconds”
- Cumulative (time-bounded)
 - “the expected reward cumulated up to time-step k ”
 - e.g. “the expected power consumption over one hour”
- Reachability (also cumulative)
 - “the expected reward cumulated before reaching states $T \subseteq S$ ”
 - e.g. “the expected time for the algorithm to terminate”

Expectation

- Probability space (Ω, Σ, \Pr)
 - probability measure $\Pr : \Sigma \rightarrow [0,1]$
- Random variable X
 - a measurable function $X : \Omega \rightarrow \Delta$
 - usually real-valued, i.e.: $X : \Omega \rightarrow \mathbb{R}$
- Expected (“average”) value of the random variable: $\text{Exp}(X)$

$$\text{Exp}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega)$$

←
discrete case

$$\text{Exp}(X) = \int_{\omega \in \Omega} X(\omega) d\Pr$$

Reachability + rewards

- Expected reward cumulated before reaching states $T \subseteq S$
- Define a random variable:

- $X_{\text{Reach}(T)}$: $\text{Path}(s) \rightarrow \mathbb{R}_{\geq 0}$

- where for an infinite path $\omega = s_0 s_1 s_2 \dots$

$$X_{\text{Reach}(T)}(\omega) = \begin{cases} 0 & \text{if } s_0 \in T \\ \infty & \text{if } s_i \notin T \text{ for all } i \geq 0 \\ \sum_{i=0}^{k_T-1} \rho(s_i) + \ell(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

- where $k_T = \min\{ j \mid s_j \in T \}$

- Then define:

- $\text{ExpReach}(s, T) = \text{Exp}(s, X_{\text{Reach}(T)})$

- denoting: expectation of the random variable $X_{\text{Reach}(T)}$ with respect to the probability measure Pr_s , i.e.:

$$\int_{\omega \in \text{Path}(s)} X_{\text{Reach}(T)}(\omega) d\text{Pr}_s$$

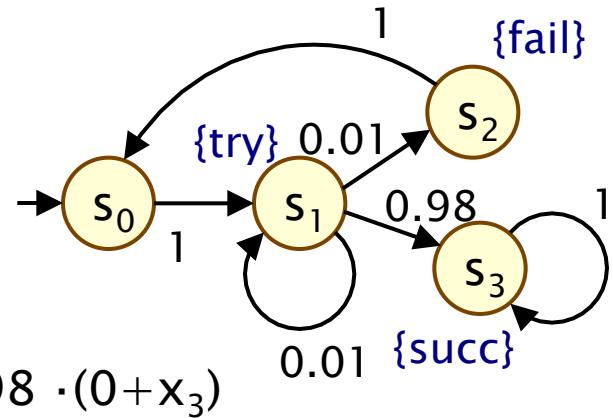
Computing the rewards

- Determine states for which $\text{ProbReach}(s, T) = 1$
- Solve linear equation system:
 - $\text{ExpReach}(s, T) =$

$$\left\{ \begin{array}{ll} \infty & \text{if } \text{ProbReach}(s, T) < 1 \\ 0 & \text{if } s \in T \\ \underline{\rho}(s) + \sum_{s' \in S} P(s, s') \cdot (\underline{\iota}(s, s') + \text{ExpReach}(s', T)) & \text{otherwise} \end{array} \right.$$

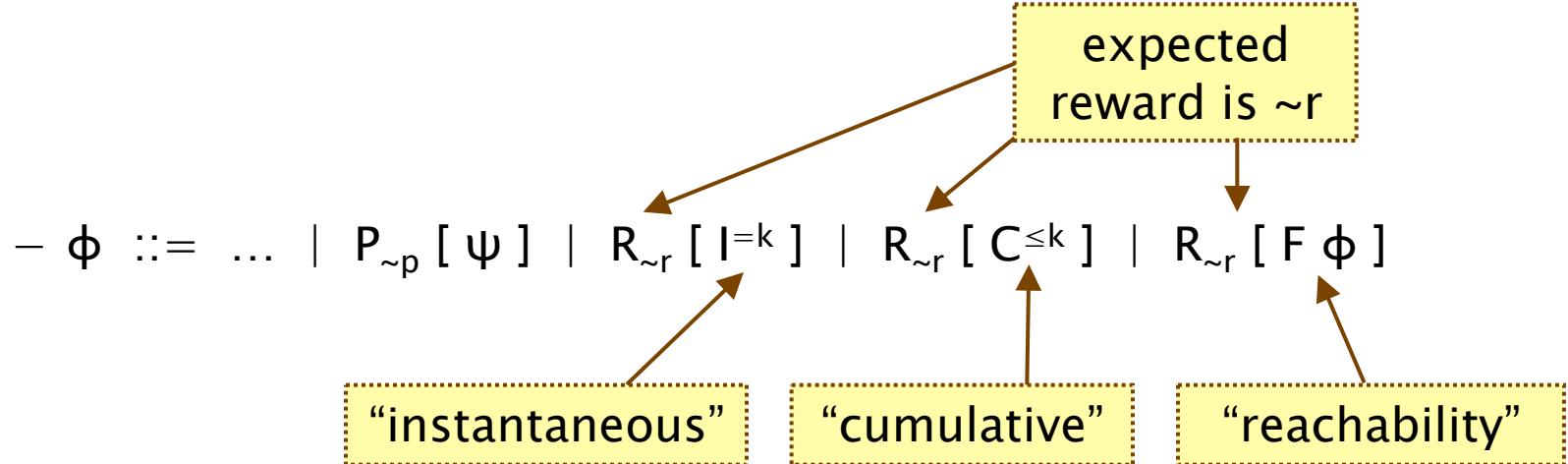
Example

- Let $\rho = [0, 1, 0, 0]$ and $\iota(s, s') = 0$ for all $s, s' \in S$
- Compute $\text{ExpReach}(s_0, \{s_3\})$
 - (“expected number of times pass through s_1 to get to s_3 ”)
- First check:
 - $\text{ProbReach}(\{s_3\}) = \{1, 1, 1, 1\}$
- Then solve linear equation system:
 - (letting $x_i = \text{ExpReach}(s_i, \{s_3\})$):
 - $x_0 = 0 + 1 \cdot (0 + x_1)$
 - $x_1 = 1 + 0.01 \cdot (0 + x_2) + 0.01 \cdot (0 + x_1) + 0.98 \cdot (0 + x_3)$
 - $x_2 = 0 + 1 \cdot (0 + x_0)$
 - $x_3 = 0$
 - Solution: $\text{ExpReach}(\{s_3\}) = [100/98, 100/98, 100/98, 0]$
- So: $\text{ExpReach}(s_0, \{s_3\}) = 100/98 \approx 1.020408$



Specifying reward properties

- PRISM extends PCTL to include expected reward properties
 - add an R operator, which is similar to the existing P operator



- where $r \in \mathbb{R}_{\geq 0}$, $\sim \in \{<, >, \leq, \geq\}$, $k \in \mathbb{N}$
- $R_{\sim r}[\cdot]$ means “the **expected value** of \cdot satisfies $\sim r$ ”

Random variables for reward formulae

- Definition of random variables for the R operator:
 - for an infinite path $\omega = s_0 s_1 s_2 \dots$

$$X_{l=k}(\omega) = \underline{\rho}(s_k)$$

$$X_{C \leq k}(\omega) = \begin{cases} 0 & \text{if } k = 0 \\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \underline{\iota}(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

$$X_{F\phi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in \text{Sat}(\phi) \\ \infty & \text{if } s_i \notin \text{Sat}(\phi) \text{ for all } i \geq 0 \\ \sum_{i=0}^{k_\phi-1} \underline{\rho}(s_i) + \underline{\iota}(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

- where $k_\phi = \min\{ j \mid s_j \models \phi \}$

$X_{F\phi}$
same as
 $X_{\text{Reach}(\text{Sat}(\phi))}$
from earlier

Reward formula semantics

- Formal semantics of the three reward operators:
- For a state s in the DTMC:

- $s \models R_{\sim r} [I^=k] \Leftrightarrow \text{Exp}(s, X_{I=k}) \sim r$
- $s \models R_{\sim r} [C^{\leq k}] \Leftrightarrow \text{Exp}(s, X_{C \leq k}) \sim r$
- $s \models R_{\sim r} [F \Phi] \Leftrightarrow \text{Exp}(s, X_{F\Phi}) \sim r$

$\text{Exp}(s, X_{F\Phi})$
same as
 $\text{ExpReach}(s, \text{Sat}(\Phi))$
from earlier

where: $\text{Exp}(s, X)$ denotes the **expectation** of the random variable
 $X : \text{Path}(s) \rightarrow \mathbb{R}_{\geq 0}$ with respect to the **probability measure** Pr_s

- We can also define $R_{=?} [...]$ properties, as for the P operator
 - e.g. $R_{=?} [F \Phi]$ returns the value $\text{Exp}(s, X_{F\Phi})$

Model checking reward operators

- Like for model checking $P_{\sim p} [\dots]$, to check $R_{\sim r} [\dots]$
 - compute reward values for all states, compare with bound r
- Instantaneous: $R_{\sim r} [I^{=k}]$ – compute $\underline{\text{Exp}}(X_{I^{=k}})$
 - solution of **recursive equations**
 - essentially: k matrix–vector multiplications
- Cumulative: $R_{\sim r} [C^{\leq t}]$ – compute $\underline{\text{Exp}}(X_{C^{\leq k}})$
 - solution of **recursive equations**
 - essentially: k matrix–vector multiplications
- Reachability: $R_{\sim r} [F \phi]$ – compute $\underline{\text{Exp}}(X_{F\phi})$
 - **graph analysis** + **linear equation system**
 - (see computation of $\text{ExpReach}(s, T)$ earlier)

Model checking
R operator
same complexity
as for P operator

Model checking $R_{\sim r} [I^=k]$

- Expected instantaneous reward at step k
 - can be defined in terms of transient probabilities for step k
- $\text{Exp}(s, X_{I=k}) = \sum_{s' \in S} \pi_{s,k}(s') \cdot \rho(s')$
- $\text{Exp}(X_{I=k}) = P^k \cdot \rho$
- Yielding recursive definition:
 - $\text{Exp}(X_{I=0}) = \rho$
 - $\text{Exp}(X_{I=k}) = P \cdot \text{Exp}(X_{I=(k-1)})$
 - i.e. k matrix–vector multiplications
 - note: “backwards” computation (like bounded until prob.s) rather than “forwards” computation (like transient prob.s)

Example

- Let $\rho = [0, 1, 0, 0]$ and $\iota(s, s') = 0$ for all $s, s' \in S$
- Compute $\text{Exp}(s_0, X_{I=2})$

– (“probability of being in state s_1 ”)

$$\text{Exp}(X_{I=0}) = [0, 1, 0, 0]$$

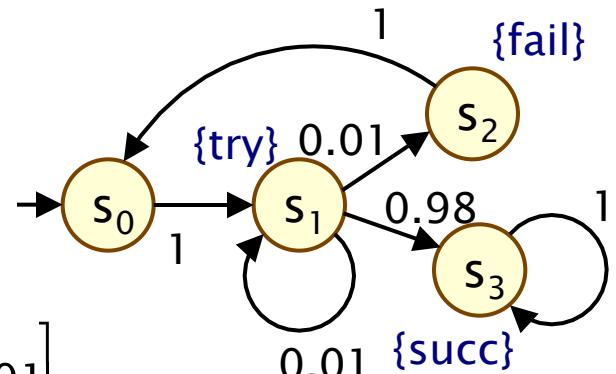
$$\text{Exp}(X_{I=1}) = P \cdot \text{Exp}(X_{I=0})$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.01 \\ 0 \\ 0 \end{bmatrix}$$

$$- \text{Exp}(X_{I=2}) = P \cdot \text{Exp}(X_{I=1})$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0.01 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0.0001 \\ 1 \\ 0 \end{bmatrix}$$

- Result: $\text{Exp}(s_0, X_{I=2}) = 0.01$



Model checking $R_{\sim_r} [C^{\leq k}]$

- Expected reward cumulated up to time-step k
- Again, a recursive definition:

$$\text{Exp}(s, X_{C \leq k}) = \begin{cases} 0 & \text{if } k = 0 \\ \underline{\rho}(s) + \sum_{s' \in S} P(s, s') \cdot (\underline{l}(s, s') + \text{Exp}(s', X_{C \leq k-1})) & \text{if } k > 0 \end{cases}$$

- And in matrix/vector notation:

$$\underline{\text{Exp}}(X_{C \leq k}) = \begin{cases} 0 & \text{if } k = 0 \\ \underline{\rho} + (P \bullet \underline{l}) \cdot \underline{1} + P \cdot \underline{\text{Exp}}(X_{C \leq k-1}) & \text{if } k > 0 \end{cases}$$

- where \bullet denotes Schur (pointwise) matrix multiplication
- and $\underline{1}$ is a vector of all 1s

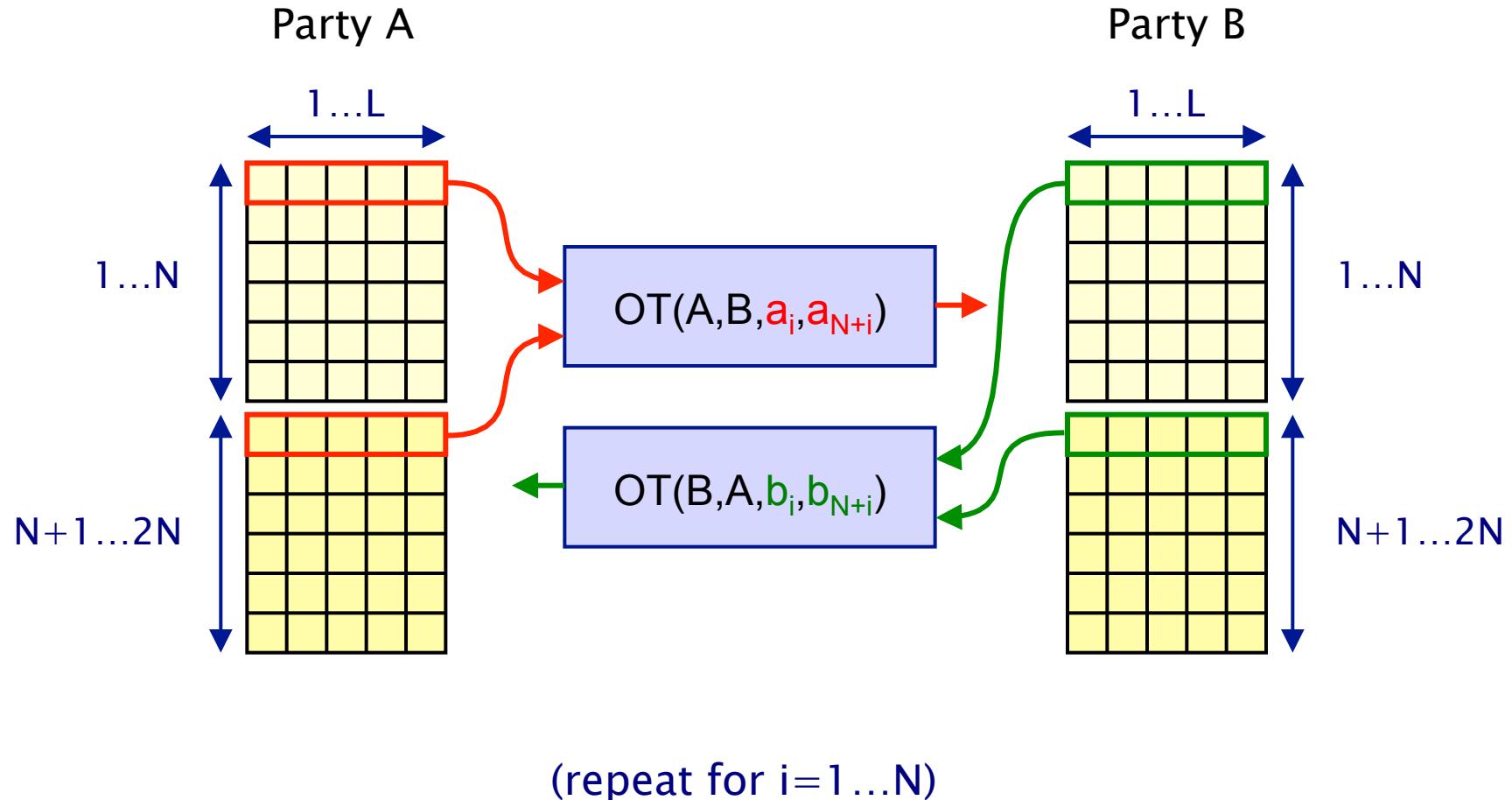
Case study: Contract signing

- Two parties want to agree on a contract
 - each will sign if the other will sign, but **do not trust each other**
 - there may be a **trusted third party** (judge)
 - but it should only be used if something goes wrong
- In real life: contract signing with pen and paper
 - sit down and write signatures simultaneously
- On the Internet...
 - how to exchange commitments on an asynchronous network?
 - “**partial secret exchange protocol**” [EGL85]

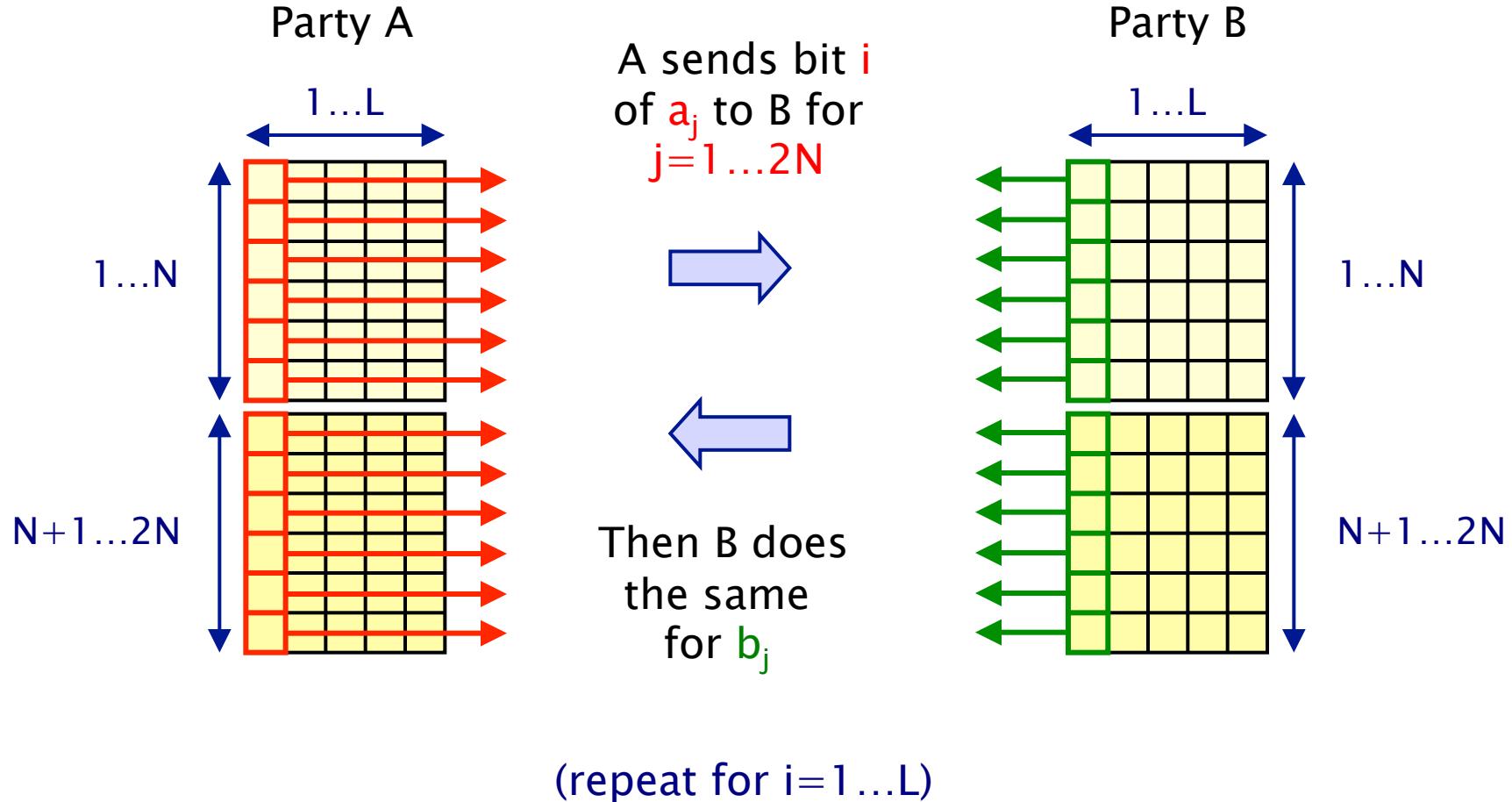
Contract signing – EGL protocol

- Partial secret exchange protocol for 2 parties (A and B)
- A (B) holds $2N$ secrets a_1, \dots, a_{2N} (b_1, \dots, b_{2N})
 - a secret is a binary string of length L
 - secrets partitioned into pairs: e.g. $\{ (a_i, a_{N+i}) \mid i=1, \dots, N \}$
 - A (B) committed if B (A) knows one of A's (B's) pairs
- Uses “1–out–of–2 oblivious transfer protocol” OT(S,R,x,y)
 - Sender S sends x and y to receiver R
 - R receives x with probability $\frac{1}{2}$ otherwise receives y
 - S does not know which one R receives
 - if S cheats then R can detect this with probability $\frac{1}{2}$

EGL protocol – Step 1



EGL protocol – Step 2



Contract signing – Results

- Modelled in PRISM as a DTMC (no concurrency) [NS06]
- Highlights a **weakness** in the protocol
 - party B can act maliciously by quitting the protocol early
 - this behaviour not considered in the original analysis
- PRISM analysis shows
 - if B stops participating in the protocol as soon as he/she has obtained one of A pairs, then, with probability 1, at this point:
 - B possesses a pair of A's secrets
 - A does **not** have complete knowledge of **any** pair of B's secrets
 - protocol is not fair under this attack:
 - B **has a distinct advantage over A**

Contract signing – Results

- The protocol is unfair because in step 2:
 - A sends a bit for each of its secret **before** B does
- Can we make this protocol fair by changing the message sequence scheme?
- Since the protocol is asynchronous the best we can hope for is:
 - B (or A) has this advantage with **probability $\frac{1}{2}$**
- We consider 3 possible alternative message sequence schemes (EGL2, EGL3, EGL4)

Contract signing – EGL2

(step 1)

...

(step 2)

for ($i=1, \dots, L$)

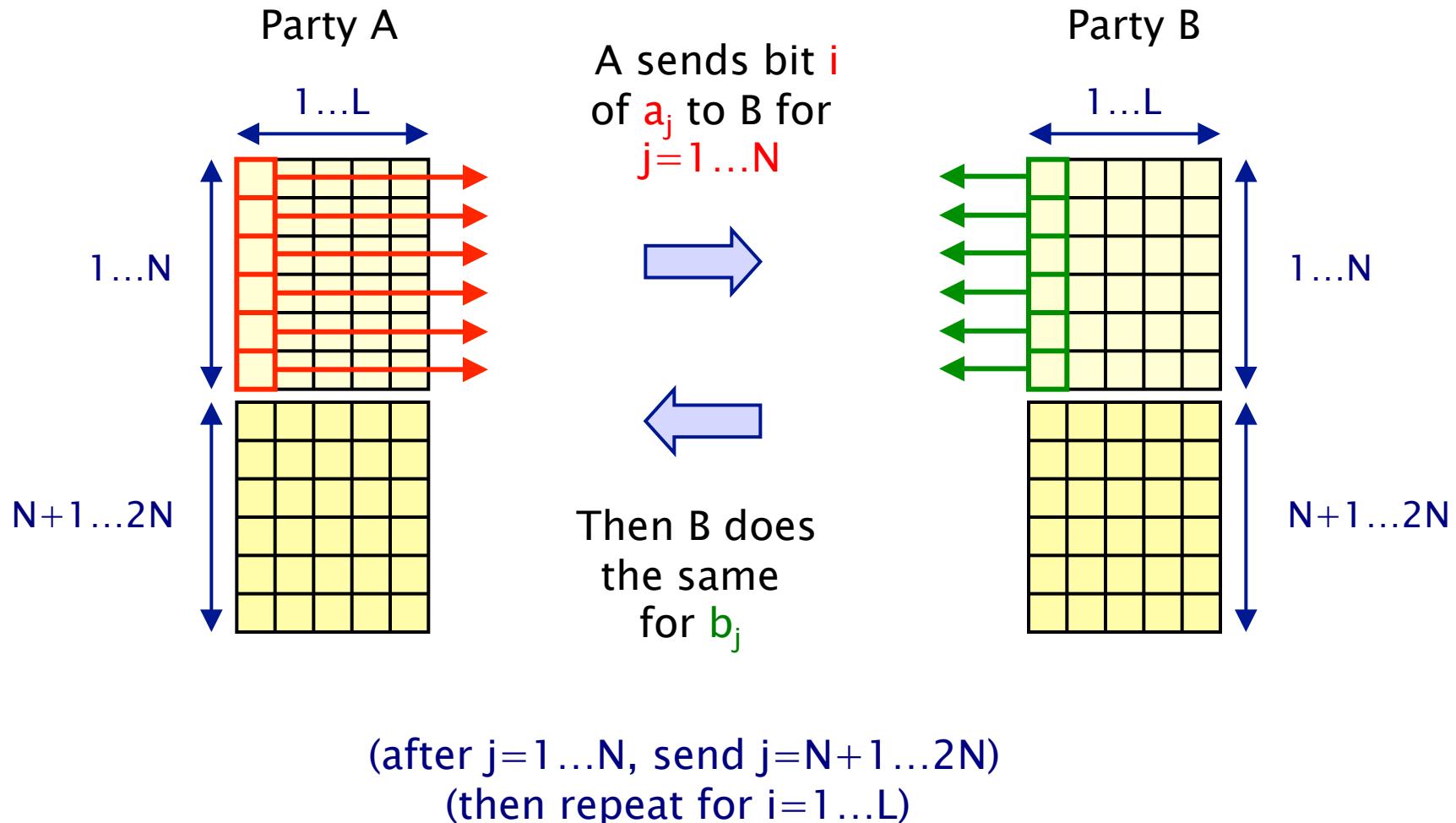
for ($j=1, \dots, N$) A transmits bit i of secret a_j to B

for ($j=1, \dots, N$) B transmits bit i of secret b_j to A

for ($j=N+1, \dots, 2N$) A transmits bit i of secret a_j to B

for ($j=N+1, \dots, 2N$) B transmits bit i of secret b_j to A

Modified step 2 for EGL2



Contract signing – EGL3

(step 1)

...

(step 2)

for ($i=1, \dots, L$) **for** ($j=1, \dots, N$)

 A transmits bit i of secret a_j to B

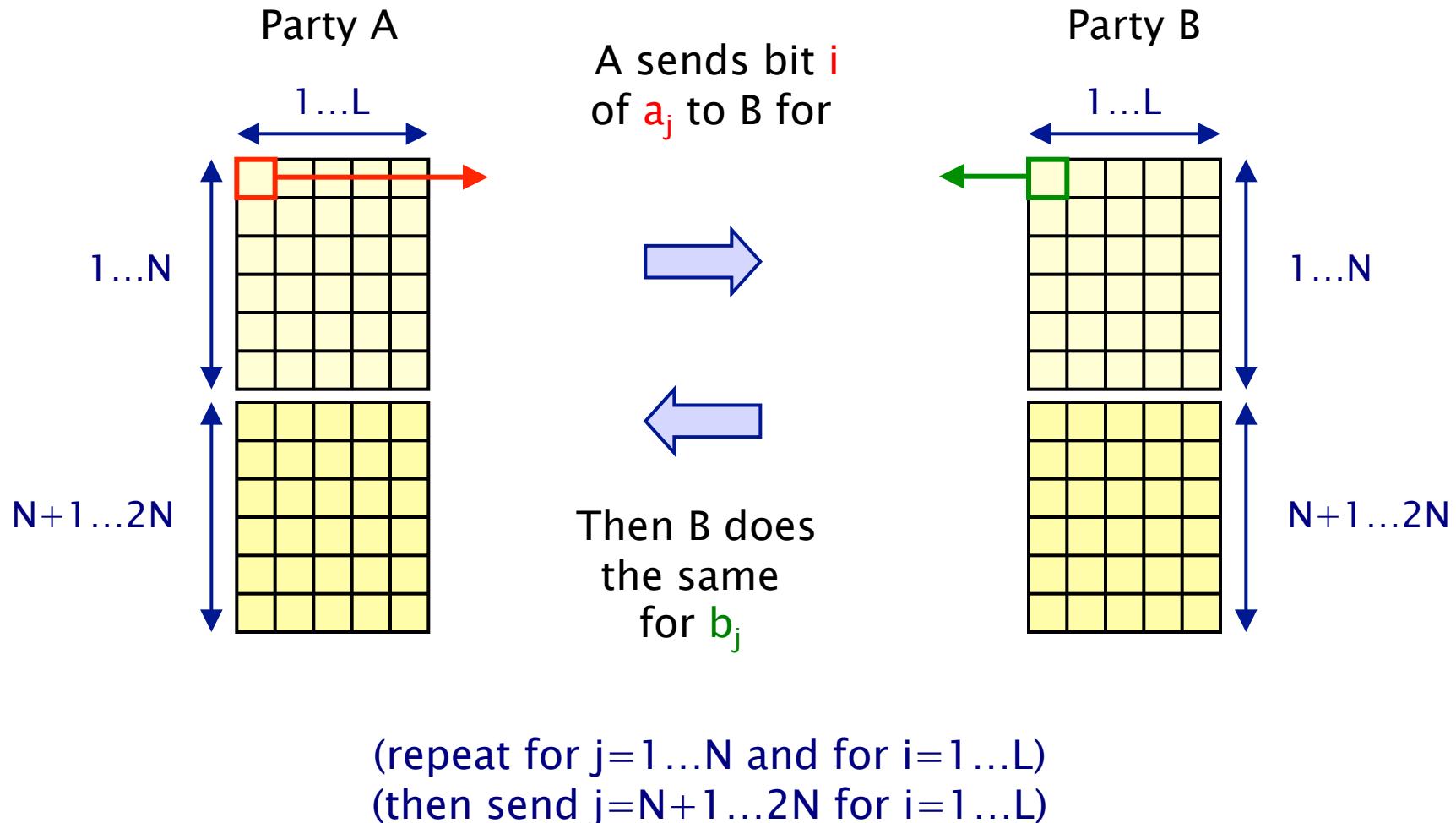
 B transmits bit i of secret b_j to A

for ($i=1, \dots, L$) **for** ($j=N+1, \dots, 2N$)

 A transmits bit i of secret a_j to B

 B transmits bit i of secret b_j to A

Modified step 2 for EGL3



Contract signing – EGL4

(step 1)

...

(step 2)

for ($i=1, \dots, L$)

 A transmits bit i of secret a_1 to B

 for ($j=1, \dots, N$) B transmits bit i of secret b_j to A

 for ($j=2, \dots, N$) A transmits bit i of secret a_j to B

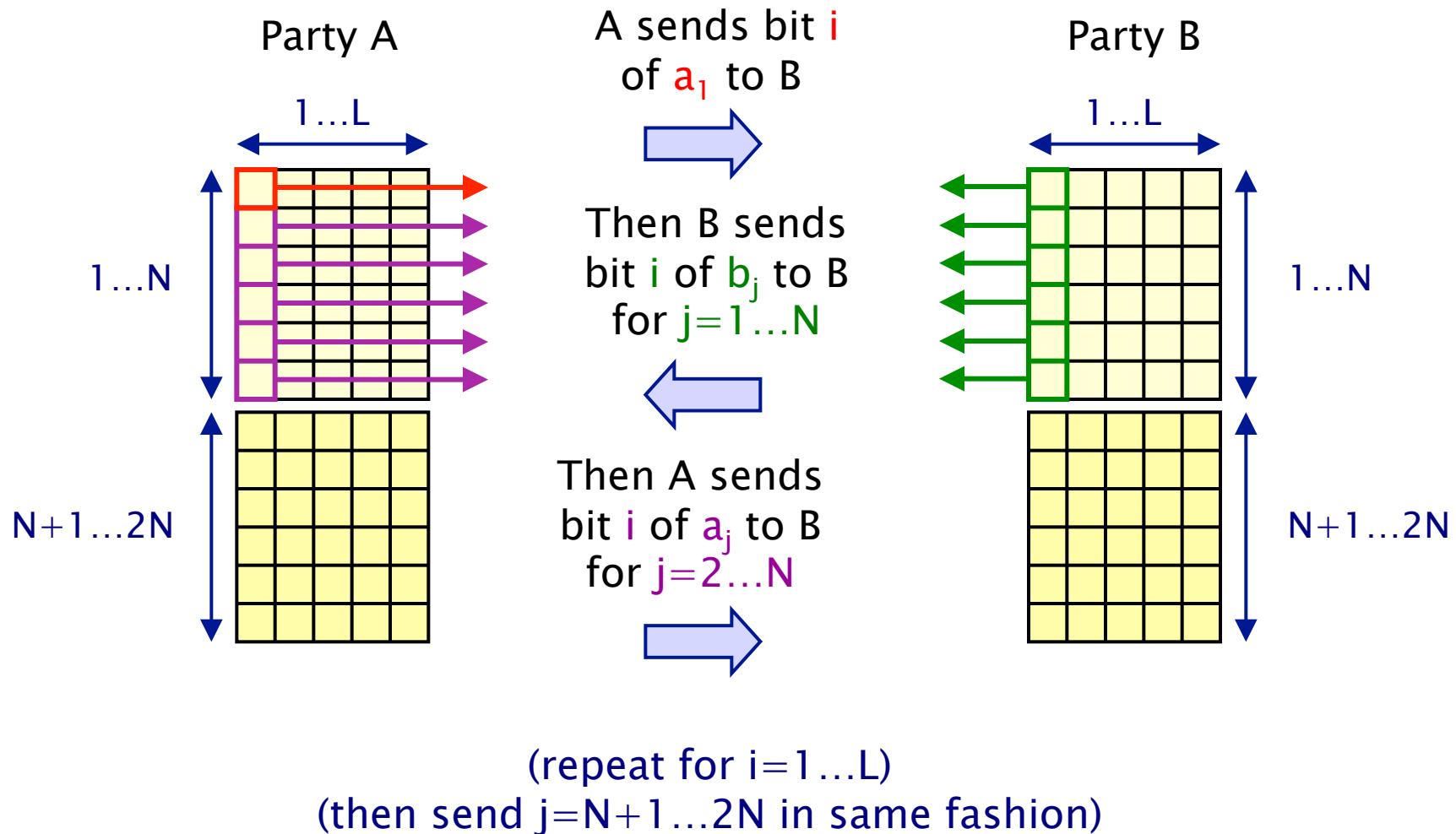
 for ($i=1, \dots, L$)

 A transmits bit i of secret a_{N+1} to B

 for ($j=N+1, \dots, 2N$) B transmits bit i of secret b_j to A

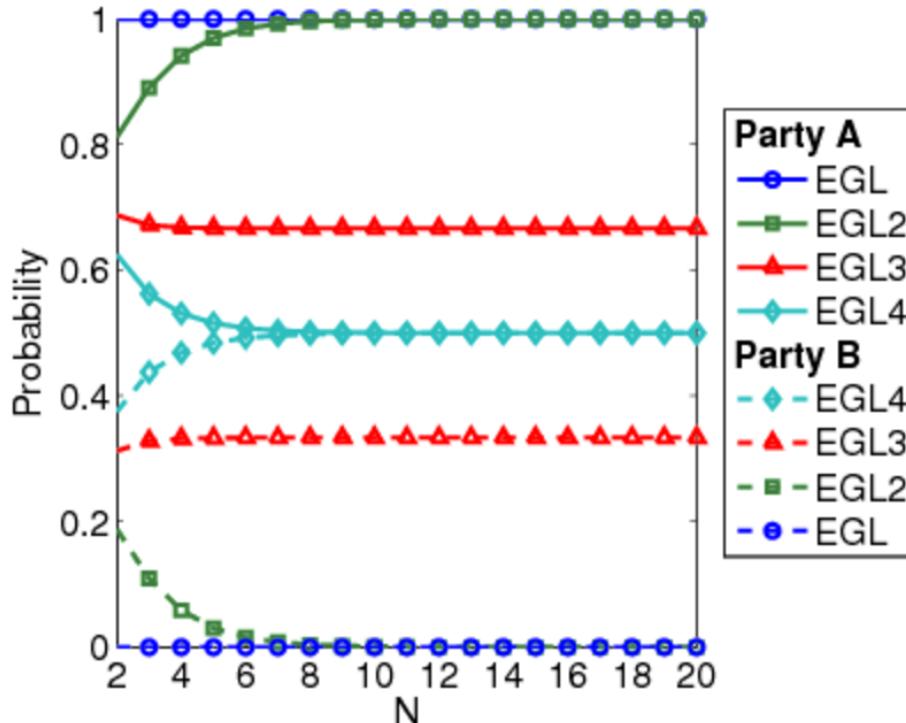
 for ($j=N+2, \dots, 2N$) A transmits bit i of secret a_j to B

Modified step 2 for EGL4



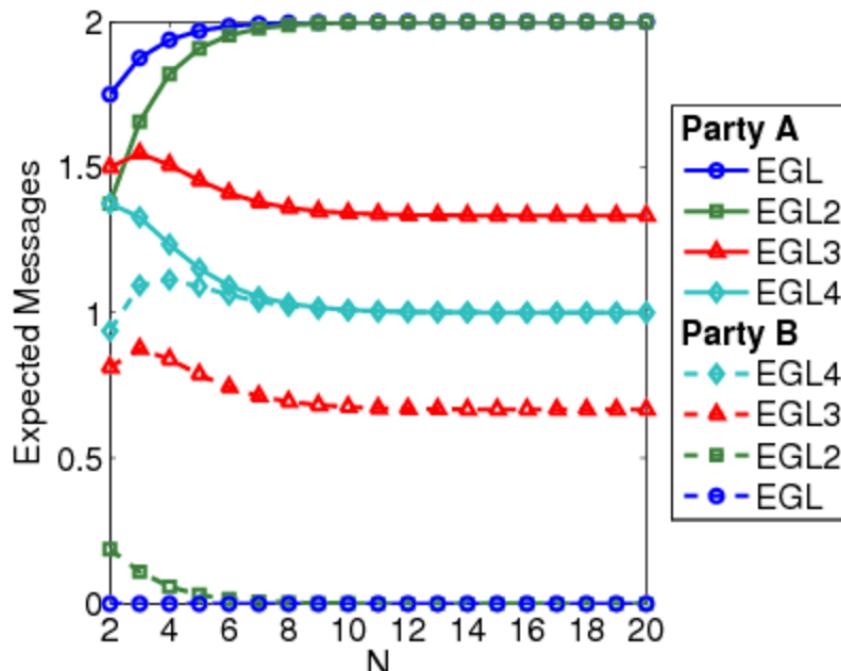
Contract signing – Results

- The chance that the protocol is unfair
 - probability that one party gains knowledge first
 - $P_{=?} [F \text{ know}_B \wedge \neg \text{know}_A]$ and $P_{=?} [F \text{ know}_A \wedge \neg \text{know}_B]$



Contract signing – Results

- The influence that each party has on the fairness
 - once a party knows a pair, the expected number of messages from this party required before the other party knows a pair



$R=? [F \text{ know}_A]$

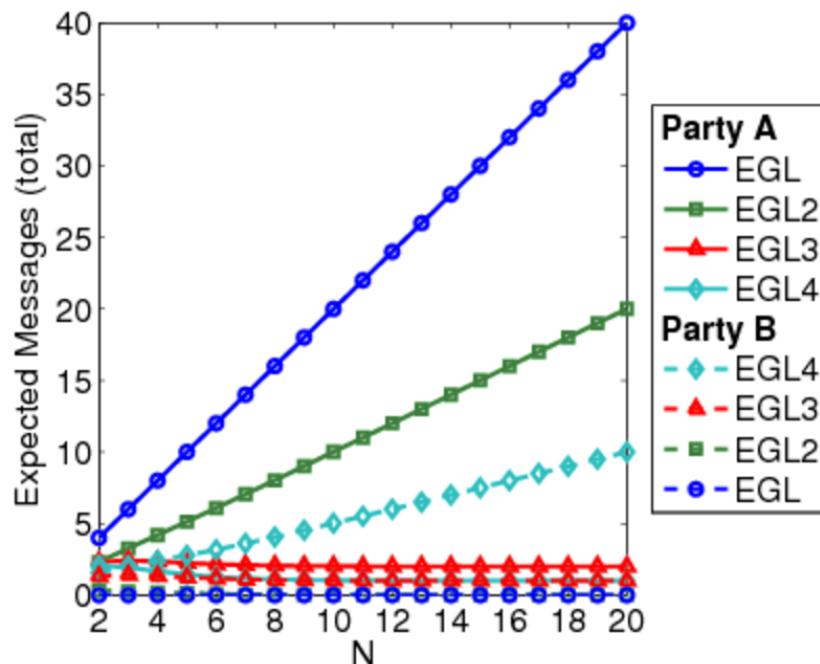
Reward structure:

Assign 1 to transitions corresponding to messages being sent from B to A after B knows a pair

(and 0 to all other transitions)

Contract signing – Results

- The duration of unfairness of the protocol
 - once a party knows a pair, the expected total number of messages that need to be sent before the other knows a pair



$$R=? [F \text{ know}_A]$$

Reward structure:

Assign 1 to transitions corresponding to any message being sent between A and B after B knows a pair

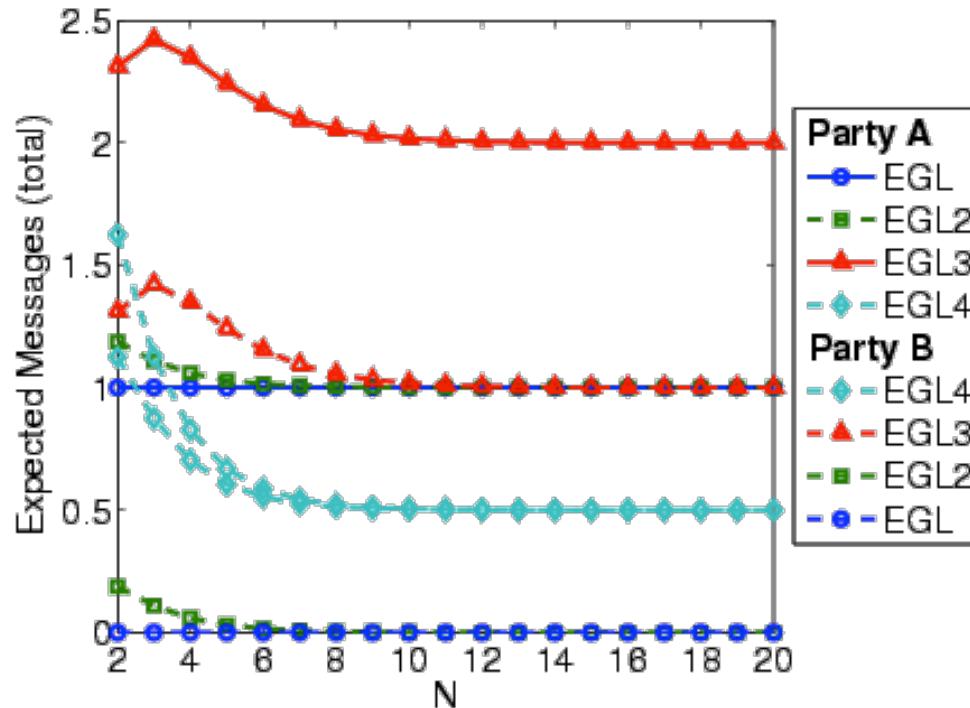
(and 0 to all other transitions)

Contract signing – Results

- Results show EGL4 is the ‘fairest’ protocol
- Except for “duration of fairness” measure
 - expected messages that need to be sent for a party to know a pair once the other party knows a pair
 - this value is larger for B than for A
 - and, in fact, as n increases, this measure:
 - increases for B
 - decreases for A
- Solution:
 - if a party sends a sequence of bits in a row (without the other party sending messages in between), require that the party send these bits as a single message

Contract signing – Results

- The duration of unfairness of the protocol
 - (with the solution on the previous slide applied to all variants)



Summing up...

- Costs and rewards
 - real-valued assigned to states/transitions of a DTMC
- Properties
 - expected instantaneous/cumulative reward values
 - PRISM property specifications: adds R operator to PCTL
- Model checking
 - instantaneous: matrix–vector multiplications
 - cumulative: matrix–vector multiplications
 - reachability: graph analysis + linear equation systems
- Case study
 - randomised contract signing

Lecture 8

Continuous-time Markov chains

Dr. Dave Parker

Department of Computer Science
University of Oxford

Time in DTMCs

- Time in a DTMC proceeds in discrete steps
- Two possible interpretations:
 - accurate model of (discrete) time units
 - e.g. clock ticks in model of an embedded device
 - time-abstract
 - no information assumed about the time transitions take
- Continuous-time Markov chains (CTMCs)
 - dense model of time
 - transitions can occur at any (real-valued) time instant
 - modelled using exponential distributions

Overview

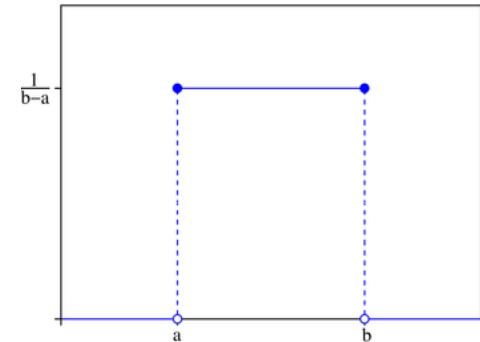
- Exponential distribution and its properties
- Continuous-time Markov chains (CTMCs)
 - definition, examples
 - race condition
 - embedded DTMC
 - generator matrix
- Paths and probabilities
 - probabilistic reachability

Continuous probability distributions

- Defined by:
 - cumulative distribution function

$$F(t) = \Pr(X \leq t) = \int_{-\infty}^t f(x) dx$$

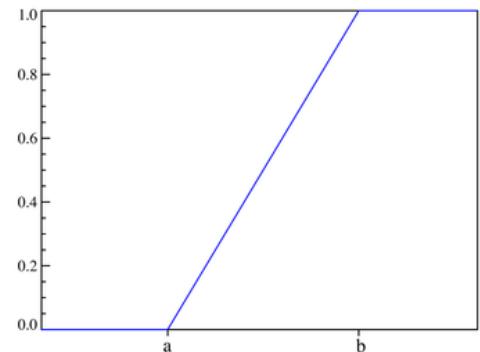
- where f is the probability density function
- $\Pr(X=t) = 0$ for all t



- Example: uniform distribution: $U(a, b)$

$$f(t) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq t \leq b \\ 0 & \text{otherwise} \end{cases}$$

$$F(t) = \begin{cases} 0 & \text{if } t < a \\ \frac{t-a}{b-a} & \text{if } a \leq t < b \\ 1 & \text{if } t \geq b \end{cases}$$



Exponential distribution

- A continuous random variable X is **exponential with parameter $\lambda > 0$** if the density function is given by:

$$f(t) = \begin{cases} \lambda \cdot e^{-\lambda \cdot t} & \text{if } t > 0 \\ 0 & \text{otherwise} \end{cases}$$

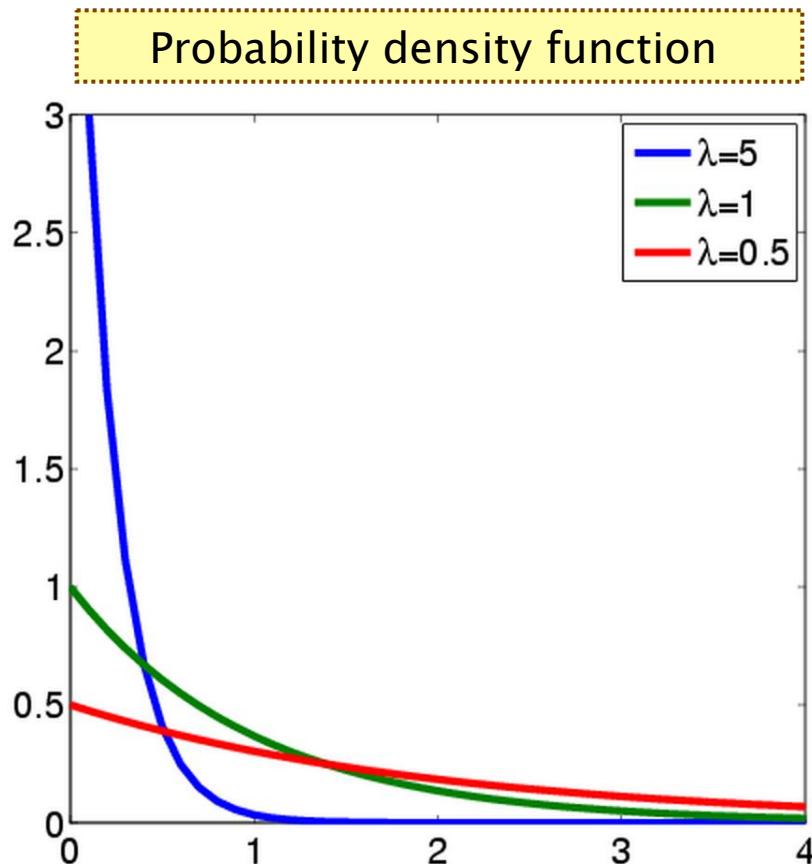
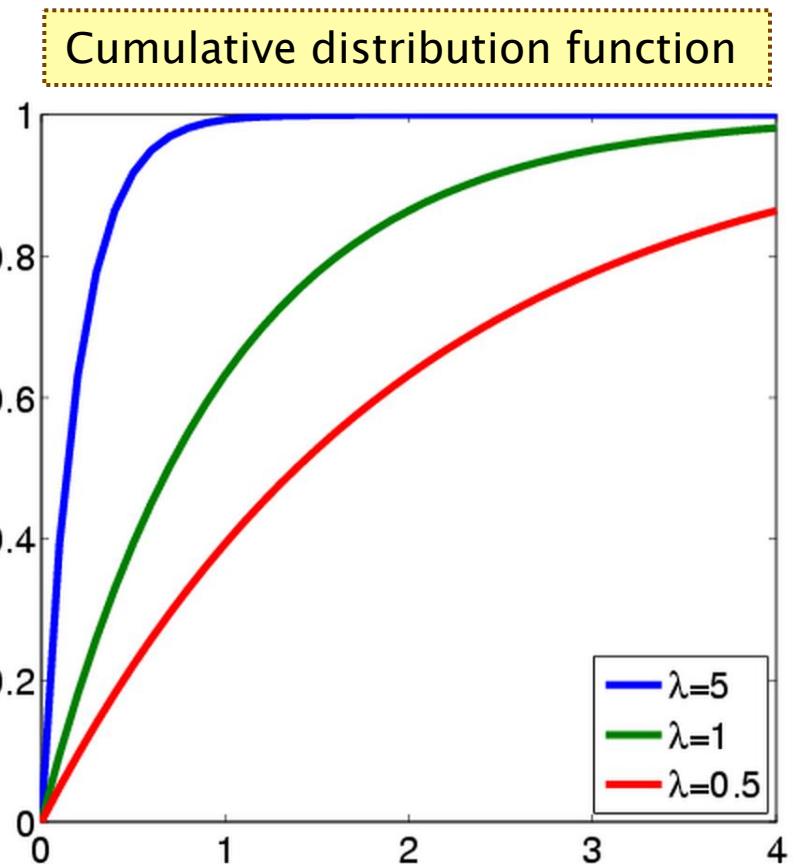
λ = “rate”

- we write: $X \sim \text{Exponential}(\lambda)$
- Cumulative distribution function (for $t \geq 0$):

$$F(t) = \Pr(X \leq t) = \int_0^t \lambda \cdot e^{-\lambda \cdot x} dx = [-e^{-\lambda \cdot x}]_0^t = 1 - e^{-\lambda \cdot t}$$

- Other properties:
 - negation: $\Pr(X > t) = e^{-\lambda \cdot t}$
 - mean (expectation): $E[X] = \int_0^\infty x \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \frac{1}{\lambda}$
 - variance: $\text{Var}(X) = 1/\lambda^2$

Exponential distribution – Examples



- The more λ increases, the faster the c.d.f. approaches 1

Exponential distribution

- Adequate for **modelling** many real-life phenomena
 - failures
 - e.g. time before machine component fails
 - inter-arrival times
 - e.g. time before next call arrives to a call centre
 - biological systems
 - e.g. times for reactions between proteins to occur
- **Maximal entropy** (“uncertainty”) if just the mean is known
 - i.e. best approximation when only mean is known
- **Can approximate general distributions arbitrarily closely**
 - phase-type distributions

Exponential distribution – Property 1

- The exponential distribution has the **memoryless** property:
 - $\Pr(X > t_1 + t_2 \mid X > t_1) = \Pr(X > t_2)$
- The exponential distribution is the **only** continuous distribution which is memoryless
 - discrete-time equivalent is the geometric distribution

Exponential distribution – Property 2

- The **minimum** of two independent exponential distributions is an exponential distribution (parameter is sum)
 - $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$
 - $Y = \min(X_1, X_2)$
 - $Y \sim \text{Exponential}(\lambda_1 + \lambda_2)$
- Generalises to minimum of **n** distributions

Exponential distribution – Property 3

- Consider two independent exponential distributions
 - $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$
 - what is the probability that $X_1 < X_2$?
- probability that $X_1 < X_2$ is $\lambda_1/(\lambda_1+\lambda_2)$
- Generalises to n distributions

Continuous-time Markov chains

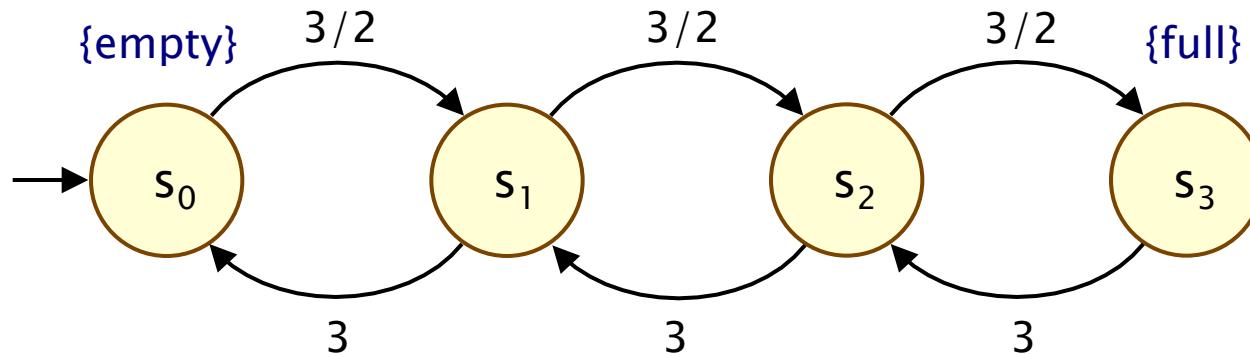
- Continuous-time Markov chains (CTMCs)
 - labelled transition systems augmented with rates
 - discrete states
 - **continuous** time–steps
 - delays **exponentially distributed**
- Suited to modelling:
 - reliability models
 - control systems
 - queueing networks
 - biological pathways
 - chemical reactions
 - ...

Continuous-time Markov chains

- Formally, a CTMC C is a tuple $(S, s_{\text{init}}, R, L)$ where:
 - S is a finite set of states (“state space”)
 - $s_{\text{init}} \in S$ is the initial state
 - $R : S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the **transition rate matrix**
 - $L : S \rightarrow 2^{\text{AP}}$ is a labelling with atomic propositions
- Transition rate matrix assigns rates to each pair of states
 - used as a parameter to the **exponential distribution**
 - transition between s and s' when $R(s,s') > 0$
 - probability triggered before t time units: $1 - e^{-R(s,s') \cdot t}$

Simple CTMC example

- Modelling a queue of jobs
 - initially the queue is empty
 - jobs **arrive** with rate $3/2$ (i.e. mean inter-arrival time is $2/3$)
 - jobs are **served** with rate 3 (i.e. mean service time is $1/3$)
 - maximum size of the queue is 3
 - state space: $S = \{s_i\}_{i=0..3}$ where s_i indicates i jobs in queue



Race conditions

- What happens when there exists **multiple** s' with $R(s,s') > 0$?
 - **race condition**: first transition triggered determines next state
 - two questions:
 - 1. How long is spent in s before a transition occurs?
 - 2. Which transition is eventually taken?
- 1. Time spent in a state before a transition
 - **minimum** of exponential distributions
 - exponential with parameter given by summation:

$$E(s) = \sum_{s' \in S} R(s, s')$$

- probability of leaving a state s within $[0, t]$ is $1 - e^{-E(s) \cdot t}$
- $E(s)$ is the **exit rate** of state s
- s is called **absorbing** if $E(s) = 0$ (no outgoing transitions)

Race conditions...

- 2. Which transition is taken from state s ?
 - the choice is **independent** of the time at which it occurs
 - e.g. if $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$
 - then the probability that $X_1 < X_2$ is $\lambda_1/(\lambda_1 + \lambda_2)$
 - more generally, the probability is given by...
- The **embedded DTMC**: $\text{emb}(C) = (S, s_{\text{init}}, P^{\text{emb}(C)}, L)$
 - state space, initial state and labelling as the CTMC
 - for any $s, s' \in S$

$$P^{\text{emb}(C)}(s, s') = \begin{cases} R(s, s')/E(s) & \text{if } E(s) > 0 \\ 1 & \text{if } E(s) = 0 \text{ and } s = s' \\ 0 & \text{otherwise} \end{cases}$$

- Probability that next state from s is s' given by $P^{\text{emb}(C)}(s, s')$

Two interpretations of a CTMC

- Consider a (non-absorbing) state $s \in S$ with multiple outgoing transitions, i.e. multiple $s' \in S$ with $R(s,s') > 0$
- 1. Race condition
 - each transition triggered after exponentially distributed delay
 - i.e. probability triggered before t time units: $1 - e^{-R(s,s') \cdot t}$
 - first transition triggered determines the next state
- 2. Separate delay/transition
 - remain in s for delay exponentially distributed with rate $E(s)$
 - i.e. probability of taking an outgoing transition from s within $[0,t]$ is given by $1 - e^{-E(s) \cdot t}$
 - probability that next state is s' is given by $P_{\text{emb}}(C)(s,s')$
 - i.e. $R(s,s')/E(s) = R(s,s') / \sum_{s' \in S} R(s,s')$

More on CTMCs...

- Infinitesimal generator matrix Q

$$Q(s, s') = \begin{cases} R(s, s') & s \neq s' \\ - \sum_{s \neq s'} R(s, s') & \text{otherwise} \end{cases}$$

- Alternative definition: a CTMC is:
 - a family of random variables $\{ X(t) \mid t \in \mathbb{R}_{\geq 0} \}$
 - $X(t)$ are observations made at time instant t
 - i.e. $X(t)$ is the state of the system at time instant t
 - which satisfies...
- Memoryless (Markov property)

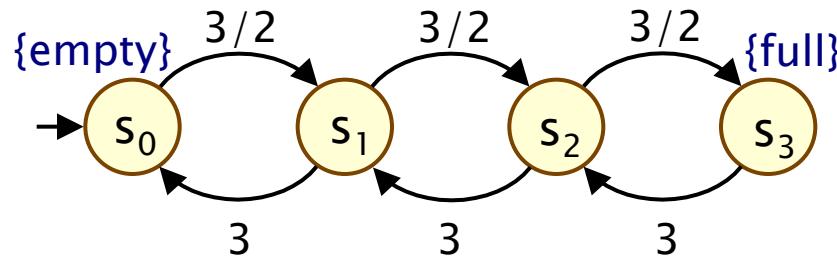
$$\Pr(X(t_k) = s_k \mid X(t_{k-1}) = s_{k-1}, \dots, X(t_0) = s_0) = \Pr(X(t_k) = s_k \mid X(t_{k-1}) = s_{k-1})$$

Simple CTMC example...

$$C = (S, s_{\text{init}}, R, L)$$

$$S = \{s_0, s_1, s_2, s_3\}$$

$$s_{\text{init}} = s_0$$



$$AP = \{\text{empty}, \text{full}\}$$

$$L(s_0) = \{\text{empty}\}, L(s_1) = L(s_2) = \emptyset \text{ and } L(s_3) = \{\text{full}\}$$

$$R = \begin{bmatrix} 0 & 3/2 & 0 & 0 \\ 3 & 0 & 3/2 & 0 \\ 0 & 3 & 0 & 3/2 \\ 0 & 0 & 3 & 0 \end{bmatrix} \quad P^{\text{emb}(C)} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 2/3 & 0 & 1/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad Q = \begin{bmatrix} -3/2 & 3/2 & 0 & 0 \\ 3 & -9/2 & 3/2 & 0 \\ 0 & 3 & -9/2 & 3/2 \\ 0 & 0 & 3 & -3 \end{bmatrix}$$

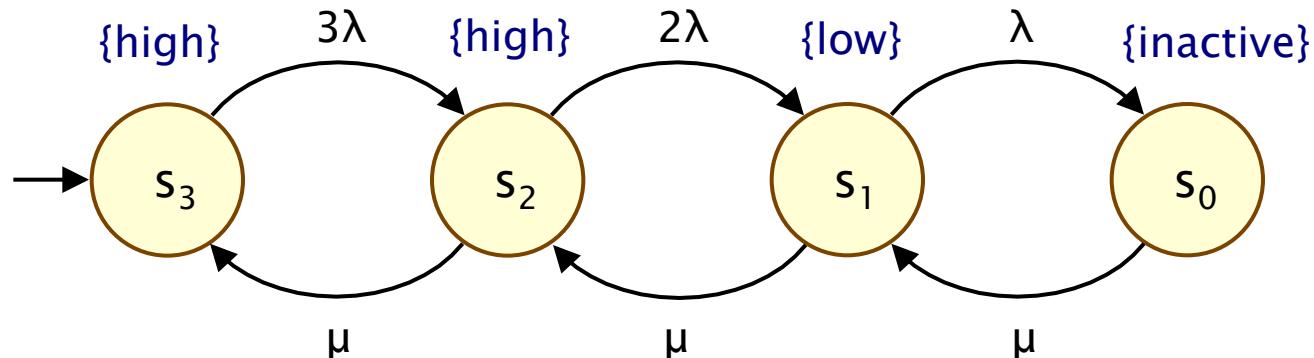
transition
rate matrix

embedded
DTMC

infinitesimal
generator matrix

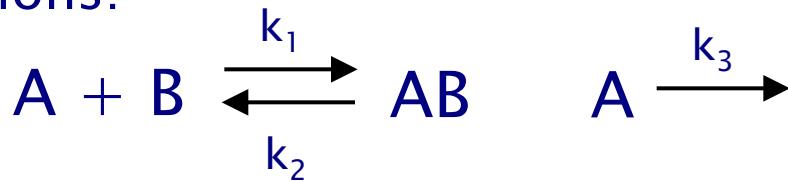
Example 2

- 3 machines, each can fail independently
 - delay modelled as exponential distributions
 - **failure rate λ** , i.e. mean-time to failure (MTTF) = $1 / \lambda$
- One repair unit
 - **repairs** a single machine at **rate μ** (also exponential)
- **State space:**
 - $S = \{s_i\}_{i=0..3}$ where s_i indicates i machines operational



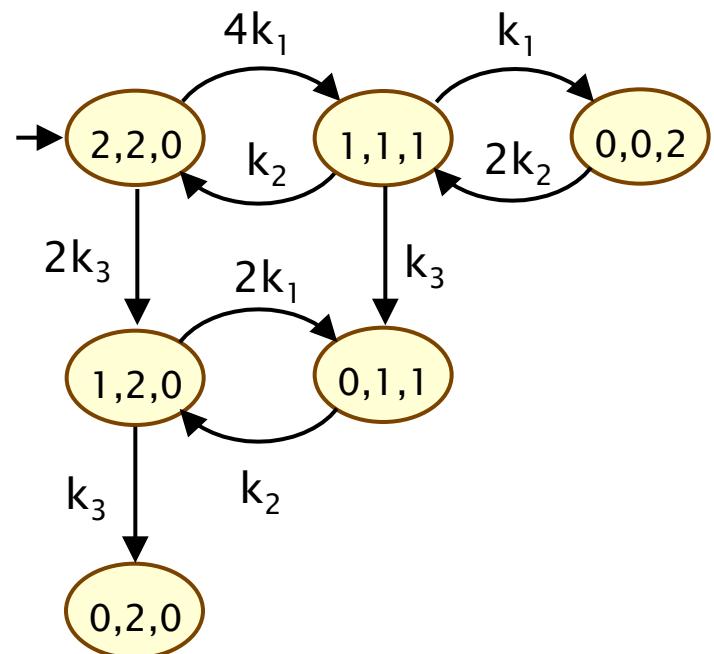
Example 3

- Chemical reaction system: two species A and B
- Two reactions:



- reversible reaction under which species A and B bind to form AB (forwards rate = $|A| \cdot |B| \cdot k_1$, backwards rate = $|AB| \cdot k_2$)
- degradation of A (rate $|A| \cdot k_3$)
- $|X|$ denotes number of molecules of species X

- CTMC with state space
 - $(|A|, |B|, |AB|)$
 - initially $(2, 2, 0)$



Paths of a CTMC

- An **infinite path** ω is a sequence $s_0 t_0 s_1 t_1 s_2 t_2 \dots$ such that
 - $R(s_i, s_{i+1}) > 0$ and $t_i \in \mathbb{R}_{>0}$ for all $i \in \mathbb{N}$
 - t_i denotes the amount of **time spent** in s_i
- **or** a sequence $s_0 t_0 s_1 t_1 s_2 t_2 \dots t_{k-1} s_k$ such that
 - $R(s_i, s_{i+1}) > 0$ and $t_i \in \mathbb{R}_{>0}$ for all $i < k$
 - s_k is **absorbing** (i.e. $R(s, s') = 0$ for all $s' \in S$)
 - i.e. remain in state s_k indefinitely
- **Path(s)** denotes all infinite paths starting in state s
- **Further notation:**
 - **time**(ω, j) = amount of time spent in the j th state, i.e. t_j
 - **$\omega @ t$** = state occupied at time t :
 - see e.g. **[BHHK03, KNP07a]** for precise definitions

Recall: Probability spaces

- A σ -algebra (or σ -field) on Ω is a set Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if $A \in \Sigma$, the complement $\Omega \setminus A$ is in Σ
 - if $A_i \in \Sigma$ for $i \in \mathbb{N}$, the union $\cup_i A_i$ is in Σ
 - the empty set \emptyset is in Σ
- Elements of Σ are called measurable sets or events
- Theorem: For any set F of subsets of Ω , there exists a unique smallest σ -algebra on Ω containing F
- Probability space (Ω, Σ, \Pr)
 - Ω is the sample space
 - Σ is the set of events: σ -algebra on Ω
 - $\Pr : \Sigma \rightarrow [0,1]$ is the probability measure:
 $\Pr(\Omega) = 1$ and $\Pr(\cup_i A_i) = \sum_i \Pr(A_i)$ for countable disjoint A_i

Probability space

- **Sample space**: Path(s) (set of all paths from a state s)
- **Events**: sets of infinite paths
- **Basic events**: cylinders
 - cylinders = sets of paths with common finite prefix
 - include **time intervals** in cylinders
- **Finite prefix** is a sequence $s_0, I_0, s_1, I_1, \dots, I_{n-1}, s_n$
 - $s_0, s_1, s_2, \dots, s_n$ sequence of states where $R(s_i, s_{i+1}) > 0$ for $i < n$
 - $I_0, I_1, I_2, \dots, I_{n-1}$ sequence of non-empty intervals of $\mathbb{R}_{\geq 0}$
- **Cylinder** $Cyl(s_0, I_0, s_1, I_1, \dots, I_{n-1}, s_n)$ is the set of **infinite paths**:
 - $\omega(i) = s_i$ for all $i \leq n$ and $\text{time}(\omega, i) \in I_i$ for all $i < n$

Probability space

- Define probability measure over cylinders inductively
- $\Pr_s(\text{Cyl}(s))=1$
- $\Pr_s(\text{Cyl}(s, I, s_1, I_1, \dots, I_{n-1}, s_n, I', s'))$ equals:

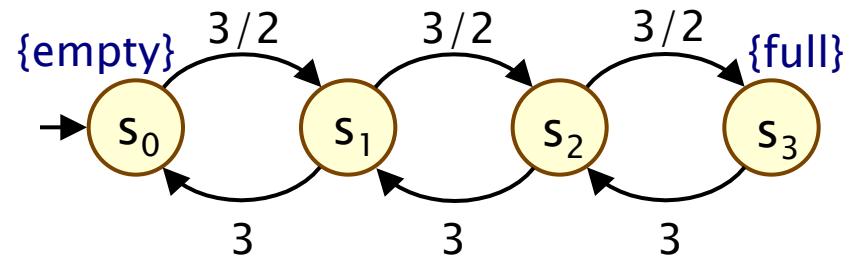
$$\Pr_s(\text{Cyl}(s, I, s_1, I_1, \dots, I_{n-1}, s_n)) \cdot P^{\text{emb}(C)}(s_n, s') \cdot \left(e^{-E(s_n) \cdot \inf I'} - e^{-E(s_n) \cdot \sup I'} \right)$$

probability of transition
from s_n to s' (defined
using embedded DTMC)

probability time spent in state s_n
is within the interval I'

Probability space – Example

- Probability of leaving the initial state s_0 and moving to state s_1 within the first 2 time units of operation
- Cylinder $\text{Cyl}(s_0, (0, 2], s_1)$
- $\Pr_{s_0}(\text{Cyl}(s_0, (0, 2], s_1))$



$$= \Pr_{s_0}(\text{Cyl}(s_0)) \cdot \mathsf{P}^{\text{emb}}(C)(s_0, s_1) \cdot (e^{-E(s_0) \cdot 0} - e^{-E(s_0) \cdot 2})$$

$$= 1 \cdot \mathsf{P}^{\text{emb}}(C)(s_0, s_1) \cdot (e^{-E(s_0) \cdot 0} - e^{-E(s_0) \cdot 2})$$

$$= 1 \cdot 1 \cdot (e^{-3/2 \cdot 0} - e^{-3/2 \cdot 2})$$

$$= 1 - e^{-3}$$

$$\approx 0.95021$$

Probability space

- Probability space $(\text{Path}(s), \Sigma_{\text{Path}(s)}, \Pr_s)$ (see [BHHK03])
- Sample space $\Omega = \text{Path}(s)$
 - i.e. all **infinite paths**
- Event set $\Sigma_{\text{Path}(s)}$
 - least σ -algebra on $\text{Path}(s)$ containing all cylinders sets $\text{Cyl}(s_0, I_0, \dots, I_{n-1}, s_n)$ where:
 - s_0, \dots, s_n ranges over all state sequences with $R(s_i, s_{i+1}) > 0$ for all i
 - I_0, \dots, I_{n-1} ranges over all sequences of non-empty intervals in $\mathbb{R}_{\geq 0}$ (where intervals are bounded by rationals)
- Probability measure \Pr_s
 - \Pr_s extends **uniquely** from probability defined over cylinders

Probabilistic reachability

- Probabilistic reachability
 - the probability of reaching a target set $T \subseteq S$
 - measurability:
 - union of all basic cylinders $Cyl(s_0, (0, \infty), s_1, (0, \infty), \dots, (0, \infty), s_n)$ where $s_n \in T$
 - set of such state sequences $s_0 s_1 \dots s_n$ is countable
- Time-bounded probabilistic reachability
 - the probability of reaching a target set $T \subseteq S$ within t time units
 - measurability:
 - union of all basic cylinders $Cyl(s_0, I_0, s_1, I_1, \dots, I_{n-1}, s_n)$ where $s_n \in T$ and $\sup(I_0) + \dots + \sup(I_{n-1}) \leq t$
 - set of such state sequences $s_0 s_1 \dots s_n$ is countable
 - set of rational-bounded intervals is countable

Summing up...

- **Exponential distribution**
 - suitable for modelling failures, waiting times, reactions, ...
 - nice mathematical properties
- **Continuous-time Markov chains**
 - transition delays modelled as exponential distributions
 - race condition
 - embedded DTMC
 - generator matrix
- **Probability space over paths**
 - (untimed and timed) probabilistic reachability

Lecture 9

Continuous-time Markov chains...

Dr. Dave Parker

Department of Computer Science
University of Oxford

Overview

- Transient probabilities
 - uniformisation
- Steady-state probabilities
- CSL: Continuous Stochastic Logic
 - syntax
 - semantics
 - examples

Recall

- Continuous-time Markov chain: $C = (S, s_{\text{init}}, R, L)$
 - $R : S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the **transition rate matrix**
 - rates interpreted as parameters of exponential distributions
- Embedded DTMC: $\text{emb}(C) = (S, s_{\text{init}}, P^{\text{emb}(C)}, L)$

$$P^{\text{emb}(C)}(s, s') = \begin{cases} R(s, s')/E(s) & \text{if } E(s) > 0 \\ 1 & \text{if } E(s) = 0 \text{ and } s = s' \\ 0 & \text{otherwise} \end{cases}$$

- Infinitesimal generator matrix

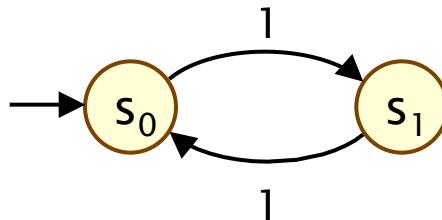
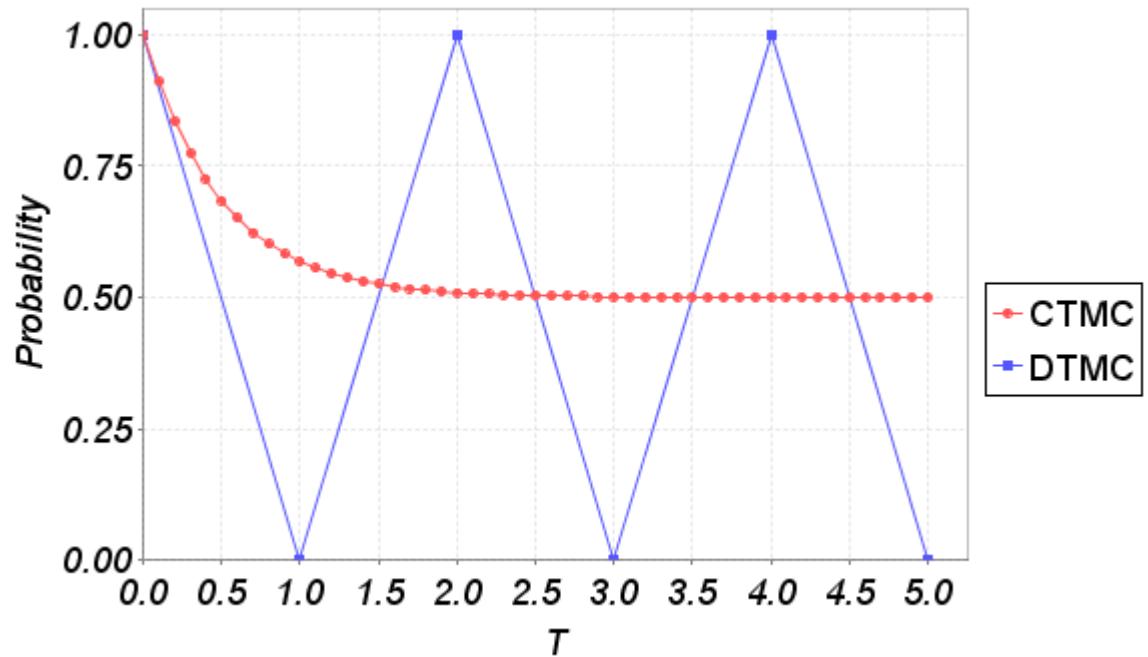
$$Q(s, s') = \begin{cases} R(s, s') & s \neq s' \\ - \sum_{s \neq s'} R(s, s') & \text{otherwise} \end{cases}$$

Transient and steady-state behaviour

- Transient behaviour
 - state of the model at a particular **time instant**
 - $\underline{\pi}_{s,t}^C(s')$ is probability of, having started in state s , being in state s' at time t (in CTMC C)
 - $\underline{\pi}_{s,t}^C(s') = \Pr_s \{ \omega \in \text{Path}^C(s) \mid \omega @ t = s' \}$
- Steady-state behaviour
 - state of the model in the **long-run**
 - $\underline{\pi}_s^C(s')$ is probability of, having started in state s , being in state s' in the long run
 - $\underline{\pi}_s^C(s') = \lim_{t \rightarrow \infty} \underline{\pi}_{s,t}^C(s')$
 - intuitively: long-run percentage of time spent in each state

Computing transient probabilities

- Consider a simple example
 - and compare to the case for DTMCs
- What is the probability of being in state s_0 at time t ?
- DTMC/CTMC:



Computing transient probabilities

- Π_t – matrix of transient probabilities
 - $\Pi_t(s,s') = \underline{\pi}_{s,t}(s')$
- Π_t solution of the differential equation: $\Pi_t' = \Pi_t \cdot Q$
 - where Q is the infinitesimal generator matrix
- Can be expressed as a **matrix exponential** and therefore evaluated as a **power series**

$$\Pi_t = e^{Q \cdot t} = \sum_{i=0}^{\infty} (Q \cdot t)^i / i!$$

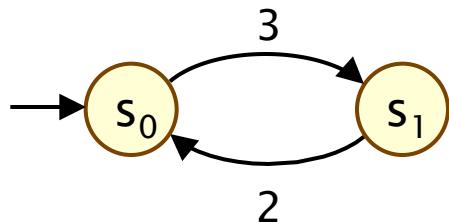
- computation potentially **unstable**
- probabilities instead computed using **uniformisation**

Uniformisation

- We build the **uniformised DTMC** $\text{unif}(C)$ of CTMC C
- If $C = (S, s_{\text{init}}, R, L)$, then $\text{unif}(C) = (S, s_{\text{init}}, P^{\text{unif}(C)}, L)$
 - set of states, initial state and labelling the same as C
 - $P^{\text{unif}(C)} = I + Q/q$
 - I is the $|S| \times |S|$ identity matrix
 - $q \geq \max \{ E(s) \mid s \in S \}$ is the **uniformisation rate**
- Each time step (epoch) of uniformised DTMC corresponds to **one exponentially distributed delay with rate q**
 - if $E(s)=q$ transitions the same as embedded DTMC (residence time has the same distribution as one epoch)
 - if $E(s)<q$ add self loop with probability $1-E(s)/q$ (residence time longer than $1/q$ so one epoch may not be ‘long enough’)

Uniformisation – Example

- CTMC C:



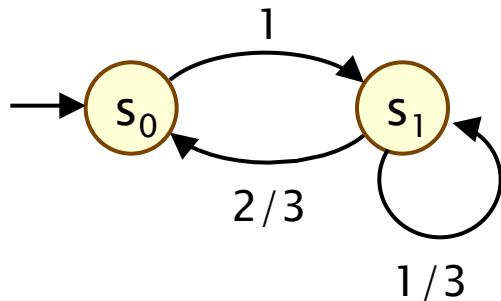
$$R = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} -3 & 3 \\ 2 & -2 \end{bmatrix}$$

- Uniformised DTMC $\text{unif}(C)$

- let uniformisation rate $q = \max_s \{ E(s) \} = 3$

$$P^{\text{unif}(C)} = I + Q / q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ \frac{2}{3} & -\frac{2}{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$



Uniformisation

- Using the uniformised DTMC the transient probabilities can be expressed by:

$$\begin{aligned}\Pi_t &= e^{Q \cdot t} = e^{q \cdot (P^{\text{unif}(C)} - I) \cdot t} = e^{(q \cdot t) \cdot P^{\text{unif}(C)}} \cdot e^{-q \cdot t} \\ &= e^{-q \cdot t} \cdot \left(\sum_{i=0}^{\infty} \frac{(q \cdot t)^i}{i!} \cdot (P^{\text{unif}(C)})^i \right) \\ &= \sum_{i=0}^{\infty} \left(e^{-q \cdot t} \cdot \frac{(q \cdot t)^i}{i!} \right) \cdot (P^{\text{unif}(C)})^i \\ &= \sum_{i=0}^{\infty} \gamma_{q \cdot t, i} \cdot (P^{\text{unif}(C)})^i\end{aligned}$$

ith Poisson probability with parameter $q \cdot t$

$P^{\text{unif}(C)}$ is stochastic (all entries in $[0,1]$ & rows sum to 1); therefore computations with P are more numerically stable than Q

Uniformisation

$$\Pi_t = \sum_{i=0}^{\infty} Y_{q \cdot t, i} \cdot (P^{\text{unif}(C)})^i$$

- $(P^{\text{unif}(C)})^i$ is probability of jumping between each pair of states **in i steps**
- $Y_{q \cdot t, i}$ is the **i th Poisson probability** with parameter $q \cdot t$
 - the probability of i steps occurring in time t , given each has delay exponentially distributed with rate q
- Can **truncate** the (infinite) summation using the techniques of Fox and Glynn [FG88], which allow **efficient computation** of the Poisson probabilities

Uniformisation

- Computing $\underline{\pi}_{s,t}$ for a fixed state s and time t
 - can be computed **efficiently** using **matrix–vector operations**
 - pre-multiply the matrix Π_t by the initial distribution
 - in this case: $\underline{\pi}_{s,0}(s')$ equals 1 if $s=s'$ and 0 otherwise

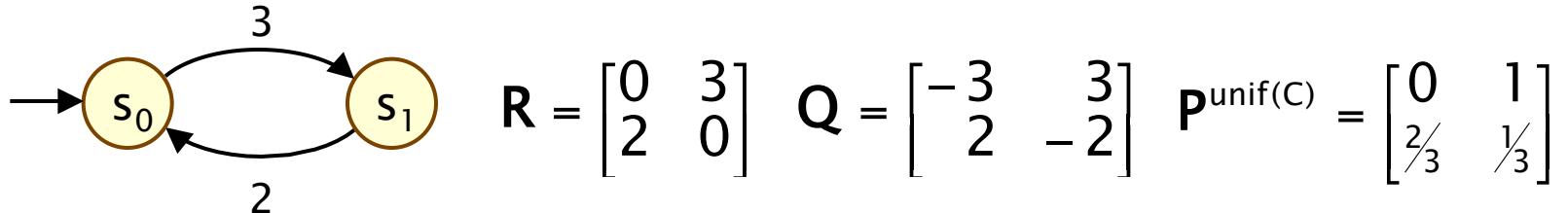
$$\begin{aligned}\underline{\pi}_{s,t} &= \underline{\pi}_{s,0} \cdot \Pi_t = \underline{\pi}_{s,0} \cdot \sum_{i=0}^{\infty} Y_{q,t,i} \cdot \left(P^{\text{unif}(C)} \right)^i \\ &= \sum_{i=0}^{\infty} Y_{q,t,i} \cdot \underline{\pi}_{s,0} \cdot \left(P^{\text{unif}(C)} \right)^i\end{aligned}$$

- compute iteratively to avoid the computation of matrix powers

$$\left(\underline{\pi}_{s,t} \cdot P^{\text{unif}(C)} \right)^{i+1} = \left(\underline{\pi}_{s,t} \cdot P^{\text{unif}(C)} \right)^i \cdot P^{\text{unif}(C)}$$

Uniformisation – Example

- CTMC C, uniformised DTMC for $q=3$



- Initial distribution: $\underline{\pi}_{s0,0} = [1, 0]$
- Transient probabilities for time $t = 1$:

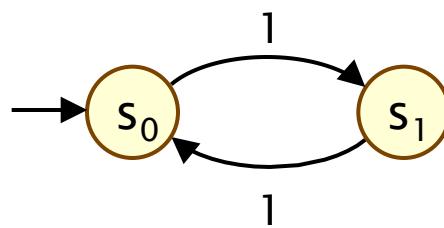
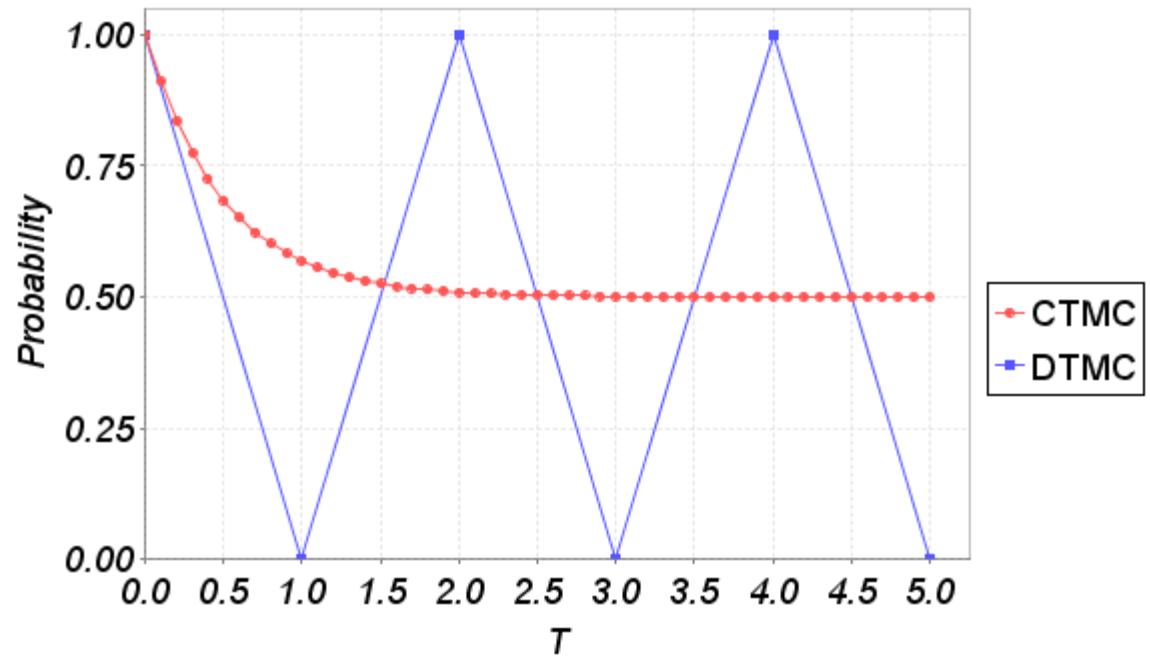
$$\begin{aligned}\underline{\pi}_{s0,1} &= \sum_{i=0}^{\infty} Y_{q,t,i} \cdot \underline{\pi}_{s0,0} \cdot (P^{\text{unif}(C)})^i \\ &= Y_{3,0} \cdot [1, 0] \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + Y_{3,1} \cdot [1, 0] \cdot \begin{bmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} + Y_{3,2} \cdot [1, 0] \cdot \begin{bmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}^2 + \dots \\ &\approx [0.404043, 0.595957]\end{aligned}$$

Steady-state probabilities

- Limit $\underline{\pi}_s^C(s') = \lim_{t \rightarrow \infty} \underline{\pi}_{s,t}^C(s')$
 - exists for all finite CTMCs
 - (see next slide)
- As for DTMCs, need to consider the underlying graph structure of the Markov chain:
 - reachability (between pairs) of states
 - bottom strongly connected components (BSCCs)
 - one special case to consider: absorbing states are BSCCs
 - note: can do this equivalently on embedded DTMC
- CTMC is **irreducible** if all its states belong to a single BSCC; otherwise reducible

Periodicity

- Unlike for DTMCs, do not need to consider periodicity
- e.g. probability of being in state s_0 at time t ?
- DTMC/CTMC:



Irreducible CTMCs

- For an irreducible CTMC:
 - the steady-state probabilities are **independent of the starting state**: denote the steady state probabilities by $\underline{\pi}^C(s')$

- These probabilities can be computed as
 - the **unique solution of the linear equation system**:

$$\underline{\pi}^C \cdot \mathbf{Q} = \underline{0} \quad \text{and} \quad \sum_{s \in S} \underline{\pi}^C(s) = 1$$

where \mathbf{Q} is the infinitesimal generator matrix of C

- Solved by standard means:
 - direct methods, such as Gaussian elimination
 - iterative methods, such as Jacobi and Gauss-Seidel

Balance equations

$$\underline{\pi}^C \cdot Q = 0 \quad \text{and} \quad \sum_{s \in S} \underline{\pi}^C(s) = 1$$

balance the rate of
leaving and entering
a state

normalisation

For all $s \in S$:

$$\underline{\pi}^C(s) \cdot \left(-\sum_{s' \neq s} R(s, s') \right) + \sum_{s' \neq s} \underline{\pi}^C(s') \cdot R(s', s) = 0$$

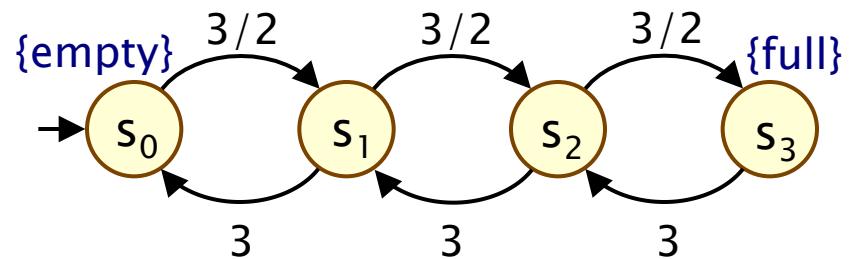
\Leftrightarrow

$$\underline{\pi}^C(s) \cdot \sum_{s' \neq s} R(s, s') = \sum_{s' \neq s} \underline{\pi}^C(s') \cdot R(s', s)$$

Steady-state – Example

- Solve: $\underline{\pi} \cdot Q = 0$ and $\sum \underline{\pi}(s) = 1$

$$Q = \begin{bmatrix} -3/2 & 3/2 & 0 & 0 \\ 3 & -9/2 & 3/2 & 0 \\ 0 & 3 & -9/2 & 3/2 \\ 0 & 0 & 3 & -3 \end{bmatrix}$$



$$\begin{aligned}
 -3/2 \cdot \underline{\pi}(s_0) + 3 \cdot \underline{\pi}(s_1) &= 0 \\
 3/2 \cdot \underline{\pi}(s_0) - 9/2 \cdot \underline{\pi}(s_1) + 3 \cdot \underline{\pi}(s_2) &= 0 \\
 3/2 \cdot \underline{\pi}(s_1) - 9/2 \cdot \underline{\pi}(s_2) + 3 \cdot \underline{\pi}(s_3) &= 0 \\
 3/2 \cdot \underline{\pi}(s_2) - 3 \cdot \underline{\pi}(s_3) &= 0 \\
 \underline{\pi}(s_0) + \underline{\pi}(s_1) + \underline{\pi}(s_2) + \underline{\pi}(s_3) &= 1
 \end{aligned}$$

$$\underline{\pi} = [8/15, 4/15, 2/15, 1/15]$$

Reducible CTMCs

- For a reducible CTMC:
 - the steady-state probabilities $\underline{\pi}^C(s')$ depend on start state s
- Find all BSCCs of CTMC, denoted $\text{bscc}(C)$
- Compute:
 - steady-state probabilities $\underline{\pi}^T$ of sub-CTMC for each BSCC T
 - probability $\text{ProbReach}^{\text{emb}(C)}(s, T)$ of reaching each T from s
- Then:

$$\underline{\pi}_s^C(s') = \begin{cases} \text{ProbReach}^{\text{emb}(C)}(s, T) \cdot \underline{\pi}^T(s') & \text{if } s' \in T \text{ for some } T \in \text{bscc}(C) \\ 0 & \text{otherwise} \end{cases}$$

CSL

- Temporal logic for describing properties of CTMCs
 - CSL = Continuous Stochastic Logic [ASSB00,BHHK03]
 - extension of (non-probabilistic) temporal logic CTL
- Key additions:
 - probabilistic operator P (like PCTL)
 - steady state operator S
- Example: $\text{down} \rightarrow P_{>0.75} [\neg \text{fail} \cup^{[1,2.5]} \text{up}]$
 - when a shutdown occurs, the probability of a system recovery being completed between 1 and 2.5 hours without further failure is greater than 0.75
- Example: $S_{<0.1} [\text{insufficient_routers}]$
 - in the long run, the chance that an inadequate number of routers are operational is less than 0.1

CSL syntax

- CSL syntax:

- $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg \phi \mid P_{\sim p} [\psi] \mid S_{\sim p} [\phi]$ (state formulae)

- $\psi ::= X \phi \mid \phi U^I \phi$

“next”

“time bounded until”

ψ is true with probability $\sim p$

(path formulae)

in the “long run” ϕ is true with probability $\sim p$

- where a is an atomic proposition, I interval of $\mathbb{R}_{\geq 0}$ and $p \in [0,1]$, $\sim \in \{<, >, \leq, \geq\}$

- A CSL formula is always a state formula

- path formulae only occur inside the P operator

CSL semantics for CTMCs

- CSL formulae interpreted over states of a CTMC
 - $s \models \phi$ denotes ϕ is “true in state s ” or “satisfied in state s ”
- Semantics of state formulae:
 - for a state s of the CTMC $(S, s_{\text{init}}, R, L)$:

- $s \models a \iff a \in L(s)$
- $s \models \phi_1 \wedge \phi_2 \iff s \models \phi_1 \text{ and } s \models \phi_2$
- $s \models \neg \phi \iff s \models \phi \text{ is false}$
- $s \models P_{\sim p} [\psi] \iff \text{Prob}(s, \psi) \sim p$
- $s \models S_{\sim p} [\phi] \iff \sum_{s' \models \phi} \pi_s(s') \sim p$

Probability of,
starting in state s ,
satisfying the path
formula ψ

Probability of, starting in state s , being
in state s' in the long run

CSL semantics for CTMCs

- $\text{Prob}(s, \psi)$ is the probability, starting in state s , of satisfying the path formula ψ

- $\text{Prob}(s, \psi) = \Pr_s \{ \omega \in \text{Path}_s \mid \omega \models \psi \}$

if $\omega(0)$ is absorbing
 $\omega(1)$ not defined

- Semantics of path formulae:

- for a path ω of the CTMC:

- $\omega \models X \phi \iff \omega(1) \text{ is defined and } \omega(1) \models \phi$

- $\omega \models \phi_1 \cup^l \phi_2 \iff \exists t \in I. (\omega@t \models \phi_2 \wedge \forall t' < t. \omega@t' \models \phi_1)$

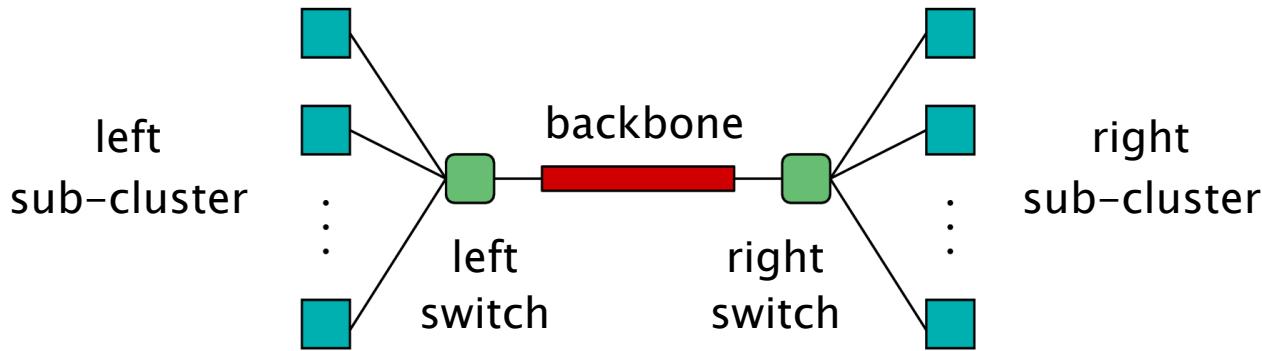
there exists a time instant in the interval I where ϕ_2 is true and ϕ_1 is true at all preceding time instants

More on CSL

- Basic logical derivations:
 - false, $\phi_1 \vee \phi_2$, $\phi_1 \rightarrow \phi_2$
- Normal (unbounded) until is a special case
 - $\phi_1 \mathbf{U} \phi_2 \equiv \phi_1 \mathbf{U}^{[0,\infty)} \phi_2$
- Derived path formulae:
 - $\mathbf{F} \phi \equiv \mathbf{true} \mathbf{U} \phi$, $\mathbf{F}^l \phi \equiv \mathbf{true} \mathbf{U}^l \phi$
 - $\mathbf{G} \phi \equiv \neg(\mathbf{F} \neg\phi)$, $\mathbf{G}^l \phi \equiv \neg(\mathbf{F}^l \neg\phi)$
- Negate probabilities: ...
 - e.g. $\neg P_{>p} [\psi] \equiv P_{\leq p} [\psi]$, $\neg S_{\geq p} [\phi] \equiv S_{>p} [\phi]$
- Quantitative properties
 - of the form $P_{=?} [\psi]$ and $S_{=?} [\phi]$
 - where P/S is the outermost operator
 - experiments, patterns, trends, ...

CSL example – Workstation cluster

- Case study: Cluster of workstations [HHK00]
 - two sub-clusters (N workstations in each cluster)
 - star topology with a central switch
 - components can break down, single repair unit



- **minimum QoS**: at least $\frac{3}{4}$ of the workstations operational and connected via switches
- **premium QoS**: all workstations operational and connected via switches

CSL example – Workstation cluster

- $S_{=?} [\text{minimum}]$
 - the probability in the long run of having minimum QoS
- $P_{=?} [F^{[t,t]} \text{minimum}]$
 - the (transient) probability at time instant t of minimum QoS
- $P_{<0.05} [F^{[0,10]} \neg\text{minimum}]$
 - the probability that the QoS drops below minimum within 10 hours is less than 0.05
- $\neg\text{minimum} \rightarrow P_{<0.1} [F^{[0,2]} \neg\text{minimum}]$
 - when facing insufficient QoS, the chance of facing the same problem after 2 hours is less than 0.1

CSL example – Workstation cluster

- $\text{minimum} \rightarrow P_{>0.8} [\text{minimum } U^{[0,t]} \text{ premium}]$
 - the probability of going from minimum to premium QoS within t hours without violating minimum QoS is at least 0.8
- $P_{=?} [\neg \text{minimum } U^{[t,\infty)} \text{ minimum}]$
 - the chance it takes more than t time units to recover from insufficient QoS
- $\neg r_{\text{switch_up}} \rightarrow P_{<0.1} [\neg r_{\text{switch_up}} U \neg l_{\text{switch_up}}]$
 - if the right switch has failed, the probability of the left switch failing before it is repaired is less than 0.1
- $P_{=?} [F^{[2,\infty)} S_{>0.9} [\text{minimum}]]$
 - the probability of it taking more than 2 hours to get to a state from which the long-run probability of minimum QoS is >0.9

Summing up...

- Transient probabilities (time instant t)
 - computation with uniformisation: efficient iterative method
- Steady-state (long-run) probabilities
 - like DTMCs
 - requires graph analysis
 - irreducible case: solve linear equation system
 - reducible case: steady-state for sub-CTMCs + reachability
- CSL: Continuous Stochastic Logic
 - extension of PCTL for properties of CTMCs

Lecture 10

Model Checking for CTMCs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Overview

- CSL model checking
 - basic algorithm
 - untimed properties
 - time-bounded until
 - the S (steady-state) operator
- Rewards
 - reward structures for CTMCs
 - properties: extension of CSL
 - model checking

CSL: Continuous Stochastic Logic

- CSL syntax:

- $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg \phi \mid P_{\sim p} [\psi] \mid S_{\sim p} [\phi]$ (state formulae)

- $\psi ::= X \phi \mid \phi U^l \phi$

“next”

“time bounded until”

ψ is true with probability $\sim p$

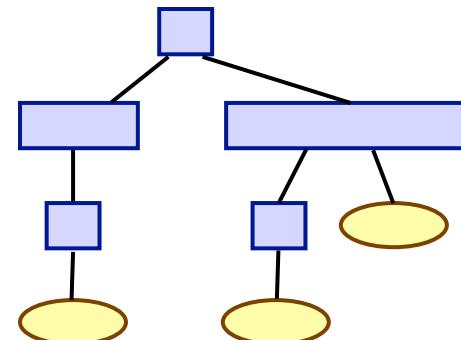
(path formulae)

in the “long run” ϕ is true with probability $\sim p$

- where a is an atomic proposition, l an interval of $\mathbb{R}_{\geq 0}$, $p \in [0,1]$ and $\sim \in \{<, >, \leq, \geq\}$

CSL model checking for CTMCs

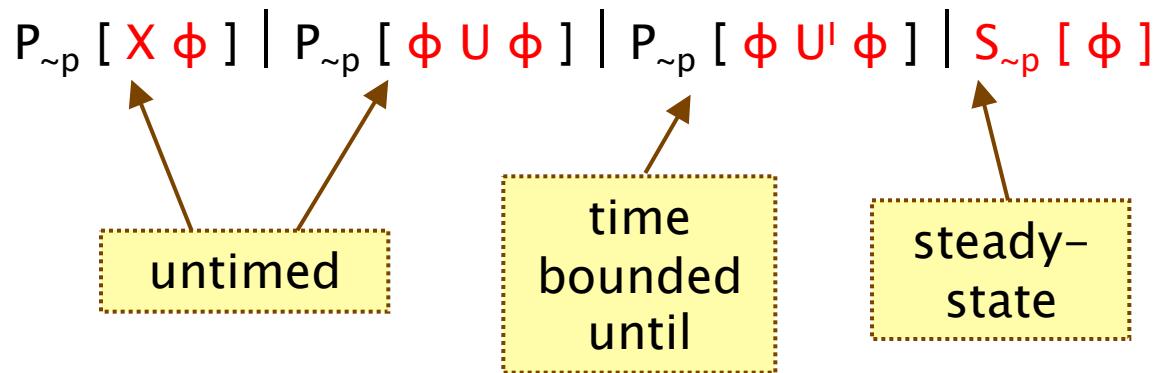
- Algorithm for CSL model checking [BHHK03]
 - inputs: CTMC $C = (S, s_{\text{init}}, R, L)$, CSL formula ϕ
 - output: $\text{Sat}(\phi) = \{ s \in S \mid s \models \phi \}$, the set of states satisfying ϕ
- Often, also consider quantitative results
 - e.g. compute result of $P_{=?} [F^{[0,t]} \text{ minimum}]$ for $0 \leq t \leq 100$
- Basic algorithm similar to PCTL for DTMCs
 - proceeds by induction on parse tree of ϕ
- For the non-probabilistic operators:
 - $\text{Sat}(\text{true}) = S$
 - $\text{Sat}(a) = \{ s \in S \mid a \in L(s) \}$
 - $\text{Sat}(\neg\phi) = S \setminus \text{Sat}(\phi)$
 - $\text{Sat}(\phi_1 \wedge \phi_2) = \text{Sat}(\phi_1) \cap \text{Sat}(\phi_2)$



CSL model checking for CTMCs

- Main task: **computing probabilities** for $P_{\sim p}[\cdot]$ and $S_{\sim p}[\cdot]$

– $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg \phi \mid$



– where $\phi_1 \text{ U } \phi_2 \equiv \phi_1 \text{ U}^{[0, \infty)} \phi_2$

Untimed properties

- Untimed properties can be verified on the **embedded DTMC**
 - properties of the form: $P_{\sim p} [X \phi]$ or $P_{\sim p} [\phi_1 \cup \phi_2]$
 - use algorithms for checking PCTL against DTMCs
- Certain **qualitative** time-bounded until formulae can also be verified on the **embedded DTMC**
 - for any (non-empty) interval I
$$s \models P_{\sim 0} [\phi_1 \cup^I \phi_2] \text{ if and only if } s \models P_{\sim 0} [\phi_1 \cup^{[0, \infty)} \phi_2]$$
 - can use precomputation algorithm Prob0

Model checking – Time-bounded until

- Compute $\text{Prob}(s, \phi_1 \text{ U}^I \phi_2)$ for all states where I is an arbitrary interval of the non-negative real numbers
- Note:
 - $\text{Prob}(s, \phi_1 \text{ U}^I \phi_2) = \text{Prob}(s, \phi_1 \text{ U}^{\text{cl}(I)} \phi_2)$
where $\text{cl}(I)$ denotes the **closure** of the interval I
 - $\text{Prob}(s, \phi_1 \text{ U}^{[0,\infty)} \phi_2) = \text{Prob}^{\text{emb}(C)}(s, \phi_1 \text{ U} \phi_2)$
where $\text{emb}(C)$ is the **embedded DTMC**
- Therefore, 3 remaining cases to consider:
 - $I = [0, t]$ for some $t \in \mathbb{R}_{\geq 0}$, $I = [t, t']$ for some $t \leq t' \in \mathbb{R}_{\geq 0}$ and $I = [t, \infty)$ for some $t \in \mathbb{R}_{\geq 0}$
- Two methods: 1. Integral equations; 2. Uniformisation

Time-bounded until (integral equations)

- Computing the probabilities reduces to determining the least solution of the following set of **integral equations**
 - (note similarity to bounded until for DTMCs)
- $\text{Prob}(s, \phi_1 \text{ U}^{[0,t]} \phi_2)$ equals
 - 1 if $s \in \text{Sat}(\phi_2)$,
 - 0 if $s \in \text{Sat}(\neg\phi_1 \wedge \neg\phi_2)$
 - and otherwise equals
- One possibility: solve these integrals numerically
 - e.g. trapezoidal, Simpson and Romberg integration
 - expensive, possible problems with numerical stability

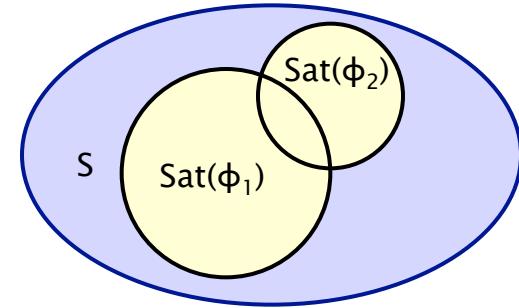
$$\int_0^t \sum_{s' \in S} \left(P^{\text{emb}(C)}(s, s') \cdot E(s) \cdot e^{-E(s) \cdot x} \right) \cdot \text{Prob}(s', \phi_1 \text{ U}^{[0, t-x]} \phi_2) \, dx$$

Time-bounded until (uniformisation)

- Reduction to transient analysis...

- Make all ϕ_2 states absorbing

- from such a state $\phi_1 \cup^{[0,x]} \phi_2$ holds with probability 1



- Make all $\neg\phi_1 \wedge \neg\phi_2$ states absorbing

- from such a state $\phi_1 \cup^{[0,x]} \phi_2$ holds with probability 0

- Formally: Construct CTMC $C[\phi_2][\neg\phi_1 \wedge \neg\phi_2]$

- where for CTMC $C=(S, s_{\text{init}}, R, L)$, let $C[\theta]=(S, s_{\text{init}}, R[\theta], L)$ where $R[\theta](s, s')=R(s, s')$ if $s \notin \text{Sat}(\theta)$ and 0 otherwise

Time-bounded until (uniformisation)

- Problem then reduces to calculating **transient probabilities** of the CTMC $C[\phi_2][\neg\phi_1 \wedge \neg\phi_2]$:

$$\text{Prob}(s, \phi_1 \mathbin{U}^{[0,t]} \phi_2) = \sum_{s' \in \text{Sat}(\phi_2)} \underline{\pi}_{s,t}^{C[\phi_2][\neg\phi_1 \wedge \neg\phi_2]}(s')$$

transient probability: starting in state s , the probability of being in state s' at time t

Time-bounded until (uniformisation)

- Can now adapt **uniformisation** to computing the vector of probabilities Prob($\phi_1 \cup^{[0,t]} \phi_2$)
 - recall Π_t is matrix of transient probabilities $\Pi_t(s,s') = \underline{\Pi}_{s,t}(s')$
 - computed via uniformisation: $\Pi_t = \sum_{i=0}^{\infty} Y_{q,t,i} \cdot (P^{\text{unif}(C)})^i$
- Combining with: $\text{Prob}(s, \phi_1 \cup^{[0,t]} \phi_2) = \sum_{s' \in \text{Sat}(\phi_2)} \underline{\Pi}_{s,t}^{C[\phi_2][\neg\phi_1 \wedge \neg\phi_2]}(s')$

$$\begin{aligned}\underline{\text{Prob}}(\phi_1 \cup^{[0,t]} \phi_2) &= \underline{\Pi}_t^{C[\phi_2][\neg\phi_1 \wedge \neg\phi_2]} \cdot \underline{\phi_2} \\ &= \left(\sum_{i=0}^{\infty} Y_{q,t,i} \cdot (P^{\text{unif}(C[\phi_2][\neg\phi_1 \wedge \neg\phi_2])})^i \right) \underline{\phi_2} \\ &= \sum_{i=0}^{\infty} \left(Y_{q,t,i} \cdot (P^{\text{unif}(C[\phi_2][\neg\phi_1 \wedge \neg\phi_2])})^i \cdot \underline{\phi_2} \right)\end{aligned}$$

Time-bounded until (uniformisation)

- Have shown that we can calculate the probabilities as:

$$\underline{\text{Prob}}(\phi_1 \text{ U}^{[0,t]} \phi_2) = \sum_{i=0}^{\infty} \left(\gamma_{q,t,i} \cdot \left(\mathbf{P}^{\text{unif}(C[\phi_2][\neg\phi_1 \wedge \neg\phi_2])} \right)^i \cdot \underline{\phi_2} \right)$$

- Infinite summation can be **truncated** using the techniques of Fox and Glynn [FG88]
- Can compute **iteratively** to avoid matrix powers:

$$\begin{aligned} \left(\mathbf{P}^{\text{unif}(C)} \right)^0 \cdot \underline{\phi_2} &= \underline{\phi_2} \\ \left(\mathbf{P}^{\text{unif}(C)} \right)^{i+1} \cdot \underline{\phi_2} &= \mathbf{P}^{\text{unif}(C)} \cdot \left(\left(\mathbf{P}^{\text{unif}(C)} \right)^i \cdot \underline{\phi_2} \right) \end{aligned}$$

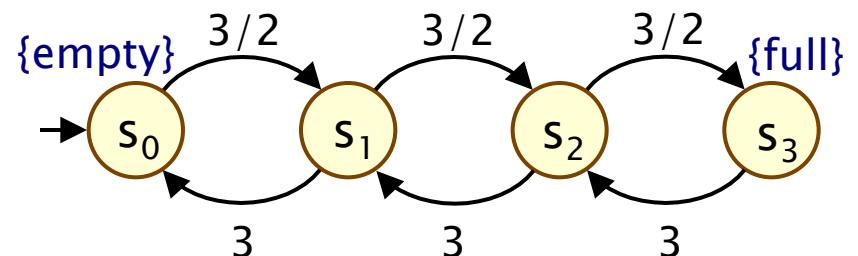
Time-bounded until – Example

- $P_{>0.65} [F^{[0,7.5]} \text{ full}] \equiv P_{>0.65} [\text{true} \cup^{[0,7.5]} \text{ full}]$
 - “probability of the queue becoming full within 7.5 time units”
- State s_3 satisfies full and no states satisfy $\neg\text{true}$
 - in $C[\text{full}][\neg\text{true} \wedge \neg \text{full}]$ only state s_3 made absorbing

$$\begin{bmatrix} 2/3 & 1/3 & 0 & 0 \\ 2/3 & 0 & 1/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

s_3 made absorbing

matrix of $\text{unif}(C[\text{full}][\neg\text{true} \wedge \neg \text{full}])$
with uniformisation rate $\max_{s \in S} E(s) = 4.5$

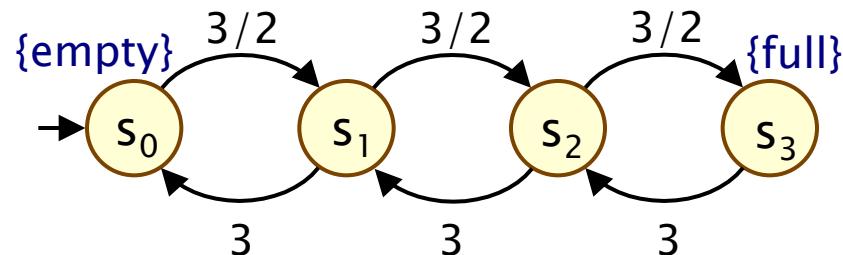


Time-bounded until – Example

- Computing the summation of matrix–vector multiplications

$$\text{Prob}(\phi_1 \text{ U}^{[0,t]} \phi_2) = \sum_{i=0}^{\infty} \left(\gamma_{q,t,i} \cdot \left(P^{\text{unif}(C[\phi_2][\neg\phi_1 \wedge \neg\phi_2])} \right)^i \cdot \phi_2 \right)$$

- yields $\text{Prob}(F^{[0,7.5]} \text{ full}) \approx [0.6482, 0.6823, 0.7811, 1]$
- $P_{>0.65}[F^{[0,7.5]} \text{ full}]$ satisfied in states s_1, s_2 and s_3



Time-bounded until – $P_{\sim p} [\phi_1 \text{ U}^{[t,t']} \phi_2]$

- In this case the computation can be split into two parts:
- 1. Probability of remaining in ϕ_1 states until time t
 - can be computed as **transient probabilities** on the CTMC where are **states satisfying $\neg\phi_1$** have been made **absorbing**
- 2. Probability of reaching a ϕ_2 state, while remaining in states satisfying ϕ_1 , within the time interval $[0, t' - t]$
 - i.e. computing **Prob**($\phi_1 \text{ U}^{[0,t'-t]} \phi_2$)

$$\text{Prob}(s, \phi_1 \text{ U}^{[t,t']} \phi_2) = \sum_{s' \in \text{Sat}(\phi_1)} \pi_{s,t}^{C[\neg\phi_1]}(s') \cdot \text{Prob}(s', \phi_1 \text{ U}^{[0,t'-t]} \phi_2)$$

sum over states satisfying ϕ_1

Probability of reaching state s' at **time t** and satisfying ϕ_1 up until this point

probability $\phi_1 \text{ U}^{[0,t'-t]} \phi_2$ holds in s'

Time-bounded until – $P_{\sim p} [\phi_1 \text{ U}^{[t,t']} \phi_2]$

- Let $\text{Prob}_{\phi_1}(s, \phi_1 \text{ U}^{[0,t'-t]} \phi_2) = \text{Prob}(s, \phi_1 \text{ U}^{[0,t'-t]} \phi_2)$ if $s \in \text{Sat}(\phi_1)$ and 0 otherwise
- From the previous slide we have:

$$\begin{aligned}\text{Prob}(\phi_1 \text{ U}^{[t,t']} \phi_2) &= \prod_t^{C[\neg\phi_1]} \cdot \text{Prob}_{\phi_1}(\phi_1 \text{ U}^{[0,t'-t]} \phi_2) \\ &= \left(\sum_{i=0}^{\infty} Y_{q,t,i} \cdot \left(P^{\text{unif}(C[\neg\phi_1])} \right)^i \right) \text{Prob}_{\phi_1}(\phi_1 \text{ U}^{[0,t'-t]} \phi_2) \\ &= \sum_{i=0}^{\infty} \left(Y_{q,t,i} \cdot \left(P^{\text{unif}(C[\neg\phi_1])} \right)^i \cdot \text{Prob}_{\phi_1}(\phi_1 \text{ U}^{[0,t'-t]} \phi_2) \right),\end{aligned}$$

- summation can be truncated using Fox and Glynn [FG88]
- can compute iteratively (only scalar and matrix–vector operations)

Time-bounded until – $P_{\sim p} [\phi_1 \text{ U}^{[t, \infty)} \phi_2]$

- Similar to the case for $\phi_1 \text{ U}^{[t, t']}$ ϕ_2 except second part is now **unbounded**, and hence the embedded DTMC can be used
- 1. Probability of remaining in ϕ_1 states until time t
- 2. Probability of reaching a ϕ_2 state, while remaining in states satisfying ϕ_1
 - i.e. computing $\text{Prob}(\phi_1 \text{ U}^{[0, \infty)} \phi_2)$

$$\text{Prob}(s, \phi_1 \text{ U}^{[t, \infty]} \phi_2) = \sum_{s' \in \text{Sat}(\phi_1)} \pi_{s,t}^{C[\neg \phi_1]}(s') \cdot \text{Prob}^{\text{emb}(C)}(s', \phi_1 \text{ U} \phi_2)$$

sum over states satisfying ϕ_1

Probability of reaching state s' at time t and satisfying ϕ_1 up until this point

probability $\phi_1 \text{ U}^{[0, \infty)} \phi_2$ holds in s'

Time-bounded until – $P_{\sim p} [\phi_1 \text{ U}^{[t, \infty)} \phi_2]$

- Letting $\text{Prob}_{\phi_1}(s, \phi_1 \text{ U}^{[0, \infty)} \phi_2) = \text{Prob}(s, \phi_1 \text{ U}^{[0, \infty)} \phi_2)$ if $s \in \text{Sat}(\phi_1)$ and 0 otherwise, we have:

$$\begin{aligned}\underline{\text{Prob}}(\phi_1 \text{ U}^{[t, \infty)} \phi_2) &= \Pi_t^{C[\neg \phi_1]} \cdot \underline{\text{Prob}}_{\phi_1}^{\text{emb}(C)}(\phi_1 \text{ U} \phi_2) \\ &= \left(\sum_{i=0}^{\infty} Y_{q \cdot t, i} \cdot \left(P^{\text{unif}(C[\neg \phi_1])} \right)^i \right) \underline{\text{Prob}}_{\phi_1}^{\text{emb}(C)}(\phi_1 \text{ U} \phi_2) \\ &= \sum_{i=0}^{\infty} \left(Y_{q \cdot t, i} \cdot \left(P^{\text{unif}(C[\neg \phi_1])} \right)^i \cdot \underline{\text{Prob}}_{\phi_1}^{\text{emb}(C)}(\phi_1 \text{ U} \phi_2) \right)\end{aligned}$$

- summation can be truncated using Fox and Glynn [FG88]
- can compute iteratively (only scalar and matrix–vector operations)

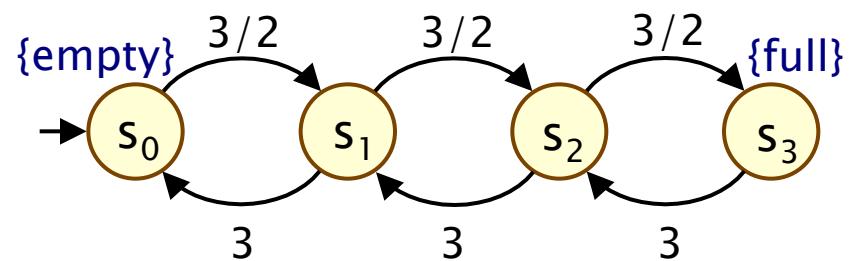
Model Checking – $S_{\sim p}[\phi]$

- A state s satisfies the formula $S_{\sim p}[\phi]$ if $\sum_{s' \models \phi} \underline{\pi}^C_s(s') \sim p$
 - $\underline{\pi}^C_s(s')$ is probability, having started in state s , of being in state s' in the long run
- Thus reduces to computing and then summing steady-state probabilities for the CTMC
- If CTMC is irreducible:
 - solution of one linear equation system
- If CTMC is reducible:
 - determine set of BSCCs for the CTMC
 - solve two linear equation systems for each BSCC T
 - one to obtain the vector $\text{ProbReach}^{\text{emb}(C)}(T)$
 - the other to compute the steady state probabilities $\underline{\pi}^T$ for T

$S_{\sim p}[\phi]$ – Example

- $S_{<0.1}[\text{full}]$
- CTMC is irreducible (comprises a single BSCC)
 - steady state probabilities independent of starting state
 - can be computed by solving $\underline{\pi} \cdot Q = 0$ and $\sum \underline{\pi}(s) = 1$

$$Q = \begin{bmatrix} -3/2 & 3/2 & 0 & 0 \\ 3 & -9/2 & 3/2 & 0 \\ 0 & 3 & -9/2 & 3/2 \\ 0 & 0 & 3 & -3 \end{bmatrix}$$



$S_{\sim p}[\phi]$ – Example

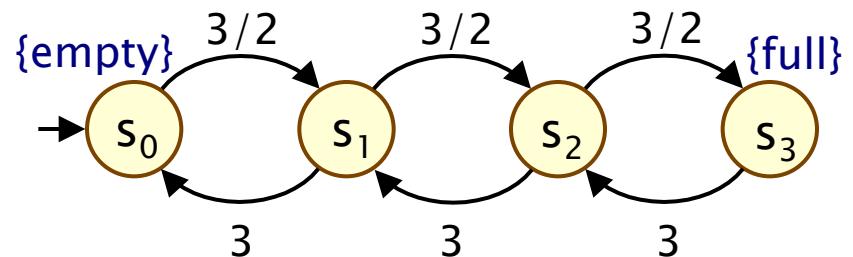
$$-3/2 \cdot \underline{\pi}(s_0) + 3 \cdot \underline{\pi}(s_1) = 0$$

$$3/2 \cdot \underline{\pi}(s_0) - 9/2 \cdot \underline{\pi}(s_1) + 3 \cdot \underline{\pi}(s_2) = 0$$

$$3/2 \cdot \underline{\pi}(s_1) - 9/2 \cdot \underline{\pi}(s_2) + 3 \cdot \underline{\pi}(s_3) = 0$$

$$3/2 \cdot \underline{\pi}(s_2) - 3 \cdot \underline{\pi}(s_3) = 0$$

$$\underline{\pi}(s_0) + \underline{\pi}(s_1) + \underline{\pi}(s_2) + \underline{\pi}(s_3) = 1$$

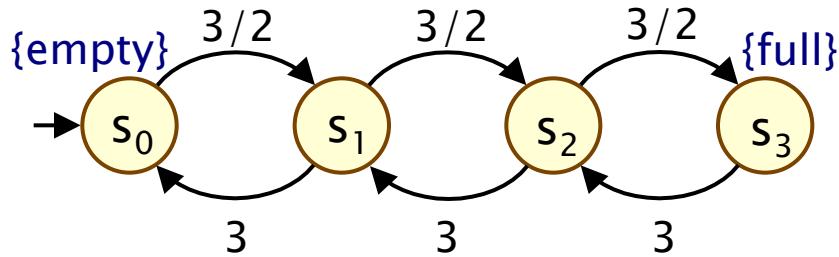


- solution: $\underline{\pi} = [8/15, 4/15, 2/15, 1/15]$
- $\sum_{s' \models \text{Sat(full)}} \underline{\pi}(s') = 1/15 < 0.1$
- so all states satisfy $S_{<0.1}[\text{full}]$

Rewards (or costs)

- Like DTMCs, we can augment CTMCs with rewards
 - real-valued quantities assigned to states and/or transitions
 - can be interpreted in two ways: instantaneous/cumulative
 - properties considered here: expected value of rewards
 - formal property specifications in an extension of CSL
- For a CTMC $(S, s_{\text{init}}, R, L)$, a reward structure is a pair (ρ, ι)
 - $\rho : S \rightarrow \mathbb{R}_{\geq 0}$ is a vector of state rewards
 - $\iota : S \times S \rightarrow \mathbb{R}_{\geq 0}$ is a matrix of transition rewards
- For **cumulative** reward-based properties of CTMCs
 - state rewards interpreted as **rate** at which reward gained
 - if the CTMC remains in state s for $t \in \mathbb{R}_{>0}$ time units, a reward of $t \cdot \rho(s)$ is acquired

Reward structures – Examples

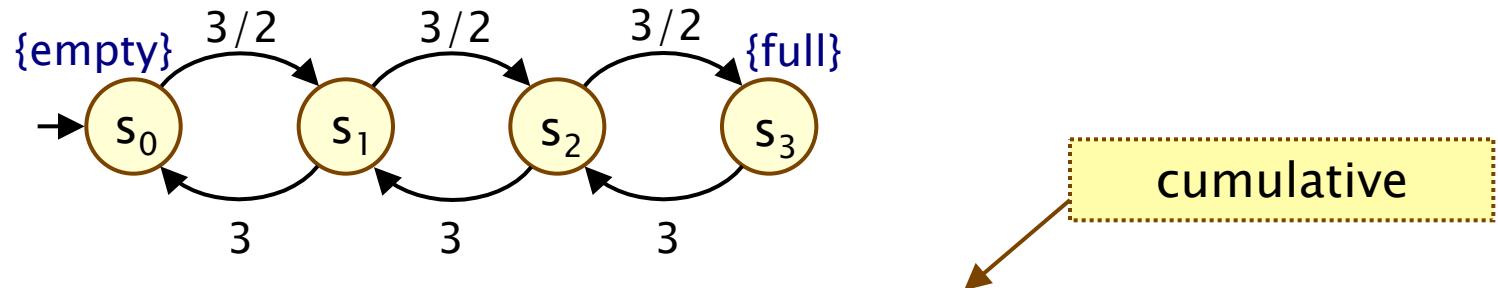


- Example: “size of message queue”
 - $\rho(s_i)=i$ and $\iota(s_i, s_j)=0 \forall i, j$
- Example: “time for which queue is not full”
 - $\rho(s_i)=1$ for $i < 3$, $\rho(s_3)=0$ and $\iota(s_i, s_j)=0 \forall i, j$

instantaneous

cumulative

Reward structures – Examples

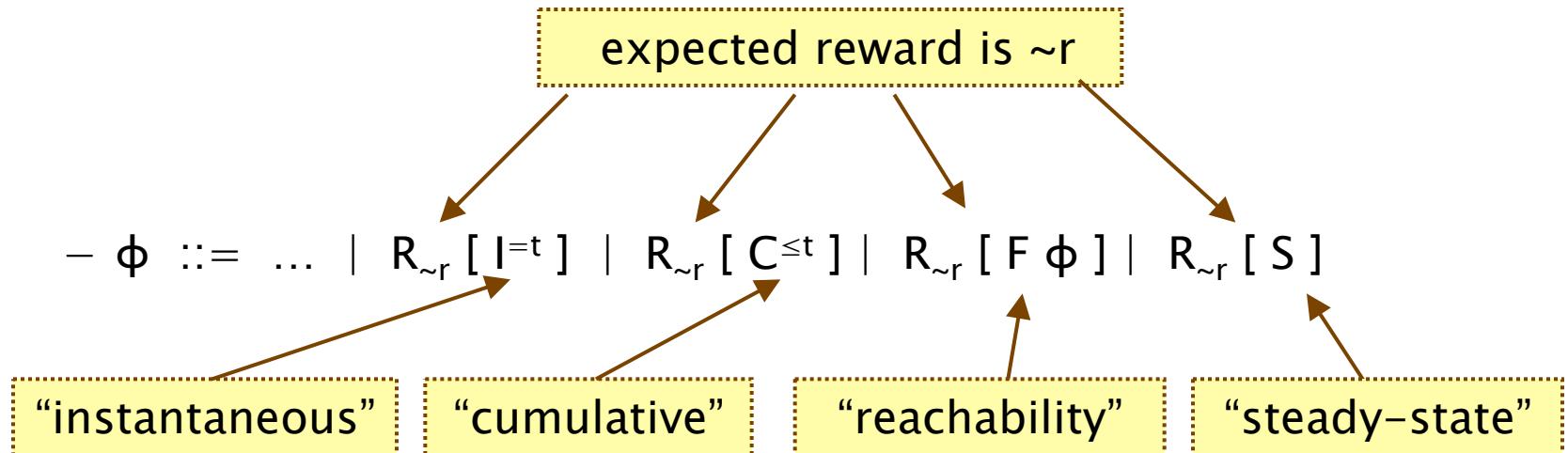


- Example: “number of requests served”

$$\rho = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \iota = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

CSL and rewards

- PRISM extends CSL to incorporate reward-based properties
 - adds R operator like the one added to PCTL



- where $r, t \in \mathbb{R}_{\geq 0}$, $\sim \in \{<, >, \leq, \geq\}$
- $R_{\sim r} [\cdot]$ means “the expected value of \cdot satisfies $\sim r$ ”

Types of reward formulae

- Instantaneous: $R_{\sim r} [I^=t]$
 - the expected value of the reward at time-instant t is $\sim r$
 - “the expected queue size after 6.7 seconds is at most 2”
- Cumulative: $R_{\sim r} [C^{\leq t}]$
 - the expected reward cumulated up to time-instant t is $\sim r$
 - “the expected requests served within the first 4.5 seconds of operation is less than 10”
- Reachability: $R_{\sim r} [F \phi]$
 - the expected reward cumulated before reaching ϕ is $\sim r$
 - “the expected requests served before the queue becomes full”
- Steady-state $R_{\sim r} [S]$
 - the long-run average expected reward is $\sim r$
 - “expected long-run queue size is at least 1.2”

Reward properties in PRISM

- Quantitative form:
 - e.g. $R_{=?} [C^{\leq t}]$
 - what is the expected reward cumulated up to time-instant t ?
- Add labels to R operator to distinguish between multiple reward structures defined on the same CTMC
 - e.g. $R_{\{num_req\}=?} [C^{\leq 4.5}]$
 - “the expected number of requests served within the first 4.5 seconds of operation”
 - e.g. $R_{\{pow\}=?} [C^{\leq 4.5}]$
 - “the expected power consumption within the first 4.5 seconds of operation”

Reward formula semantics

- Formal semantics of the four reward operators:

$$\begin{array}{llll} - s \models R_{\sim r} [I^{=t}] & \Leftrightarrow & \text{Exp}(s, X_{I=t}) \sim r \\ - s \models R_{\sim r} [C^{\leq t}] & \Leftrightarrow & \text{Exp}(s, X_{C \leq t}) \sim r \\ - s \models R_{\sim r} [F \Phi] & \Leftrightarrow & \text{Exp}(s, X_{F\Phi}) \sim r \\ - s \models R_{\sim r} [S] & \Leftrightarrow & \lim_{t \rightarrow \infty} (1/t \cdot \text{Exp}(s, X_{C \leq t})) \sim r \end{array}$$

- where:

– $\text{Exp}(s, X)$ denotes the **expectation** of the **random variable**
 $X : \text{Path}(s) \rightarrow \mathbb{R}_{\geq 0}$ with respect to the **probability measure** Pr_s

Reward formula semantics

- Definition of random variables:

- path $\omega = s_0 t_0 s_1 t_1 s_2 \dots$

$$X_{I=k}(\omega) = \underline{\rho}(\omega @ t)$$

state of ω at time t

$$X_{C \leq t}(\omega) = \sum_{i=0}^{j_t-1} \left(t_i \cdot \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) \right) + \left(t - \sum_{i=0}^{j_t-1} t_i \right) \cdot \underline{\rho}(s_{j_t})$$

time spent in state s_i

time spent in state s_{j_t} before t time units have elapsed

$$X_{F\phi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in \text{Sat}(\phi) \\ \infty & \text{if } s_i \notin \text{Sat}(\phi) \text{ for all } i \geq 0 \\ \sum_{i=0}^{k_\phi-1} t_i \cdot \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

- where $j_t = \min\{ j \mid \sum_{i \leq j} t_i \geq t \}$ and $k_\phi = \min\{ i \mid s_i \models \phi \}$

Model checking reward formulae

- Instantaneous: $R_{\sim r} [I^{=t}]$
 - reduces to transient analysis (state of the CTMC at time t)
 - use **uniformisation**
- Cumulative: $R_{\sim r} [C^{\leq t}]$
 - extends approach for time-bounded until
 - based on **uniformisation**
- Reachability: $R_{\sim r} [F \phi]$
 - can be computed on the embedded DTMC
 - reduces to solving a **system of linear equations**
- Steady-state: $R_{\sim r} [S]$
 - similar to steady state formulae $S_{\sim r} [\phi]$
 - **graph based analysis** (compute BSCCs)
 - **solve systems of linear equations** (compute steady state probabilities of each BSCC)

CSL model checking complexity

- For model checking of a CTMC complexity:
 - linear in $|\Phi|$ and polynomial in $|S|$
 - linear in $q \cdot t_{\max}$ (t_{\max} is maximum finite bound in intervals)
- $P_{\sim p}[\Phi_1 \cup^{[0, \infty)} \Phi_2]$, $S_{\sim p}[\Phi]$, $R_{\sim r}[F \Phi]$ and $R_{\sim r}[S]$
 - require solution of linear equation system of size $|S|$
 - can be solved with Gaussian elimination: cubic in $|S|$
 - precomputation algorithms (max $|S|$ steps)
- $P_{\sim p}[\Phi_1 \cup^l \Phi_2]$, $R_{\sim r}[C^{\leq t}]$ and $R_{\sim r}[I^{=t}]$
 - at most two iterative sequences of matrix–vector products
 - operation is quadratic in the size of the matrix, i.e. $|S|$
 - total number of iterations bounded by Fox and Glynn
 - the bound is linear in the size of $q \cdot t$ (q uniformisation rate)

Summing up...

- Model checking a CSL formula ϕ on a CTMC
 - recursive: bottom-up traversal of parse tree of ϕ
- Main work: computing probabilities for P and S operators
 - untimed ($X \phi$, $\phi_1 \cup \phi_2$): perform on embedded DTMC
 - time-bounded until: use uniformisation-based methods, rather than more expensive solution of integral equations
 - other forms of time-bounded until, i.e. $[t_1, t_2]$ and $[t, \infty)$, reduce to two sequential computations like for $[0, t]$
 - S operator: summation of steady-state probabilities
- Rewards – similar to DTMCs
 - except for continuous-time accumulation of state rewards
 - extension of CSL with R operator
 - model checking of R comparable with that of P

Lecture 11

Counterexamples + Bisimulation

Dr. Dave Parker

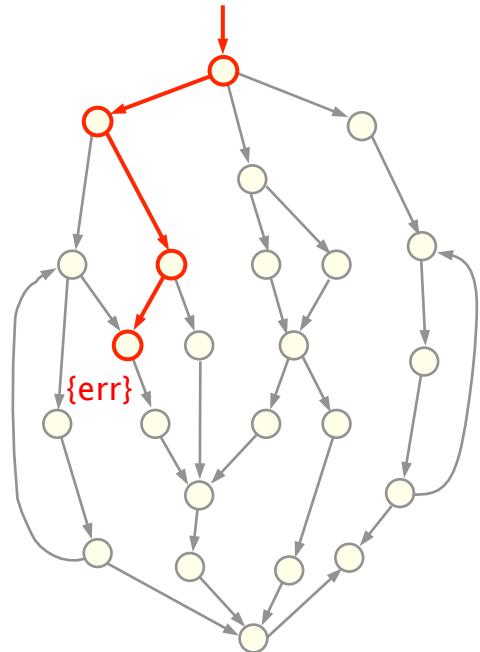
Department of Computer Science
University of Oxford

Overview

- **Counterexamples**
 - non-probabilistic model checking
 - counterexamples for PCTL + DTMCs
 - computing smallest counterexamples
- **Bisimulation**
 - bisimulation equivalences: DTMCs, CTMCs
 - preservation of logics: PCTL, CSL
 - bisimulation minimisation

Non probabilistic counterexamples

- Counterexamples (for non-probabilistic model checking)
 - generated when model checking a (universal) property fails
 - trace through model illustrating why property does not hold
 - major advantage of the model checking approach
 - bug finding vs. verification
- Example:
 - CTL property $AG \neg \text{err}$
 - (or equivalently, $\neg EF \text{ err}$)
 - (“an error state is never reached”)
 - counterexample is a finite trace to a state satisfying err
 - alternatively, this is a witness to the satisfaction of formula $EF \text{ err}$



Counterexamples for DTMCs?

- PCTL example: $P_{<0.01} [F \text{ err}]$
 - “the probability of reaching an error state is less than 0.01”
 - what is a counterexample for $s \not\models P_{<0.01} [F \text{ err}]$?
 - not necessarily illustrated by a single trace to an **err** state
 - in fact, “counterexample” is a set of paths satisfying $F \text{ err}$ whose combined measure is greater than or equal to 0.01
- Alternative approach to “debugging” seen so far:
 - probabilistic model checker provides actual probabilities
 - e.g. queries of the form $P_{=?} [F \text{ err}]$
 - anomalous behaviour identified by examining trends
 - e.g. $P_{=?} [F^{\leq T} \text{ err}]$ for $T=0, \dots, 100$
- This lecture: DTMC counterexamples in style of [HK07]
 - also some work done on CTMC/MDP counterexamples

DTMC notation

- DTMC: $D = (S, s_{\text{init}}, P, L)$
- $\text{Path}(s) = \text{set of all infinite paths starting in state } s$
- $\Pr_s : \Sigma_{\text{Path}(s)} \rightarrow [0,1] = \text{probability measure over infinite paths}$
 - where $\Sigma_{\text{Path}(s)}$ is the σ -algebra on $\text{Path}(s)$
 - defined in terms of probabilities for finite paths
- $P_s(\omega) = \text{probability for finite path } \omega = ss_1\dots s_n$
 - $P_s(s) = 1$
 - $P_s(ss_1\dots s_n) = P(s, s_1) \cdot P(s_1, s_2) \cdot \dots \cdot P(s_{n-1}, s_n)$
 - extend notation to sets: $P_s(C)$ for set of finite paths C
 - P_s extends uniquely to \Pr_s
- $\text{Path}(s, \psi) = \{ \omega \in \text{Path}(s) \mid \omega \models \psi \}$
 - $\text{Prob}(s, \psi) = \Pr_s(\text{Path}(s, \psi))$
- $\text{Path}_{\text{fin}}(s, \psi) = \text{set of finite paths from } s \text{ satisfying } \psi$

Counterexamples for DTMCs

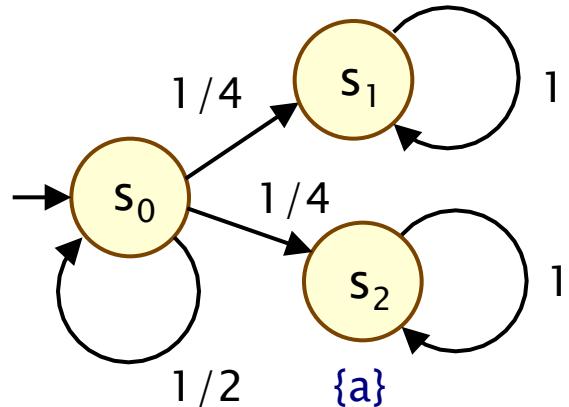
- Consider PCTL properties of the form:
 - $P_{\leq p} [\Phi_1 U^{\leq k} \Phi_2]$, where $k \in \mathbb{N} \cup \{\infty\}$
 - i.e. bounded or unbounded until formulae with closed upper probability bounds
- Refutation:
 - $s \not\models P_{\leq p} [\Phi_1 U^{\leq k} \Phi_2]$
 - $\Leftrightarrow \Pr_s(\text{Path}(s, \Phi_1 U^{\leq k} \Phi_2)) > p$
 - i.e. total probability mass of $\Phi_1 U^{\leq k} \Phi_2$ paths exceeds p
- Since the property is an until formula
 - this is evidenced by a set of finite paths

Counterexamples for DTMCs

- A counterexample for $P_{\leq p} [\Phi_1 \cup^{\leq k} \Phi_2]$ in state s is:
 - a set C of finite paths such that $C \subseteq \text{Path}_{\text{fin}}(s, \psi)$ and $P_s(C) > p$

- Example

- Consider the PCTL formula:
 - $P_{\leq 0.3} [F a]$
 - This is not satisfied in s_0
 - $\text{Prob}(s_0, F a) = 1/4 + 1/8 + 1/16 + \dots = 1/2$
 - A counterexample: $C = \{s_0s_2, s_0s_0s_2\}$
 - $P_{s_0}(C) = 1/4 + (1/2)(1/4) = 3/8 = 0.375$



Finiteness of counterexamples

- There is always a finite counterexample for:

- $s \not\models P_{\leq p} [\Phi_1 \cup^{\leq k} \Phi_2]$

- On the other hand, consider this DTMC:

- and the PCTL formula:

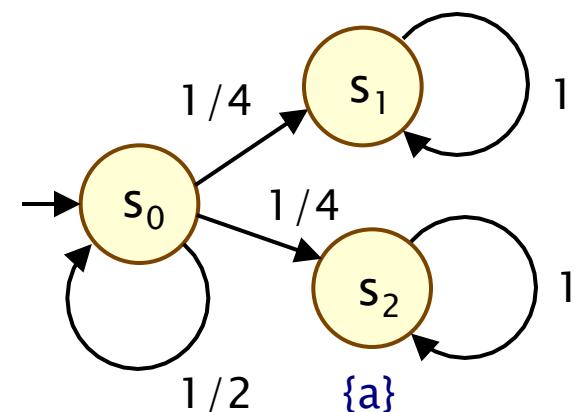
- $P_{<1/2} [F a]$

- $\text{Prob}(s_0, F a) = 1/4 + 1/8 + 1/16 + \dots = 1/2$

- $s_0 \not\models P_{<1/2} [F a]$

- counterexample would require infinite set of paths

- $\{ (s_0)^i s_2 \}_{i \in \mathbb{N}}$



Counterexamples for DTMCs

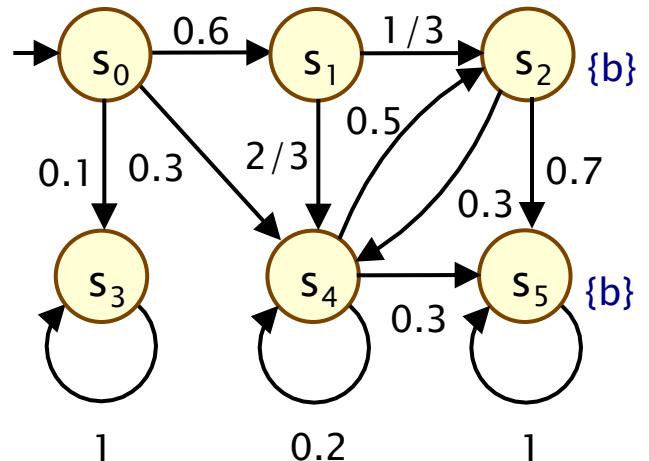
- Aim: counterexamples should be succinct, comprehensible
- Set of all counterexamples:
 - $CX_p(s, \psi)$ = set of all counterexamples for $P_{\leq p} [\psi]$ in state s
- Minimal counterexample
 - counterexample C with $|C| \leq |C'|$ for all $C' \in CX_p(s, \psi)$
- “Smallest” counterexample
 - minimal counterexample C with $P(C) \geq P(C')$ for all minimal $C' \in CX_p(s, \psi)$
 - reduces to finding...
- Strongest (most probable) evidence
 - finite path ω in $Path_{fin}(s, \psi)$ such that $P(\omega) \geq P(\omega')$ for all $\omega' \in Path_{fin}(s, \psi)$
 - i.e. contributes most to violation of PCTL formula

Example

- PCTL formula: $P_{\leq 1/2} [F b]$
 - $s_0 \not\models P_{\leq 1/2} [F b]$
 - since $\text{Prob}(s_0, F b) = 0.9$

- Counterexamples:

- $C_1 = \{ s_0s_1s_2, s_0s_1s_4s_2, s_0s_1s_4s_5, s_0s_4s_2 \}$
 - $P_{s_0}(C_1) = 0.2 + 0.2 + 0.12 + 0.15 = 0.67$ (not minimal)
- $C_2 = \{ s_0s_1s_2, s_0s_1s_4s_2, s_0s_1s_4s_5 \}$
 - $P_{s_0}(C_2) = 0.2 + 0.2 + 0.12 = 0.52$ (not “smallest”)
- $C_3 = \{ s_0s_1s_2, s_0s_1s_4s_2, s_0s_4s_2 \}$
 - $P_{s_0}(C_3) = 0.2 + 0.2 + 0.15 = 0.55$ (“smallest”)



Weighted digraphs

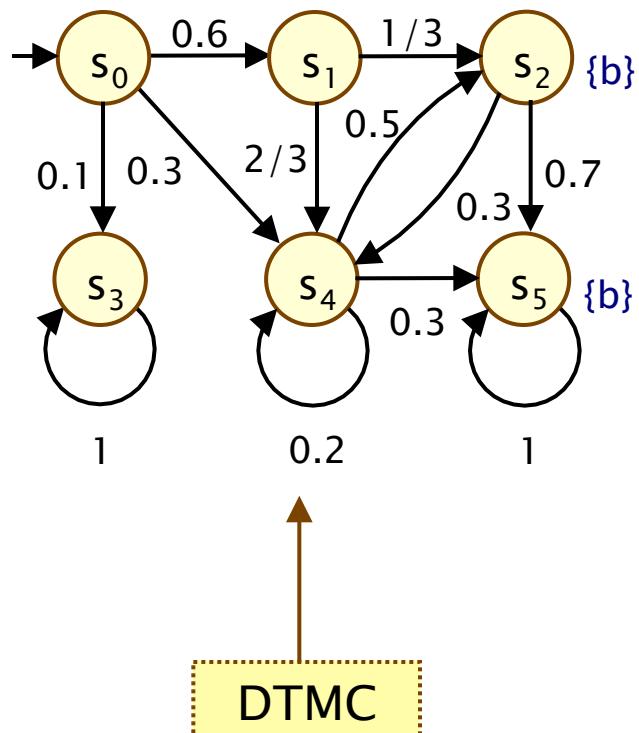
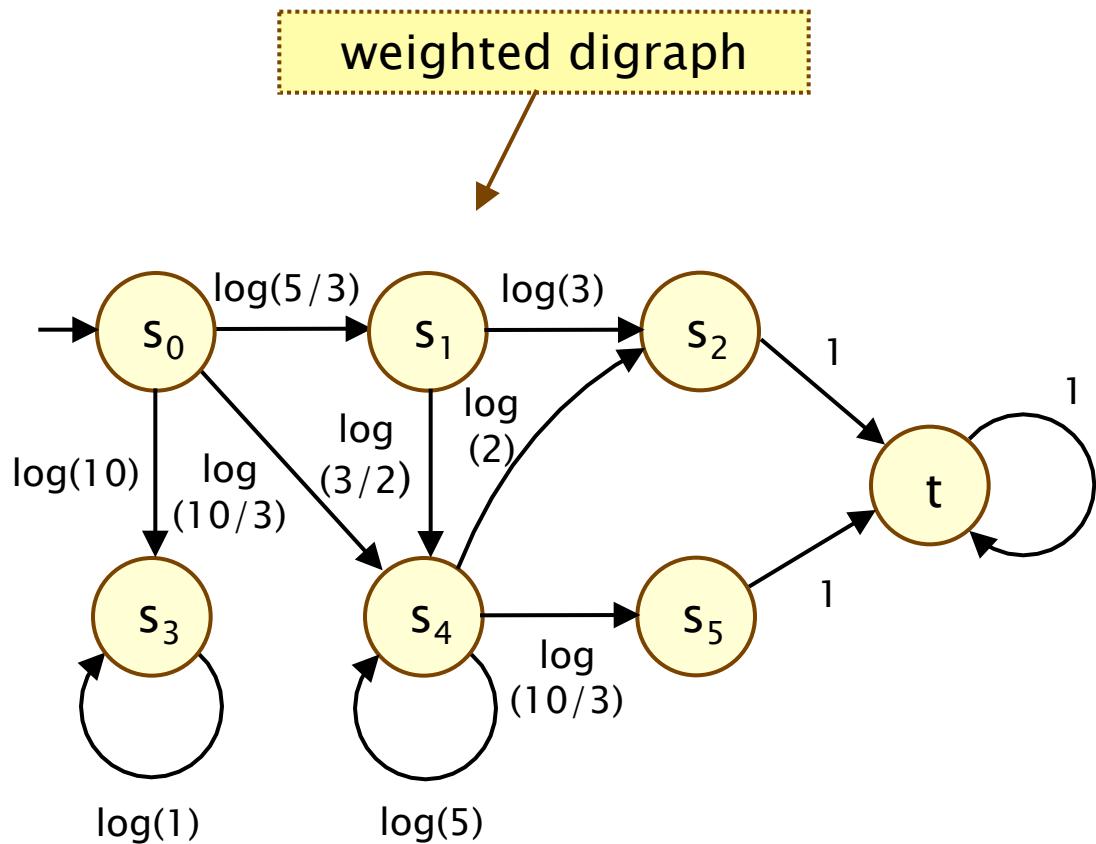
- A weighted directed graph is a tuple $G = (V, E, w)$ where:
 - V is a set of **vertices**
 - $E \subseteq V \times V$ is a set of **edges**
 - $w : E \rightarrow \mathbb{R}_{\geq 0}$ is a **weight function**
- Finite path ω in G
 - is a sequence of vertices $v_0v_1v_2\dots v_n$ such that $(v_i, v_{i+1}) \in E \ \forall i \geq 0$
 - the **distance** of $\omega = v_0v_1v_2\dots v_n$ is: $\sum_{i=0\dots n-1} w(v_i, v_{i+1})$
- Shortest path problem
 - given a weighted digraph, find a path between two vertices v_1 and v_2 with the **smallest distance**
 - i.e. a path ω s.t. $d(\omega) \leq d(\omega')$ for all other such paths ω'

Finding strongest evidences

- Reduction to graph problem...
- Step 1: Adapt the DTMC
 - make states satisfying $\neg\Phi_1 \wedge \neg\Phi_2$ absorbing
 - (i.e. replace all outgoing transitions with a single self-loop)
 - add an extra state t and replace all transitions from any Φ_2 state with a single transition to t (with probability 1)
- Step 2: Convert new DTMC into a weighted digraph
 - for the (adapted) DTMC $D = (S, s_{\text{init}}, P, L)$:
 - corresponding graph is $G_D = (V, E, w)$ where:
 - $V = S$ and $E = \{ (s, s') \in S \times S \mid P(s, s') > 0 \}$
 - $w(s, s') = \log(1 / P(s, s'))$
- Key idea: for any two paths ω and ω' in D (and in G_D)
 - $P_s(\omega') \geq P_s(\omega)$ if and only if $d(\omega') \leq d(\omega)$

Example...

- PCTL formula: $P_{\leq 1/2} [F b]$



Finding strongest evidences

- To find strongest evidence in DTMC D
 - analyse corresponding digraph
- For unbounded until formula $P_{\leq p} [\Phi_1 \mathbin{U} \Phi_2]$
 - solve shortest path problem in digraph (target t)
 - polynomial time algorithms exist
 - e.g. Dijkstra's algorithm can be implemented in $O(|E| + |V| \cdot \log |V|)$
- For bounded until formula $P_{\leq p} [\Phi_1 \mathbin{U}^{\leq k} \Phi_2]$
 - solve special case of the constrained shortest path problem
 - also solvable in polynomial time
- Generation of smallest counterexamples
 - based on computation of k shortest paths
 - k can be computed on the fly

Other cases

- Lower bounds on probabilities
 - i.e. $s \not\models P_{\geq p} [\Phi_1 \cup^{\leq k} \Phi_2]$
 - negate until formula to reverse probability bound
 - solvable with BSCC computation + probabilistic reachability
 - for details, see [HK07]
- Continuous-time Markov chains
 - these techniques can be extended to CTMCs and CSL [HK07b]
 - naïve approach: apply DTMC techniques to uniformised DTMC
 - modifications required to get smaller counterexamples
 - another possibility: directed search based techniques [AHL05]

Bisimulation

- Identifies models with the same branching structure
 - i.e. the same stepwise behaviour
 - each model can simulate the actions of the other
 - guarantees that models satisfy many of the same properties
- Uses of bisimulation:
 - show equivalence between a model and its specification
 - state space reduction: bisimulation minimisation
- Formally, bisimulation is an equivalence relation over states
 - bisimilar states must have identical labelling and identical stepwise behaviour

Equivalence relations

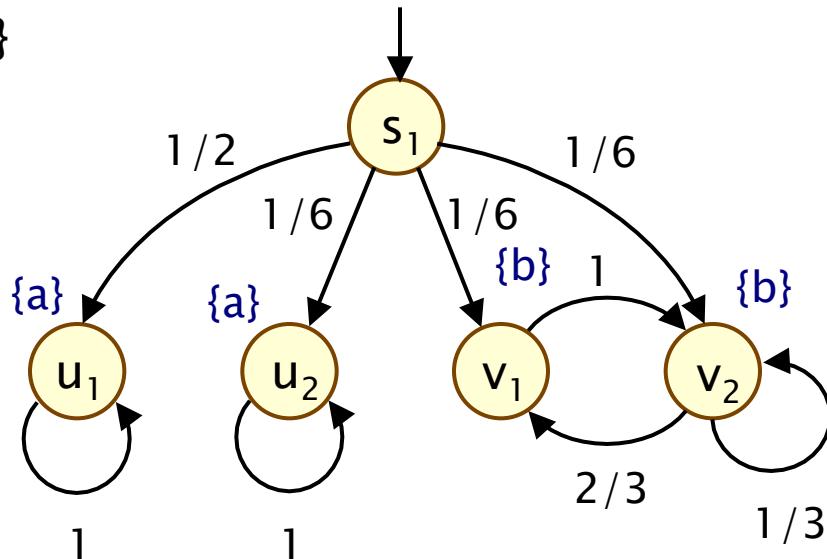
- Let R be a relation over some set S
 - i.e. $R \subseteq S \times S$
 - we write $s_1 R s_2$ as shorthand for $(s_1, s_2) \in R$
- R is an equivalence relation iff:
 - R is **reflexive**, i.e. $s R s$
 - R is **symmetric**, i.e. if $s_1 R s_2$ then $s_2 R s_1$
 - R is **transitive**, i.e. if $s_1 R s_2$ and $s_2 R s_3$ then $s_1 R s_3$
- R partitions S :
 - **equivalence classes**: $[s]_R = \{ s' \in S \mid s' R s \}$
 - the **quotient** of S under R is denoted $S/R = \{ [s]_R \mid s \in S \}$

Bisimulation on DTMCs

- Consider a DTMC $D = (S, s_{\text{init}}, P, L)$
- Some notation:
 - $P(s, T) = \sum_{s' \in T} P(s, s')$ for $T \subseteq S$
- An equivalence relation R on S is a **probabilistic bisimulation** on D if and only if for all $s_1 R s_2$:
 - $L(s_1) = L(s_2)$
 - $P(s_1, T) = P(s_2, T)$ for all $T \in S/R$ (i.e. for all equivalence classes of R)
- States s_1 and s_2 are **bisimulation-equivalent** (or **bisimilar**)
 - if there exists a probabilistic bisimulation R on D with $s_1 R s_2$
 - denoted $s_1 \sim s_2$

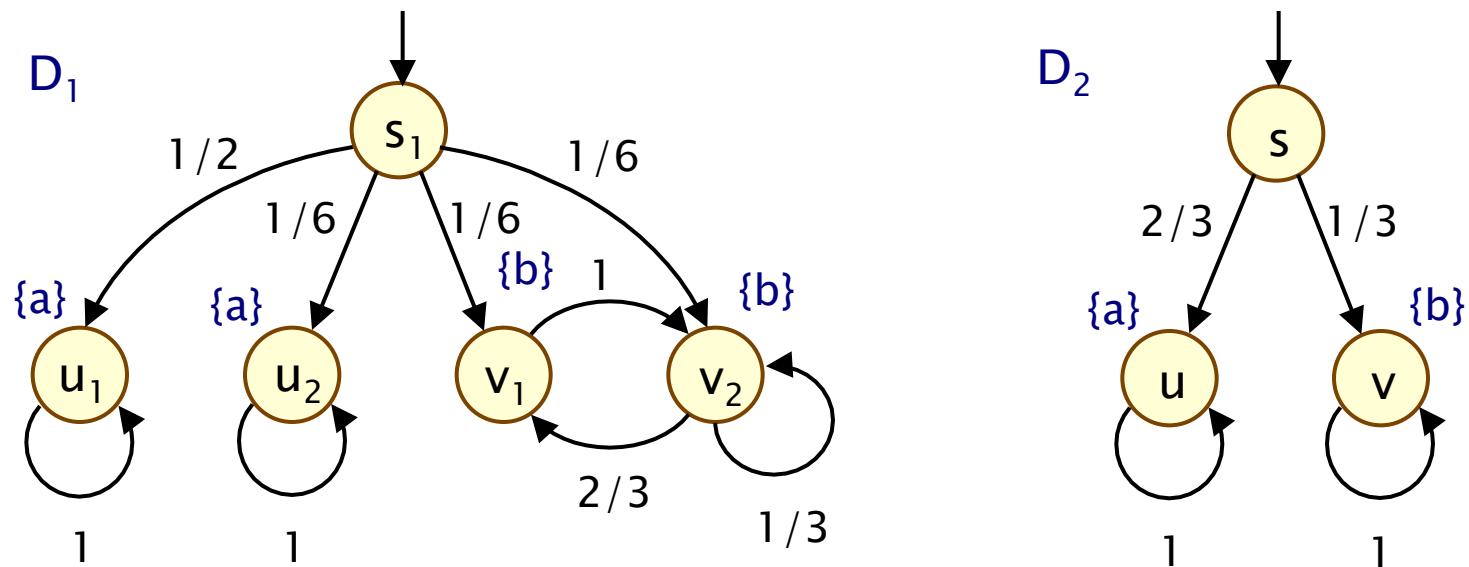
Simple example

- Bisimulation relation \sim
- Quotient of S under \sim
 - $\{ \{s_1\}, \{u_1, u_2\}, \{v_1, v_2\} \}$
- Bisimilar states:
 - $u_1 \sim u_2$
 - $v_1 \sim v_2$



Bisimulation on DTMCs

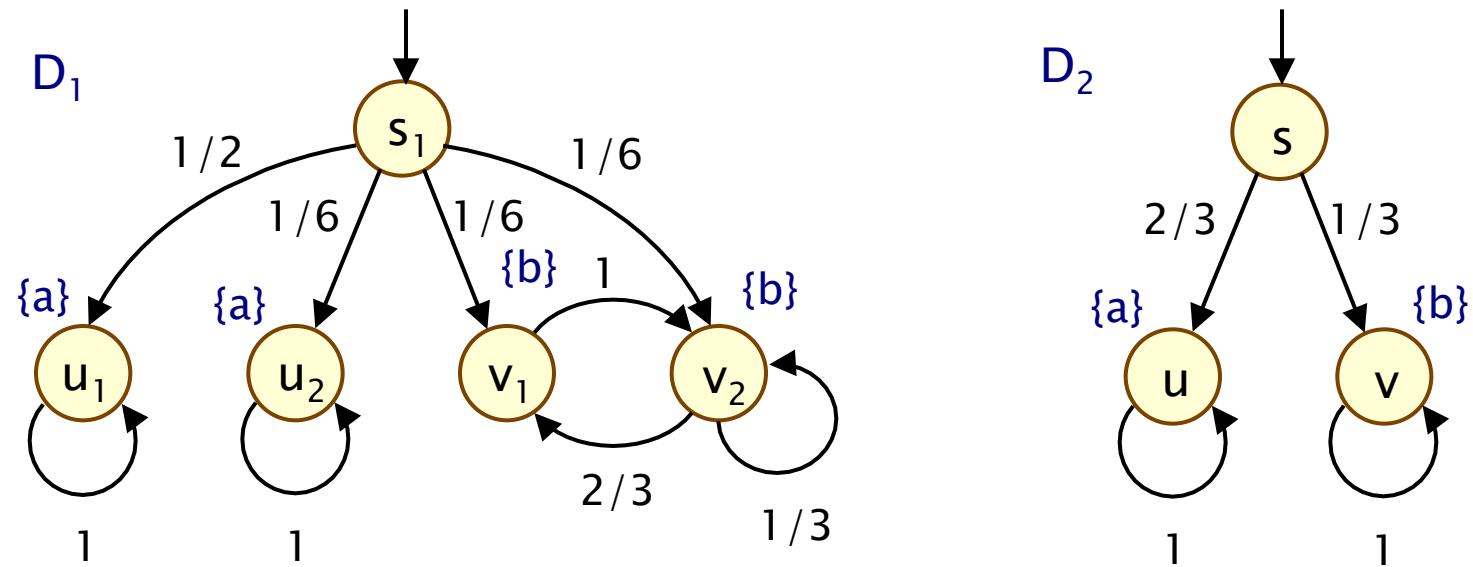
- Bisimulation between DTMCs D_1 and D_2
 - $D_1 \sim D_2$ if they have bisimilar initial states
- Formally:
 - state labellings for D_1 and D_2 over same set of atomic prop.s
 - bisimulation relation is over disjoint union of D_1 and D_2



Simple example

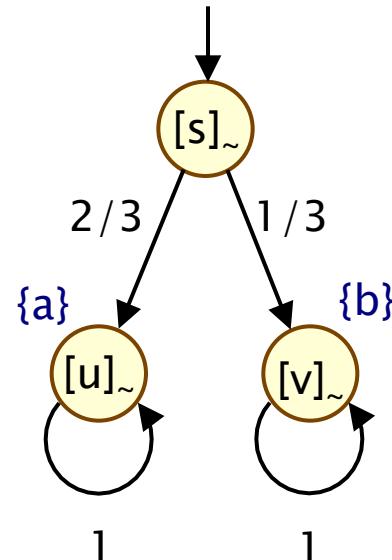
- Bisimilar states:
 - $u_1 \sim u_2 \sim u$
 - $v_1 \sim v_2 \sim v$
 - $s_1 \sim s$

Bisimilar DTMCs: $D_1 \sim D_2$



Quotient DTMC

- For a DTMC $D = (S, s_{\text{init}}, P, L)$ and probabilistic bisimulation \sim
- Quotient DTMC is
 - $D/\sim = (S', s'_{\text{init}}, P', L')$
- where:
 - $S' = S/\sim = \{ [s]_{\sim} \mid s \in S \}$
 - $s'_{\text{init}} = [s_{\text{init}}]_{\sim}$
 - $P'([s]_{\sim}, [s']_{\sim}) = P(s, [s']_{\sim})$
 - $L'([s]_{\sim}) = L(s)$



well defined since
bisimulation ensures
 $P(s, [s']_{\sim})$ same for all s in $[s]_{\sim}$

Bisimulation and PCTL

- Probabilistic bisimulation preserves all PCTL formulae
- For all states s and s' :

$$s \sim s'$$

$$\Leftrightarrow$$

for all PCTL formulae Φ , $s \models \Phi$ if and only if $s' \models \Phi$

- Note also:
 - every pair of non-bisimilar states can be distinguished with some PCTL formula
 - \sim is the coarsest relation with this property
 - in fact, bisimulation also preserves all PCTL* formulae

CTMC bisimulation

- Check equivalence of rates, not probabilities...
- An equivalence relation R on S is a probabilistic bisimulation on CTMC $C=(S,s_{\text{init}},R,L)$ if and only if for all $s_1 \ R \ s_2$:
 - $L(s_1) = L(s_2)$
 - $R(s_1, T) = R(s_2, T)$ for all classes T in S/R
- Alternatively, check:
 - $L(s_1) = L(s_2)$, $P^{\text{emb}(C)}(s_1, T) = P^{\text{emb}(C)}(s_2, T)$, $E(s_1) = E(s_2)$
- Bisimulation on CTMCs preserves CSL
 - (see [BHHK03] and also [DP03])

Bisimulation minimisation

- More efficient to perform PCTL/CSL model checking on the quotient DTMC/CTMC
 - assuming quotient model can be constructed efficiently
 - (see [KKZJ07] for experimental results on this)
- Bisimulation minimisation
 - algorithm to construct quotient model
 - based on partition refinement
 - repeated splitting of an initially coarse partition
 - final partition is coarsest bisimulation wrt. initial partition
 - (optimisations/variants possible by changing initial partition)
 - complexity: $O(|P| \cdot \log|S| + |AP| \cdot |S|)$ [DHS'03]
 - assuming suitable data structure used (splay trees)

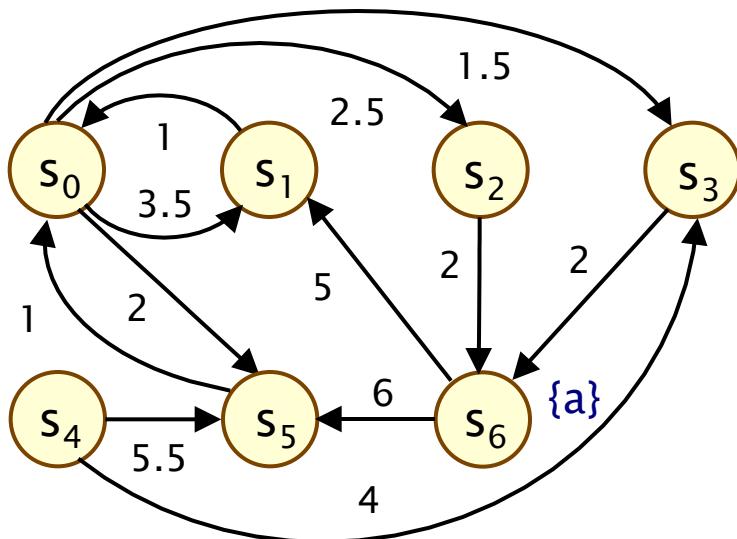
Bisimulation minimisation

- 1. Start with **initial partition**
 - say $\Pi = \{ \{ s \in S \mid L(s) = \text{lab} \} \mid \text{lab} \in 2^{\text{AP}} \}$
- 2. Find a **splitter** $T \in \Pi$ for some block $B \in \Pi$
 - a splitter T is a block such that probability of going to T differs for some states in block B
 - i.e. $\exists s, s' \in B . P(s, T) \neq P(s', T)$
- 3. **Split B into sub-blocks**
 - such that $P(s, T)$ is the same for all states in each sub-block
- 4. **Repeat steps 2/3 until no more splitters exist**
 - i.e. no change to partition Π

replace P with R
for CTMCs

CTMC example

- Consider model checking $P_{\sim p} [F^{[0,t]} a]$ on this CTMC:



Minimisation:

$\Pi_0: B_1 = \{s_0, s_1, s_2, s_3, s_4, s_5\}, B_2 = \{s_6\}$

B_2 is a splitter for B_1

(since e.g. $R(s_1, B_2) = 0 \neq 2 = R(s_2, B_2)$)

$\Pi_1: B_1 = \{s_0, s_1, s_4, s_5\}, B_2 = \{s_6\}, B_3 = \{s_2, s_3\}$

B_3 is a splitter for B_1

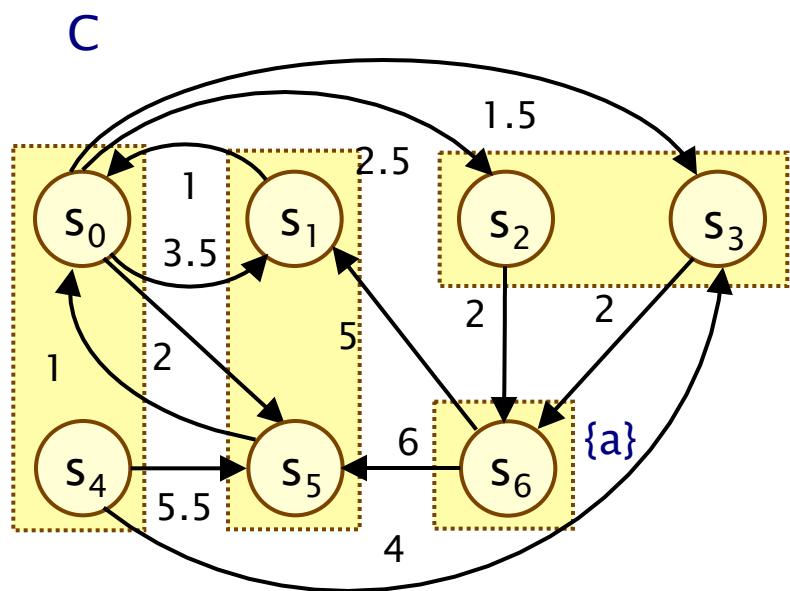
(since e.g. $R(s_1, B_3) = 0 \neq 4 = R(s_0, B_3)$)

$\Pi_2: B_1 = \{s_1, s_5\}, B_2 = \{s_6\}, B_3 = \{s_2, s_3\}, B_4 = \{s_0, s_4\}$

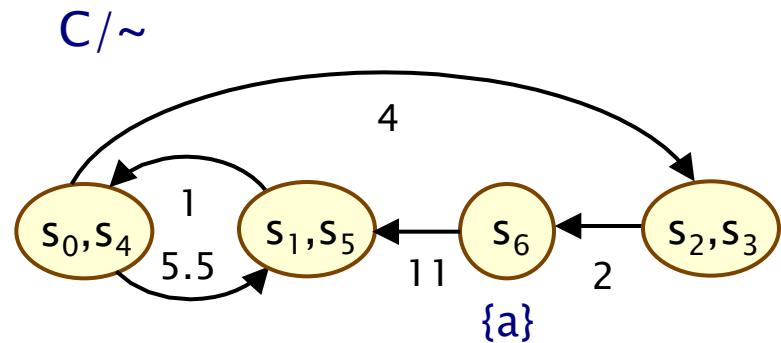
No more splitters...

$S/\sim = \{ \{s_1, s_5\}, \{s_6\}, \{s_2, s_3\}, \{s_0, s_4\} \}$

CTMC example...



$$S/\sim = \{ \{s_1, s_5\}, \{s_6\}, \{s_2, s_3\}, \{s_0, s_4\} \}$$



$$\text{Prob}^C(s_0, F^{[0,t]} a) = \text{Prob}^{C/\sim}(\{s_0, s_4\}, F^{[0,t]} a)$$

Summing up...

- **Counterexamples**
 - essential ingredient of non-probabilistic model checking
 - counterexamples for PCTL + DTMCs
 - finite set of paths showing $\not\models P_{\leq p} [\Phi_1 \cup^{\leq k} \Phi_2]$
 - computing smallest counterexamples
 - reduction to well-known graph problems
- **Bisimulation**
 - relates states/Markov chains with identical labelling and identical stepwise behaviour
 - preserves PCTL, CSL, ...
 - bisimulation minimisation: automated reduction to quotient model

Lecture 12

Markov Decision Processes

Dr. Dave Parker

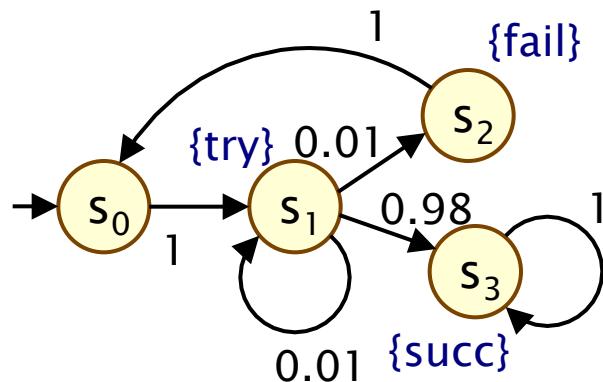
Department of Computer Science
University of Oxford

Overview

- Nondeterminism
- Markov decision processes (MDPs)
- Paths, probabilities and adversaries
- End components

Recap: DTMCs

- Discrete-time Markov chains (DTMCs)
 - discrete state space, transitions are discrete time-steps
 - from each state, choice of successor state (i.e. which transition) is determined by a **discrete probability distribution**



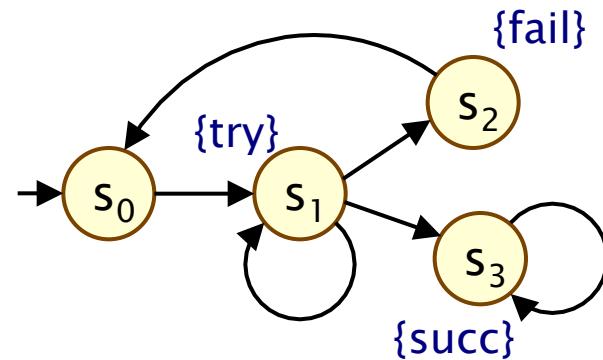
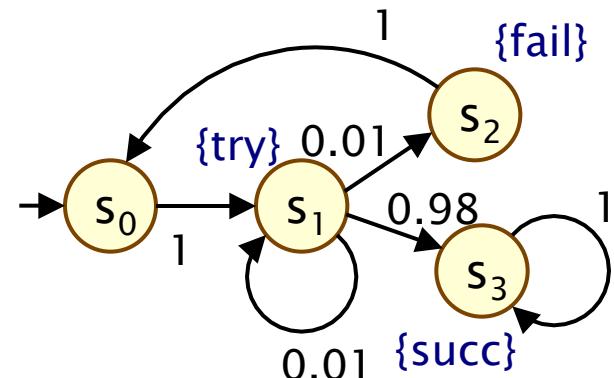
- DTMCs are **fully probabilistic**
 - well suited to modelling, for example, simple random algorithms or **synchronous** probabilistic systems where components move in **lock-step**

Nondeterminism

- But, some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- **Concurrency** – scheduling of parallel components
 - e.g. randomised distributed algorithms – multiple probabilistic processes operating **asynchronously**
- **Unknown environments**
 - e.g. probabilistic security protocols – unknown adversary
- **Underspecification** – unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{\min} and d_{\max}
- **Abstraction**
 - e.g. partition DTMC into similar (but not identical) states

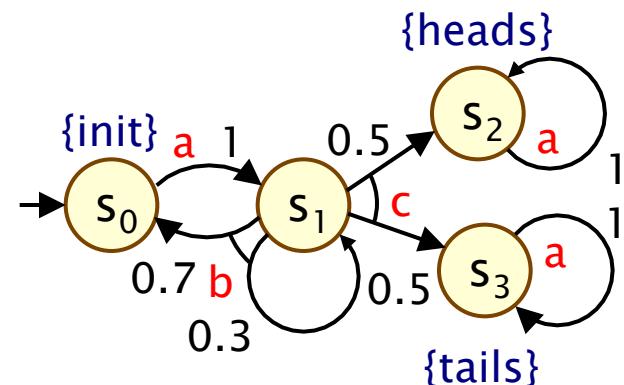
Probability vs. nondeterminism

- Labelled transition system
 - (S, s_0, R, L) where $R \subseteq S \times S$
 - choice is **nondeterministic**
- Discrete-time Markov chain
 - (S, s_0, P, L) where $P : S \times S \rightarrow [0, 1]$
 - choice is **probabilistic**
- How to combine?



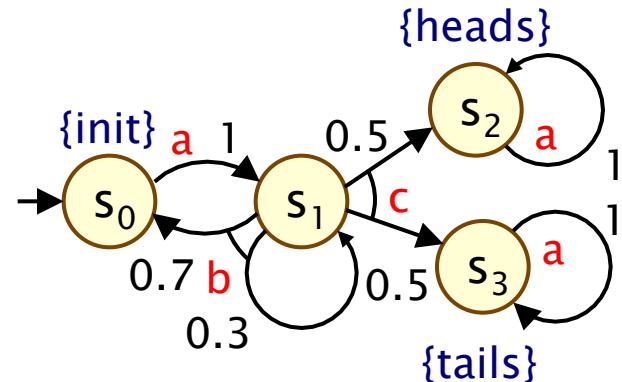
Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs which allow **nondeterministic choice**
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states



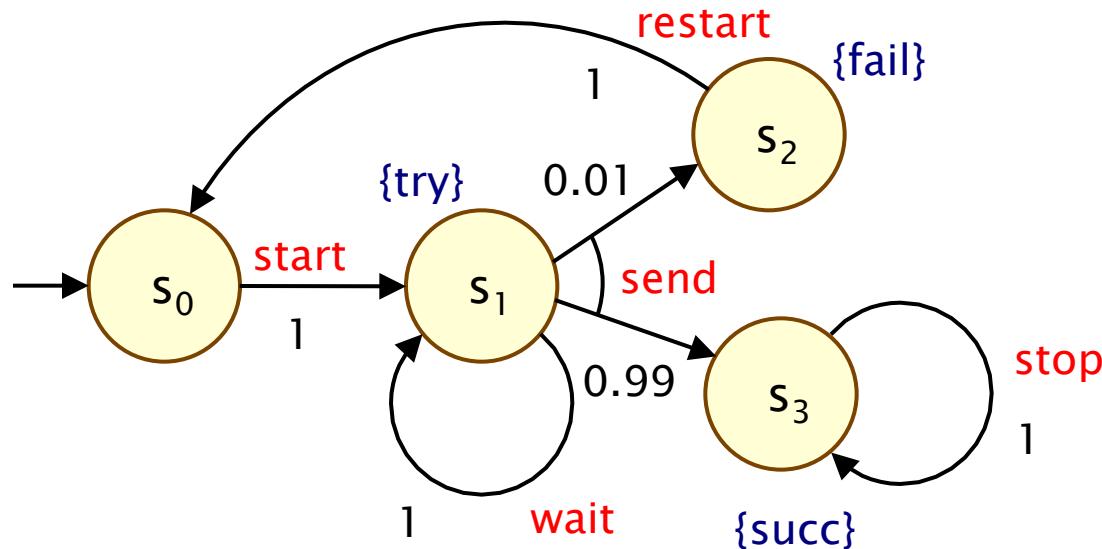
Markov decision processes

- Formally, an MDP M is a tuple $(S, s_{\text{init}}, \text{Steps}, L)$ where:
 - S is a finite set of states (“state space”)
 - $s_{\text{init}} \in S$ is the initial state
 - $\text{Steps} : S \rightarrow 2^{\text{Act} \times \text{Dist}(S)}$ is the **transition probability function**
where Act is a set of actions and $\text{Dist}(S)$ is the set of discrete probability distributions over the set S
 - $L : S \rightarrow 2^{\text{AP}}$ is a labelling with atomic propositions
- Notes:
 - $\text{Steps}(s)$ is always non-empty, i.e. no deadlocks
 - the use of actions to label distributions is optional



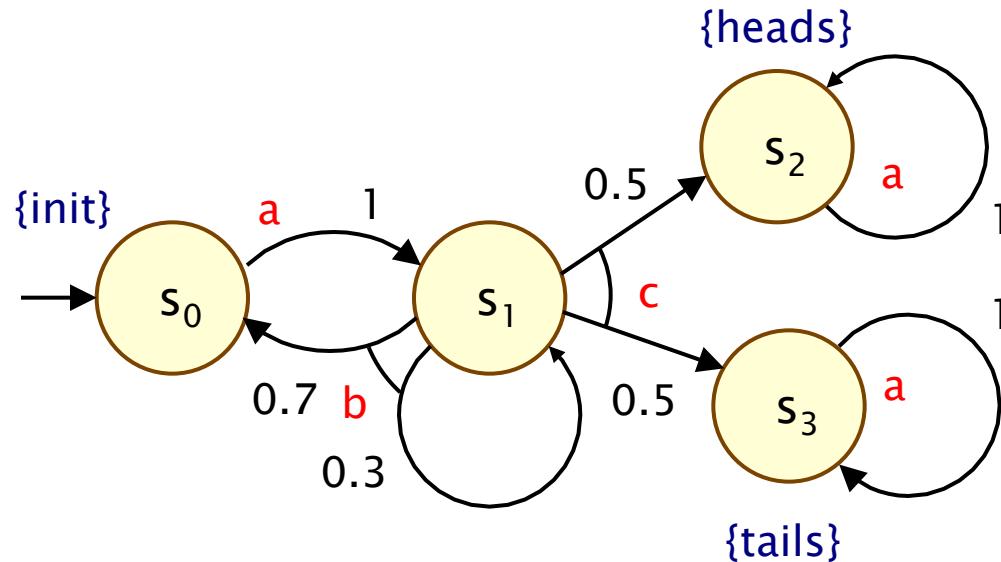
Simple MDP example

- Modification of the simple DTMC communication protocol
 - after one step, process **starts** trying to send a message
 - then, a nondeterministic choice between: (a) **waiting** a step because the channel is unready; (b) **sending** the message
 - if the latter, with probability 0.99 send **successfully** and **stop**
 - and with probability 0.01, message sending **fails**, **restart**



Simple MDP example 2

- Another simple MDP example with four states
 - from state s_0 , move directly to s_1 (action **a**)
 - in state s_1 , nondeterministic choice between actions **b** and **c**
 - action **b** gives a probabilistic choice: self-loop or return to s_0
 - action **c** gives a 0.5/0.5 random choice between heads/tails



Simple MDP example 2

$$M = (S, s_{\text{init}}, \text{Steps}, L)$$

$$S = \{s_0, s_1, s_2, s_3\}$$

$$s_{\text{init}} = s_0$$

$$AP = \{\text{init}, \text{heads}, \text{tails}\}$$

$$L(s_0) = \{\text{init}\},$$

$$L(s_1) = \emptyset,$$

$$L(s_2) = \{\text{heads}\},$$

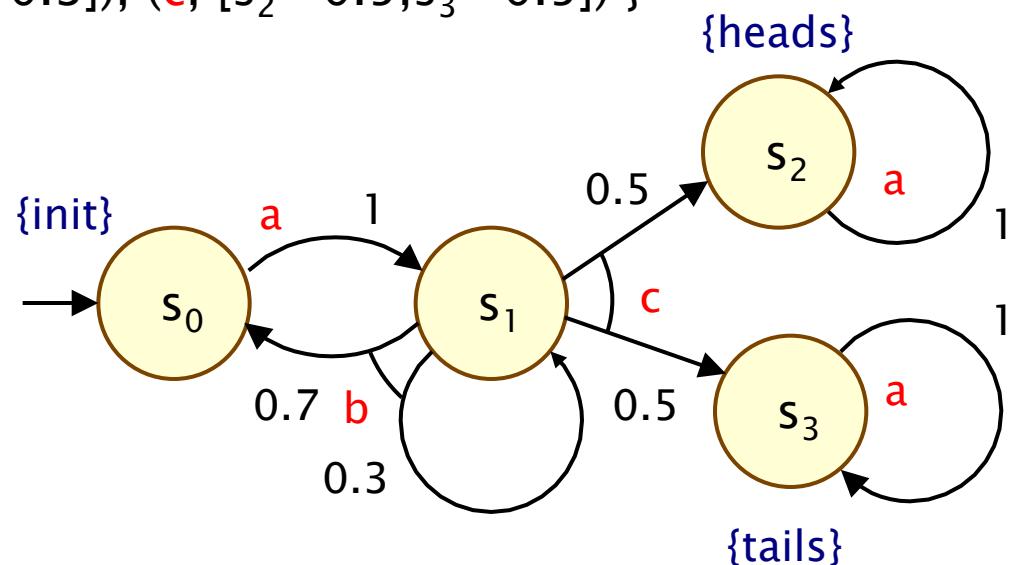
$$L(s_3) = \{\text{tails}\}$$

$$\text{Steps}(s_0) = \{ (\text{a}, [s_1 \mapsto 1]) \}$$

$$\text{Steps}(s_1) = \{ (\text{b}, [s_0 \mapsto 0.7, s_1 \mapsto 0.3]), (\text{c}, [s_2 \mapsto 0.5, s_3 \mapsto 0.5]) \}$$

$$\text{Steps}(s_2) = \{ (\text{a}, [s_2 \mapsto 1]) \}$$

$$\text{Steps}(s_3) = \{ (\text{a}, [s_3 \mapsto 1]) \}$$



The transition probability function

- It is often useful to think of the function **Steps** as a matrix
 - non-square matrix with $|S|$ columns and $\sum_{s \in S} |\text{Steps}(s)|$ rows
- Example (for clarity, we omit actions from the matrix)

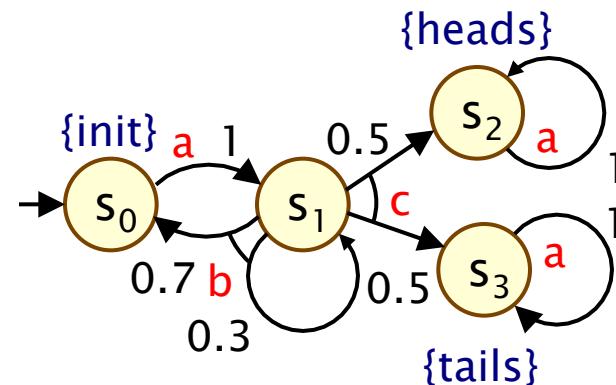
$$\text{Steps}(s_0) = \{ (a, s_1 \mapsto 1) \}$$

$$\text{Steps}(s_1) = \{ (b, [s_0 \mapsto 0.7, s_1 \mapsto 0.3]), (c, [s_2 \mapsto 0.5, s_3 \mapsto 0.5]) \}$$

$$\text{Steps}(s_2) = \{ (a, s_2 \mapsto 1) \}$$

$$\text{Steps}(s_3) = \{ (a, s_3 \mapsto 1) \}$$

$$\text{Steps} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \hline 0.7 & 0.3 & 0 & 0 \\ \hline 0 & 0 & 0.5 & 0.5 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$



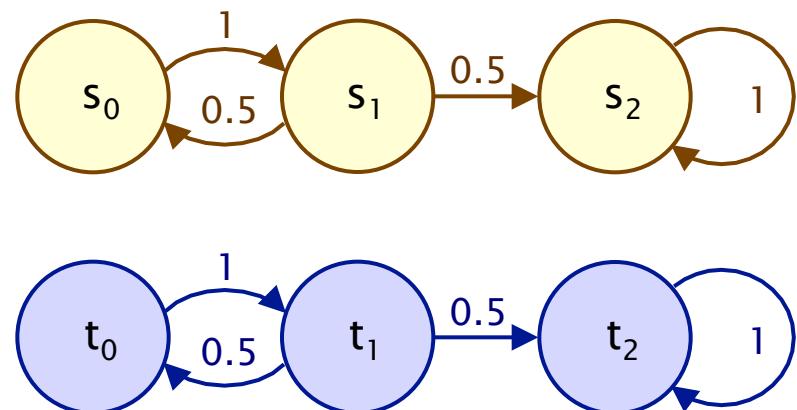
Example – Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

```
module M1
  s : [0..2] init 0;
  [] s=0 -> (s'=1);
  [] s=1 -> 0.5:(s'=0) + 0.5:(s'=2);
  [] s=2 -> (s'=2);
endmodule
```

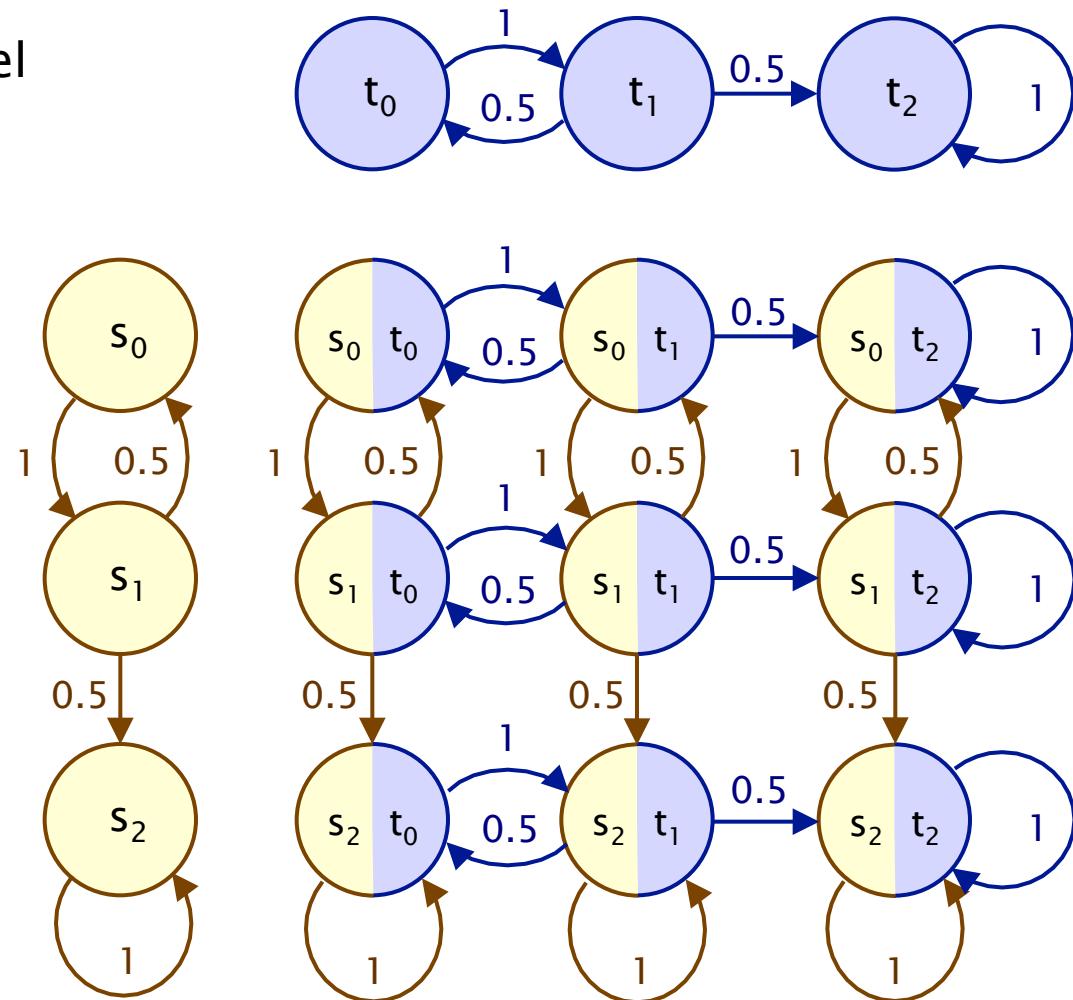
```
module M2 = M1 [ s=t ] endmodule
```



Example – Parallel composition

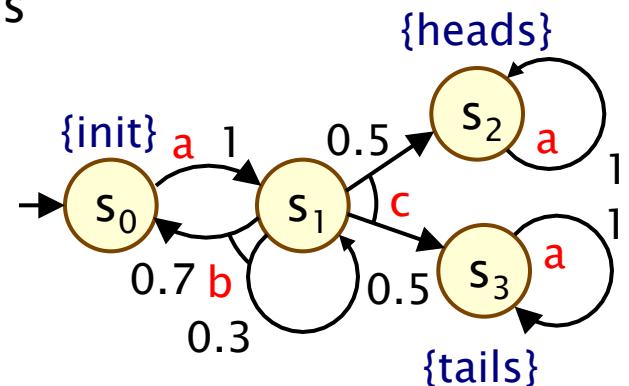
Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here



Paths and probabilities

- A (finite or infinite) path through an MDP
 - is a sequence of states and action/distribution pairs
 - e.g. $s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2\dots$
 - such that $(a_i, \mu_i) \in \text{Steps}(s_i)$ and $\mu_i(s_{i+1}) > 0$ for all $i \geq 0$
 - represents an **execution** (i.e. one possible behaviour) of the system which the MDP is modelling
- $\text{Path}(s) = \text{set of all paths through MDP starting in state } s$
 - $\text{Path}_{\text{fin}}(s) = \text{set of all finite paths from } s$
- Paths resolve both nondeterministic and probabilistic choices
 - how to reason about probabilities?

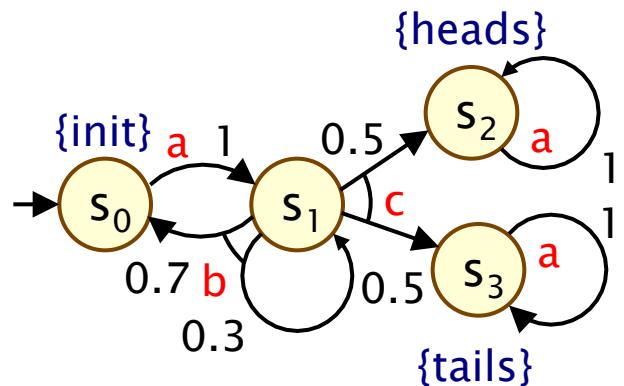


Adversaries

- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ...for which we can define a probability measure over paths
- An **adversary** resolves nondeterministic choice in an MDP
 - also known as “schedulers”, “policies” or “strategies”
- Formally:
 - an adversary σ of an MDP M is a function mapping every finite path $\omega = s_0(a_0, \mu_0)s_1\dots s_n$ to an element $\sigma(\omega)$ of $\text{Steps}(s_n)$
 - i.e. resolves nondeterminism based on execution history
- **Adv** (or Adv_M) denotes the set of all adversaries

Adversaries – Examples

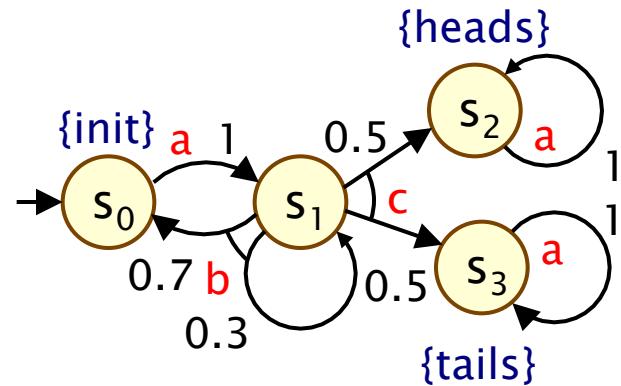
- Consider the previous example MDP
 - note that s_1 is the only state for which $|\text{Steps}(s)| > 1$
 - i.e. s_1 is the only state for which an adversary makes a choice
 - let μ_b and μ_c denote the probability distributions associated with actions **b** and **c** in state s_1
- Adversary σ_1
 - picks action **c** the first time
 - $\sigma_1(s_0s_1) = (c, \mu_c)$
- Adversary σ_2
 - picks action **b** the first time, then **c**
 - $\sigma_2(s_0s_1) = (b, \mu_b)$, $\sigma_2(s_0s_1s_1) = (c, \mu_c)$,
 $\sigma_2(s_0s_1s_0s_1) = (c, \mu_c)$



(Note: actions/distributions omitted from paths for clarity)

Adversaries and paths

- $\text{Path}^\sigma(s) \subseteq \text{Path}(s)$
 - (infinite) paths from s where nondeterminism resolved by σ
 - i.e. paths $s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2\dots$
 - for which $\sigma(s_0(a_0, \mu_0)s_1\dots s_n)) = (a_n, \mu_n)$
- **Adversary σ_1**
 - (picks action c the first time)
 - $\text{Path}^{\sigma_1}(s_0) = \{ s_0s_1s_2^\omega, s_0s_1s_3^\omega \}$
- **Adversary σ_2**
 - (picks action b the first time, then c)
 - $\text{Path}^{\sigma_2}(s_0) = \{ s_0s_1s_0s_1s_2^\omega, s_0s_1s_0s_1s_3^\omega, s_0s_1s_1s_2^\omega, s_0s_1s_1s_3^\omega \}$

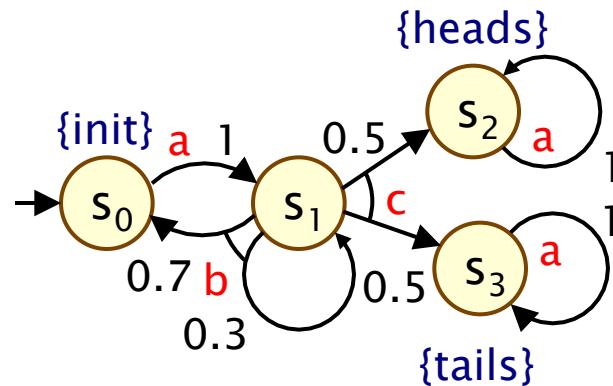
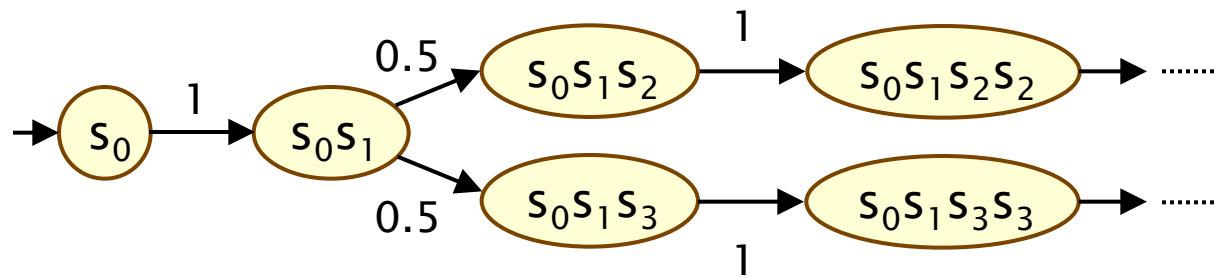


Induced DTMCs

- Adversary σ for MDP induces an infinite-state DTMC D^σ
- $D^\sigma = (\text{Path}_{\text{fin}}^\sigma(s), s, P_s^\sigma)$ where:
 - **states** of the DTMC are the **finite paths of σ starting in state s**
 - initial state is s (the path starting in s of length 0)
 - $P_s^\sigma(\omega, \omega') = \mu(s')$ if $\omega' = \omega(a, \mu)s'$ and $\sigma(\omega) = (a, \mu)$
 - $P_s^\sigma(\omega, \omega') = 0$ otherwise
- 1-to-1 correspondence between $\text{Path}^\sigma(s)$ and paths of D^σ
- This gives us a probability measure Pr_s^σ over $\text{Path}^\sigma(s)$
 - from probability measure over paths of D^σ

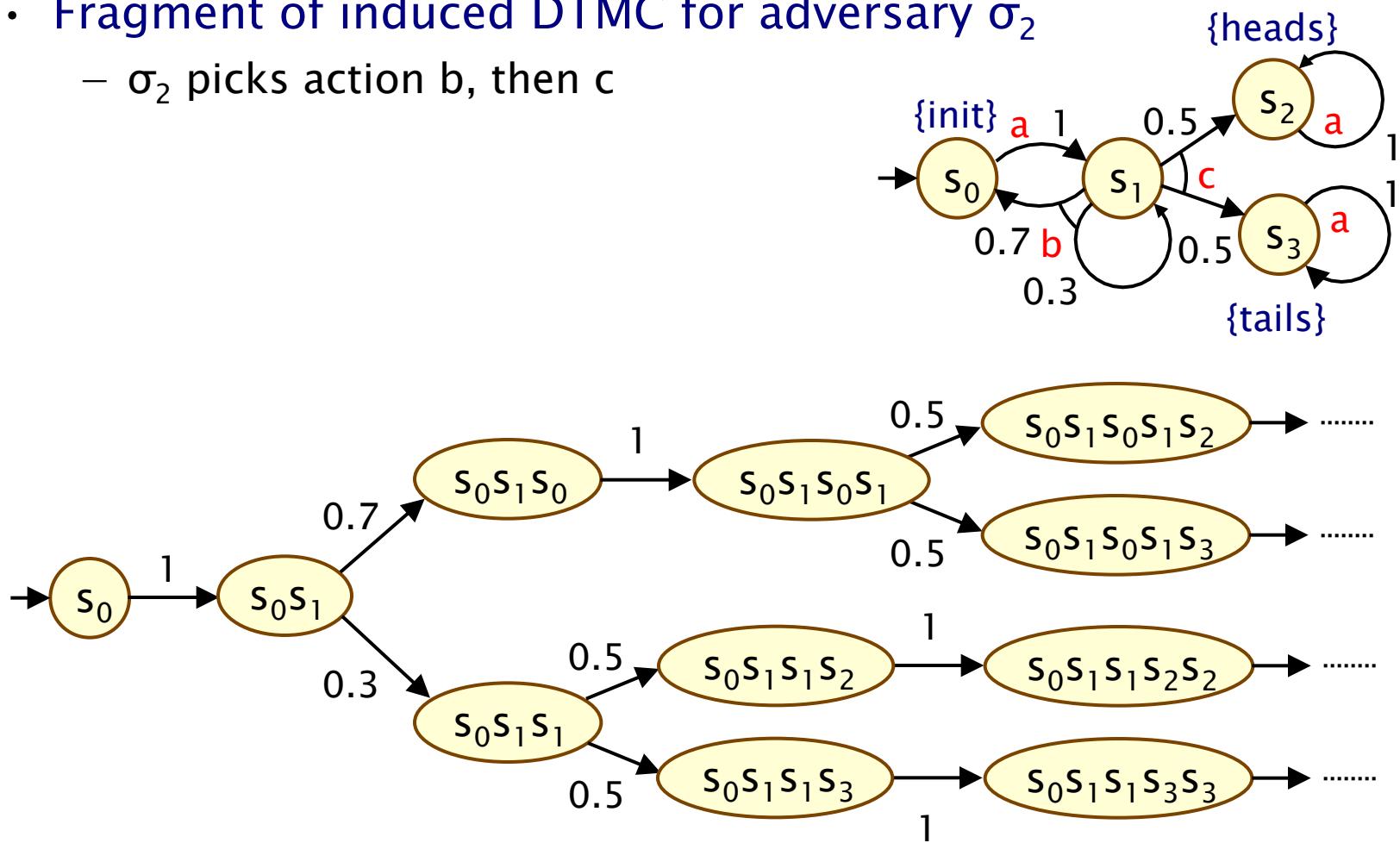
Adversaries – Examples

- Fragment of induced DTMC for adversary σ_1
 - σ_1 picks action c the first time



Adversaries – Examples

- Fragment of induced DTMC for adversary σ_2
 - σ_2 picks action b, then c

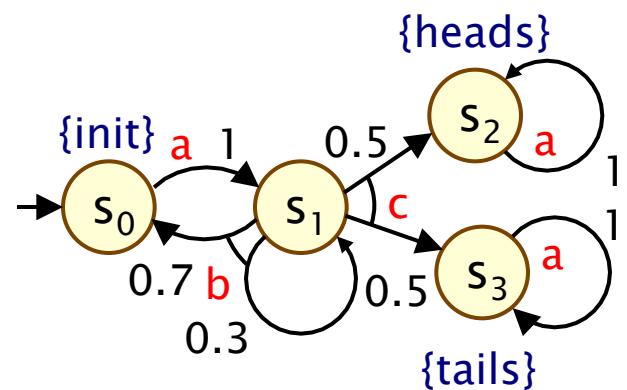


MDPs and probabilities

- $\text{Prob}^\sigma(s, \psi) = \Pr_{\sigma_s} \{ \omega \in \text{Path}^\sigma(s) \mid \omega \models \psi \}$
 - for some path formula ψ
 - e.g. $\text{Prob}^\sigma(s, F \text{ tails})$
- MDP provides best-/worst-case analysis
 - based on lower/upper bounds on probabilities
 - over all possible adversaries

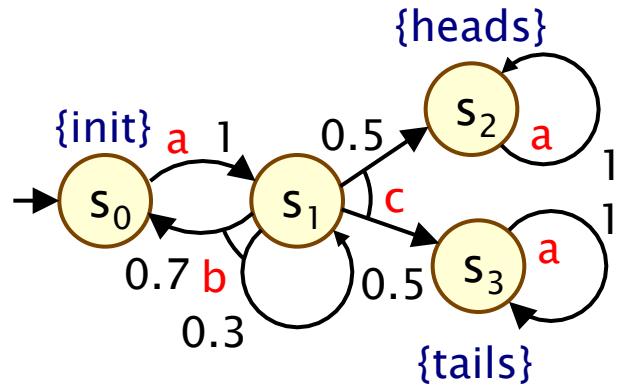
$$p_{\min}(s, \psi) = \inf_{\sigma \in \text{Adv}} \text{Prob}^\sigma(s, \psi)$$

$$p_{\max}(s, \psi) = \sup_{\sigma \in \text{Adv}} \text{Prob}^\sigma(s, \psi)$$

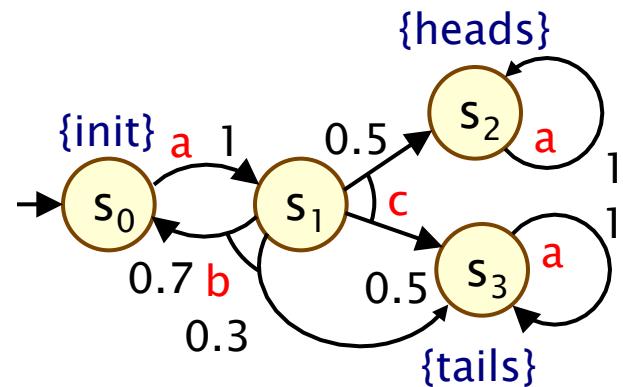


Examples

- $\text{Prob}^{\sigma^1}(s_0, \text{F tails}) = 0.5$
- $\text{Prob}^{\sigma^2}(s_0, \text{F tails}) = 0.5$
 - (where σ_i picks b i-1 times then c)
- ...
- $p_{\max}(s_0, \text{F tails}) = 0.5$
- $p_{\min}(s_0, \text{F tails}) = 0$

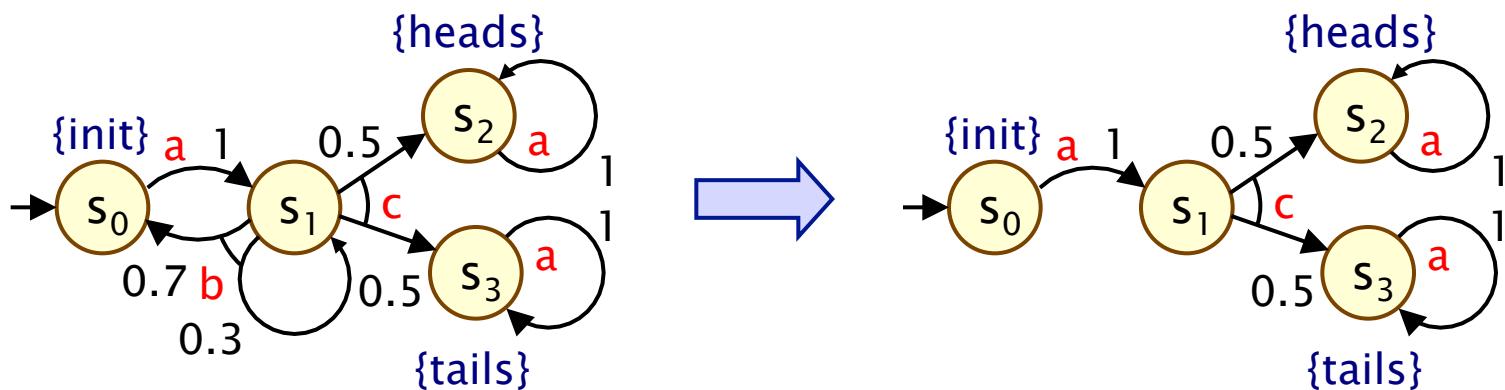


- $\text{Prob}^{\sigma^1}(s_0, \text{F tails}) = 0.5$
- $\text{Prob}^{\sigma^2}(s_0, \text{F tails})$
 $= 0.3 + 0.7 \cdot 0.5 = 0.65$
- $\text{Prob}^{\sigma^3}(s_0, \text{F tails})$
 $= 0.3 + 0.7 \cdot 0.3 + 0.7 \cdot 0.7 \cdot 0.5 = 0.755$
- ...
- $p_{\max}(s_0, \text{F tails}) = 1$
- $p_{\min}(s_0, \text{F tails}) = 0.5$



Memoryless adversaries

- **Memoryless adversaries always pick same choice in a state**
 - also known as: positional, Markov, simple
 - formally, $\sigma(s_0(a_0, \mu_0)s_1 \dots s_n)$ depends only on s_n
 - can write as a mapping from states, i.e. $\sigma(s)$ for each $s \in S$
 - induced DTMC can be mapped to a $|S|$ -state DTMC
- **From previous example:**
 - adversary σ_1 (picks c in s_1) is memoryless; σ_2 is not

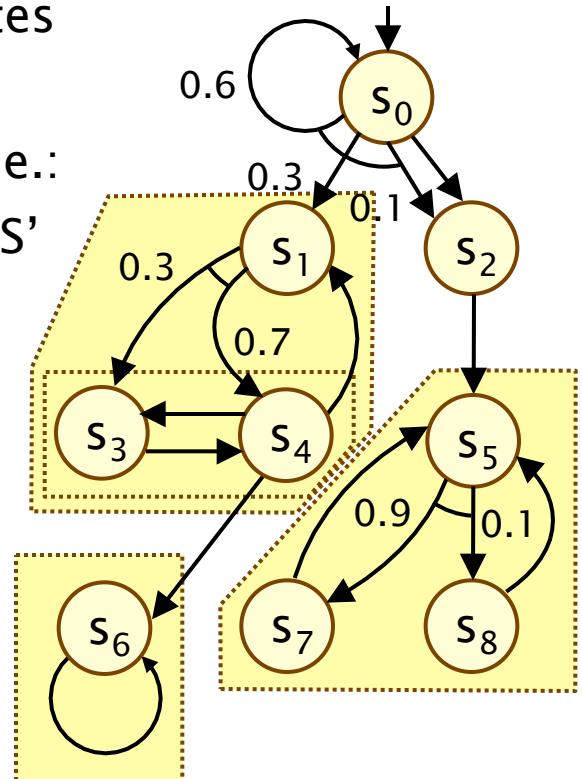


Other classes of adversary

- Finite-memory adversary
 - finite number of **modes**, which can govern choices made
 - formally defined by a deterministic finite automaton
 - induced DTMC (for finite MDP) again mapped to finite DTMC
- Randomised adversary
 - maps finite paths $s_0(a_1, \mu_1)s_1 \dots s_n$ in MDP to a **probability distribution** over element of **Steps**(s_n)
 - generalises deterministic schedulers
 - still induces a (possibly infinite state) DTMC
- Fair adversary
 - fairness assumptions on resolution of nondeterminism

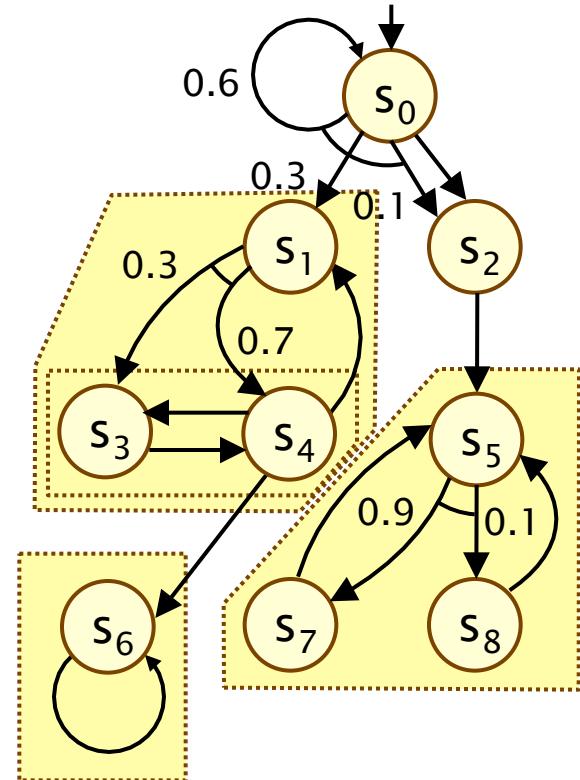
End components

- Consider an MDP $M = (S, s_{\text{init}}, \text{Steps}, L)$
- A **sub-MDP** of M is a pair (S', Steps') where:
 - $S' \subseteq S$ is a (non-empty) subset of M 's states
 - $\text{Steps}'(s) \subseteq \text{Steps}(s)$ for each $s \in S'$
 - is closed under probabilistic branching, i.e.:
 - $\{ s' \mid \mu(s') > 0 \text{ for some } (a, \mu) \in \text{Steps}'(s) \} \subseteq S'$
- An **end component** of M is a strongly connected sub-MDP



End components

- For finite MDPs...
- For every end component, there is an adversary which, with probability 1, forces the MDP to remain in the end component and visit all its states infinitely often
- Under every adversary σ , with probability 1 an end component will be reached and all of its states visited infinitely often
 - (analogue of fundamental property of finite DTMCs)



Summing up...

- Nondeterminism
 - concurrency, unknown environments/parameters, abstraction
- Markov decision processes (MDPs)
 - discrete-time + probability and nondeterminism
 - nondeterministic choice between multiple distributions
- Adversaries
 - resolution of nondeterminism only
 - induced set of paths and (infinite state DTMC)
 - induces DTMC yields probability measure for adversary
 - best-/worst-case analysis: minimum/maximum probabilities
 - memoryless adversaries
- End components
 - long-run behaviour: analogue of BSCCs for DTMCs

Lecture 13

Reachability in MDPs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Recall – MDPs

- Markov decision process: $M = (S, s_{\text{init}}, \text{Steps}, L)$
- Adversary $\sigma \in \text{Adv}$ resolves nondeterminism
- σ induces set of paths $\text{Path}^\sigma(s)$ and DTMC D^σ
- D^σ yields probability space Pr_s^σ over $\text{Path}^\sigma(s)$
- $\text{Prob}^\sigma(s, \psi) = \text{Pr}_s^\sigma \{ \omega \in \text{Path}^\sigma(s) \mid \omega \models \psi \}$
- MDP yields minimum/maximum probabilities:

$$p_{\min}(s, \psi) = \inf_{\sigma \in \text{Adv}} \text{Prob}^\sigma(s, \psi)$$

$$p_{\max}(s, \psi) = \sup_{\sigma \in \text{Adv}} \text{Prob}^\sigma(s, \psi)$$

Probabilistic reachability

- Minimum and maximum probability of reaching target set
 - target set = all states labelled with atomic proposition a

$$p_{\min}(s, F a) = \inf_{\sigma \in \text{Adv}} \text{Prob}^\sigma(s, F a)$$

$$p_{\max}(s, F a) = \sup_{\sigma \in \text{Adv}} \text{Prob}^\sigma(s, F a)$$

- Vectors: $p_{\min}(F a)$ and $p_{\max}(F a)$
 - minimum/maximum probabilities for all states of MDP

Overview

- Qualitative probabilistic reachability
 - case where $p_{\min} > 0$ or $p_{\max} > 0$
- Optimality equation
- Memoryless adversaries suffice
 - finitely many adversaries to consider
- Computing reachability probabilities
 - value iteration (fixed point computation)
 - linear programming problem
 - policy iteration

Qualitative probabilistic reachability

- Consider the problem of determining states for which $p_{\min}(s, F a)$ or $p_{\max}(s, F a)$ is zero (or non-zero)
 - max case: $S^{\max=0} = \{ s \in S \mid p_{\max}(s, F a) = 0 \}$
 - this is just (non-probabilistic) reachability

```
R := Sat(a)
done := false
while (done = false)
    R' = R ∪ { s ∈ S | ∃(a,μ)∈Steps(s) . ∃s' ∈ R . μ(s') > 0 }
    if (R' = R) then done := true
    R := R'
endwhile
return S \ R
```

Qualitative probabilistic reachability

- Min case: $S^{\min=0} = \{ s \in S \mid p_{\min}(s, F a) = 0 \}$

```
R := Sat(a)
```

```
done := false
```

```
while (done = false)
```

```
    R' = R  $\cup$  { s  $\in$  S |  $\forall (a, \mu) \in \text{Steps}(s)$  .  $\exists s' \in R$  .  
 $\mu(s') > 0$  }
```

```
    if (R' = R) then done := true
```

```
    R := R'
```

```
endwhile
```

```
return S \ R
```

note: quantification
over all choices

Optimality (min)

- The values $p_{\min}(s, F a)$ are the unique solution of the following equations:

$$x_s = \begin{cases} 1 & \text{if } s \in \text{Sat}(a) \\ 0 & \text{if } s \in S^{\min=0} \\ \min \left\{ \sum_{s' \in S} \mu(s') \cdot x_{s'} \mid (a, \mu) \in \text{Steps}(s) \right\} & \text{otherwise} \end{cases}$$

optimal solution for state s uses optimal solution for successors s'

$S^{\min=0} = \{ s \mid p_{\min}(s, F a) = 0 \}$

- This is an instance of the Bellman equation
 - (basis of dynamic programming techniques)

Optimality (max)

- Likewise, the values $p_{\max}(s, F a)$ are the unique solution of the following equations:

$$x_s = \begin{cases} 1 & \text{if } s \in \text{Sat}(a) \\ 0 & \text{if } s \in S^{\max=0} \\ \max \left\{ \sum_{s' \in S} \mu(s') \cdot x_{s'} \mid (a, \mu) \in \text{Steps}(s) \right\} & \text{otherwise} \end{cases}$$

$$S^{\max=0} = \{ s \mid p_{\max}(s, F a) = 0 \}$$

Memoryless adversaries

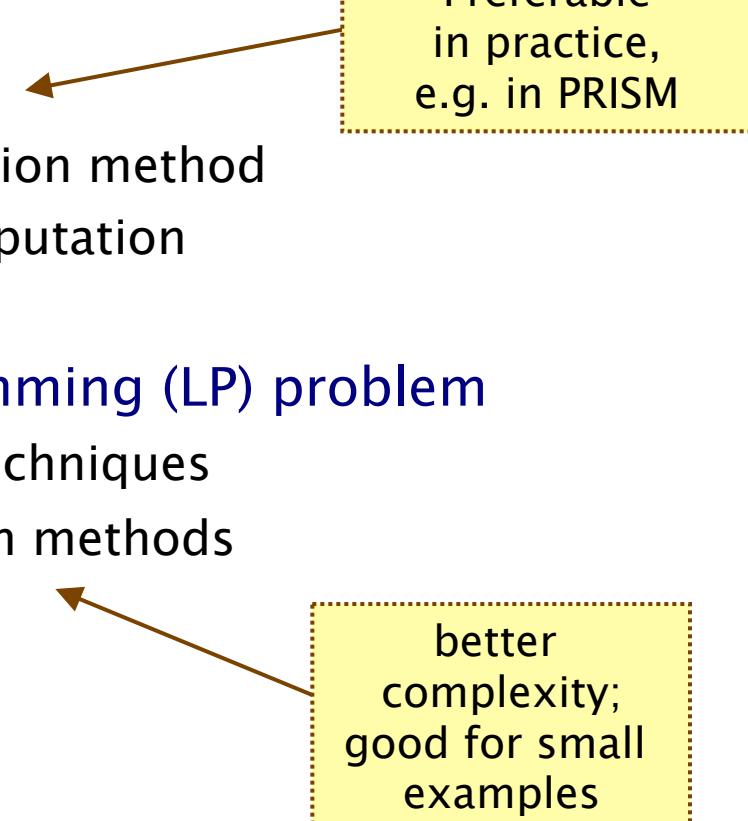
- Memoryless adversaries suffice for probabilistic reachability
 - i.e. there exist **memoryless** adversaries σ_{\min} & σ_{\max} such that:
 - $\text{Prob}^{\sigma_{\min}}(s, F a) = p_{\min}(s, F a)$ for all states $s \in S$
 - $\text{Prob}^{\sigma_{\max}}(s, F a) = p_{\max}(s, F a)$ for all states $s \in S$
- Construct adversaries from optimal solution:

$$\sigma_{\min}(s) = \operatorname{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot p_{\min}(s', F a) \mid (a, \mu) \in \text{Steps}(s) \right\}$$

$$\sigma_{\max}(s) = \operatorname{argmax} \left\{ \sum_{s' \in S} \mu(s') \cdot p_{\max}(s', F a) \mid (a, \mu) \in \text{Steps}(s) \right\}$$

Computing reachability probabilities

- Several approaches...
- 1. Value iteration
 - approximate with iterative solution method
 - corresponds to fixed point computation
- 2. Reduction to a linear programming (LP) problem
 - solve with linear optimisation techniques
 - exact solution using well-known methods
- 3. Policy iteration
 - iteration over adversaries



Preferable in practice, e.g. in PRISM

better complexity; good for small examples

Method 1 – Value iteration (min)

- For **minimum** probabilities $p_{\min}(s, F a)$ it can be shown that:

- $p_{\min}(s, F a) = \lim_{n \rightarrow \infty} x_s^{(n)}$ where:

$$x_s^{(n)} = \begin{cases} 1 & \text{if } s \in \text{Sat}(a) \\ 0 & \text{if } s \in S^{\min=0} \\ 0 & \text{if } s \in S^? \text{ and } n = 0 \\ \min \left\{ \sum_{s' \in S} \mu(s') \cdot x_{s'}^{(n-1)} \mid (a, \mu) \in \text{Steps}(s) \right\} & \text{if } s \in S^? \text{ and } n > 0 \end{cases}$$

- where: $S^? = S \setminus (\text{Sat}(a) \cup S^{\min=0})$

- **Approximate iterative solution technique**

- iterations terminated when solution converges sufficiently

Method 1 – Value iteration (max)

- Value iteration applies to **maximum** probabilities in the same way...

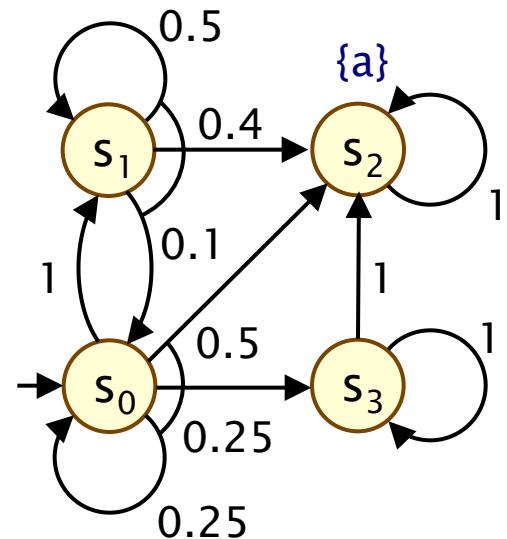
– $p_{\max}(s, F a) = \lim_{n \rightarrow \infty} x_s^{(n)}$ where:

$$x_s^{(n)} = \begin{cases} 1 & \text{if } s \in \text{Sat}(a) \\ 0 & \text{if } s \in S^{\max=0} \\ 0 & \text{if } s \in S^? \text{ and } n = 0 \\ \max \left\{ \sum_{s' \in S} \mu(s') \cdot x_{s'}^{(n-1)} \mid (a, \mu) \in \text{Steps}(s) \right\} & \text{if } s \in S^? \text{ and } n > 0 \end{cases}$$

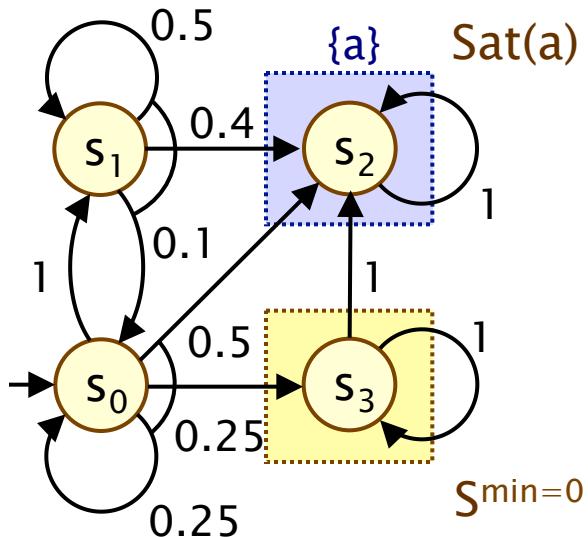
– where: $S^? = S \setminus (\text{Sat}(a) \cup S^{\max=0})$

Example

- Minimum/maximum probability of reaching an **a**-state



Example – Value iteration (min)



Compute: $p_{\min}(s_i, F a)$

$\text{Sat}(a) = \{s_2\}$, $S^{\min=0} = \{s_3\}$, $S^? = \{s_0, s_1\}$

$$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$$

$$n=0: [0, 0, 1, 0]$$

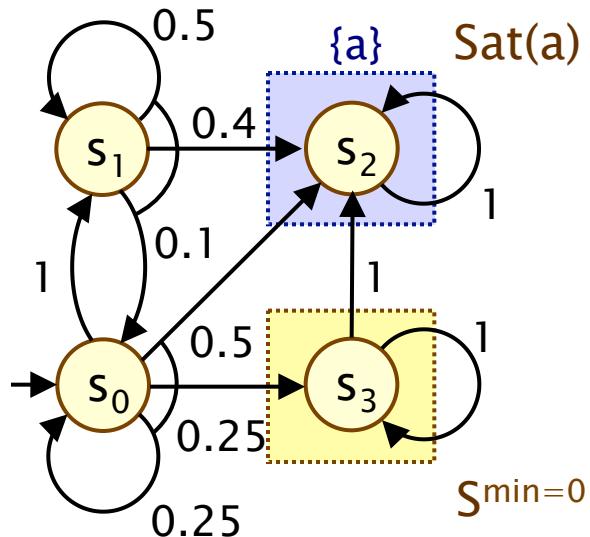
$$n=1: [\min(1 \cdot 0, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1), \\ 0.1 \cdot 0 + 0.5 \cdot 0 + 0.4 \cdot 1, 1, 0]$$

$$= [0, 0.4, 1, 0]$$

$$n=2: [\min(1 \cdot 0.4, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1), \\ 0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4 \cdot 1, 1, 0]$$
$$= [0.4, 0.6, 1, 0]$$

$$n=3: \dots$$

Example – Value iteration (min)

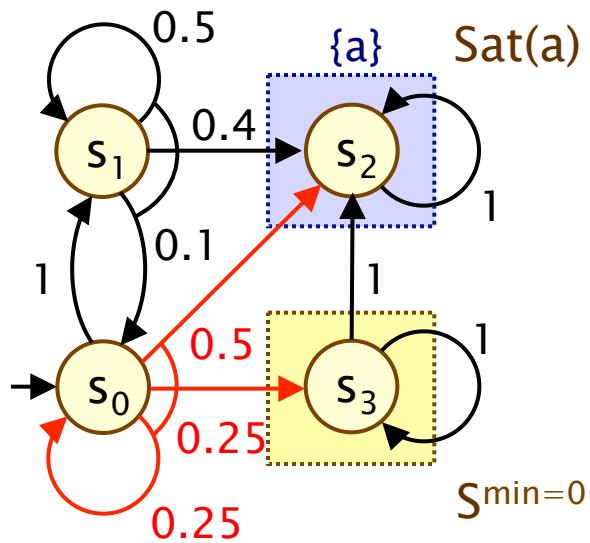


$$\begin{aligned}
 p_{\min}(F a) \\
 = \\
 [2/3, 14/15, 1, 0]
 \end{aligned}$$

	$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$
$n=0:$	$[0.000000, 0.000000, 1, 0]$
$n=1:$	$[0.000000, 0.400000, 1, 0]$
$n=2:$	$[0.400000, 0.600000, 1, 0]$
$n=3:$	$[0.600000, 0.740000, 1, 0]$
$n=4:$	$[0.650000, 0.830000, 1, 0]$
$n=5:$	$[0.662500, 0.880000, 1, 0]$
$n=6:$	$[0.665625, 0.906250, 1, 0]$
$n=7:$	$[0.666406, 0.919688, 1, 0]$
$n=8:$	$[0.666602, 0.926484, 1, 0]$
\dots	
$n=20:$	$[0.666667, 0.933332, 1, 0]$
$n=21:$	$[0.666667, 0.933332, 1, 0]$
	$\approx [2/3, 14/15, 1, 0]$

Generating an optimal adversary

- Min adversary σ_{\min}



$$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$$

...

$n=20: [0.666667, 0.933332, 1, 0]$

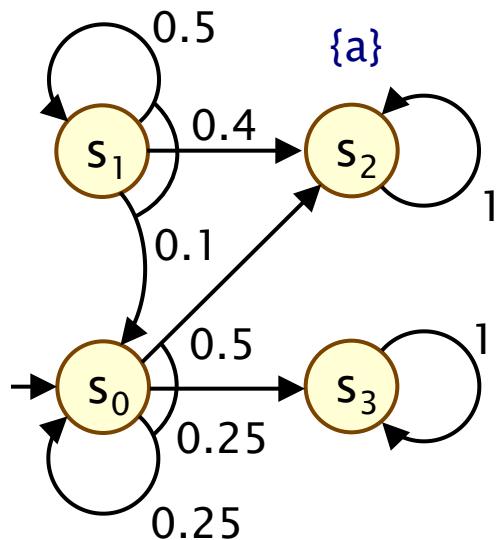
$n=21: [0.666667, 0.933332, 1, 0]$

$\approx [\frac{2}{3}, \frac{14}{15}, 1, 0]$

$$s_0 : \min(1 \cdot \frac{14}{15}, 0.5 \cdot 1 + 0.25 \cdot 0 + 0.25 \cdot \frac{2}{3}) \\ = \min(\frac{14}{15}, \frac{2}{3})$$

Generating an optimal adversary

- DTMC $D^{\sigma_{\min}}$



$$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$$

...

$$n=20: [0.666667, 0.933332, 1, 0]$$

$$\begin{aligned} n=21: & [0.666667, 0.933332, 1, 0] \\ & \approx [\frac{2}{3}, \frac{14}{15}, 1, 0] \end{aligned}$$

$$\begin{aligned} s_0 &: \min(1 \cdot \frac{14}{15}, 0.5 \cdot 1 + 0.25 \cdot 0 + 0.25 \cdot \frac{2}{3}) \\ &= \min(\frac{14}{15}, \frac{2}{3}) \end{aligned}$$

Value iteration as a fixed point

- Can view value iteration as a **fixed point** computation over vectors of probabilities $\underline{y} \in [0,1]^S$, e.g. for minimum:

$$F(\underline{y})(s) = \begin{cases} 1 & \text{if } s \in \text{Sat}(a) \\ 0 & \text{if } s \in S^{\min=0} \\ \min \left\{ \sum_{s' \in S} \mu(s') \cdot \underline{y}(s') \mid (a, \mu) \in \text{Steps}(s) \right\} & \text{otherwise} \end{cases}$$

- Let:
 - $\underline{x}^{(0)} = \underline{0}$ (i.e. $\underline{x}^{(0)}(s) = 0$ for all s)
 - $\underline{x}^{(n+1)} = F(\underline{x}^{(n)})$

- Then:
 - $\underline{x}^{(0)} \leq \underline{x}^{(1)} \leq \underline{x}^{(2)} \leq \underline{x}^{(3)} \leq \dots$
 - $\underline{p}_{\min}(F a) = \lim_{n \rightarrow \infty} \underline{x}^{(n)}$

Linear programming

- Linear programming
 - optimisation of a linear **objective function**
 - subject to linear (in)equality **constraints**
- General form:
 - n variables: x_1, x_2, \dots, x_n
 - maximise (or minimise):
 - $c_1x_1 + c_2x_2 + \dots + c_nx_n$
 - subject to constraints
 - $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1$
 - $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \leq b_2$
 - \dots
 - $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m$

Many standard solution techniques exist, e.g. Simplex, ellipsoid method, interior point method

In matrix/vector form:
Maximise (or minimise)
 $\underline{c} \cdot \underline{x}$ subject to $\underline{A} \cdot \underline{x} \leq \underline{b}$

Method 2 – Linear programming problem

- **Min** probabilities $p_{\min}(s, F a)$ can be computed as follows:
 - $p_{\min}(s, F a) = 1$ if $s \in \text{Sat}(a)$
 - $p_{\min}(s, F a) = 0$ if $s \in S^{\min=0}$
 - values for remaining states in the set $S^? = S \setminus (\text{Sat}(a) \cup S^{\min=0})$ can be obtained as the unique solution of the following **linear programming problem**:

maximize $\sum_{s \in S^?} x_s$ subject to the constraints :

$$x_s \leq \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in \text{Sat}(a)} \mu(s')$$

for all $s \in S^?$ and for all $(a, \mu) \in \text{Steps}(s)$

Linear programming problem (max)

- Max probabilities $p_{\max}(s, F a)$ can be computed as follows:
 - $p_{\max}(s, F a) = 1$ if $s \in \text{Sat}(a)$
 - $p_{\max}(s, F a) = 0$ if $s \in S^{\max=0}$
 - values for remaining states in the set $S^? = S \setminus (\text{Sat}(a) \cup S^{\max=0})$ can be obtained as the unique solution of the following **linear programming problem**:

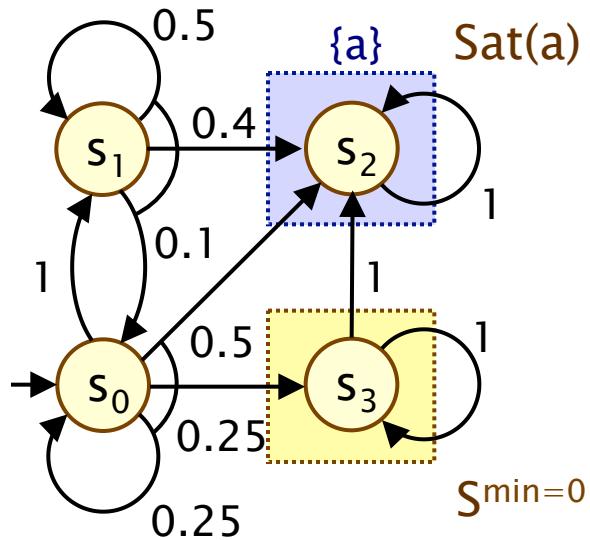
minimize $\sum_{s \in S^?} x_s$ subject to the constraints :

$$x_s \geq \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in \text{Sat}(a)} \mu(s')$$

for all $s \in S^?$ and for all $(a, \mu) \in \text{Steps}(s)$

Differences
from min case

Example – Linear programming (min)



Let $x_i = p_{\min}(s_i, F a)$

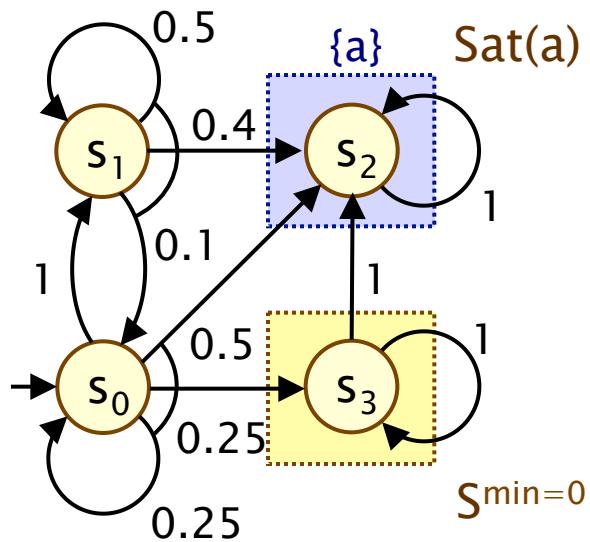
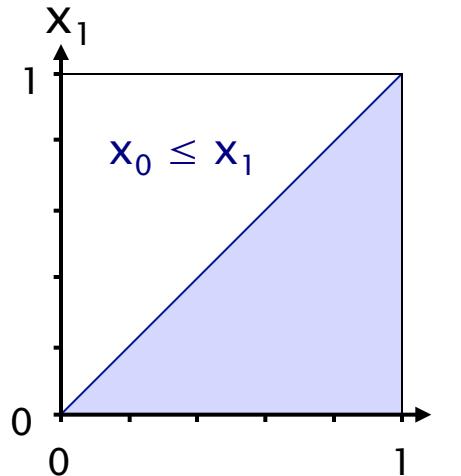
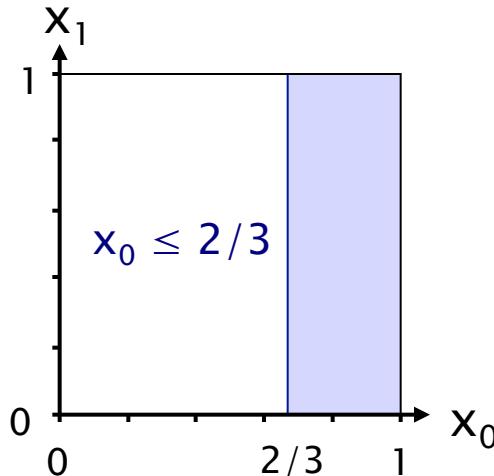
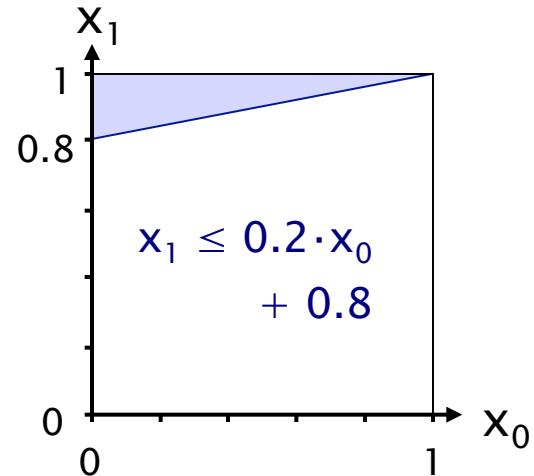
$\text{Sat}(a)$: $x_2=1, S^{\min=0}$: $x_3=0$

For $S^? = \{s_0, s_1\}$:

Maximise x_0+x_1 subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq 0.25 \cdot x_0 + 0.5$
- $x_1 \leq 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$

Example – Linear programming (min)



Let $x_i = p_{\min}(s_i, F a)$

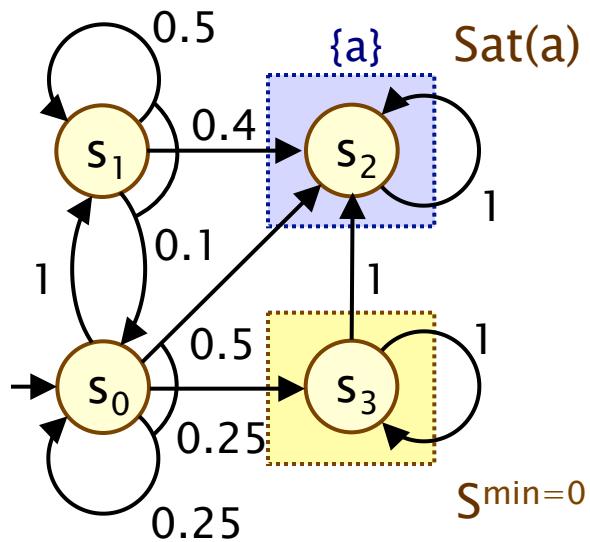
$\text{Sat}(a)$: $x_2 = 1$, $S^{\min=0}$: $x_3 = 0$

For $S^? = \{s_0, s_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq 2/3$
- $x_1 \leq 0.2 \cdot x_0 + 0.8$

Example – Linear programming (min)



$$\begin{aligned}
 p_{\min}(F a) &= \\
 &[2/3, 14/15, 1, 0]
 \end{aligned}$$

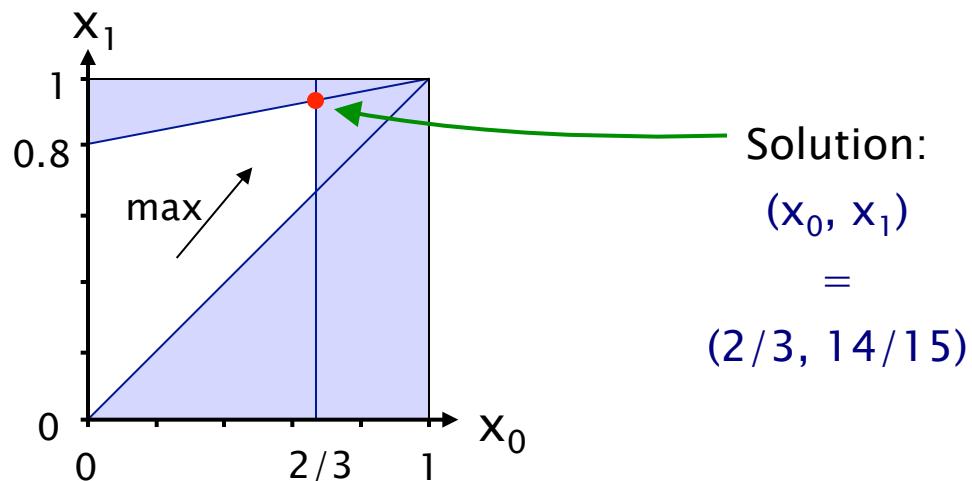
Let $x_i = p_{\min}(s_i, F a)$

$Sat(a)$: $x_2 = 1$, $S^{\min=0}$: $x_3 = 0$

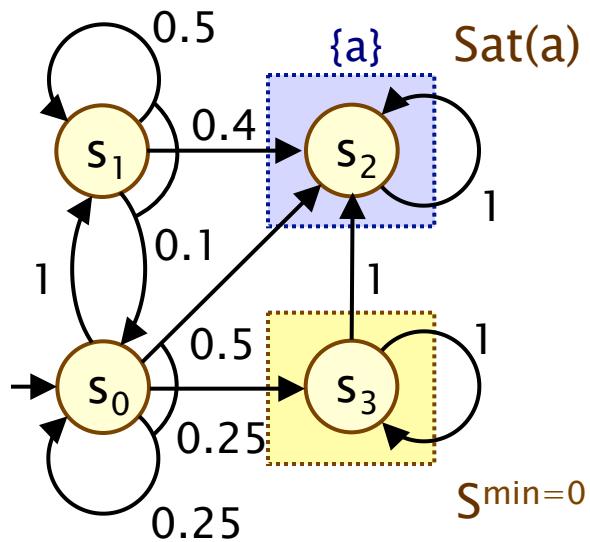
For $S^? = \{s_0, s_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq 2/3$
- $x_1 \leq 0.2 \cdot x_0 + 0.8$



Example – Linear programming (min)



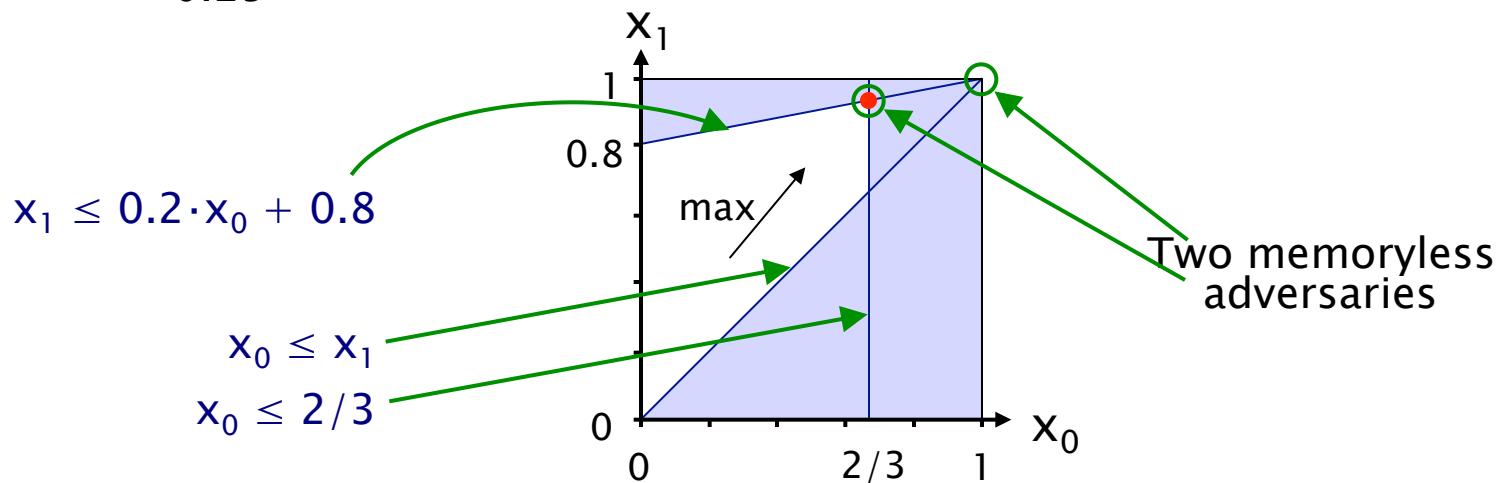
Let $x_i = p_{\min}(s_i, F a)$

$Sat(a)$: $x_2 = 1$, $S^{\min=0}$: $x_3 = 0$

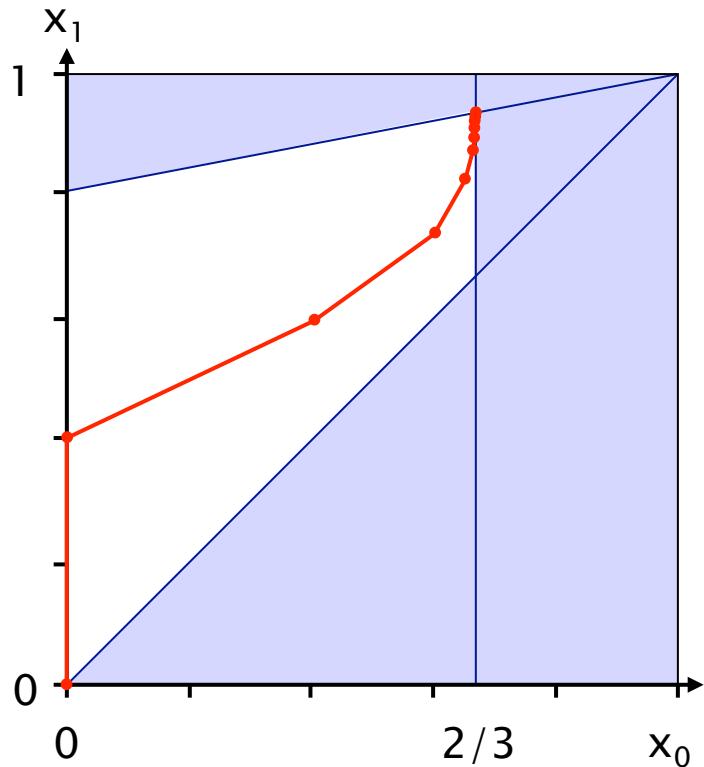
For $S^? = \{s_0, s_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq 2/3$
- $x_1 \leq 0.2 \cdot x_0 + 0.8$

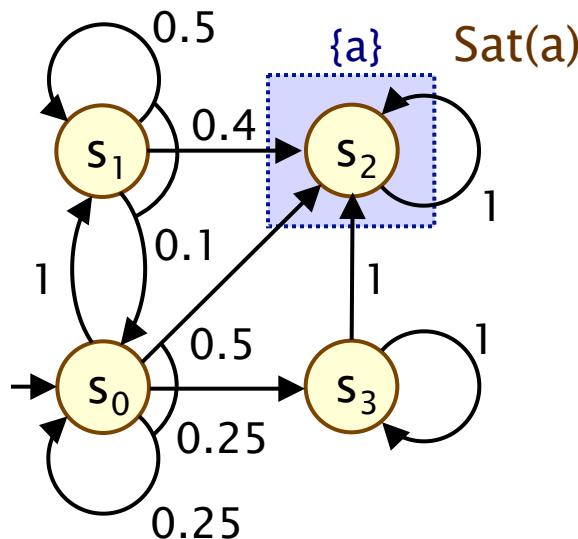


Example – Value iteration + LP



	$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$
$n=0:$	$[0.000000, 0.000000, 1, 0]$
$n=1:$	$[0.000000, 0.400000, 1, 0]$
$n=2:$	$[0.400000, 0.600000, 1, 0]$
$n=3:$	$[0.600000, 0.740000, 1, 0]$
$n=4:$	$[0.650000, 0.830000, 1, 0]$
$n=5:$	$[0.662500, 0.880000, 1, 0]$
$n=6:$	$[0.665625, 0.906250, 1, 0]$
$n=7:$	$[0.666406, 0.919688, 1, 0]$
$n=8:$	$[0.666602, 0.926484, 1, 0]$
\dots	
$n=20:$	$[0.666667, 0.933332, 1, 0]$
$n=21:$	$[0.666667, 0.933332, 1, 0]$
	$\approx [2/3, 14/15, 1, 0]$

Example – Linear programming (max)



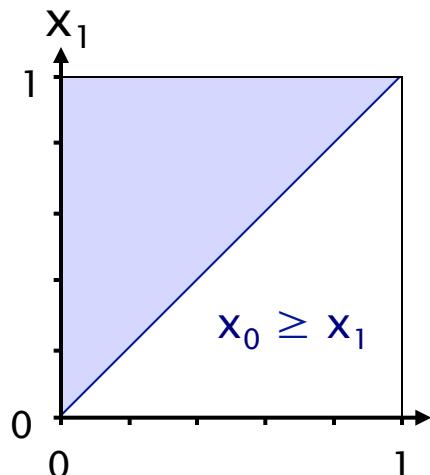
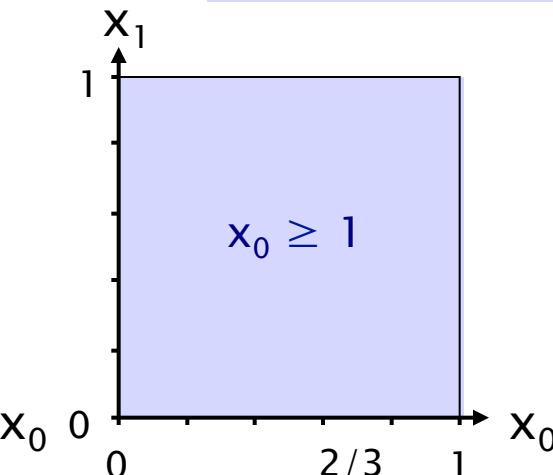
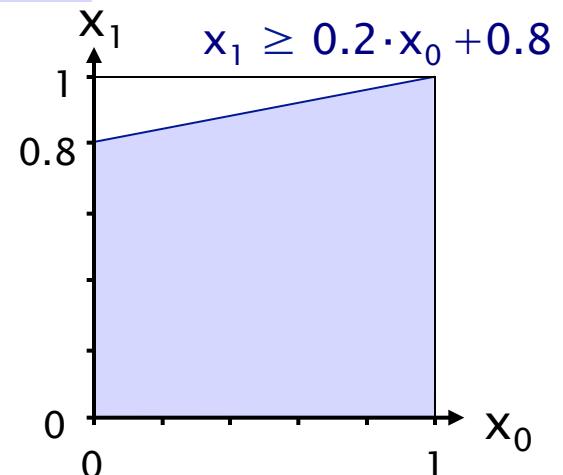
Let $x_i = p_{\max}(s_i, F a)$

$Sat(a)$: $x_2 = 1$, $S^{\max=0} = \emptyset$

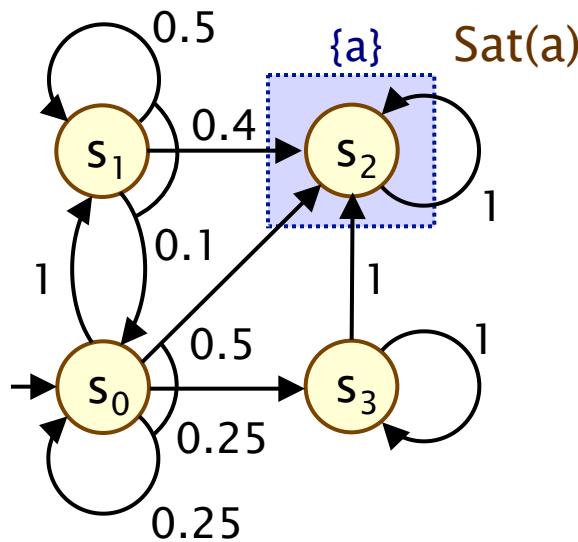
For $S^? = \{s_0, s_1, s_3\}$:

Minimise $x_0 + x_1 + x_3$ subject to constraints:

- $x_0 \geq x_1$
- $x_0 \geq 2/3 + 1/3x_3$
- $x_1 \geq 0.2 \cdot x_0 + 0.8$



Example – Linear programming (max)



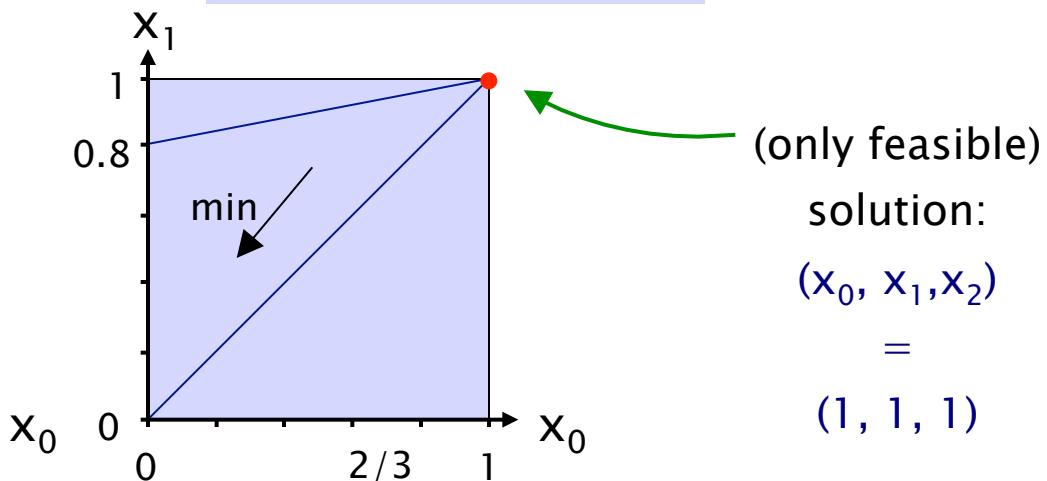
Let $x_i = p_{\max}(s_i, F a)$

$Sat(a): x_2 = 1, S^{\max=0} = \emptyset$

For $S^? = \{s_0, s_1, s_3\}$:

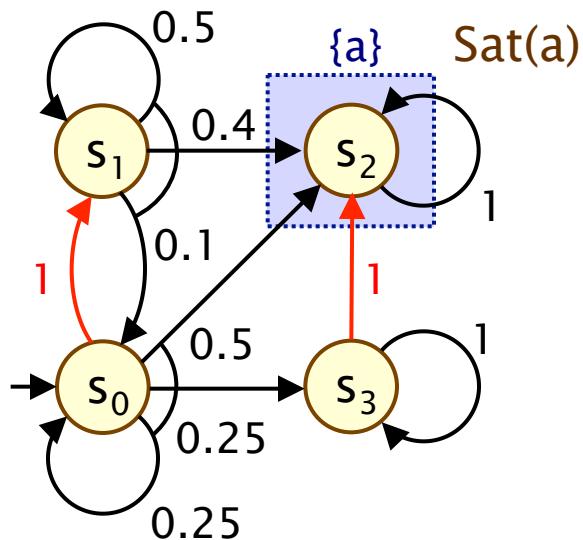
Minimise $x_0 + x_1 + x_3$ subject to constraints:

- $x_0 \geq x_1$
- $x_0 \geq 2/3 + 1/3x_3$
- $x_1 \geq 0.2 \cdot x_0 + 0.8$
- $x_3 \geq x_2$
- $x_3 \geq x_3$



Generating an adversary

- Max adversary σ_{\max}



Let $x_i = p_{\max}(s_i, F a)$

$\text{Sat}(a): x_2 = 1, S^{\max=0} = \emptyset$

For $S^? = \{s_0, s_1, s_3\}$:

Minimise $x_0 + x_1 + x_3$ subject to constraints:

- $x_0 \geq x_1$ $x_3 \geq x_2$
- $x_0 \geq 2/3 + 1/3x_3$ $x_3 \geq x_3$
- $x_1 \geq 0.2 \cdot x_0 + 0.8$

Solution:

- $(x_0, x_1, x_3) = (1, 1, 1)$

Method 3 – Policy iteration

- Value iteration:
 - iterates over (vectors of) probabilities
- Policy iteration:
 - iterates over adversaries (“policies”)
- 1. Start with an arbitrary (memoryless) adversary σ
 2. Compute the reachability probabilities $\text{Prob}^\sigma(F a)$ for σ
 3. Improve the adversary in each state
 4. Repeat 2/3 until no change in adversary
- Termination:
 - finite number of memoryless adversaries
 - improvement (in min/max probabilities) each time

Method 3 – Policy iteration

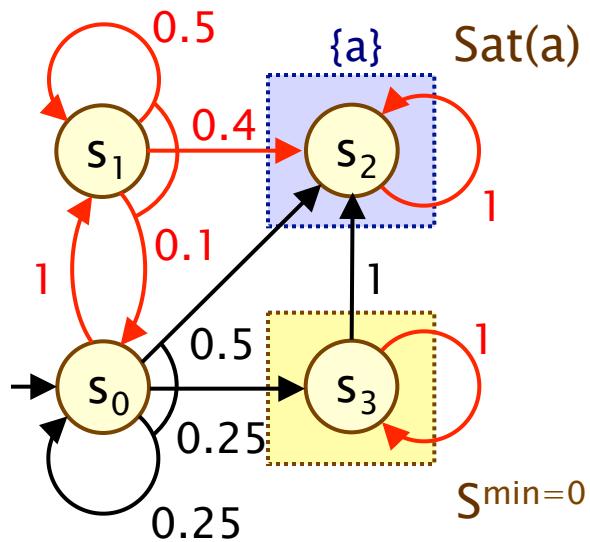
- 1. Start with an arbitrary (memoryless) adversary σ
 - pick an element of $\text{Steps}(s)$ for each state $s \in S$
- 2. Compute the reachability probabilities $\text{Prob}^\sigma(F a)$ for σ
 - probabilistic reachability on a DTMC
 - i.e. solve linear equation system
- 3. Improve the adversary in each state

$$\sigma'(s) = \operatorname{argmin}_{s' \in S} \left\{ \sum \mu(s') \cdot \text{Prob}^\sigma(s', F a) \mid (a, \mu) \in \text{Steps}(s) \right\}$$

$$\sigma'(s) = \operatorname{argmax}_{s' \in S} \left\{ \sum \mu(s') \cdot \text{Prob}^\sigma(s', F a) \mid (a, \mu) \in \text{Steps}(s) \right\}$$

- 4. Repeat 2/3 until no change in adversary

Example – Policy iteration (min)



Arbitrary adversary σ :

Compute: $\text{Prob}^\sigma(F a)$

Let $x_i = \text{Prob}^\sigma(s_i, F a)$

$x_2=1$, $x_3=0$ and:

$$\bullet x_0 = x_1$$

$$\bullet x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

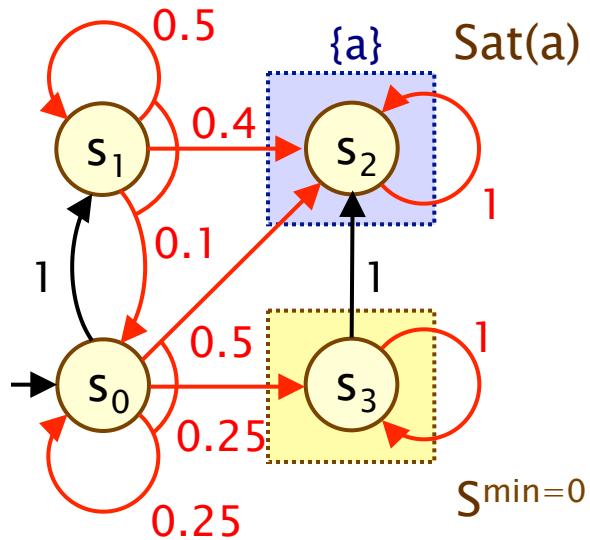
Solution:

$$\text{Prob}^\sigma(F a) = [1, 1, 1, 0]$$

Refine σ in state s_0 :

$$\begin{aligned} & \min\{1(1), 0.5(1)+0.25(0)+0.25(1)\} \\ &= \min\{1, 0.75\} = 0.75 \end{aligned}$$

Example – Policy iteration (min)



Refined adversary σ' :

Compute: $\text{Prob}^{\sigma'}(F a)$

Let $x_i = \text{Prob}^{\sigma'}(s_i, F a)$

$x_2=1$, $x_3=0$ and:

$$\bullet x_0 = 0.25 \cdot x_0 + 0.5$$

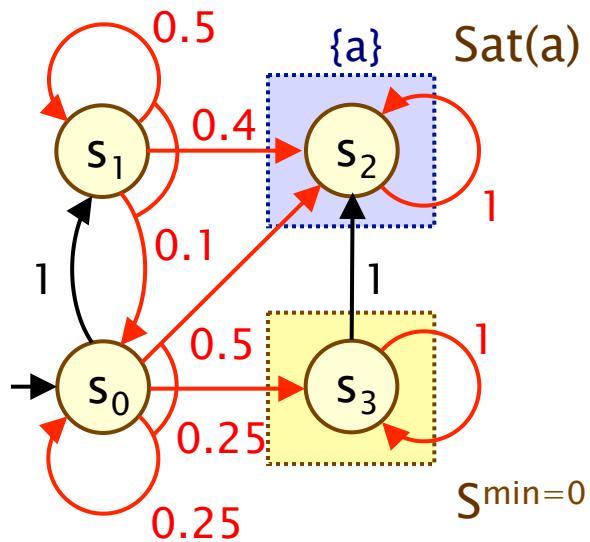
$$\bullet x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

$$\text{Prob}^{\sigma'}(F a) = [2/3, 14/15, 1, 0]$$

This is optimal

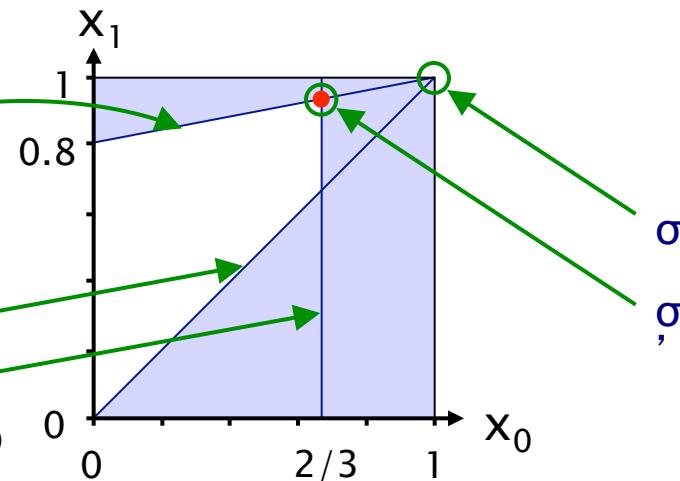
Example – Policy iteration (min)



$$x_1 = 0.2 \cdot x_0 + 0.8$$

$$x_0 = x_1$$

$$x_0 = 2/3$$



Summing up...

- Probabilistic reachability in MDPs
- Qualitative case: $\min/\max \text{ probability} > 0$
 - simple graph-based computation
 - need to do this first, before other computation methods
- Memoryless adversaries suffice
 - reduction to finite number of adversaries
- Computing reachability probabilities...
(and generation of optimal adversary)
- 1. Value iteration
 - approximate; iterative; fixed point computation
- 2. Reduce to linear programming problem
 - good for small examples; doesn't scale well
- 3. Policy iteration

Lecture 14

Model Checking for MDPs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Overview

- PCTL for MDPs
 - syntax, semantics, examples
- PCTL model checking
 - next, bounded until, until
 - precomputation algorithms
 - value iteration, linear optimisation
 - examples
- Costs and rewards

PCTL

- Temporal logic for describing properties of MDPs

- identical syntax to the logic PCTL for DTMCs

ψ is true with probability $\sim p$

– $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg \phi \mid P_{\sim p} [\psi]$ (state formulas)

– $\psi ::= X \phi \mid \phi U^{\leq k} \phi \mid \phi U \phi$ (path formulas)

“next”

“bounded until”

“until”

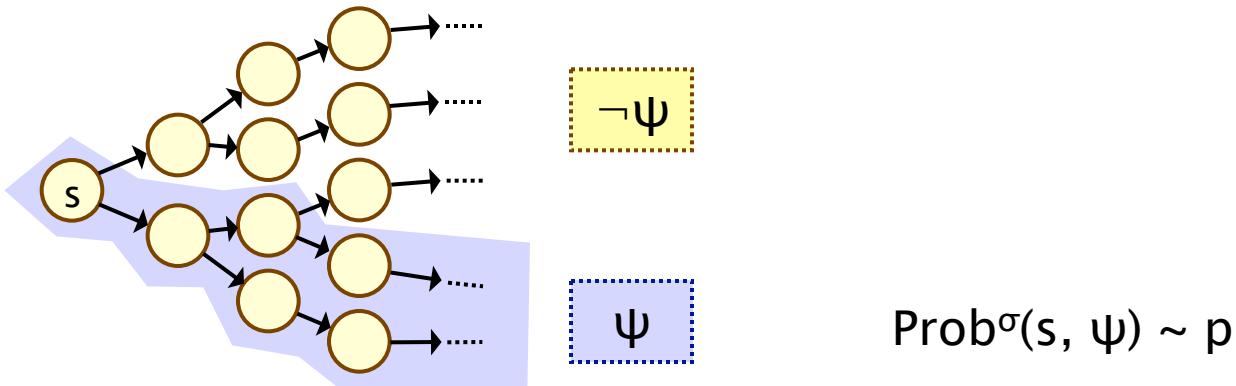
- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<, >, \leq, \geq\}$, $k \in \mathbb{N}$

PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP
 - $s \models \phi$ denotes ϕ is “true in state s ” or “satisfied in state s ”
- Semantics of (non-probabilistic) state formulas and of path formulas are **identical** to those for DTMCs:
- For a state s of the MDP $(S, s_{\text{init}}, \text{Steps}, L)$:
 - $s \models a \iff a \in L(s)$
 - $s \models \phi_1 \wedge \phi_2 \iff s \models \phi_1 \text{ and } s \models \phi_2$
 - $s \models \neg \phi \iff s \models \phi \text{ is false}$
- For a path $\omega = s_0(a_1, \mu_1)s_1(a_2, \mu_2)s_2\dots$ in the MDP:
 - $\omega \models X \phi \iff s_1 \models \phi$
 - $\omega \models \phi_1 U^{\leq k} \phi_2 \iff \exists i \leq k \text{ such that } s_i \models \phi_2 \text{ and } \forall j < i, s_j \models \phi_1$
 - $\omega \models \phi_1 U \phi_2 \iff \exists k \geq 0 \text{ such that } \omega \models \phi_1 U^{\leq k} \phi_2$

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
 - can only define **probabilities** for a **specific adversary σ**
 - $s \models P_{\sim p} [\psi]$ means “the probability, from state s , that ψ is true for an outgoing path satisfies $\sim p$ **for all adversaries σ** ”
 - formally $s \models P_{\sim p} [\psi] \Leftrightarrow \text{Prob}^\sigma(s, \psi) \sim p$ for all adversaries σ
 - where $\text{Prob}^\sigma(s, \psi) = \Pr_s^\sigma \{ \omega \in \text{Path}^\sigma(s) \mid \omega \models \psi \}$



Minimum and maximum probabilities

- Letting:
 - $p_{\max}(s, \psi) = \sup_{\sigma \in \text{Adv}} \text{Prob}^\sigma(s, \psi)$
 - $p_{\min}(s, \psi) = \inf_{\sigma \in \text{Adv}} \text{Prob}^\sigma(s, \psi)$
- We have:
 - if $\sim \in \{\geq, >\}$, then $s \models P_{\sim p} [\psi] \Leftrightarrow p_{\min}(s, \psi) \sim p$
 - if $\sim \in \{<, \leq\}$, then $s \models P_{\sim p} [\psi] \Leftrightarrow p_{\max}(s, \psi) \sim p$
- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all adversaries of either:
 - the **minimum probability** of ψ holding
 - the **maximum probability** of ψ holding

Classes of adversary

- A more general semantics for PCTL over MDPs
 - parameterise by a **class of adversaries** Adv^*
- Only change is:
 - $s \models_{\text{Adv}^*} P_{\sim p} [\psi] \Leftrightarrow \text{Prob}^\sigma(s, \psi) \sim p$ for all adversaries $\sigma \in \text{Adv}^*$
- Original semantics obtained by taking $\text{Adv}^* = \text{Adv}$
- Alternatively, take Adv^* to be the set of all **fair** adversaries
 - path fairness: **if a state occurs on a path infinitely often, then each non-deterministic choice occurs infinitely often**
 - see e.g. **[BK98]**

PCTL derived operators

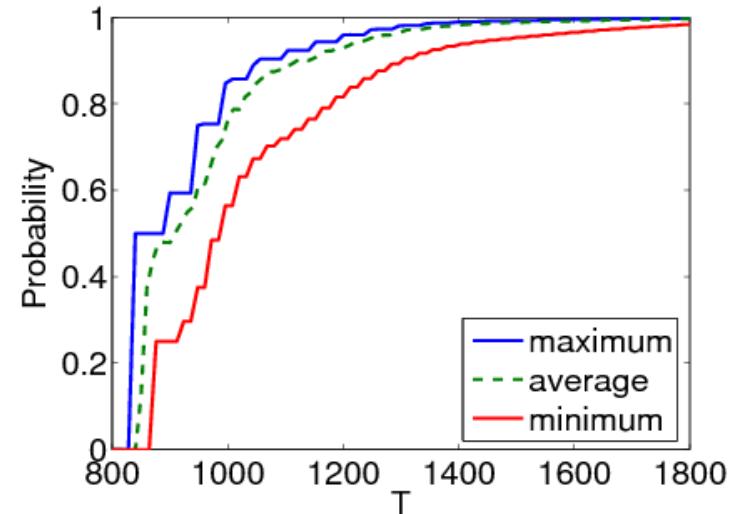
- Many of the same equivalences as for DTMCs, e.g.:
 - $F \phi \equiv \text{true} \cup \phi$ (eventually)
 - $F^{\leq k} \phi \equiv \text{true} \cup^{\leq k} \phi$
 - $G \phi \equiv \neg(F \neg\phi) \equiv \neg(\text{true} \cup \neg\phi)$ (always)
 - $G^{\leq k} \phi \equiv \neg(F^{\leq k} \neg\phi)$
 - etc.
- But... for example:
 - $P_{\geq p} [\psi] \neq \neg P_{< p} [\psi]$ (negation + probability)
- Duality between min/max:
 - for any path formula ψ : $p_{\min}(s, \psi) = 1 - p_{\max}(s, \neg\psi)$
 - so, for example: $P_{\geq p} [G \phi] \equiv P_{\leq 1-p} [F \neg\phi]$

Qualitative properties

- PCTL can express qualitative properties of MDPs
 - like for DTMCs, can relate these to CTL's AF and EF operators
 - need to be careful with “there exists” and adversaries
- $P_{\geq 1} [F \phi]$ is (similar to but) weaker than AF ϕ
 - $P_{\geq 1} [F \phi] \Leftrightarrow \text{Prob}^\sigma(s, F \phi) \geq 1$ for all adversaries σ
 - recall that “probability ≥ 1 ” is weaker than “for all”
- We can construct an equivalence for EF ϕ
 - $EF \phi \not\equiv P_{>0}[F \phi]$
 - but:
 - $EF \phi \equiv \neg P_{\leq 0}[F \phi]$

Quantitative properties

- For PCTL properties with P as the outermost operator
 - PRISM allows a quantitative form
 - for MDPs, there are two types: $P_{\min=?} [\psi]$ and $P_{\max=?} [\psi]$
 - i.e. “**what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?**”
 - model checking is no harder since compute the values of $p_{\min}(s, \psi)$ or $p_{\max}(s, \psi)$ anyway
 - useful to spot patterns/trends
- Example CSMA/CD protocol
 - “min/max probability that a message is sent within the deadline”

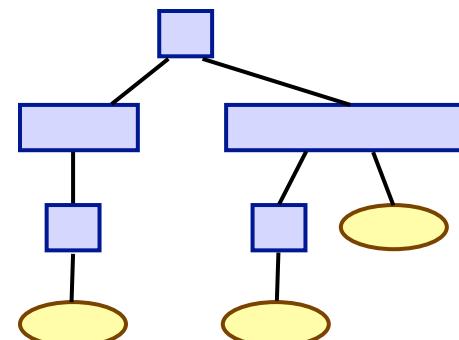


Some real PCTL examples

- Byzantine agreement protocol
 - $P_{\min=?} [F (\text{agreement} \wedge \text{rounds} \leq 2)]$
 - “what is the minimum probability that agreement is reached within two rounds?”
- CSMA/CD communication protocol
 - $P_{\max=?} [F \text{ collisions} = k]$
 - “what is the maximum probability of k collisions?”
- Self-stabilisation protocols
 - $P_{\min=?} [F^{\leq t} \text{ stable}]$
 - “what is the minimum probability of reaching a stable state within k steps?”

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP $M = (S, s_{\text{init}}, \text{Steps}, L)$, PCTL formula ϕ
 - output: $\text{Sat}(\phi) = \{ s \in S \mid s \models \phi \} = \text{set of states satisfying } \phi$
- Often, also consider quantitative results
 - e.g. compute result of $P_{\min=?} [F^{\leq t} \text{ stable}]$ for $0 \leq t \leq 100$
- Basic algorithm same as PCTL for DTMCs
 - proceeds by induction on parse tree of ϕ
- For the non-probabilistic operators:
 - $\text{Sat}(\text{true}) = S$
 - $\text{Sat}(a) = \{ s \in S \mid a \in L(s) \}$
 - $\text{Sat}(\neg\phi) = S \setminus \text{Sat}(\phi)$
 - $\text{Sat}(\phi_1 \wedge \phi_2) = \text{Sat}(\phi_1) \cap \text{Sat}(\phi_2)$

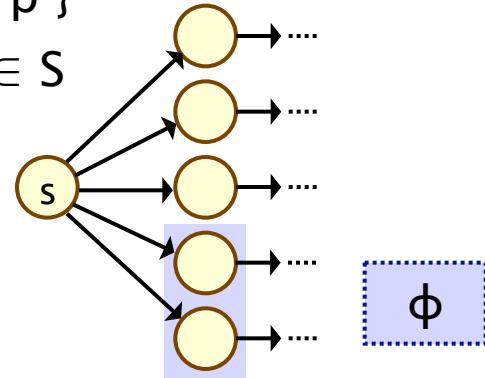


PCTL model checking for MDPs

- Main task: model checking $P_{\sim_p} [\psi]$ formulae
 - reduces to computation of min/max probabilities
 - i.e. $p_{\min}(s, \psi)$ or $p_{\max}(s, \psi)$ for all $s \in S$
 - dependent on whether $\sim \in \{\geq, >\}$ or $\sim \in \{<, \leq\}$
- Three cases:
 - next ($X \phi$)
 - bounded until ($\phi_1 \cup^{<=k} \phi_2$)
 - unbounded until ($\phi_1 \cup \phi_2$)

PCTL next for MDPs

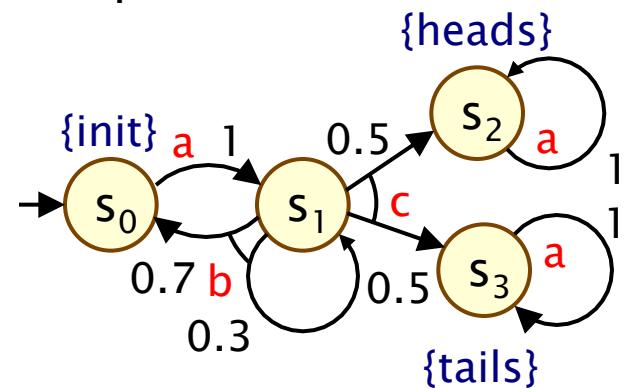
- Computation of probabilities for PCTL next operator
- Consider case of minimum probabilities...
 - $\text{Sat}(P_{\sim p}[X \phi]) = \{ s \in S \mid p_{\min}(s, X \phi) \sim p \}$
 - need to compute $p_{\min}(s, X \phi)$ for all $s \in S$
- Recall in the DTMC case
 - sum outgoing probabilities for transitions to ϕ -states
 - $\text{Prob}(s, X \phi) = \sum_{s' \in \text{Sat}(\phi)} P(s, s')$
- For MDPs, perform computation for **each distribution** available in s and then **take minimum**:
 - $p_{\min}(s, X \phi) = \min \{ \sum_{s' \in \text{Sat}(\phi)} \mu(s') \mid (a, \mu) \in \text{Steps}(s) \}$
- Maximum probabilities case is analogous



PCTL next – Example

- Model check: $P_{\geq 0.5} [X \text{ heads}]$
 - lower probability bound so **minimum probabilities** required
 - $\text{Sat}(\text{heads}) = \{s_2\}$
 - e.g. $p_{\min}(s_1, X \text{ heads}) = \min(0, 0.5) = 0$
 - can do all at once with matrix–vector multiplication:

$$\text{Steps} \cdot \underline{\text{heads}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \hline 0.7 & 0.3 & 0 & 0 \\ \hline 0 & 0 & 0.5 & 0.5 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0.5 \\ 1 \\ 0 \end{bmatrix}$$



- Extracting the minimum for each state yields
 - $p_{\min}(X \text{ heads}) = [0, 0, 1, 0]$
 - $\text{Sat}(P_{\geq 0.5} [X \text{ heads}]) = \{s_2\}$

PCTL bounded until for MDPs

- Computation of probabilities for PCTL $U^{\leq k}$ operator
- Consider case of minimum probabilities...
 - $\text{Sat}(P_{\sim p}[\phi_1 \ U^{\leq k} \ \phi_2]) = \{ s \in S \mid p_{\min}(s, \phi_1 \ U^{\leq k} \ \phi_2) \sim p \}$
 - need to compute $p_{\min}(s, \phi_1 \ U^{\leq k} \ \phi_2)$ for all $s \in S$
- First identify (some) states where probability is 1 or 0
 - $S^{\text{yes}} = \text{Sat}(\phi_2)$ and $S^{\text{no}} = S \setminus (\text{Sat}(\phi_1) \cup \text{Sat}(\phi_2))$
- Then solve the **recursive equations**:

$$p_{\min}(s, \phi_1 \ U^{\leq k} \ \phi_2) = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ 0 & \text{if } s \in S^? \text{ and } k = 0 \\ \min \left\{ \sum_{s' \in S} \mu(s') \cdot p_{\min}(s', \phi_1 \ U^{\leq k-1} \ \phi_2) \mid (a, \mu) \in \text{Steps}(s) \right\} & \text{if } s \in S^? \text{ and } k > 0 \end{cases}$$

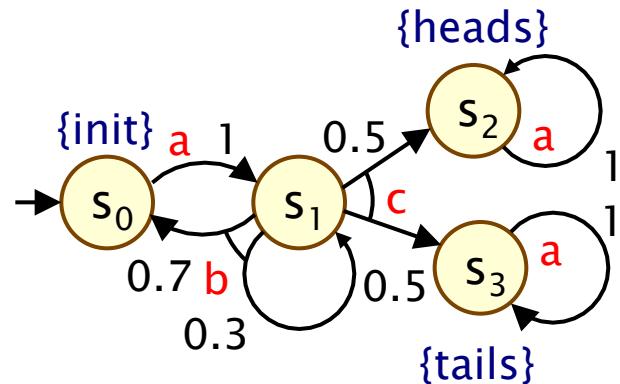
- Maximum probabilities case is analogous

PCTL bounded until for MDPs

- Simultaneous computation of vector $p_{\min}(\phi_1 \ U^{\leq k} \ \phi_2)$
 - i.e. probabilities $p_{\min}(s, \phi_1 \ U^{\leq k} \ \phi_2)$ for all $s \in S$
- Recursive definition in terms of matrices and vectors
 - similar to DTMC case
 - requires **k** matrix–vector multiplications
 - in addition requires **k** minimum operations

PCTL bounded until – Example

- Model check: $P_{<0.95} [F^{\leq 3} \text{ init}] \equiv P_{<0.95} [\text{true} \ U^{\leq 3} \text{ init}]$
 - upper probability bound so **maximum probabilities** required
 - $\text{Sat}(\text{true}) = S$ and $\text{Sat}(\text{init}) = \{s_0\}$
 - $S^{\text{yes}} = \{s_0\}$ and $S^{\text{no}} = \emptyset$
 - $S^? = \{s_1, s_2, s_3\}$
- The vector of probabilities is computed successively as:
 - $p_{\max}(\text{true } U^{\leq 0} \text{ init}) = [1, 0, 0, 0]$
 - $p_{\max}(\text{true } U^{\leq 1} \text{ init}) = [1, 0.7, 0, 0]$
 - $p_{\max}(\text{true } U^{\leq 2} \text{ init}) = [1, 0.91, 0, 0]$
 - $p_{\max}(\text{true } U^{\leq 3} \text{ init}) = [1, 0.973, 0, 0]$
- Hence, the result is:
 - $\text{Sat}(P_{<0.95} [F^{\leq 3} \text{ init}]) = \{s_2, s_3\}$



PCTL until for MDPs

- Computation of probabilities for all $s \in S$:
 - $p_{\min}(s, \phi_1 \cup \phi_2)$ or $p_{\max}(s, \phi_1 \cup \phi_2)$
- Essentially the same as computation of reachability probabilities (see previous lecture)
 - just need to consider additional ϕ_1 constraint
- Overview:
 - precomputation:
 - identify states where the probability is 0 (or 1)
 - several options to compute remaining values:
 - value iteration
 - reduction to linear programming

PCTL until for MDPs – Precomputation

- Determine all states for which probability is 0
 - min case: $S^{\text{no}} = \{ s \in S \mid p_{\min}(s, \phi_1 \cup \phi_2) = 0 \}$ – Prob0E
 - max case: $S^{\text{no}} = \{ s \in S \mid p_{\max}(s, \phi_1 \cup \phi_2) = 0 \}$ – Prob0A
- Determine all states for which probability is 1
 - min case: $S^{\text{yes}} = \{ s \in S \mid p_{\min}(s, \phi_1 \cup \phi_2) = 1 \}$ – Prob1A
 - max case: $S^{\text{yes}} = \{ s \in S \mid p_{\max}(s, \phi_1 \cup \phi_2) = 1 \}$ – Prob1E
- Like for DTMCs:
 - identifying 0 states **required** (for uniqueness of LP problem)
 - identifying 1 states is **optional** (but useful optimisation)
- Advantages of precomputation
 - reduces size of **numerical** computation problem
 - gives **exact results** for the states in S^{yes} and S^{no} (no round-off)
 - suffices for model checking of **qualitative** properties

not
covered
here

PCTL until for MDPs – Prob0E

- Minimum probabilities 0
 - $S^{no} = \{ s \in S \mid p_{min}(s, \phi_1 \cup \phi_2) = 0 \} = \text{Sat}(\neg P_{>0}[\phi_1 \cup \phi_2])$

```
PROB0E(Sat( $\phi_1$ ), Sat( $\phi_2$ ))
```

1. $R := \text{Sat}(\phi_2)$
2. $done := \text{false}$
3. **while** ($done = \text{false}$)
 4. $R' := R \cup \{s \in \text{Sat}(\phi_1) \mid \forall \mu \in \text{Steps}(s) . \exists s' \in R . \mu(s') > 0\}$
 5. **if** ($R' = R$) **then** $done := \text{true}$
 6. $R := R'$
7. **endwhile**
8. **return** $S \setminus R$

PCTL until for MDPs – Prob0A

- Maximum probabilities 0
 - $S^{no} = \{ s \in S \mid p_{max}(s, \phi_1 \cup \phi_2) = 0 \}$

```
PROB0A( $Sat(\phi_1), Sat(\phi_2)$ )
```

1. $R := Sat(\phi_2)$
2. $done := \text{false}$
3. **while** ($done = \text{false}$)
4. $R' := R \cup \{s \in Sat(\phi_1) \mid \exists \mu \in Steps(s) . \exists s' \in R . \mu(s') > 0\}$
5. **if** ($R' = R$) **then** $done := \text{true}$
6. $R := R'$
7. **endwhile**
8. **return** $S \setminus R$

PCTL until for MDPs – Prob1E

- Maximum probabilities 1
 - $S^{\text{yes}} = \{ s \in S \mid p_{\max}(s, \phi_1 \cup \phi_2) = 1 \} = \text{Sat}(\neg P_{<1} [\phi_1 \cup \phi_2])$
- Prob1E algorithm (see next slide)
 - two nested loops (double fixed point)
 - result, stored in R , will be S^{yes} ; initially R is S
 - iteratively remove (some) states u with $p_{\max}(u, \phi_1 \cup \phi_2) < 1$
 - i.e. remove (some) states for which, under no adversary σ , is $\text{Prob}^\sigma(s, \phi_1 \cup \phi_2) = 1$
 - done by inner loop which computes subset R' of R
 - R' contains ϕ_1 -states with a probability distribution for which all transitions stay within R and at least one eventually reaches ϕ_2
 - note: after first iteration, R contains:
 - $\{ s \mid \text{Prob}^A(s, \phi_1 \cup \phi_2) > 0 \text{ for some } A \}$
 - essentially: execution of Prob0A and removal of S^{no} from R

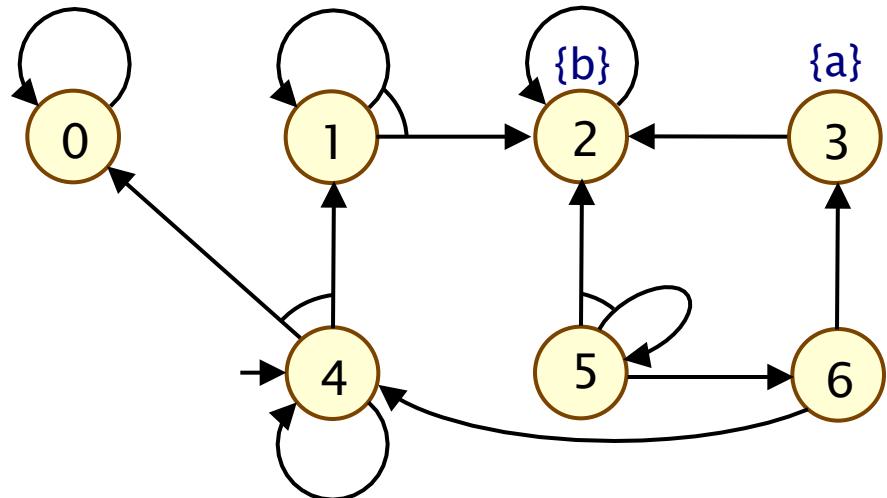
PCTL until for MDPs – Prob1E

```
PROB1E( $Sat(\phi_1), Sat(\phi_2)$ )
```

```
1.    $R := S$ 
2.    $done := \text{false}$ 
3.   while ( $done = \text{false}$ )
4.        $R' := Sat(\phi_2)$ 
5.        $done' := \text{false}$ 
6.       while ( $done' = \text{false}$ )
7.            $R'' := R' \cup \{s \in Sat(\phi_1) \mid \exists \mu \in Steps(s) .$ 
8.            $. \quad (\forall s' \in S . \mu(s') > 0 \rightarrow s' \in R) \wedge (\exists s' \in R' . \mu(s') > 0)\}$ 
9.           if ( $R'' = R'$ ) then  $done' := \text{true}$ 
10.           $R' := R''$ 
11.          endwhile
12.          if ( $R' = R$ ) then  $done := \text{true}$ 
13.           $R := R'$ 
14.      endwhile
15.  return  $R$ 
```

Prob1E – Example

- $S^{\text{yes}} = \{ s \in S \mid p_{\max}(s, \neg a \cup b) = 1 \}$
- $R = \{ 0, 1, 2, 3, 4, 5, 6 \}$
 - $R' = \{2\}$; $R' = \{1, 2, 5\}$; $R' = \{1, 2, 4, 5\}$; $R' = \{1, 2, 4, 5, 6\}$
- $R = \{ 1, 2, 4, 5, 6 \}$
 - $R' = \{2\}$; $R' = \{1, 2, 5\}$
- $R = \{ 1, 2, 5 \}$
 - $R' = \{2\}$; $R' = \{1, 2, 5\}$
- $R = \{ 1, 2, 5 \}$
- $S^{\text{yes}} = \{ 1, 2, 5 \}$



PCTL until for MDPs – Prob1A

- Minimum probabilities 1
 - $S^{\text{yes}} = \{ s \in S \mid p_{\min}(s, \phi_1 \cup \phi_2) = 1 \}$
- Can also be done with a graph-based algorithm
- Details omitted here
- For minimum probabilities, just take $S^{\text{yes}} = \text{Sat}(\phi_2)$
 - recall that computing states for which probability=1 is just an optimisation: it is not required for correctness

PCTL until for MDPs

- Min/max probabilities for the remaining states, i.e. $S^? = S \setminus (S^{\text{yes}} \cup S^{\text{no}})$, can be computed using either...
- 1. Value iteration
 - approximate iterative solution method
 - preferable in practice for efficiency reasons
- 2. Reduction to a linear optimisation problem
 - solve with well-known linear programming (LP) techniques
 - Simplex, ellipsoid method, interior point method
 - yields exact solution in finite number of steps
- NB: Policy iteration also possible but not considered here

Method 1 – Value iteration (min)

- Minimum probabilities satisfy:

- $p_{\min}(s, \phi_1 \cup \phi_2) = \lim_{n \rightarrow \infty} x_s^{(n)}$ where:

$$x_s^{(n)} = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ 0 & \text{if } s \in S^? \text{ and } n = 0 \\ \min \left\{ \sum_{s' \in S} \mu(s') \cdot x_{s'}^{(n-1)} \mid (a, \mu) \in \text{Steps}(s) \right\} & \text{if } s \in S^? \text{ and } n > 0 \end{cases}$$

- Approximate iterative solution:

- compute vector $\underline{x}^{(n)}$ for “sufficiently large” n
- in practice: terminate iterations when some pre-determined convergence criteria satisfied
- e.g. $\max_s | \underline{x}^{(n)}(s) - \underline{x}^{(n-1)}(s) | < \varepsilon$ for some tolerance ε

Method 1 – Value iteration (max)

- Similarly, maximum probabilities satisfy:

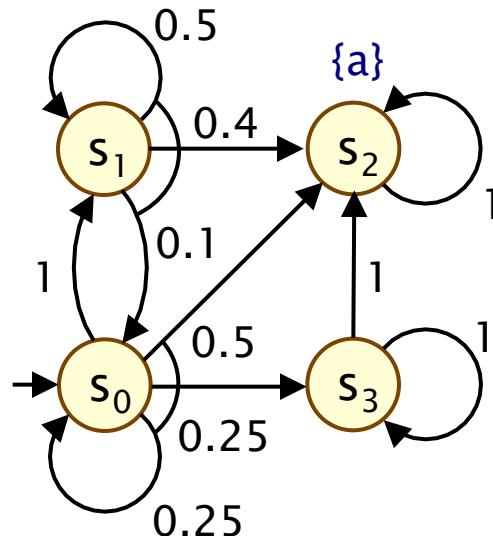
- $p_{\max}(s, \phi_1 \cup \phi_2) = \lim_{n \rightarrow \infty} x_s^{(n)}$ where:

$$x_s^{(n)} = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ 0 & \text{if } s \in S^? \text{ and } n = 0 \\ \max \left\{ \sum_{s' \in S} \mu(s') \cdot x_{s'}^{(n-1)} \mid (a, \mu) \in \text{Steps}(s) \right\} & \text{if } s \in S^? \text{ and } n > 0 \end{cases}$$

- ...and can be approximated iteratively

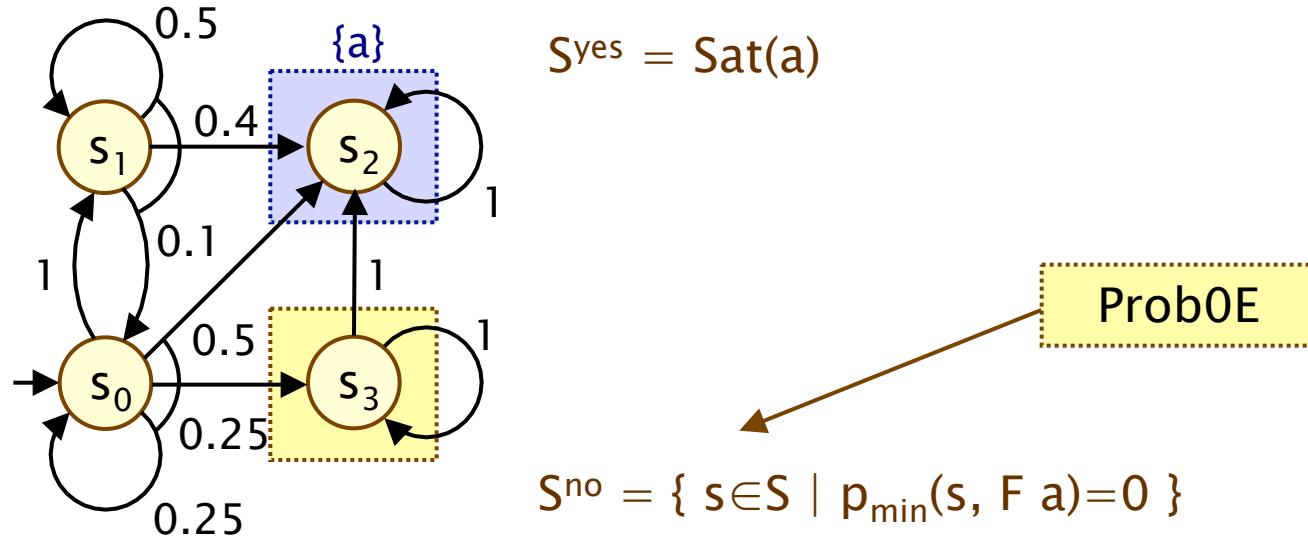
PCTL until – Example

- Model check: $P_{>0.5} [F a] \equiv P_{>0.5} [\text{true} \cup a]$
 - lower probability bound so **minimum probabilities** required

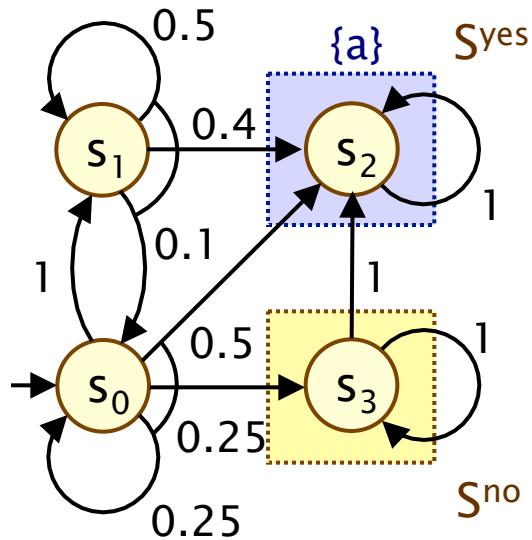


PCTL until – Example

- Model check: $P_{>0.5} [F a] \equiv P_{>0.5} [\text{true} \cup a]$
 - lower probability bound so minimum probabilities required



PCTL until – Example



Compute: $p_{\min}(s_i, F a)$

$$S^{\text{yes}} = \{s_2\}, S^{\text{no}} = \{s_3\}, S^? = \{s_0, s_1\}$$

$$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$$

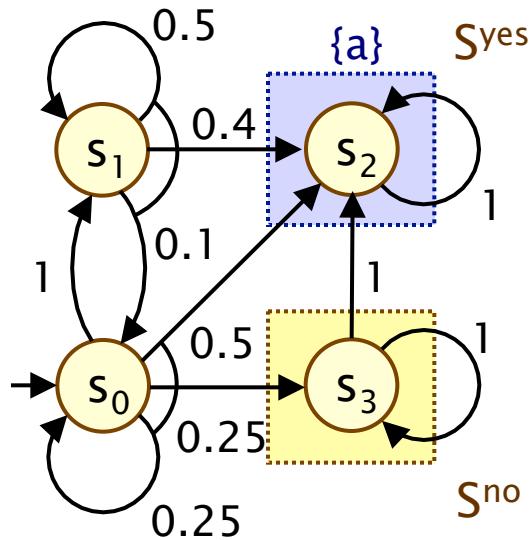
$$n=0: [0, 0, 1, 0]$$

$$\begin{aligned} n=1: & [\min(1 \cdot 0, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1), \\ & 0.1 \cdot 0 + 0.5 \cdot 0 + 0.4 \cdot 1, 1, 0] \\ & = [0, 0.4, 1, 0] \end{aligned}$$

$$\begin{aligned} n=2: & [\min(1 \cdot 0.4, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1), \\ & 0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4 \cdot 1, 1, 0] \\ & = [0.4, 0.6, 1, 0] \end{aligned}$$

$$n=3: \dots$$

PCTL until – Example



$$\mathbf{p}_{\min}(\mathbf{F} a) = [2/3, 14/15, 1, 0]$$

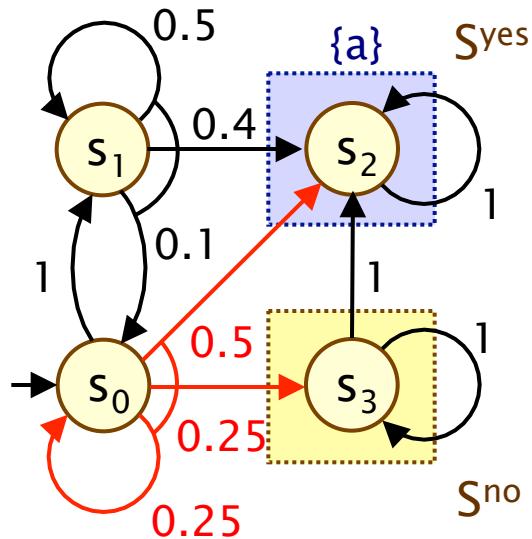
$$\text{Sat}(\mathbf{P}_{>0.5} [\mathbf{F} a]) = \{ s_0, s_1, s_2 \}$$

	$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$
$n=0:$	$[0.000000, 0.000000, 1, 0]$
$n=1:$	$[0.000000, 0.400000, 1, 0]$
$n=2:$	$[0.400000, 0.600000, 1, 0]$
$n=3:$	$[0.600000, 0.740000, 1, 0]$
$n=4:$	$[0.650000, 0.830000, 1, 0]$
$n=5:$	$[0.662500, 0.880000, 1, 0]$
$n=6:$	$[0.665625, 0.906250, 1, 0]$
$n=7:$	$[0.666406, 0.919688, 1, 0]$
$n=8:$	$[0.666602, 0.926484, 1, 0]$
\dots	
$n=20:$	$[0.666667, 0.933332, 1, 0]$
$n=21:$	$[0.666667, 0.933332, 1, 0]$

$$\approx [2/3, 14/15, 1, 0]$$

Example – Optimal adversary

- Like for reachability, can generate an optimal memoryless adversary using min/max probability values
 - and thus also a DTMC
- Min adversary σ_{\min}



$$\begin{aligned} & [x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}] \\ & \dots \\ & n=20: [0.666667, 0.933332, 1, 0] \\ & n=21: [0.666667, 0.933332, 1, 0] \\ & \approx [2/3, 14/15, 1, 0] \\ \\ & s_0 : \min(1 \cdot 14/15, 0.5 \cdot 1 + 0.5 \cdot 0 + 0.25 \cdot 2/3) \\ & = \min(14/15, 2/3) \end{aligned}$$

Method 2 – Linear optimisation problem

- Probabilities for states in $S^? = S \setminus (S^{\text{yes}} \cup S^{\text{no}})$ can also be obtained from a **linear optimisation problem**
- **Minimum** probabilities:

maximize $\sum_{s \in S^?} x_s$ subject to the constraints :

$$x_s \leq \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{\text{yes}}} \mu(s')$$

for all $s \in S^?$ and for all $(a, \mu) \in \text{Steps}(s)$

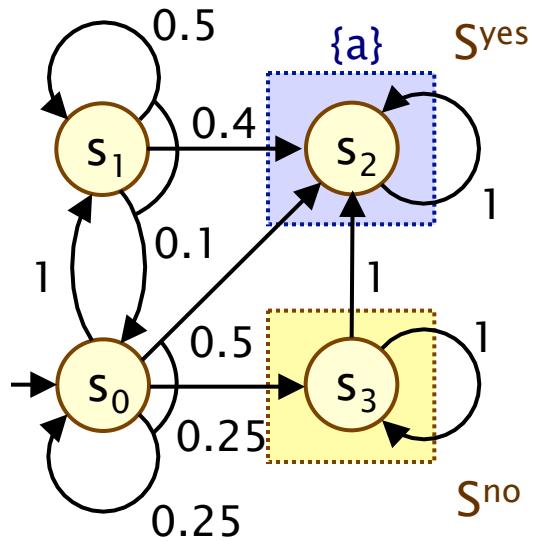
- **Maximum** probabilities:

minimize $\sum_{s \in S^?} x_s$ subject to the constraints :

$$x_s \geq \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{\text{yes}}} \mu(s')$$

for all $s \in S^?$ and for all $(a, \mu) \in \text{Steps}(s)$

PCTL until – Example



Let $x_i = p_{\min}(s_i, F a)$

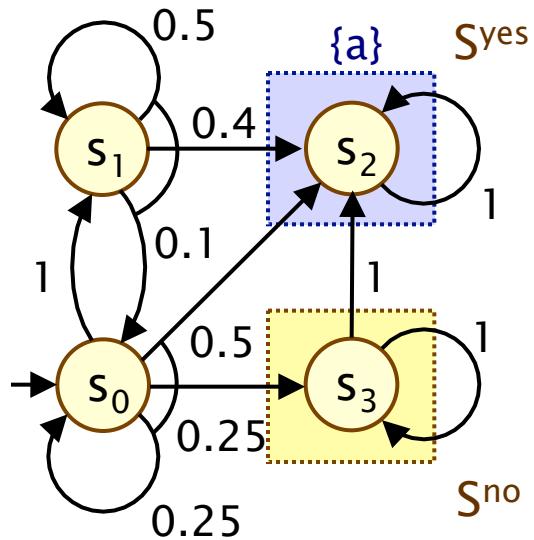
$S^{\text{yes}}: x_2 = 1, S^{\text{no}}: x_3 = 0$

For $S^? = \{s_0, s_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq 0.25 \cdot x_0 + 0.5$
- $x_1 \leq 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$

PCTL until – Example



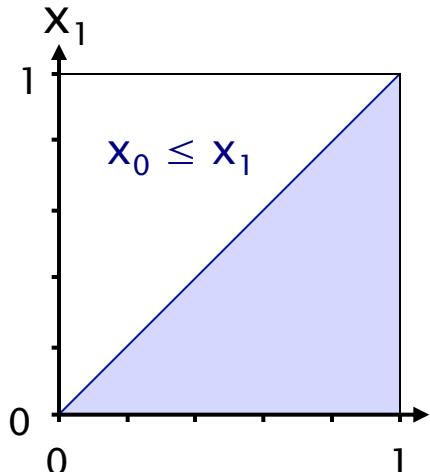
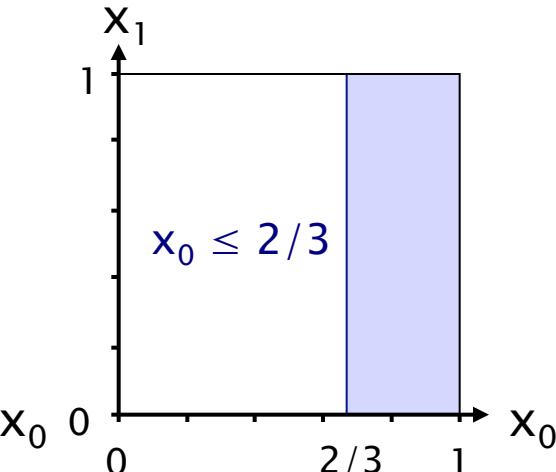
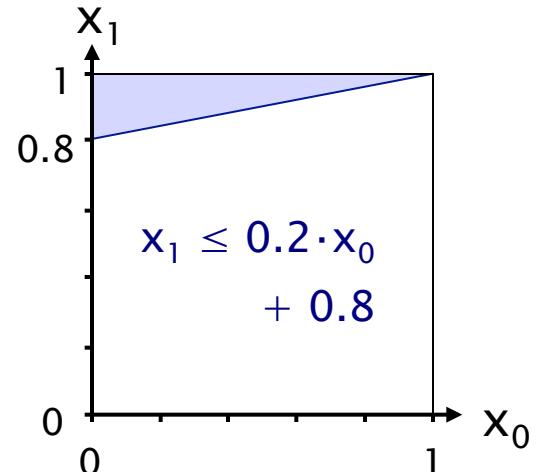
Let $x_i = p_{\min}(s_i, F a)$

$S^{\text{yes}}: x_2 = 1, S^{\text{no}}: x_3 = 0$

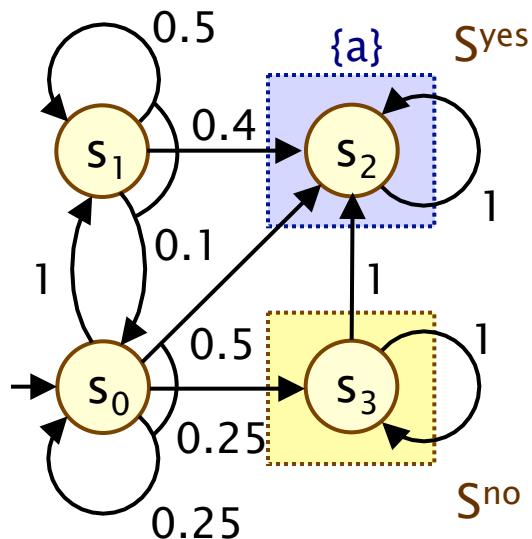
For $S^? = \{s_0, s_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq 2/3$
- $x_1 \leq 0.2 \cdot x_0 + 0.8$



PCTL until – Example



$$p_{\min}(F a) = [2/3, 14/15, 1, 0]$$

$$\text{Sat}(P_{>0.5} [F a]) = \{s_0, s_1, s_2\}$$

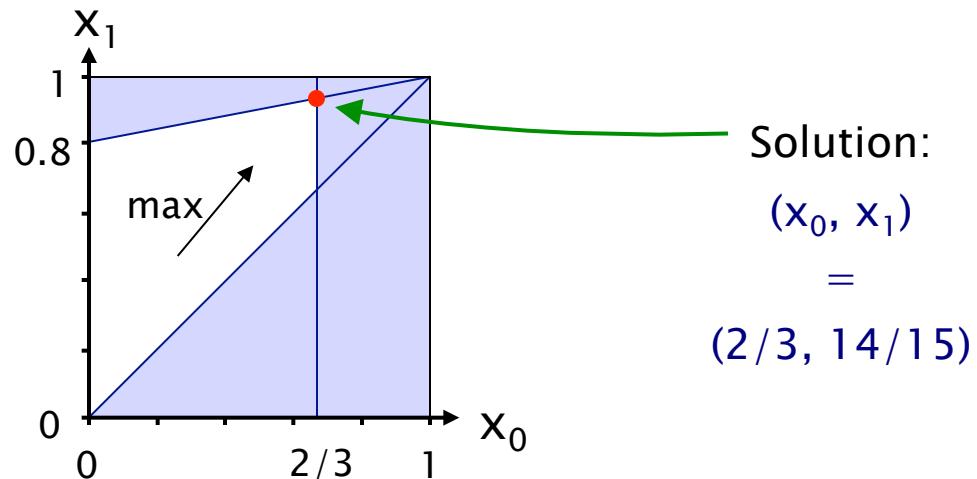
Let $x_i = p_{\min}(s_i, F a)$

$S^{\text{yes}}: x_2 = 1, S^{\text{no}}: x_3 = 0$

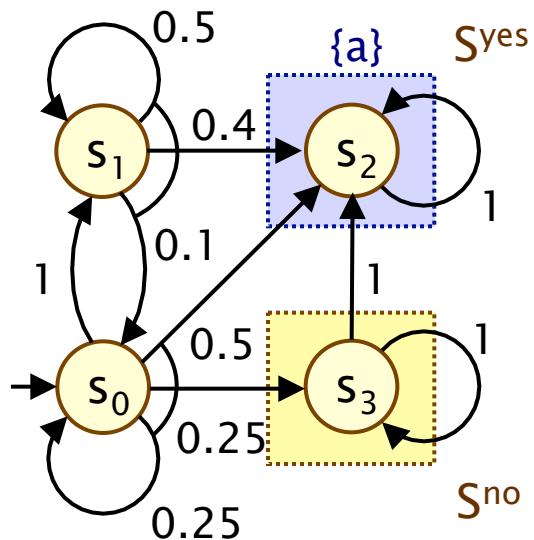
For $S^? = \{s_0, s_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq 2/3$
- $x_1 \leq 0.2 \cdot x_0 + 0.8$

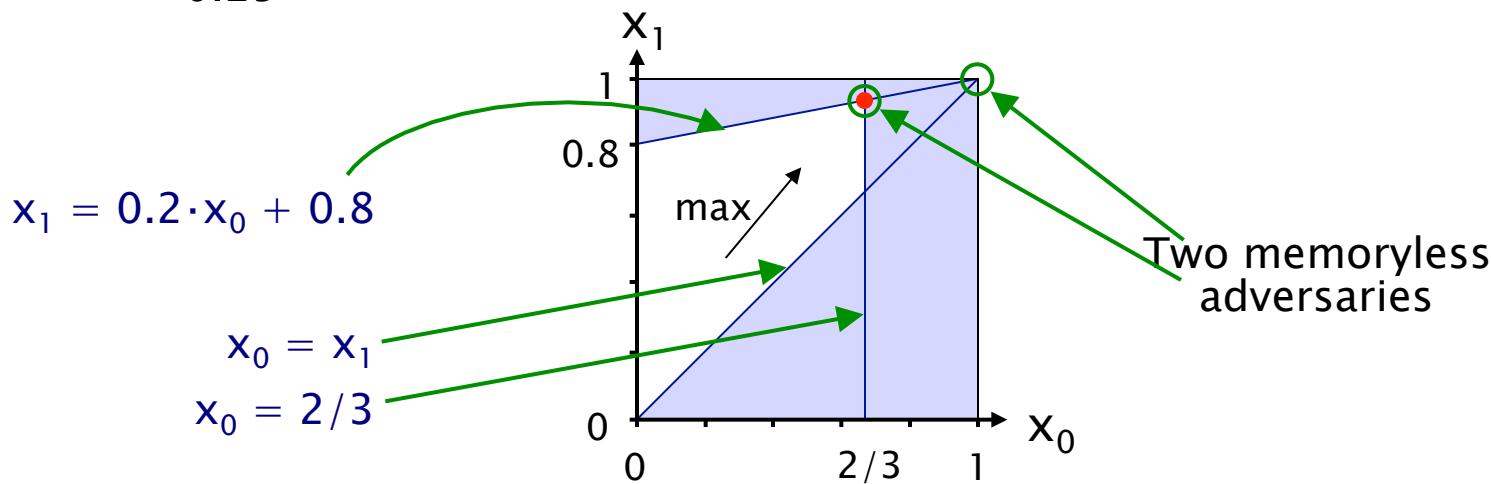


Example – Optimal adversary



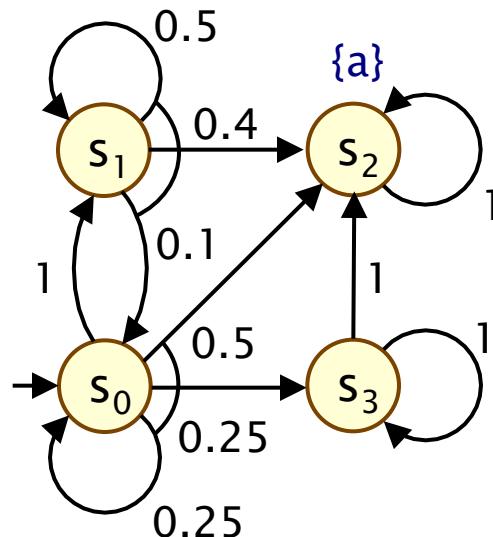
Get optimal adversary from constraints of optimisation problem that yield solution

Alternatively, use optimal probability values in value iteration function, as shown in value iteration example



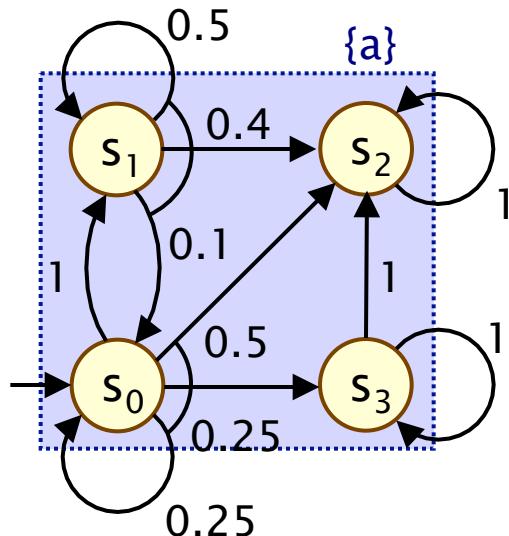
PCTL until – Example 2

- Model check: $P_{<0.1} [F a]$
 - upper probability bound so **maximum probabilities** required



PCTL until – Example 2

- Model check: $P_{<0.1} [F a]$
 - upper probability bound so maximum probabilities required



$$S^{\text{yes}} = \{ s \in S \mid p_{\min}(s, F a) = 1 \} = S$$

Prob1E

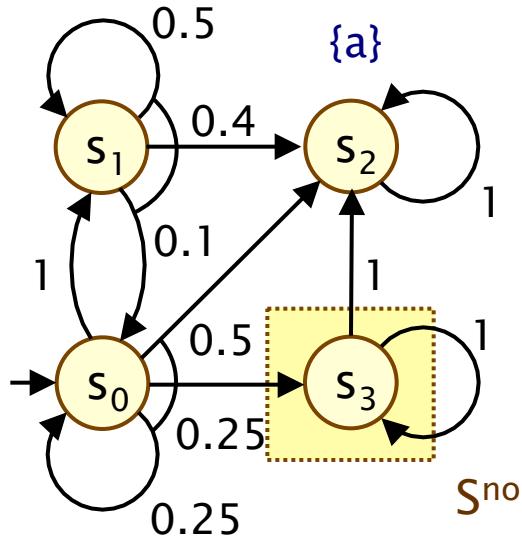
Prob0A

$$S^{\text{no}} = \{ s \in S \mid p_{\min}(s, F a) = 0 \} = \emptyset$$

- $p_{\max}(F a) = [1, 1, 1, 1]$ and $\text{Sat}(P_{<0.1} [F a]) = \emptyset$

PCTL until – Example 3

- Model check: $P_{>0} [F a]$
 - lower probability bound so **minimum probabilities** required
 - **qualitative property** so numerical computation can be avoided



$$S^{\text{no}} = \{ s \in S \mid p_{\min}(s, F a) = 0 \}$$

Prob0E yields $S^{\text{no}} = \{s_3\}$

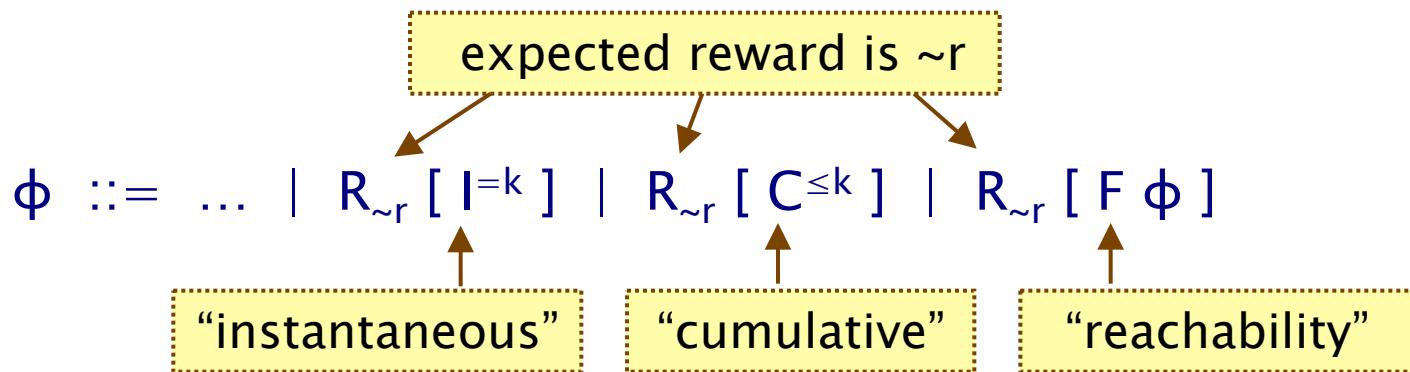
- $p_{\min}(F a) = [?, ?, ?, 0]$ and $\text{Sat}(P_{>0} [F a]) = \{s_0, s_1, s_2\}$

Costs and rewards

- We can augment MDPs with rewards (or costs)
 - real-valued quantities assigned to states and/or actions
 - different from the DTMC case where transition rewards assigned to individual transitions
- For a MDP $(S, s_{\text{init}}, \text{Steps}, L)$, a reward structure is a pair (ρ, ι)
 - $\rho : S \rightarrow \mathbb{R}_{\geq 0}$ is the **state reward function**
 - $\iota : S \times \text{Act} \rightarrow \mathbb{R}_{\geq 0}$ is **transition reward function**
- As for DTMCs these can be used to compute:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...

PCTL and rewards

- Augment PCTL with rewards based properties
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards



where $r \in \mathbb{R}_{\geq 0}$, $\sim \in \{<, >, \leq, \geq\}$, $k \in \mathbb{N}$

- $R_{\sim r} [\cdot]$ means “the expected value of \cdot satisfies $\sim r$ for all **adversaries**”

Types of reward formulas

- Instantaneous: $R_{\sim r} [I^=k]$
 - the expected value of the reward at time-step k is $\sim r$ for all adversaries
 - “the minimum expected queue size after exactly 90 seconds”
- Cumulative: $R_{\sim r} [C^{\leq k}]$
 - the expected reward cumulated up to time-step k is $\sim r$ for all adversaries
 - “the maximum expected power consumption over one hour”
- Reachability: $R_{\sim r} [F \phi]$
 - the expected reward cumulated before reaching a state satisfying ϕ is $\sim r$ for all adversaries
 - the maximum expected time for the algorithm to terminate

Reward formula semantics

- Formal semantics of the three reward operators:
 - for a state s in the MDP:
 - $s \models R_{\sim r} [I = k] \Leftrightarrow \text{Exp}^\sigma(s, X_{I=k}) \sim r$ for all adversaries σ
 - $s \models R_{\sim r} [C \leq k] \Leftrightarrow \text{Exp}^\sigma(s, X_{C \leq k}) \sim r$ for all adversaries σ
 - $s \models R_{\sim r} [F \Phi] \Leftrightarrow \text{Exp}^\sigma(s, X_{F\Phi}) \sim r$ for all adversaries σ

$\text{Exp}^A(s, X)$ denotes the **expectation** of the **random variable**
 $X : \text{Path}^\sigma(s) \rightarrow \mathbb{R}_{\geq 0}$ with respect to the **probability measure** Pr^σ_s

Reward formula semantics

- For an infinite path $\omega = s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2\dots$

$$X_{I=k}(\omega) = \underline{\rho}(s_k)$$

$$X_{C \leq k}(\omega) = \begin{cases} 0 & \text{if } k = 0 \\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \underline{\iota}(a_i) & \text{otherwise} \end{cases}$$

$$X_{F\phi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in \text{Sat}(\phi) \\ \infty & \text{if } s_i \notin \text{Sat}(\phi) \text{ for all } i \geq 0 \\ \sum_{i=0}^{k_\phi-1} \underline{\rho}(s_i) + \underline{\iota}(a_i) & \text{otherwise} \end{cases}$$

where $k_\phi = \min\{ i \mid s_i \models \phi \}$

Model checking reward formulas

- Instantaneous: $R_{\sim r} [I^{=k}]$
 - similar to the computation of bounded until probabilities
 - solution of **recursive equations**
 - k matrix–vector multiplications (+ min/max)
- Cumulative: $R_{\sim r} [C^{\leq k}]$
 - extension of bounded until computation
 - solution of **recursive equations**
 - k iterations of matrix–vector multiplication + summation
- Reachability: $R_{\sim r} [F \phi]$
 - similar to the case for until
 - solve a **linear optimization problem** (or **value iteration**)

Model checking complexity

- For model checking of an MDP $(S, s_{\text{init}}, \text{Steps}, L)$ and PCTL formula ϕ (including reward operators)
 - complexity is **linear in $|\Phi|$** and **polynomial in $|S|$**
- Size $|\phi|$ of ϕ is defined as number of logical connectives and temporal operators plus sizes of temporal operators
 - model checking is performed for each operator
- Worst-case operators are $P_{\sim p} [\phi_1 \cup \phi_2]$ and $R_{\sim r} [F \phi]$
 - main task: **solution of linear optimization** problem of size $|S|$
 - can be solved with ellipsoid method (**polynomial** in $|S|$)
 - and also precomputation algorithms (max $|S|$ steps)

Summing up...

- PCTL for MDPs
 - same as syntax as for PCTL
 - key difference in semantics: “for all adversaries”
 - requires computation of minimum/maximum probabilities
- PCTL model checking for MDPs
 - same basic algorithm as for DTMCs
 - next: matrix–vector multiplication + min/max
 - bounded until: k matrix–vector multiplications + min/max
 - until : precomputation algorithms + numerical computation
 - precomputation: Prob0A and Prob1E for max, Prob0E for min
 - numerical computation: value iteration, linear optimisation
 - complexity linear in $|\Phi|$ and polynomial in $|S|$
- Costs and rewards

Lecture 15

Long-run properties of DTMCs and MDPs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Overview

- LTL – Linear temporal logic
- Repeated reachability and persistence
- Long-run properties of DTMCs
 - bottom strongly connected components (BSCCs)
- Long-run properties of MDPs
 - end components (E.C.s)

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77] – the non-probabilistic linear-time temporal logic
 - PCTL* [ASB+95,BdA95] – which subsumes both PCTL and LTL
 - both allow path operators to be combined
- In PCTL, temporal operators always appear inside $P_{\sim p}[\dots]$
 - (and, in CTL, they always appear inside A or E)
 - in LTL (and PCTL*), temporal operators can be combined

Review – CTL and PCTL

- CTL:
 - $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg\phi \mid A \psi \mid E \psi$
 - $\psi ::= X \phi \mid \phi \cup \phi$
- PCTL
 - $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg\phi \mid P_{\sim p} [\psi]$
 - $\psi ::= X \phi \mid \phi \cup^{\leq k} \phi \mid \phi \cup \phi$
- Notation for paths: $\omega = s_0 s_1 s_2 \dots$
 - Path(s) = set of all (infinite) paths with $s_0 = s$
 - $\omega(i)$ denotes the $(i+1)$ th state, i.e. $\omega(i) = s_i$
 - $\omega[i\dots]$ is the suffix starting from s_i , i.e. $\omega[i\dots] = s_i s_{i+1} s_{i+2} \dots$

LTL – Linear temporal logic

LTL – Linear temporal logic

- Derived operators like CTL, for example:
 - $F \psi \equiv \text{true} U \psi$
 - $G \psi \equiv \neg F(\neg \psi)$
- LTL semantics (non-probabilistic)
 - implicit universal quantification over paths
 - i.e. for an LTS $M = (S, s_{\text{init}}, \rightarrow, L)$ and LTL formula ψ
 - $s \models \psi$ iff $\omega \models \psi$ **for all** paths $\omega \in \text{Path}(s)$
 - $M \models \psi$ iff $s_{\text{init}} \models \psi$
- e.g:
 - $\text{A } F(\text{req} \wedge X \text{ ack})$
 - “it is **always** possible that a request, followed immediately by an acknowledgement, can occur”

More LTL examples

- $(F \text{ tmp_fail}_1) \wedge (F \text{ tmp_fail}_2)$
 - “both servers suffer temporary failures at some point”
- $GF \text{ ready}$
 - “the server always eventually returns to a ready-state”
- $G (\text{req} \rightarrow F \text{ ack})$
 - “requests are always followed by an acknowledgement”
- $FG \text{ stable}$
 - “the system reaches and stays in a ‘stable’ state”

Branching vs. Linear time

- LTL but not CTL:
 - FG stable
 - “the system reaches and stays in a ‘stable’ state”
 - e.g. $\text{A FG stable} \not\equiv \text{AF AG stable}$
- CTL but not LTL:
 - AG EF init
 - e.g. “for every computation, it is always possible to return to the initial state”

LTL + probabilities

- Same idea as PCTL: probabilities of sets of path formulae
 - for a state s of a DTMC and an LTL formula ψ :
 - $\text{Prob}(s, \psi) = \Pr_s \{ \omega \in \text{Path}(s) \mid \omega \models \psi \}$
 - all such path sets are measurable (see later lecture)
- For MDPs, we can again consider lower/upper bounds
 - $p_{\min}(s, \psi) = \inf_{\sigma \in \text{Adv}} \text{Prob}^\sigma(s, \psi)$
 - $p_{\max}(s, \psi) = \sup_{\sigma \in \text{Adv}} \text{Prob}^\sigma(s, \psi)$
 - (for LTL formula ψ)
- For DTMCs or MDPs, an LTL specification often comprises an LTL (path) formula and a probability bound
 - e.g. $P_{>0.99} [F (\text{req} \wedge X \text{ ack})]$

PCTL*

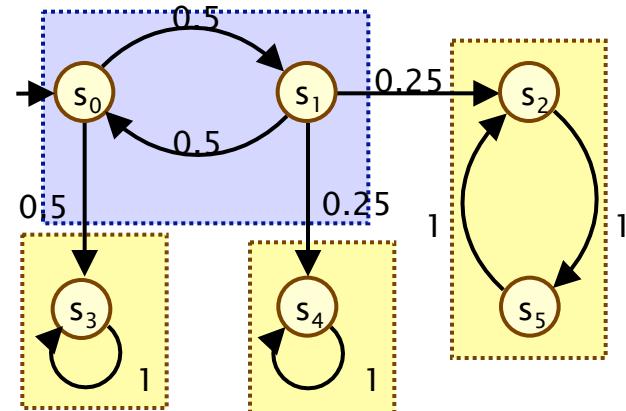
- PCTL* subsumes both (probabilistic) LTL and PCTL
- State formulae:
 - $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg\phi \mid P_{\sim_p} [\psi]$
 - where $a \in AP$, $\sim \in \{<, >, \leq, \geq\}$, $p \in [0, 1]$ and ψ a path formula
- Path formulae:
 - $\psi ::= \phi \mid \psi \wedge \psi \mid \neg\psi \mid X\psi \mid \psi U \psi$
 - where ϕ is a state formula
- A PCTL* formula is a state formula ϕ
 - e.g. $P_{>0.99} [\text{GF crit}_1] \wedge P_{>0.99} [\text{GF crit}_2]$
 - e.g. $P_{\geq 0.75} [\text{GF } P_{>0} [\text{F init}]]$

Fundamental property of DTMCs

- Strongly connected component (SCC)
 - maximally strongly connected set of states
- Bottom strongly connected component (BSCC)
 - SCC T from which no state outside T is reachable from T

- With probability 1,
a BSCC will be reached
and all of its states
visited infinitely often

- Formally:
 - $\Pr_s \{ \omega \in \text{Path}(s) \mid \exists i \geq 0, \exists \text{ BSCC } T \text{ such that}$
 $\forall j \geq i \omega(j) \in T \text{ and}$
 $\forall s' \in T \omega(k) = s' \text{ for infinitely many } k \} = 1$



Repeated reachability – DTMCs

- Repeated reachability:
 - “always eventually...” or “infinitely often...”
- e.g. “what is the probability that the protocol successfully sends a message infinitely often?”
- Using LTL notation:
 - $\omega \models \text{GF } a$
 \Leftrightarrow
 - $\forall i \geq 0 . \exists j \geq i . \omega(j) \in \text{Sat}(a)$
- $\text{Prob}(s, \text{GF } a)$
 $= \Pr_s \{ \omega \in \text{Path}(s) \mid \forall i \geq 0 . \exists j \geq i . \omega(j) \in \text{Sat}(a) \}$

Qualitative repeated reachability

- $\Pr_s \{ \omega \in \text{Path}(s) \mid \forall i \geq 0 . \exists j \geq i . \omega(j) \in \text{Sat}(a) \} = 1$
- $P_{\geq 1} [\text{GF } a]$

PCTL*

if and only if

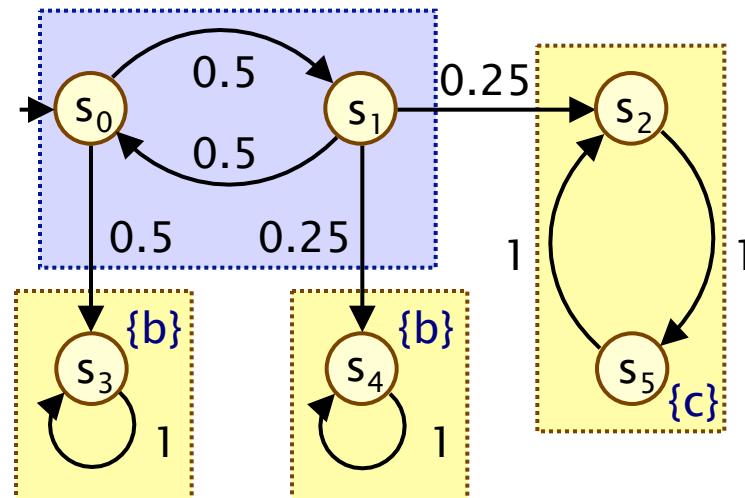
- $T \cap \text{Sat}(a) \neq \emptyset$ for all BSCCs T reachable from s

Examples:

$$s_0 \models P_{\geq 1} [\text{GF } (b \vee c)]$$

$$s_0 \not\models P_{\geq 1} [\text{GF } b]$$

$$s_2 \models P_{\geq 1} [\text{GF } c]$$

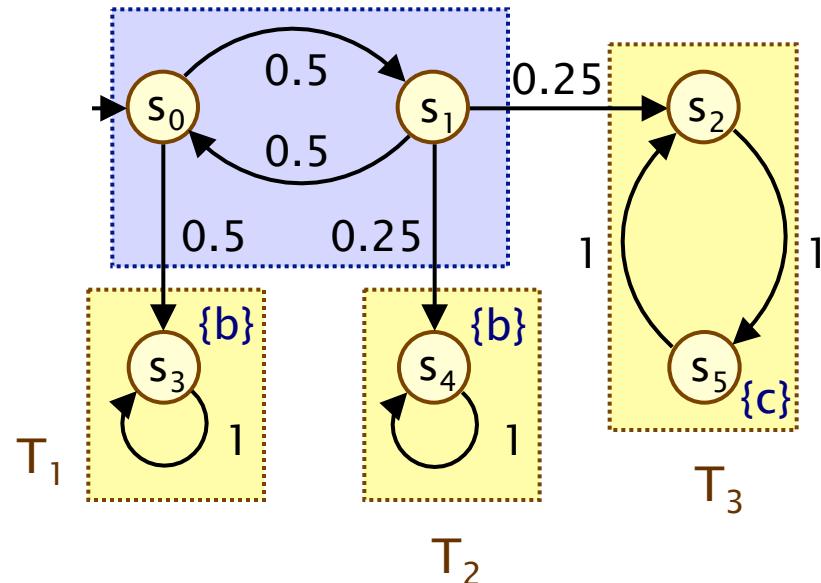


Quantitative repeated reachability

- $\text{Prob}(s, \text{GF } a) = \text{Prob}(s, \text{F } T_{\text{G}Fa})$
 - where $T_{\text{G}Fa}$ = union of all BSCCs T with $T \cap \text{Sat}(a) \neq \emptyset$

Example:

$$\begin{aligned}\text{Prob}(s_0, \text{GF } b) &= \text{Prob}(s_0, \text{F } T_{\text{G}Fb}) \\ &= \text{Prob}(s_0, \text{F } (T_1 \cup T_2)) \\ &= \text{Prob}(s_0, \text{F } \{s_3, s_4\}) \\ &= 2/3 + 1/6 = 5/6\end{aligned}$$



- From the above, we also have:
 - $\mathbb{P}_{>0} [\text{GF } a] \Leftrightarrow T \cap \text{Sat}(a) \neq \emptyset$ for some reachable BSCC T

Persistence – DTMCs

- Persistence properties: “eventually always...”
 - e.g. “what is the probability of the leader election algorithm reaching, and staying in, a stable state?”
 - e.g. “what is the probability that an irrecoverable error occurs?”
- Using LTL notation:
 - $\omega \models \text{FG } a$
 \Leftrightarrow
 - $\exists i \geq 0 . \forall j \geq i . \omega(j) \in \text{Sat}(a)$
- $\text{Prob}(s, \text{FG } a)$
 $= \Pr_s \{ \omega \in \text{Path}(s) \mid \exists i \geq 0 . \forall j \geq i . \omega(j) \in \text{Sat}(a) \}$

Qualitative persistence

- $\Pr_s \{ \omega \in \text{Path}(s) \mid \exists i \geq 0 . \forall j \geq i . \omega(j) \in \text{Sat}(a) \} = 1$
- $P_{\geq 1} [\text{FG } a]$

if and only if

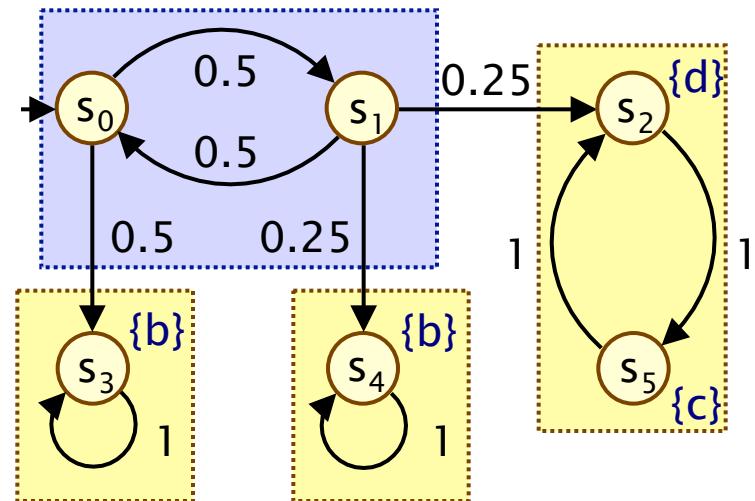
- $T \subseteq \text{Sat}(a)$ for all BSCCs T reachable from s

Examples:

$$s_0 \not\models P_{\geq 1} [\text{FG } (b \vee c)]$$

$$s_0 \models P_{\geq 1} [\text{FG } (b \vee c \vee d)]$$

$$s_2 \models P_{\geq 1} [\text{FG } (c \vee d)]$$

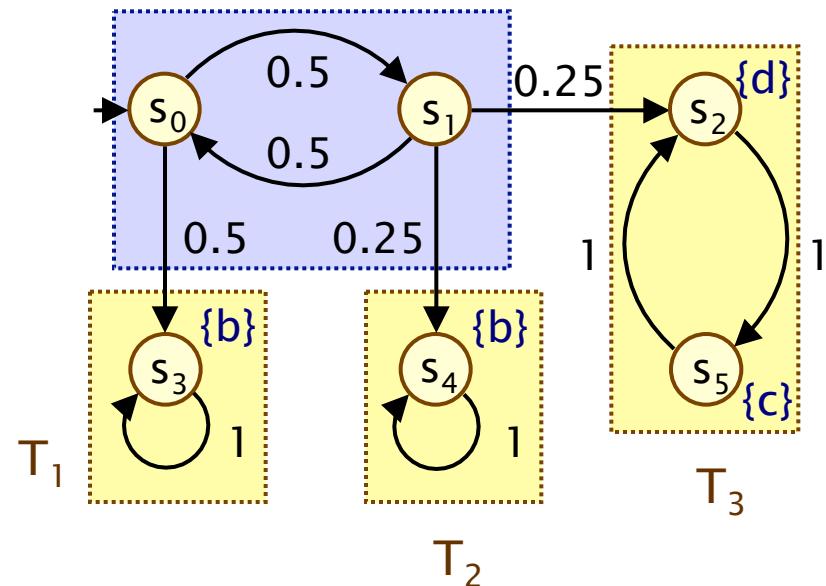


Quantitative persistence

- $\text{Prob}(s, \text{FG } a) = \text{Prob}(s, \text{F } T_{\text{FG}a})$
 - where $T_{\text{FG}a}$ = union of all BSCCs T with $T \subseteq \text{Sat}(a)$

Example:

$$\begin{aligned}\text{Prob}(s_0, \text{FG } (b \vee c)) &= \text{Prob}(s_0, \text{F } T_{\text{FG}(b \vee c)}) \\ &= \text{Prob}(s_0, \text{F } (T_1 \cup T_2)) \\ &= \text{Prob}(s_0, \text{F } \{s_3, s_4\}) \\ &= 2/3 + 1/6 = 5/6\end{aligned}$$



Success sets

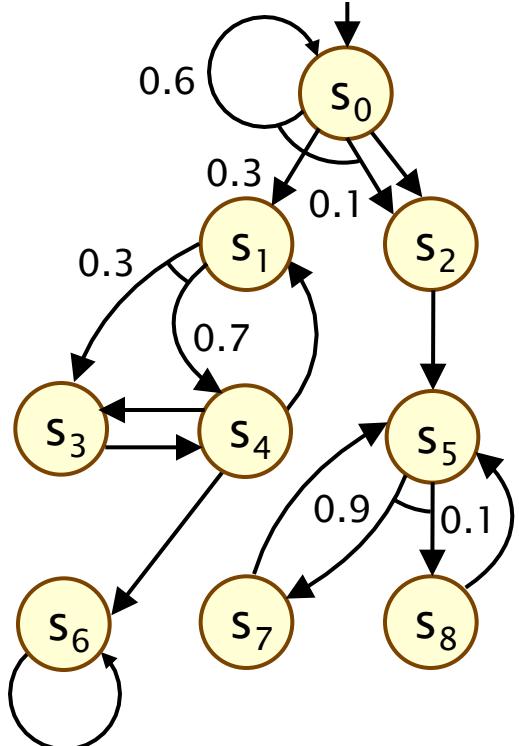
- The sets T_P for property P are called **success sets**
 - T_{GFa} = union of all BSCCs T with $T \cap \text{Sat}(a) \neq \emptyset$
 - T_{FGa} = union of all BSCCs T with $T \subseteq \text{Sat}(a)$
- Sometimes denoted U_P
 - e.g. U_{GFa}
 - we use T_p here (to avoid confusion with the until operator)

Repeated reachability + persistence

- Repeated reachability and persistence are dual properties
 - $GF a \equiv \neg(FG \neg a)$
 - $FG a \equiv \neg(GF \neg a)$
- Hence, for example:
 - $\text{Prob}(s, GF a) = 1 - \text{Prob}(s, FG \neg a)$
- Can show this through LTL equivalences, or...
- $\text{Prob}(s, GF a) + \text{Prob}(s, FG \neg a)$
= $\text{Prob}(s, F T_{GFa}) + \text{Prob}(s, F T_{FG\neg a})$
 - T_{GFa} = union of BSCCs T with $T \cap \text{Sat}(a) \neq \emptyset$ (T intersects $\text{Sat}(a)$)
 - $T_{FG\neg a}$ = union of BSCCs T with $T \subseteq (S \setminus \text{Sat}(a))$ (no intersection)
= $\text{Prob}(s, F (T_{GFa} \cup T_{FG\neg a})) = 1$ (fundamental DTMC property)

End components of MDPs

- Consider an MDP $M = (S, s_{\text{init}}, \text{Steps}, L)$
- A **sub-MDP** of M is a pair (T, Steps') where:
 - $T \subseteq S$ is a (non-empty) subset of M 's states
 - $\text{Steps}'(s) \subseteq \text{Steps}(s)$ for each $s \in T$
 - (T, Steps') is **closed under probabilistic branching**, i.e. the set of states $\{ s' \mid \mu(s') > 0 \text{ for some } (a, \mu) \in \text{Steps}'(s) \}$ is a subset of T
- An **end component** of M is a strongly connected sub-MDP

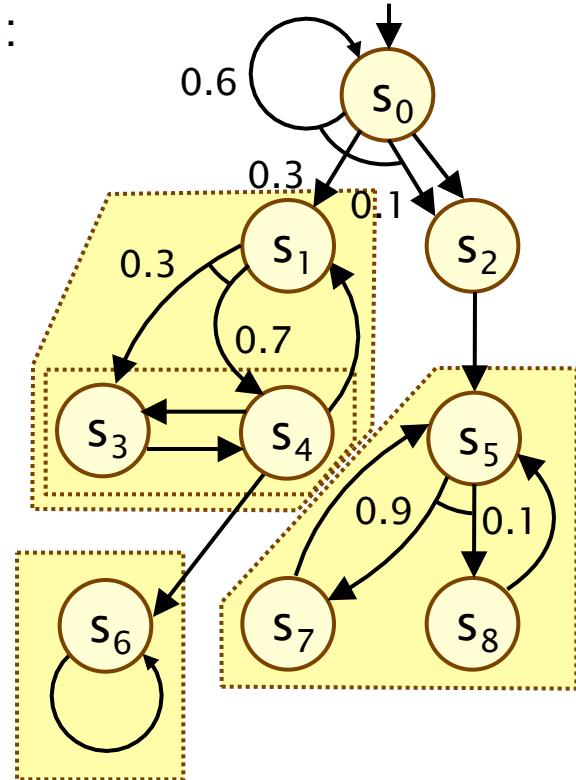


Note:

- action labels omitted
- probabilities omitted where = 1

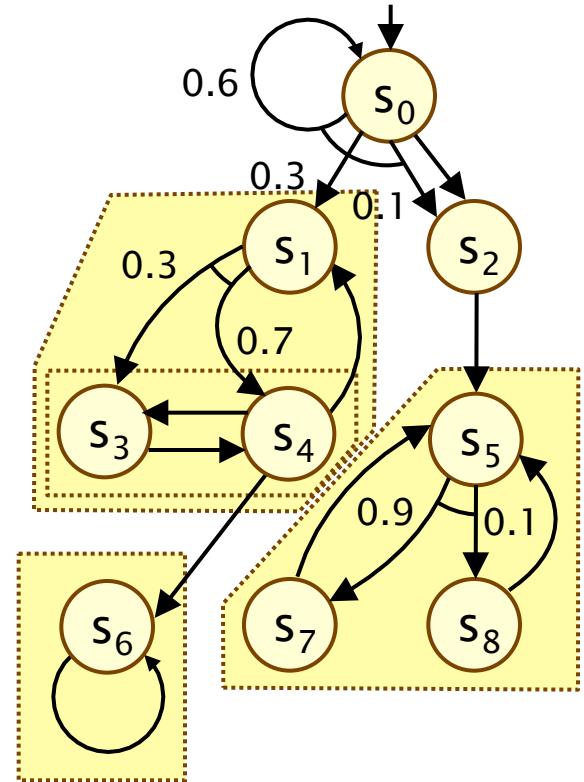
End components – Examples

- Sub-MDPs
 - can be formed from state sets such as:
 - $\{s_2, s_5, s_7, s_8\}$, $\{s_0, s_2, s_5, s_7, s_8\}$, $\{s_5, s_7, s_8\}$,
 - $\{s_1, s_3, s_4\}$, $\{s_1, s_3, s_4, s_6\}$, $\{s_3, s_4\}$, ...
- End components
 - can be formed from state sets:
 - $\{s_3, s_4\}$, $\{s_1, s_3, s_4\}$, $\{s_6\}$, $\{s_5, s_7, s_8\}$
- Note that
 - state sets do not necessarily uniquely identify end components
 - e.g. $\{s_1, s_3, s_4\}$



End components of MDPs

- For finite MDPs...
 - (analogue of fundamental property of finite DTMCs)
- For every end component, there is an adversary which, with probability 1, forces the MDP to remain in the end component, and visit all its states infinitely often
- Under every adversary σ , with probability 1 an end component will be reached and all of its states visited infinitely often

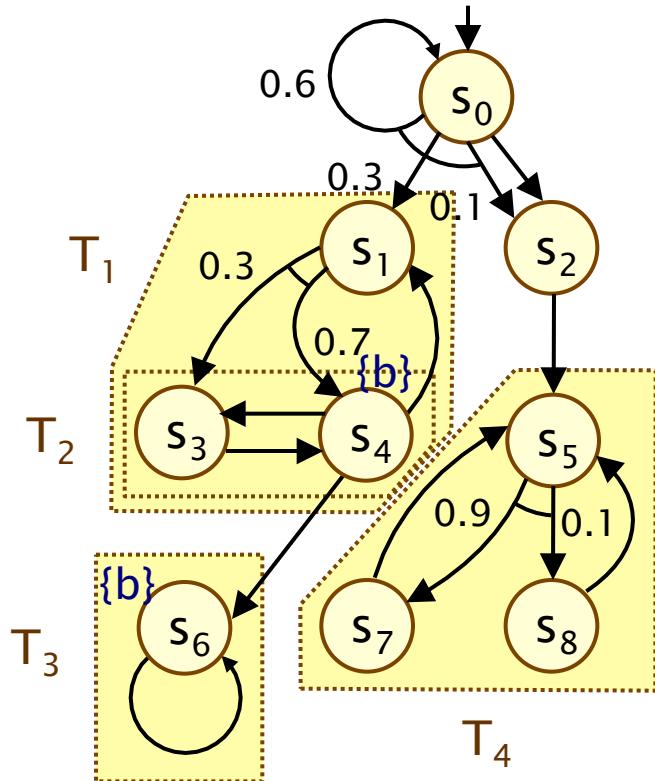


Repeated reachability – MDPs (max)

- Repeated reachability (GF) for MDPs
 - consider first the case of **maximum** probabilities...
 - $p_{\max}(s, \text{GF } a)$
- First, a simple qualitative property:
 - $\text{Prob}^\sigma(s, \text{GF } a) > 0$ **for some** adversary σ , i.e. $p_{\max}(s, \text{GF } a) > 0$
 \Leftrightarrow
 - $T \cap \text{Sat}(a) \neq \emptyset$ **for some** end component T reachable from s
- The quantitative case (for maximum probabilities):
 - $p_{\max}(s, \text{GF } a) = p_{\max}(s, \text{F } T_{\text{GFA}})$
 - where T_{GFA} is the union of sets T for all **end components** (T, Steps') with $T \cap \text{Sat}(a) \neq \emptyset$ (i.e. at least one a -state in T)

Example

- Check: $P_{<0.8} [\text{GF } b]$ for s_0
- Compute $p_{\max}(\text{GF } b)$
 - $p_{\max}(\text{GF } b) = p_{\max}(s, F T_{\text{GF}b})$
 - $T_{\text{GF}b}$ is the union of sets T for all end components with $T \cap \text{Sat}(b) \neq \emptyset$
 - $\text{Sat}(b) = \{ s_4, s_6 \}$
 - $T_{\text{GF}b} = T_1 \cup T_2 \cup T_3 = \{ s_1, s_3, s_4, s_6 \}$
 - $p_{\max}(s, F T_{\text{GF}b}) = 0.75$
 - $p_{\max}(\text{GF } b) = 0.75$
- Result: $s_0 \models P_{<0.8} [\text{GF } b]$



Repeated reachability – MDPs (max)

- Quantitative case:
 - $p_{\max}(s, \text{GF } a) = p_{\max}(s, \text{F } T_{\text{GF}a})$
- This yields the qualitative property given earlier:
 - $\text{Prob}^\sigma(s, \text{GF } a) > 0$ for some adversary σ
 - $\Leftrightarrow p_{\max}(s, \text{GF } a) > 0$
 - $\Leftrightarrow p_{\max}(s, \text{F } T_{\text{GF}a}) > 0$
 - $\Leftrightarrow \text{Prob}^\sigma(s, \text{F } T_{\text{GF}a}) > 0$ for some adversary σ
 - $\Leftrightarrow s \models \text{EF } T_{\text{GF}a}$
 - $\Leftrightarrow T \cap \text{Sat}(a) \neq \emptyset$ for some E.C. T reachable from s
- Another qualitative property:
 - $\text{Prob}^\sigma(s, \text{GF } a) = 1$ for some adversary σ
 - $\Leftrightarrow p_{\max}(s, \text{GF } a) = 1$
 - $\Leftrightarrow p_{\max}(s, \text{F } T_{\text{GF}a}) = 1$

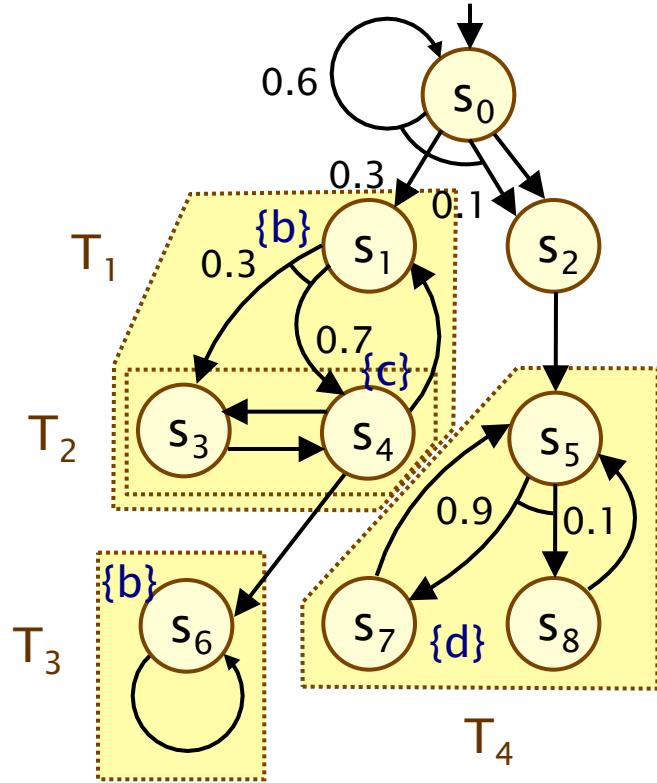
Compute with
Prob1E

Repeated reachability – MDPs (min)

- Repeated reachability for MDPs – **minimum** probabilities
 - $p_{\min}(s, \text{GF } a)$
- First, a useful qualitative property:
 - $\text{Prob}^\sigma(s, \text{GF } a) = 1$ **for all** adversaries σ
 - \Leftrightarrow
 - $s \models P_{\geq 1} [\text{GF } a]$
 - \Leftrightarrow
 - $T \cap \text{Sat}(a) \neq \emptyset$ **for all** end components T reachable from s

Examples

- $s_0 \models P_{\geq 1} [GF (b \vee c \vee d)] ?$
- $s_0 \models P_{\geq 1} [GF (b \vee d)] ?$



Repeated reachability – MDPs (min)

- Repeated reachability for MDPs – **minimum** probabilities
 - $p_{\min}(s, \text{GF } a)$
- Quantitative case
 - use duality of min/max probabilities for MDPs
 - $p_{\min}(s, \Psi) = 1 - p_{\max}(s, \neg\Psi)$
 - e.g. $p_{\min}(s, \text{GF } a) = 1 - p_{\max}(s, \text{FG} \neg a)$
- So min probabilities for repeated reachability (GF)
 - can be computed as max probabilities for persistence (FG)

Persistence – MDPs

- Persistence for MDPs
 - $p_{\min}(s, \text{FG } a)$ or $p_{\max}(s, \text{FG } a)$
- Quantitative case – maximum probabilities
 - $p_{\max}(s, \text{FG } a) = p_{\max}(s, F T_{\text{FG}a})$
 - where $T_{\text{FG}a}$ is the union of sets T for all end components (T, Steps') with $T \subseteq \text{Sat}(a)$ (i.e. all states in T satisfy a)

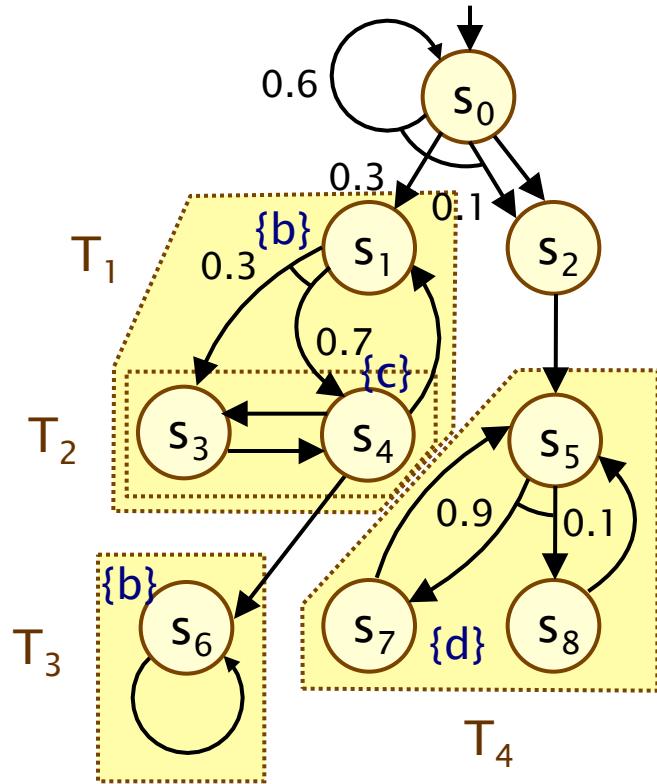
Repeated reachability (again)

- We now have a way of computing minimum probabilities for repeated reachability (GF)
 - $p_{\min}(s, \text{GF } a) = 1 - p_{\max}(s, \text{FG} \neg a)$
 $= 1 - p_{\max}(s, \text{F } T_{\text{FG} \neg a})$
 - where $T_{\text{FG} \neg a}$ is the union of sets T for all end components (T, Steps') with $T \subseteq S \setminus \text{Sat}(a)$
 - ie. $T_{\text{FG} \neg a}$ is the union of sets T for all end components (T, Steps') with $T \cap \text{Sat}(a) = \emptyset$
- Can also now show why:
 - $s \models P_{\geq 1} [\text{GF } a]$
 \Leftrightarrow
 - $T \cap \text{Sat}(a) \neq \emptyset$ for all end components T reachable from s

Opposite of
condition for $\text{G}a$

Examples

- $s_0 \models P_{>0} [\text{GF } d] ?$
- $s_0 \models P_{>0.3} [\text{GF } d] ?$



Summing up... I

- LTL: path-based, path operators can be combined
- PCTL*: subsumes PCTL and LTL

CTL	Φ	non-probabilistic (LTSs)
LTL	Ψ	
PCTL	Φ	probabilistic (DTMCs, MDPs)
LTL + prob.	Prob(s, Ψ)	
PCTL*	Φ	

Summing up... II

- 2 useful instances of LTL formulae:
 - repeated reachability: $GF\ a$
 - persistence: $FG\ a$
- DTMCS
 - qualitative: properties of reachable BSCCs
 - quantitative: probability of reaching success set (BSCC set)
- MDPs
 - end components: MDP analogue of BSCCs
 - $p_{\max}(s, \textcolor{red}{GF}\ a)$ – max. reachability of success set ($T \cap \text{Sat}(a) \neq \emptyset$)
 - $P_{\geq 1} [\textcolor{red}{GF}\ a]$ – reachability of end components
 - $p_{\min}(s, \textcolor{red}{GF}\ a)$ – one minus max. prob. for dual property
 - $p_{\max}(s, \textcolor{red}{FG}\ a)$ – max. reachability of success set ($T \subseteq \text{Sat}(a)$)
 - $p_{\min}(s, \textcolor{red}{FG}\ a)$ – again, via dual property

Lecture 16

Automata-based properties

Dr. Dave Parker

Department of Computer Science
University of Oxford

Property specifications

- 1. Reachability properties, e.g. in PCTL
 - $F a$ or $F^{\leq t} a$ (reachability)
 - $a U b$ or $a U^{\leq t} b$ (until – constrained reachability)
 - $G a$ (invariance) (dual of reachability)
 - probability computation: graph analysis + solution of linear equation system (or linear optimisation problem)
- 2. Long-run properties, e.g. in LTL
 - $GF a$ (repeated reachability)
 - $FG a$ (persistence)
 - probability computation: BSCCs + probabilistic reachability
- This lecture: more expressive class for type 1

Overview

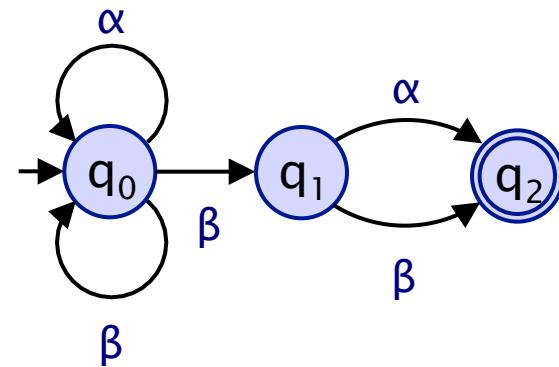
- Nondeterministic finite automata (NFA)
- Regular expressions and regular languages
- Deterministic finite automata (DFA)
- Regular safety properties
- DFAs and DTMCs

Some notation

- Let Σ be a finite alphabet
- A (finite or infinite) word w over Σ is
 - a sequence of $\alpha_1 \alpha_2 \dots$ where $\alpha_i \in \Sigma$ for all i
- A prefix w' of word $w = \alpha_1 \alpha_2 \dots$ is
 - a finite word $\beta_1 \beta_2 \dots \beta_n$ with $\beta_i = \alpha_i$ for all $1 \leq i \leq n$
- Σ^* denotes the set of finite words over Σ
- Σ^ω denotes the set of infinite words over Σ

Finite automata

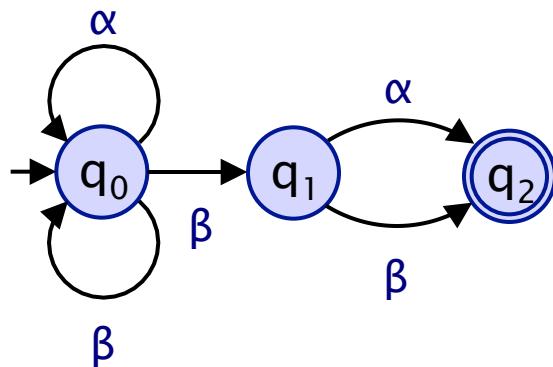
- A nondeterministic finite automaton (NFA) is...
 - a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where:
 - Q is a finite set of states
 - Σ is an alphabet
 - $\delta : Q \times \Sigma \rightarrow 2^Q$ is a transition function
 - $Q_0 \subseteq Q$ is a set of initial states
 - $F \subseteq Q$ is a set of “accept” states



Language of an NFA

- Consider an NFA $A = (Q, \Sigma, \delta, Q_0, F)$
- A **run** of A on a finite word $w = \alpha_1 \alpha_2 \dots \alpha_n$ is:
 - a sequence of automata states $q_0 q_1 \dots q_n$ such that:
 - $q_0 \in Q_0$ and $q_{i+1} \in \delta(q_i, \alpha_{i+1})$ for all $0 \leq i < n$
- An **accepting run** is a run with $q_n \in F$
- Word w is accepted by A iff:
 - there exists an accepting run of A on w
- The **language** of A , denoted $L(A)$ is:
 - the set of all words accepted by A
- Automata A and A' are **equivalent** if $L(A) = L(A')$

Example – NFA

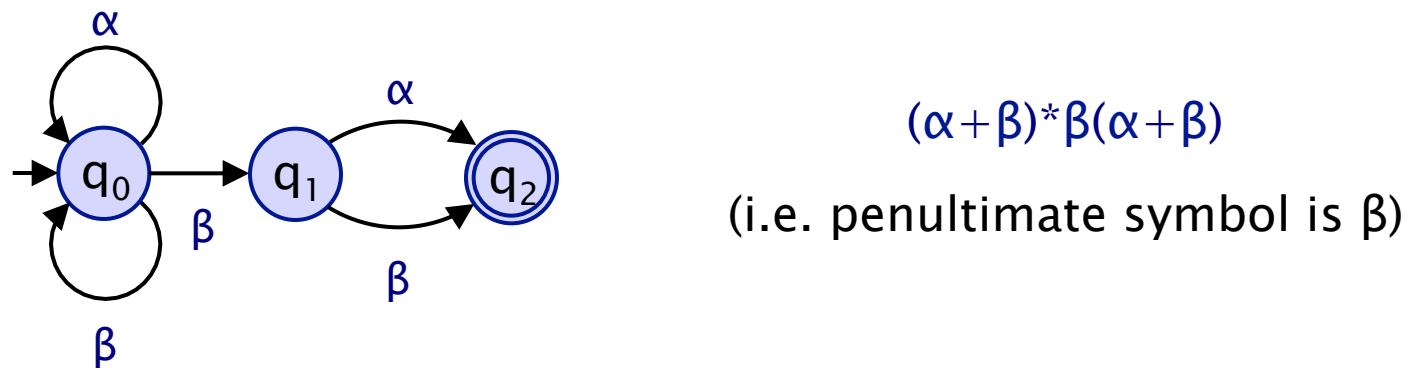


Regular expressions

- Regular expressions E over a finite alphabet Σ
 - are given by the following grammar:
 - $E ::= \emptyset \mid \varepsilon \mid \alpha \mid E + E \mid E \cdot E \mid E^*$
 - where $\alpha \in \Sigma$
- Language $L(E) \subseteq \Sigma^*$ of a regular expression:
 - $L(\emptyset) = \emptyset$ (empty language)
 - $L(\varepsilon) = \{ \varepsilon \}$ (empty word)
 - $L(\alpha) = \{ \alpha \}$ (symbol)
 - $L(E_1 + E_2) = L(E_1) \cup L(E_2)$ (union)
 - $L(E_1 \cdot E_2) = \{ w_1 \cdot w_2 \mid w_1 \in L(E_1) \text{ and } w_2 \in L(E_2) \}$ (concatenation)
 - $L(E^*) = \{ w^i \mid w \in L(E) \text{ and } i \in \mathbb{N} \}$ (finite repetition)

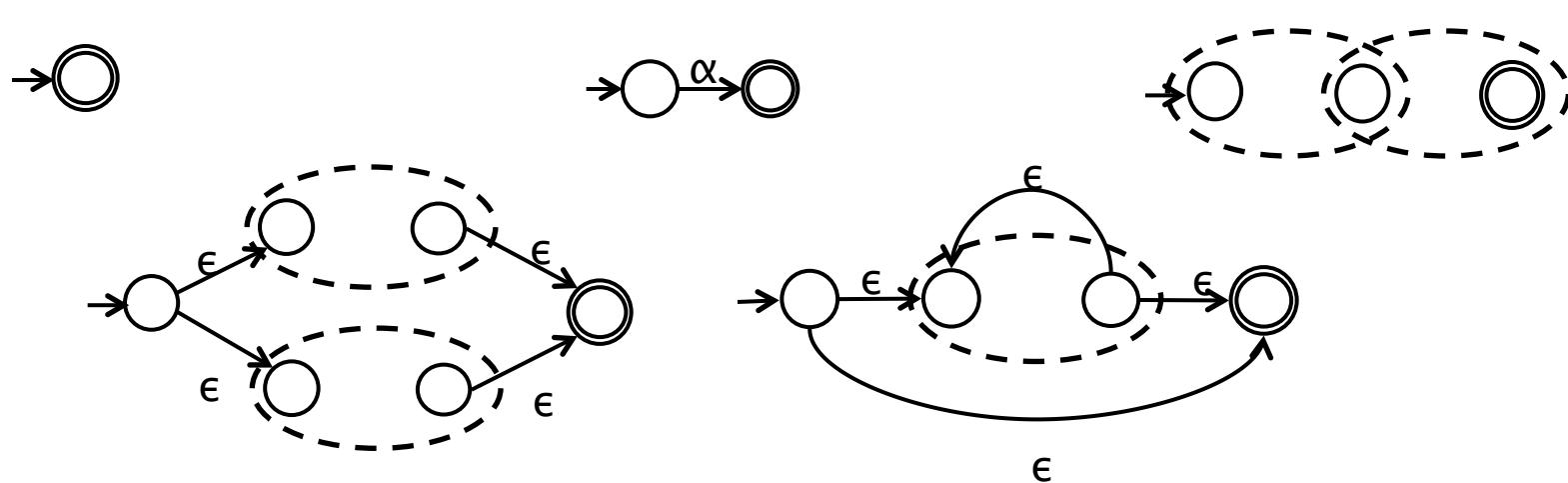
Regular languages

- A set of finite words L is a regular language...
 - iff $L = L(E)$ for some regular expression E
 - iff $L = L(A)$ for some finite automaton A



Operations on NFA

- Can construct NFA from regular expression inductively
 - includes addition (and then removal) of ϵ -transitions



- Can construct the intersection of two NFA
 - build (synchronised) product automaton
 - cross product of $A_1 \otimes A_2$ accepts $L(A_1) \cap L(A_2)$

Deterministic finite automata

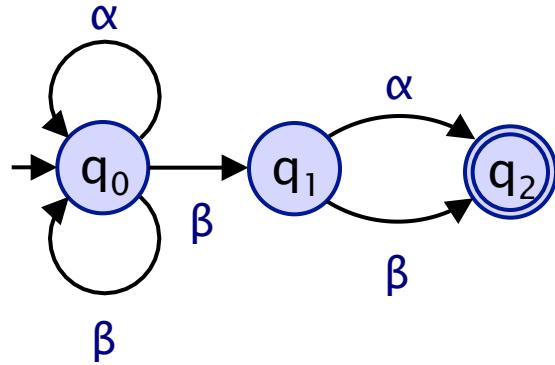
- A finite automaton is **deterministic** if:
 - $|Q_0|=1$
 - $|\delta(q, \alpha)| \leq 1$ for all $q \in Q$ and $\alpha \in \Sigma$
 - i.e. one initial state and no nondeterministic successors
- A deterministic finite automaton (DFA) is **total** if:
 - $|\delta(q, \alpha)| = 1$ for all $q \in Q$ and $\alpha \in \Sigma$
 - i.e. unique successor states
- A total DFA
 - can always be constructed from a DFA
 - has a unique run for any word $w \in \Sigma^*$

Determinisation: NFA \rightarrow DFA

- Determinisation of an NFA $A = (Q, \Sigma, \delta, Q_0, F)$
 - i.e. removal of choice in each automata state
- Equivalent DFA is $A_{\text{det}} = (2^Q, \Sigma, \delta_{\text{det}}, q_0, F_{\text{det}})$ where:
 - $\delta_{\text{det}}(Q', \alpha) = \bigcup_{q \in Q'} \delta(q, \alpha)$
 - $F_{\text{det}} = \{ Q' \subseteq Q \mid Q' \cap F \neq \emptyset \}$
- Note exponential blow-up in size...

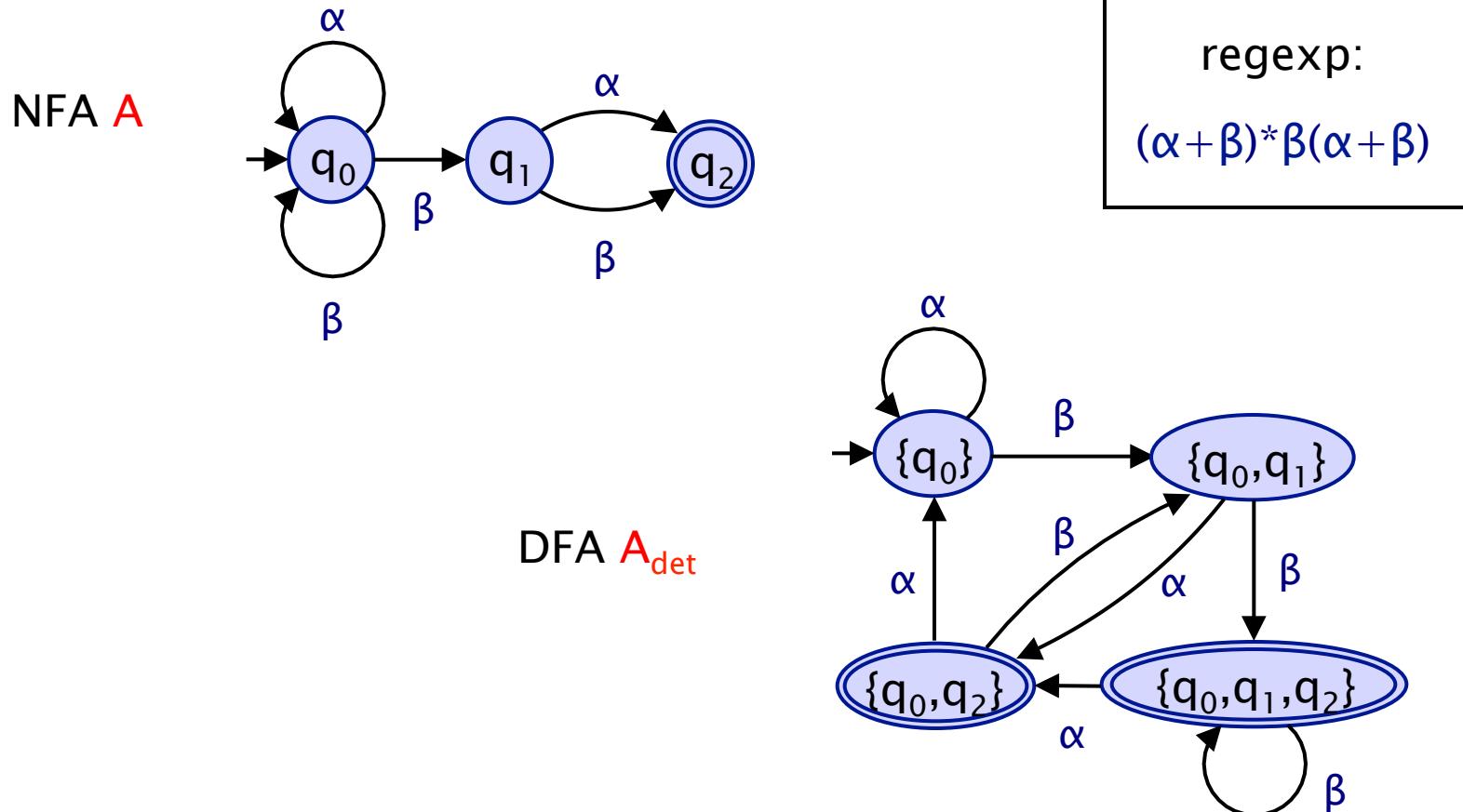
Example

NFA A



regexp:
 $(\alpha + \beta)^* \beta (\alpha + \beta)$

Example



Other properties of NFA/DFA

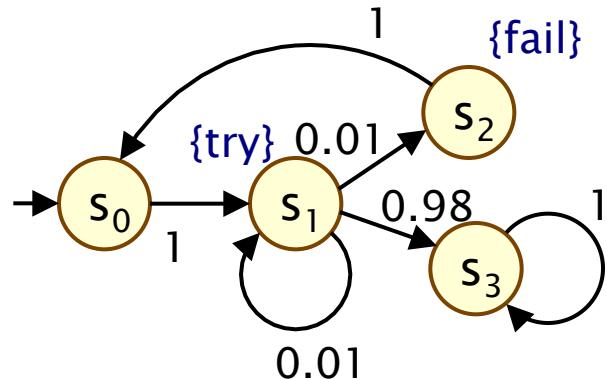
- NFA/DFA have the same expressive power
 - but NFA can be more efficient (up to exponentially smaller)
- NFA/DFA are closed under complementation
 - build total DFA, swap accept/non-accept states
- For any regular language L , there is a unique minimal DFA that accepts L (up to isomorphism)
 - efficient algorithm to minimise DFA into equivalent DFA
 - partition refinement algorithm (like for bisimulation)
- Language emptiness of an NFA reduces to reachability
 - $L(A) \neq \emptyset$ iff can reach a state in F from an initial state in Q_0

Languages as properties

- Consider a model, i.e. an LTS/DTMC/MDP/...
 - e.g. DTMC $D = (S, s_{\text{init}}, P, \text{Lab})$
 - where labelling Lab uses atomic propositions from set AP
 - let $\omega \in \text{Path}(s)$ be some infinite path
- Temporal logic properties
 - for some temporal logic (path) formula ψ , does $\omega \models \psi$?
- Traces and languages
 - $\text{trace}(\omega) \in (2^{\text{AP}})^\omega$ denotes the projection of state labels of ω
 - i.e. $\text{trace}(s_0 s_1 s_2 s_3 \dots) = \text{Lab}(s_0) \text{Lab}(s_1) \text{Lab}(s_2) \text{Lab}(s_3) \dots$
 - for some language $L \subseteq (2^{\text{AP}})^\omega$, is $\text{trace}(\omega) \in L$?

Example

- **Atomic propositions**
 - $AP = \{ \text{fail}, \text{try} \}$
 - $2^{AP} = \{ \emptyset, \{\text{fail}\}, \{\text{try}\}, \{\text{fail,try}\} \}$
- **Paths and traces**
 - e.g. $\omega = s_0 s_1 s_1 s_2 s_0 s_1 s_2 s_0 s_1 s_3 s_3 \dots$
 - $\text{trace}(\omega) = \emptyset \ \{\text{try}\} \ \{\text{try}\} \ \{\text{fail}\} \ \emptyset \ \{\text{try}\} \ \{\text{fail}\} \ \emptyset \ \{\text{try}\} \ \emptyset \ \emptyset \ \emptyset \dots$
- **Languages**
 - e.g. “no failures”
 - $L = \{ \alpha_1 \alpha_2 \dots \in (2^{AP})^\omega \mid \alpha_i \text{ is } \emptyset \text{ or } \{\text{try}\} \text{ for all } i \}$



Regular safety properties

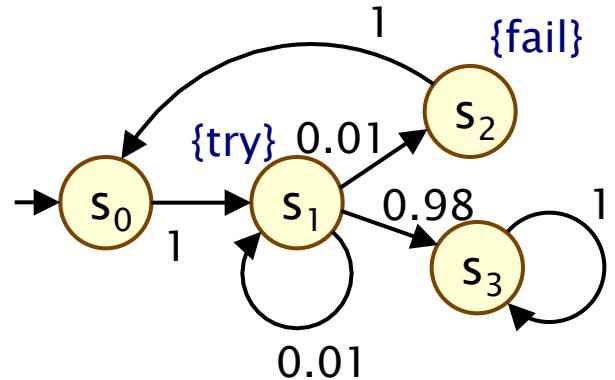
- A **safety property** P is a language over 2^{AP} such that
 - for any word w that violates P (i.e. is not in the language), w has a prefix w' , all extensions of which, also violate P
- A **regular safety property** is
 - safety property for which the set of “bad prefixes” (finite violations) forms a regular language
- **Formally...**
 - $P \subseteq (2^{\text{AP}})^\omega$ is a safety property if:
 - $\forall w \in ((2^{\text{AP}})^\omega \setminus P) . \exists$ finite prefix w' of w such that:
 - $P \cap \{ w'' \in (2^{\text{AP}})^\omega \mid w' \text{ is a prefix of } w'' \} = \emptyset$
 - P is a regular safety property if:
 - $\{ w' \in (2^{\text{AP}})^* \mid \forall w'' \in (2^{\text{AP}})^\omega . w'.w'' \notin P \}$ is regular

Regular safety properties

- A **safety property** P is a language over 2^{AP} such that
 - for any word w that violates P (i.e. is not in the language), w has a prefix w' , all extensions of which, also violate P
- A **regular safety property** is
 - safety property for which the set of “bad prefixes” (finite violations) forms a regular language
- **Examples:**
 - “at least one traffic light is always on”
 - “two traffic lights are never on simultaneously”
 - “a red light is always preceded immediately by an amber light”

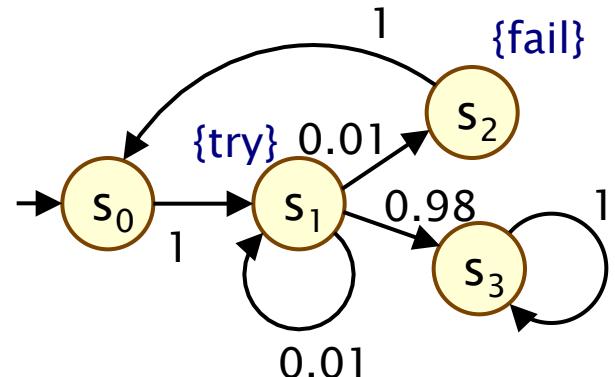
Example

- Regular safety property:
 - “at most 2 failures occur”
 - language over:
 $2^{\text{AP}} = \{ \emptyset, \{\text{fail}\}, \{\text{try}\}, \{\text{fail,try}\} \}$

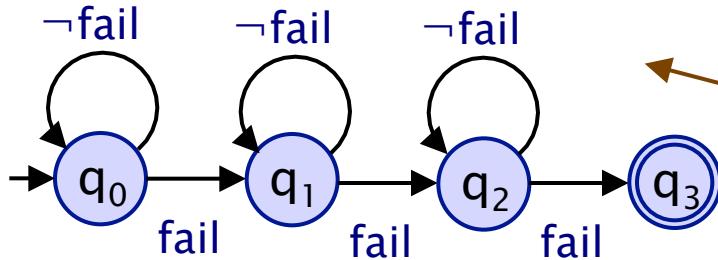


Example

- Regular safety property:
 - “at most 2 failures occur”
 - language over:
 $2^{\text{AP}} = \{ \emptyset, \{\text{fail}\}, \{\text{try}\}, \{\text{fail,try}\} \}$



- Bad prefixes (regexp):
 $(\neg\text{fail})^*.\text{fail}.(\neg\text{fail})^*.\text{fail}.(\neg\text{fail})^*.\text{fail}$
- Bad prefixes (DFA):



fail denotes:
 $\{\text{fail}\} + \{\text{fail,try}\}$
 $\neg\text{fail}$ denotes:
 $(\emptyset + \{\text{try}\})$

fail denotes:
 $\{\text{fail}\}, \{\text{fail,try}\}$
 $\neg\text{fail}$ denotes:
 $\emptyset, \{\text{try}\}$

Regular safety properties + DTMCs

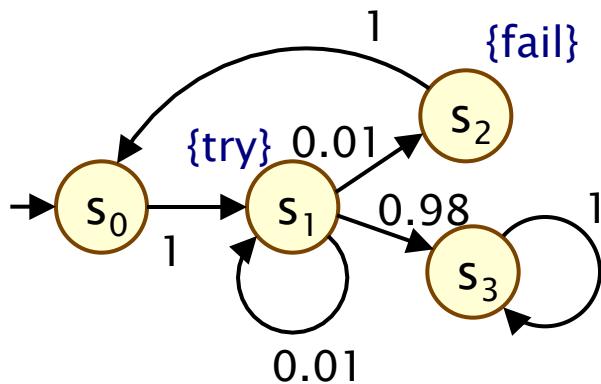
- Consider a DTMC D (with atomic propositions from AP) and a regular safety property $P \subseteq (2^{AP})^\omega$
- Let $\text{Prob}^D(s, P)$ denote the probability of P being satisfied
 - i.e. $\text{Prob}^D(s, P) = \Pr_s^D \{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \in P \}$
 - where \Pr_s^D is the probability measure over $\text{Path}(s)$ for D
 - this set is always measurable (see later)
- Example (safety) specifications
 - “the probability that at most 2 failures occur is ≥ 0.999 ”
 - “what is the probability that at most 2 failures occur?”
- How to compute $\text{Prob}^D(s, P)$?

Product DTMC

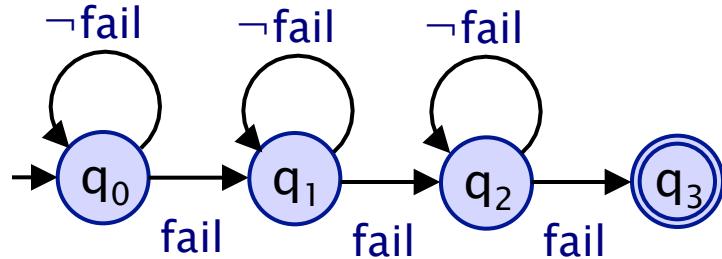
- We construct the **product** of
 - a DTMC $D = (S, s_{\text{init}}, P, L)$
 - and a (total) DFA $A = (Q, \Sigma, \delta, q_0, F)$
 - intuitively: records state of A for path fragments of D
- The product DTMC $D \otimes A$ is:
 - the DTMC $(S \times Q, (s_{\text{init}}, q_{\text{init}}), P', L')$ where:
 - $q_{\text{init}} = \delta(q_0, L(s_{\text{init}}))$
 - $P'((s_1, q_1), (s_2, q_2)) = \begin{cases} P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases}$
 - $L'(s, q) = \{ \text{accept} \}$ if $q \in F$ and $L'(s, q) = \emptyset$ otherwise

Example

DTMC D



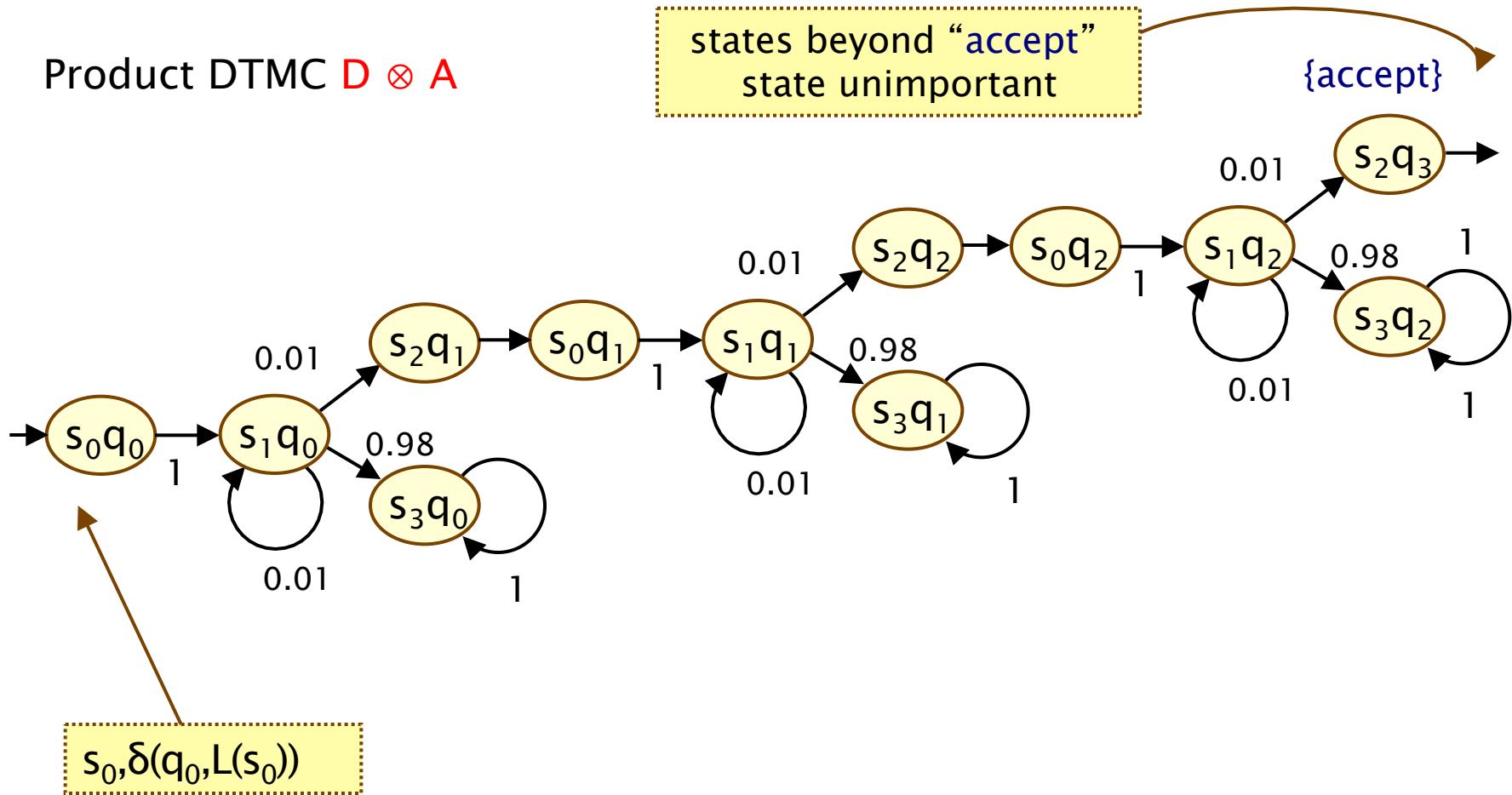
DFA A



fail denotes:
 $\{\text{fail}\}$, $\{\text{fail, try}\}$
 $\neg \text{fail}$ denotes:
 \emptyset , $\{\text{try}\}$

Example

Product DTMC $D \otimes A$



Product DTMC

- One interpretation of $D \otimes A$:
 - unfolding of D where q for each state (s, q) records state of automata A for path fragment so far
- In fact, since A is deterministic...
 - for any $\omega \in \text{Path}(s)$ of the DTMC D :
 - there is a unique run in A for $\text{trace}(\omega)$
 - and a corresponding (unique) path through $D \otimes A$
 - for any path $\omega' \in \text{Path}^{D \otimes A}(s, q_{\text{init}})$ where $q_{\text{init}} = \delta(q_0, L(s))$
 - there is a corresponding path in D and a run in A
- DFA has no effect on probabilities
 - i.e. probabilities preserved in product DTMC

Regular safety properties + DTMCs

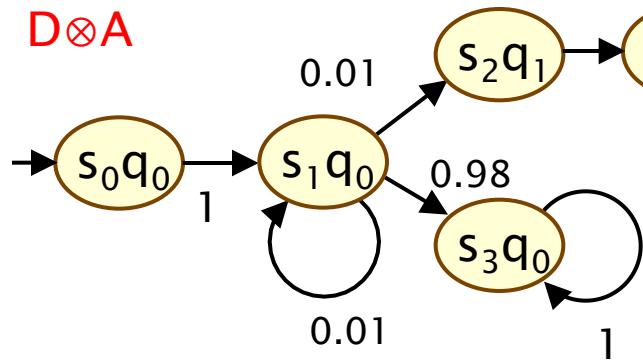
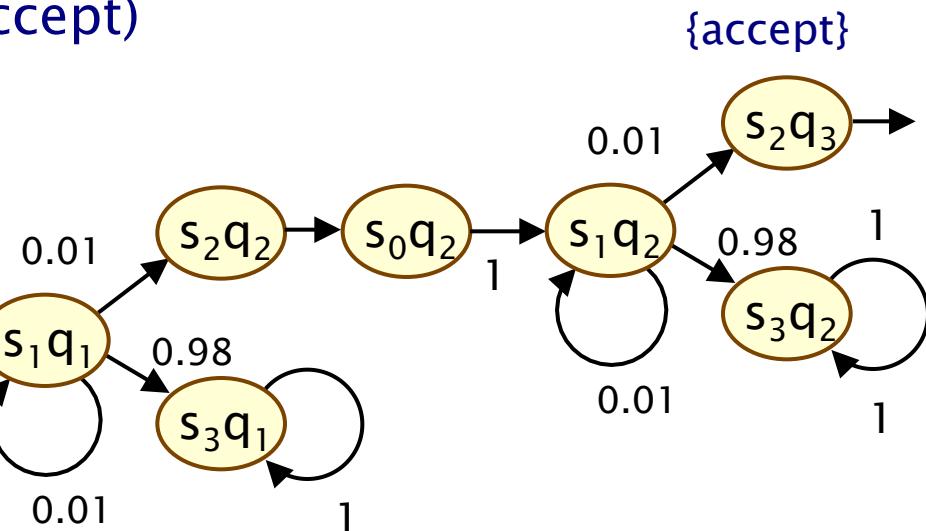
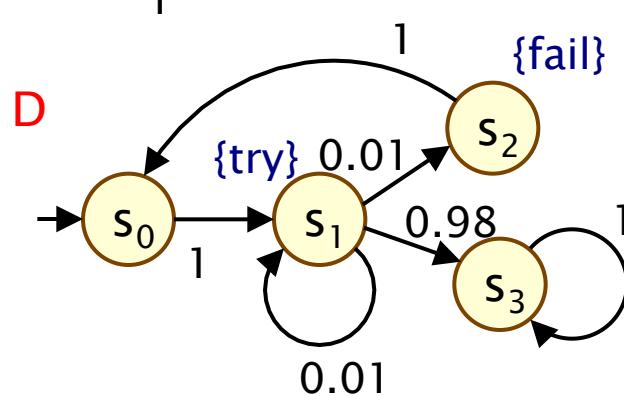
- Regular safety property $P \subseteq (2^{\text{AP}})^\omega$
 - “bad prefixes” (finite violations) represented by DFA A
- Probability of P being satisfied in state s of D
 - $\text{Prob}^D(s, P) = \Pr_{s^D}^D \{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \in P \}$
 $= 1 - \Pr_{s^D}^D \{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \notin P \}$
 $= 1 - \Pr_{s^D}^D \{ \omega \in \text{Path}(s) \mid \text{pref}(\text{trace}(\omega)) \cap L(A) \neq \emptyset \}$
 - where $\text{pref}(w) = \text{set of all finite prefixes of infinite word } w$

$$\text{Prob}^D(s, P) = 1 - \text{Prob}^{D \otimes A}((s, q_s), F \text{ accept})$$

- where $q_s = \delta(q_0, L(s))$

Example

- $\text{Prob}^D(s_0, \text{"at most 2 failures occur"})$
 $= 1 - \text{Prob}^{D \otimes A}((s_0, q_0), F \text{ accept})$
 $= 1 - (1/99)^3$
 ≈ 0.9999989694



Summing up...

- Nondeterministic finite automata (NFA)
 - can represent any regular language, regular expression
 - closed under complementation, intersection, ...
 - (non-)emptiness reduces to reachability
- Deterministic finite automata (DFA)
 - can be constructed from NFA through determinisation
 - equally expressive as NFA, but may be larger
- Regular safety properties
 - language representing set of possible traces
 - bad (violating) prefixes form a regular language
- Probability of a regular safety property on a DTMC
 - construct product DTMC
 - reduces to probabilistic reachability

Lecture 17

ω -regular properties

Dr. Dave Parker

Department of Computer Science
University of Oxford

Long-run properties

- Last lecture: regular safety properties
 - e.g. “a message failure never occurs”
 - e.g. “an alarm is only ever triggered by an error”
 - bad prefixes represented by a regular language
 - property always refuted by a finite trace/path
- Liveness properties
 - e.g. “for every request, an acknowledge eventually follows”
 - no finite prefix refutes the property
 - any finite prefix can be extended to a satisfying trace
- Fairness assumptions
 - e.g. “every process that is enabled infinitely often is scheduled infinitely often”
- Need properties of infinite paths

Overview

- ω -regular expressions and ω -regular languages
- Nondeterministic Büchi automata (NBA)
- Deterministic Büchi automata (DBA)
- Deterministic Rabin automata (DRA)
- Deterministic ω -automata and DTMCs

ω -regular expressions

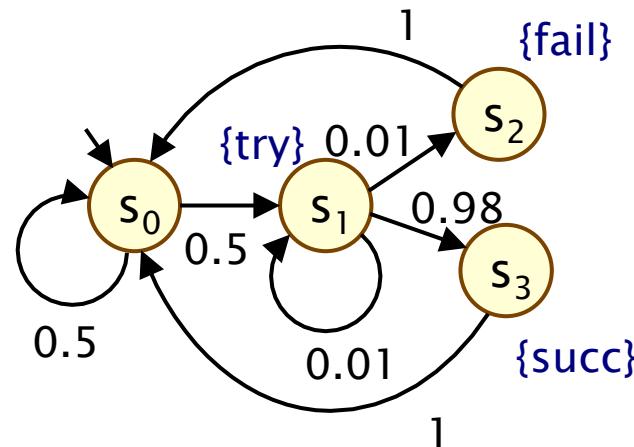
- Regular expressions E over alphabet Σ are given by:
 - $E ::= \emptyset \mid \varepsilon \mid \alpha \mid E + E \mid E \cdot E \mid E^*$ (where $\alpha \in \Sigma$)
- An ω -regular expression takes the form:
 - $G = E_1.(F_1)^\omega + E_2.(F_2)^\omega + \dots + E_n.(F_n)^\omega$
 - where E_i and F_i are regular expressions with $\varepsilon \notin L(F_i)$
- The language $L(G) \subseteq \Sigma^\omega$ of an ω -regular expression G
 - is $L(E_1).L(F_1)^\omega \cup L(E_2).L(F_2)^\omega + \dots + L(E_n).L(F_n)^\omega$
 - where $L(E)$ is the language of regular expression E
 - and $L(E)^\omega = \{ w^\omega \mid w \in L(E) \}$
- Example: $(\alpha + \beta + \gamma)^* (\beta + \gamma)^\omega$ for $\Sigma = \{ \alpha, \beta, \gamma \}$

ω -regular languages/properties

- A language $L \subseteq \Sigma^\omega$ over alphabet Σ is an **ω -regular language** if and only if:
 - $L = L(G)$ for some ω -regular expression G
- **ω -regular languages** are:
 - closed under intersection
 - closed under complementation
- $P \subseteq (2^{AP})^\omega$ is an **ω -regular property**
 - if P is an ω -regular language over 2^{AP}
 - (where AP is the set of atomic propositions for some model)
 - path ω satisfies P if $\text{trace}(\omega) \in P$
 - NB: any regular safety property is an **ω -regular property**

Examples

- A message is sent successfully infinitely often
 - $((\neg \text{succ})^* \cdot \text{succ})^\omega$
- Every time the process tries to send a message, it eventually succeeds in sending it
 - $((\neg \text{try})^* + \text{try} \cdot (\neg \text{succ})^* \cdot \text{succ})^\omega$



Büchi automata

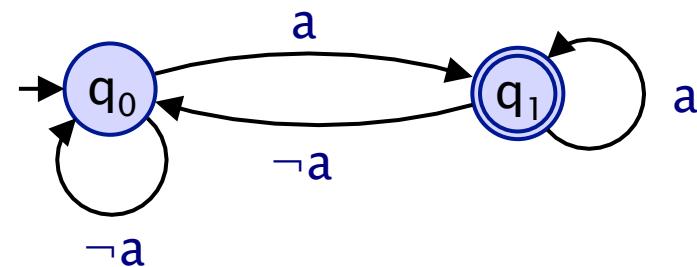
- A nondeterministic Büchi automaton (NBA) is...
 - a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where:
 - Q is a finite set of states
 - Σ is an alphabet
 - $\delta : Q \times \Sigma \rightarrow 2^Q$ is a transition function
 - $Q_0 \subseteq Q$ is a set of initial states
 - $F \subseteq Q$ is a set of “accept” states
 - i.e. just like a nondeterministic finite automaton (NFA)
- The difference is the accepting condition...

Language of an NBA

- Consider a Büchi automaton $A = (Q, \Sigma, \delta, Q_0, F)$
- A **run** of A on an **infinite word** $\alpha_1\alpha_2\dots$ is:
 - an infinite sequence of automata states $q_0q_1\dots$ such that:
 - $q_0 \in Q_0$ and $q_{i+1} \in \delta(q_i, \alpha_{i+1})$ for all $i \geq 0$
- An **accepting run** is a run with $q_i \in F$ for infinitely many i
- The **language** $L(A)$ of A is the set of all infinite words on which there exists an accepting run of A

Example

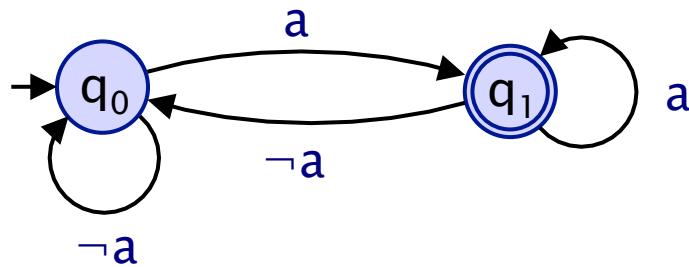
- Infinitely often a



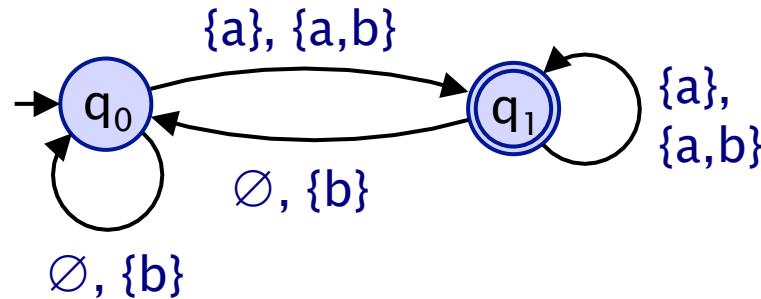
Example...

- As in the last lecture, we use automata to represent languages of the form $L \subseteq (2^{\text{AP}})^\omega$

- So, if $\text{AP} = \{a,b\}$, then:



- ...is actually:



Properties of Büchi automata

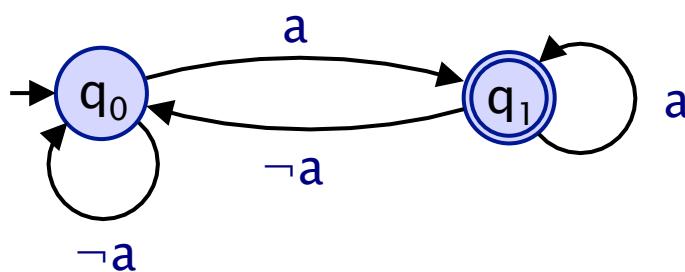
- ω -regular languages
 - $L(A)$ is an ω -regular language for any NBA A
 - any ω -regular language can be represented by an NBA
- ω -regular expressions
 - like for finite automata, can construct an NBA from an arbitrary ω -regular expression $E_1.(F_1)^\omega + \dots + E_n.(F_n)^\omega$
 - i.e. there are operations on NBAs to:
 - construct NBA accepting L^ω for regular language L
 - construct NBA from NFA for (regular) E and NBA for (ω -regular) F
 - construct NBA accepting union $L(A_1) \cup L(A_2)$ for NBA A_1 and A_2

Büchi automata and LTL

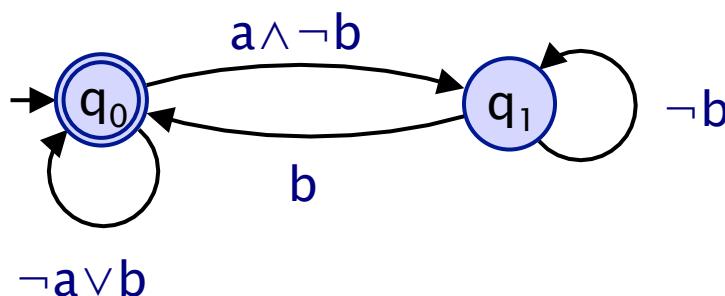
- LTL formulae
 - $\psi ::= \text{true} \mid a \mid \psi \wedge \psi \mid \neg\psi \mid X\psi \mid \psi U \psi$
 - where $a \in AP$ is an atomic proposition
- Can convert any LTL formula ψ into an NBA A over 2^{AP}
 - i.e. $\omega \models \psi \Leftrightarrow \text{trace}(\omega) \in L(A)$ for any path ω
- LTL-to-NBA translation (see e.g. [VW94], [DG99])
 - construct a generalized NBA (multiple sets of accept states)
 - based on decomposition of LTL formula into subformulae
 - can convert GNBA into an equivalent NBA
 - various optimisations to the basic techniques developed
 - not covered here; see e.g. section 5.2 of [BK08]

Büchi automata and LTL

- $\text{GF } a$ (“infinitely often a ”)



- $\text{G}(a \rightarrow \text{F } b)$ (“ b always eventually follows a ”)

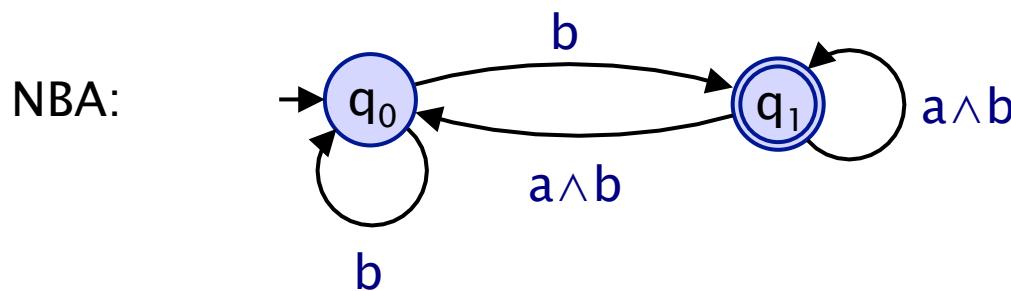
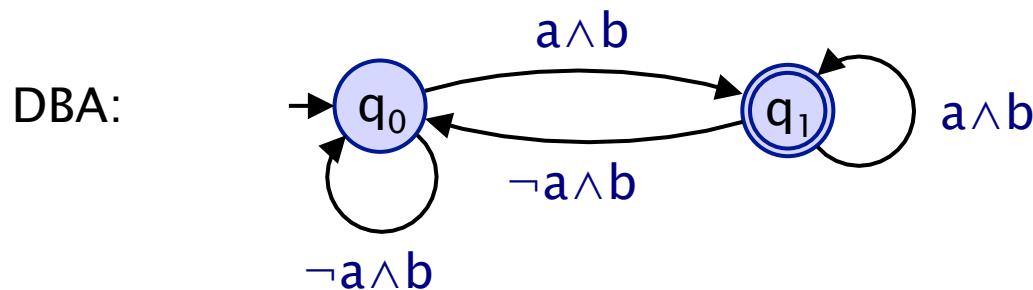


Deterministic Büchi automata

- Like for finite automata...
- A NBA is **deterministic** if:
 - $|Q_0|=1$
 - $|\delta(q, \alpha)| \leq 1$ for all $q \in Q$ and $\alpha \in \Sigma$
 - i.e. one initial state and no nondeterministic successors
- A deterministic Büchi automaton (DBA) is **total** if:
 - $|\delta(q, \alpha)| = 1$ for all $q \in Q$ and $\alpha \in \Sigma$
 - i.e. unique successor states
- But, NBA can **not** always be determinised...
 - i.e. NBA are **strictly more expressive** than DBA

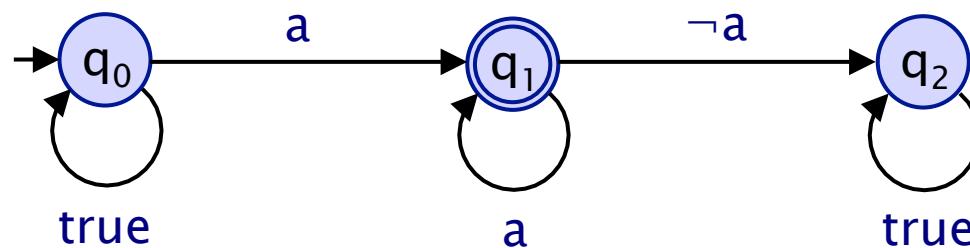
NBA and DBA

- NBA and DBA for the LTL formula $G b \wedge GF a$



No DBA possible

- Consider the ω -regular expression $(\alpha + \beta)^* \alpha^\omega$ over $\Sigma = \{\alpha, \beta\}$
 - i.e. words containing only finitely many instances of β
 - there is no deterministic Büchi automata accepting this
- In particular, take $\alpha = \{a\}$ and $\beta = \emptyset$, i.e. $\Sigma = 2^{\text{AP}}$, $\text{AP} = \{a\}$
 - $(\alpha + \beta)^* \alpha^\omega$ represents the LTL formula $\text{FG } a$
- $\text{FG } a$ is represented by the following NBA:



- But there is no DBA for $\text{FG } a$

Deterministic Rabin automata

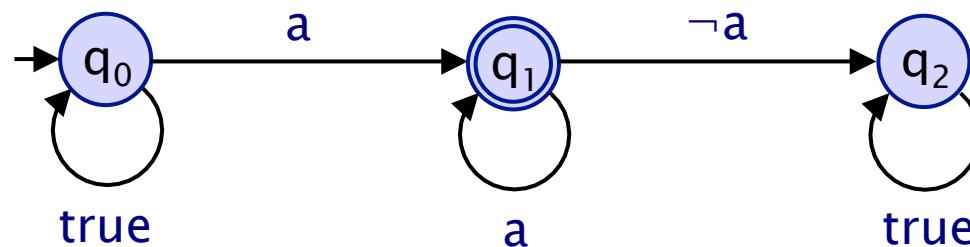
- A deterministic Rabin automaton (DRA) is...
 - a tuple $A = (Q, \Sigma, \delta, q_0, \text{Acc})$ where:
 - Q is a finite set of states
 - Σ is an alphabet
 - $\delta : Q \times \Sigma \rightarrow Q$ is a transition function
 - $q_0 \in Q$ is an initial state
 - $\text{Acc} \subseteq 2^Q \times 2^Q$ is an acceptance condition
- The acceptance condition is a set of pairs of state sets
 - $\text{Acc} = \{ (L_i, K_i) \mid 1 \leq i \leq k \}$

Deterministic Rabin automata

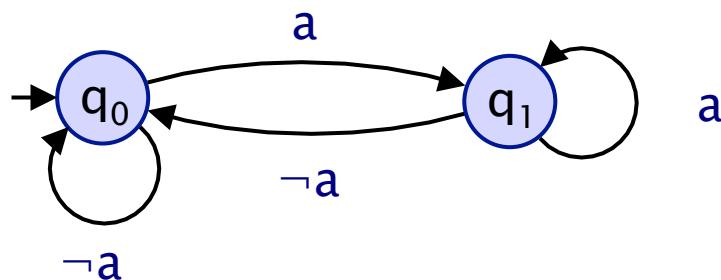
- A run of a word on a DRA is accepting iff:
 - for some pair (L_i, K_i) , the states in L_i are visited finitely often and (some of) the states in K_i are visited infinitely often
 - or in LTL: $\bigvee_{1 \leq i \leq k} (FG \neg L_i \wedge GF K_i)$
- Hence:
 - a deterministic Büchi automaton is a special case of a deterministic Rabin automaton where $\text{Acc} = \{ (\emptyset, \{F\}) \}$

FG a

- NBA for FG a (no DBA exists)



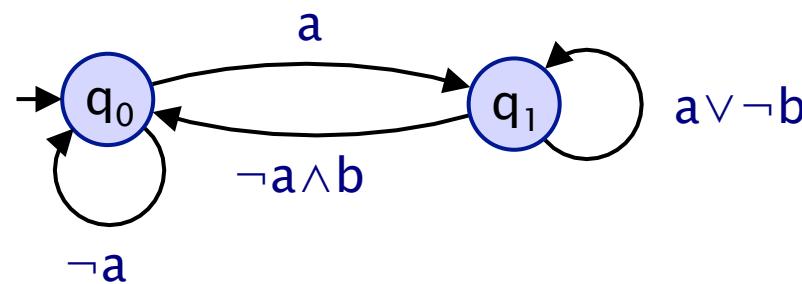
- DRA for FG a



– where acceptance condition is $\text{Acc} = \{ (\{q_0\}, \{q_1\}) \}$

Example – DRA

- Another example of a DRA (over alphabet $2^{\{a,b\}}$)



- where acceptance condition is $\text{Acc} = \{ (\{q_1\}, \{q_0\}) \}$
- In LTL: $G(a \rightarrow F(\neg a \wedge b)) \wedge FG \neg a$

Properties of DRA

- Any ω -regular language can be represented by a DRA
 - (and $L(A)$ is an ω -regular language for any DRA A)
- i.e. DRA and NBA are equally expressive
 - (but NBA may be more compact)
 - and DRA are strictly more expressive than DBA
- Any NBA can be converted to an equivalent DRA [Saf88]
 - size of the resulting DRA is $2^{O(n \log n)}$

Deterministic ω -automata and DTMCs

- Let A be a DBA or DRA over the alphabet 2^{AP}
 - i.e. $L(A) \subseteq (2^{\text{AP}})^\omega$ identifies a set of paths in a DTMC
- Let $\text{Prob}^D(s, A)$ denote the corresponding probability
 - from state s in a discrete-time Markov chain D
 - i.e. $\text{Prob}^D(s, A) = \Pr_s^D \{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \in L(A) \}$
- Like for finite automata (i.e. DFA), we can evaluate $\text{Prob}^D(s, A)$ by constructing a product of D and A
 - which records the state of both the DTMC and the automaton

Product DTMC for a DBA

- For a DTMC $D = (S, s_{\text{init}}, P, L)$
- and a (total) DBA $A = (Q, \Sigma, \delta, q_0, F)$
- The product DTMC $D \otimes A$ is:
 - the DTMC $(S \times Q, (s_{\text{init}}, q_{\text{init}}), P', L')$ where:
$$q_{\text{init}} = \delta(q_0, L(s_{\text{init}}))$$
$$P'((s_1, q_1), (s_2, q_2)) = \begin{cases} P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases}$$
$$L'(s, q) = \{ \text{accept} \} \text{ if } q \in F \text{ and } L'(s, q) = \emptyset \text{ otherwise}$$
- Since A is deterministic
 - unique mappings between paths of D , A and $D \otimes A$
 - probabilities of paths are preserved

Product DTMC for a DBA

- For DTMC D and DBA A

$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \text{GF accept})$$

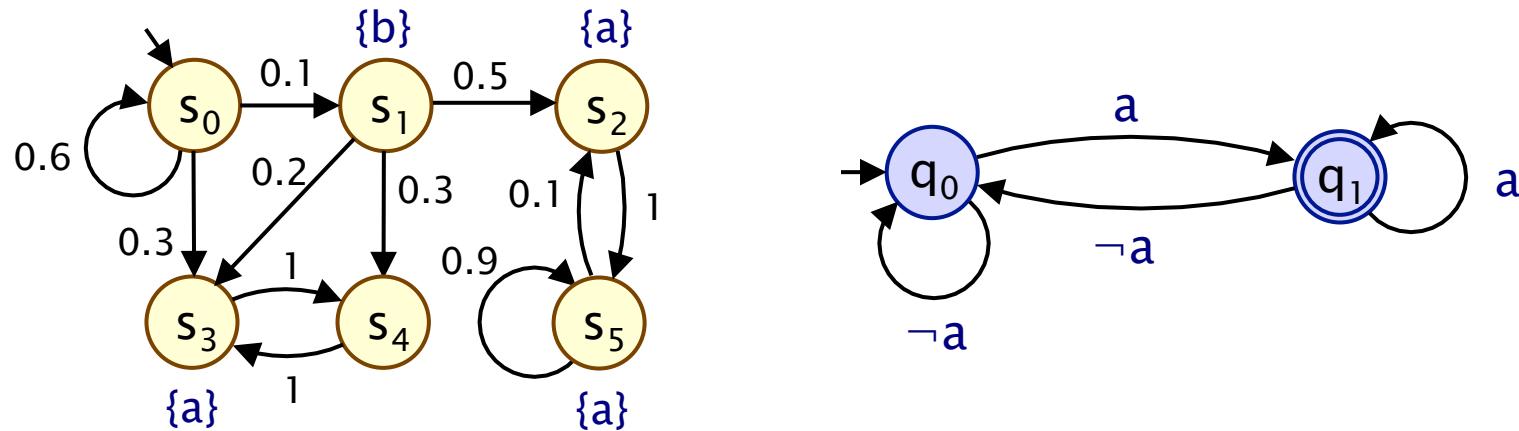
- where $q_s = \delta(q_0, L(s))$
- Hence:

$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \text{F } T_{\text{GFaccept}})$$

- where $T_{\text{GFaccept}} = \text{union of } D \otimes A \text{ BSCCs } T \text{ with } T \cap \text{Sat(accept)} \neq \emptyset$
- Reduces to computing BSCCs and reachability probabilities

Example

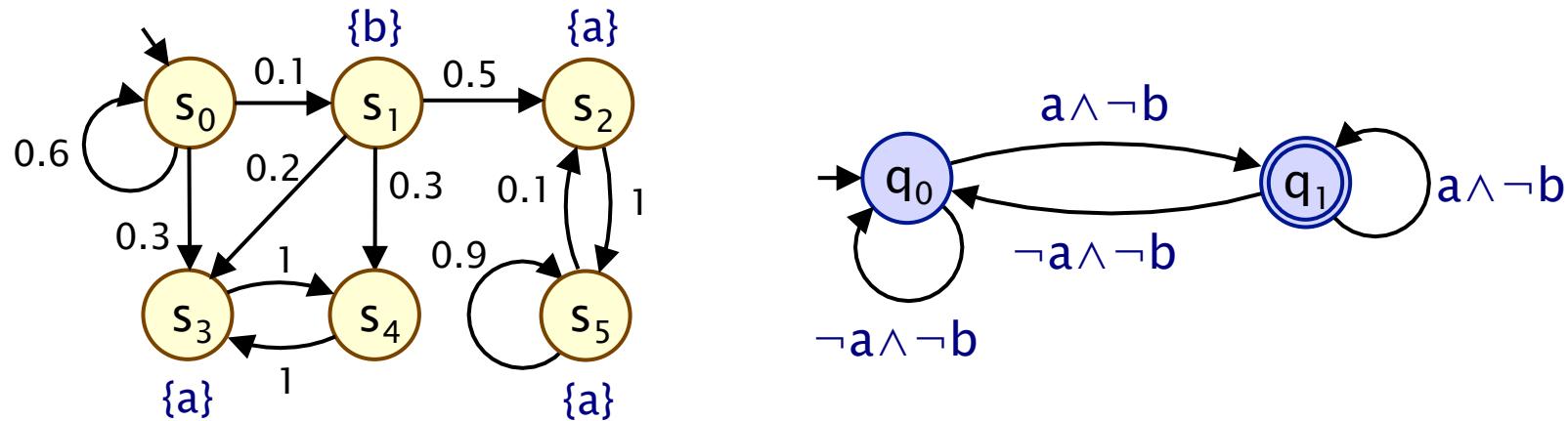
- Compute $\text{Prob}(s_0, \text{GF } a)$
 - property can be represented as a DBA



- Result: 1

Example 2

- Compute $\text{Prob}(s_0, G \neg b \wedge \text{GF } a)$
 - property can be represented as a DBA



- Result: 0.75

Product DTMC for a DRA

- For a DTMC $D = (S, s_{\text{init}}, P, L)$
- and a (total) DRA $A = (Q, \Sigma, \delta, q_0, \text{Acc})$
 - where $\text{Acc} = \{ (L_i, K_i) \mid 1 \leq i \leq k \}$
- The product DTMC $D \otimes A$ is:
 - the DTMC $(S \times Q, (s_{\text{init}}, q_{\text{init}}), P', L')$ where:
$$q_{\text{init}} = \delta(q_0, L(s_{\text{init}}))$$
$$P'((s_1, q_1), (s_2, q_2)) = \begin{cases} P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases}$$
$$l_i \in L'(s, q) \text{ if } q \in L_i \text{ and } k_i \in L'(s, q) \text{ if } q \in K_i$$

(i.e. state sets of acceptance condition used as labels)
- (same product as for DBA, except for state labelling)

Product DTMC for a DRA

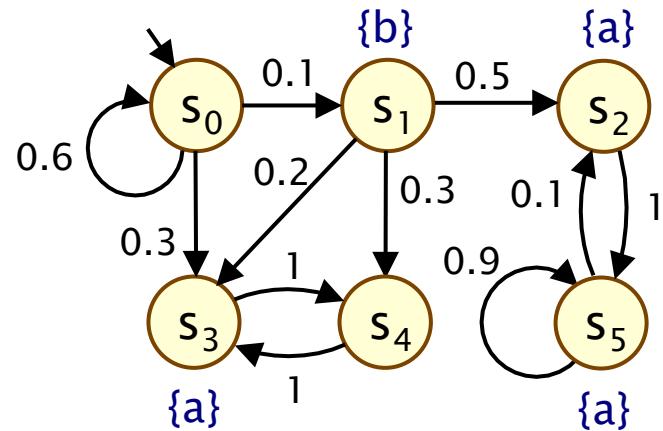
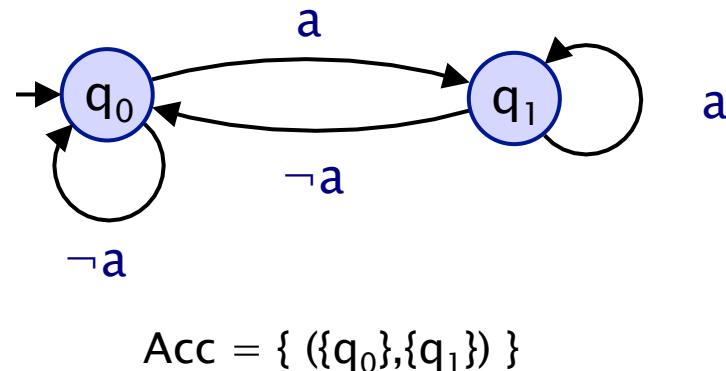
- For DTMC D and DRA A

$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \bigvee_{1 \leq i \leq k} (\text{FG } \neg I_i \wedge \text{GF } k_i))$$

- where $q_s = \delta(q_0, L(s))$
- Hence:
$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \text{F } T_{\text{Acc}})$$
- where T_{Acc} is the union of all **accepting BSCCs** in $D \otimes A$
- an **accepting BSCC** T of $D \otimes A$ is such that, for some $1 \leq i \leq k$:
 - $q \models \neg I_i$ for all $(s, q) \in T$ and $q \models k_i$ for some $(s, q) \in T$
 - i.e. $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$
- Reduces to computing BSCCs and reachability probabilities

Example 3

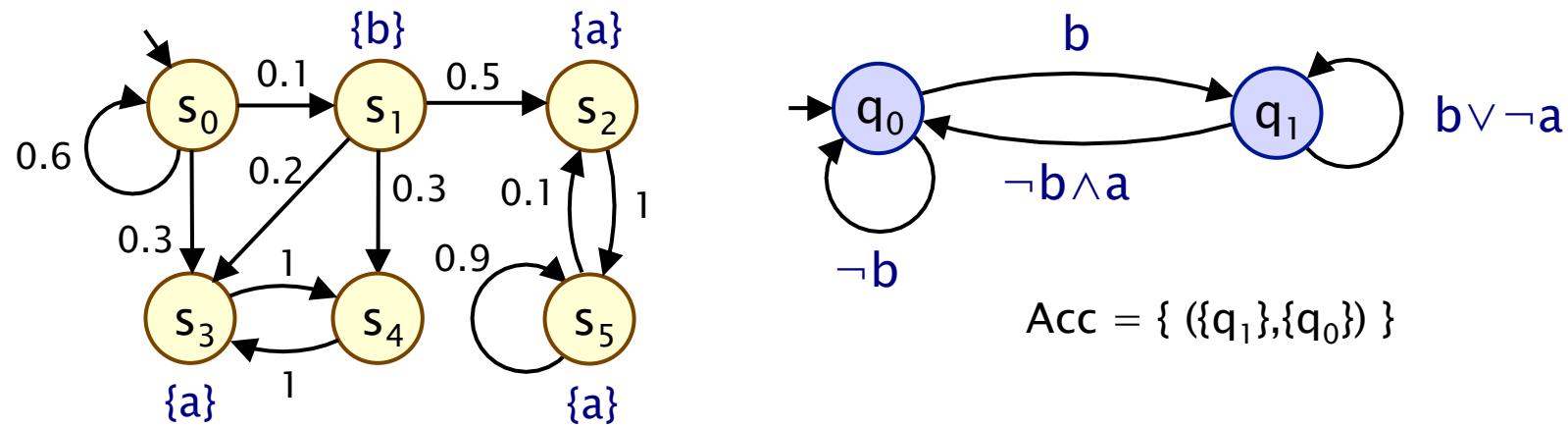
- Compute $\text{Prob}(s_0, \text{FG } a)$
 - property can be represented as a DRA



- Result: 0.125

Example 4

- Compute $\text{Prob}(s_0, G(b \rightarrow F(\neg b \wedge a)) \wedge FG \neg b)$
 - property can be represented as a DRA



- Result: 1

Summing up...

- **ω -regular expressions and ω -regular languages**
 - languages of infinite words: $E_1.(F_1)^\omega + E_2.(F_2)^\omega + \dots + E_n.(F_n)^\omega$
- **Nondeterministic Büchi automata (NBA)**
 - accepting runs visit a state in F infinitely often
 - can represent any ω -regular language by an NBA
 - can translate any LTL formula into equivalent NBA
- **Deterministic Büchi automata (DBA)**
 - strictly less expressive than NBA (e.g. no NBA for $FG\ a$)
- **Deterministic Rabin automata (DRA)**
 - generalised acceptance condition: $\{ (L_i, K_i) \mid 1 \leq i \leq k \}$
 - as expressive as NBA; can convert any NBA to a DRA
- **Deterministic ω -automata and DTMCs**
 - product DTMC + BSCC computation + reachability

Lecture 18

LTL model checking for DTMCs and MDPs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Overview

- Recall
 - deterministic ω -automata (DBA or DRA) and DTMCs
- LTL model checking for DTMCs
 - measurability
 - complexity
 - PCTL* model checking for DTMCs
- LTL model checking for MDPs

Recall – DBA and DRA

- Deterministic Büchi automata (DBA)
 - $(Q, \Sigma, \delta, q_0, F)$
 - accepting run must visit some state in F infinitely often
 - less expressive than nondeterministic Büchi automata (NBA)
- Deterministic Rabin automata (DRA)
 - $(Q, \Sigma, \delta, q_0, Acc)$
 - $Acc = \{ (L_i, K_i) \mid 1 \leq i \leq k \}$
 - for some pair (L_i, K_i) , the states in L_i must be visited finitely often and (some of) the states in K_i visited infinitely often
 - equally expressive as NBA
 - (i.e. all ω -regular properties; and hence all LTL formulae)

Product DTMC for a DBA

- For DTMC D and DBA A

$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \text{GF accept})$$

- where $q_s = \delta(q_0, L(s))$
- Hence:

$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \text{F } T_{\text{GFaccept}})$$

- where T_{GFaccept} is the union of all BSCCs T in $D \otimes A$ with $T \cap \text{Sat}(\text{accept}) \neq \emptyset$
- Reduces to computing BSCCs and reachability probabilities

Product DTMC for a DRA

- For DTMC D and DRA A

$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \bigvee_{1 \leq i \leq k} (\text{FG } \neg I_i \wedge \text{GF } k_i)$$

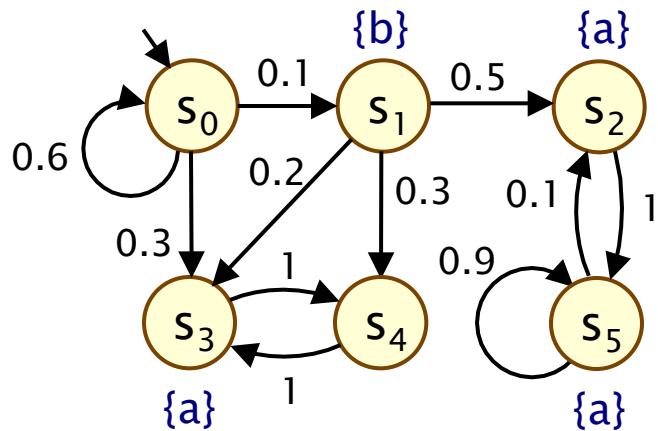
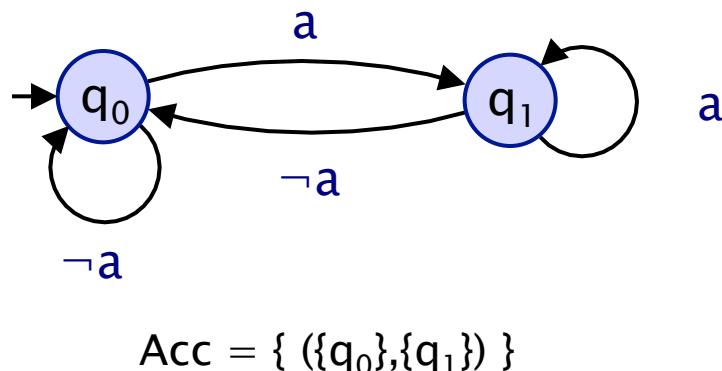
- where $q_s = \delta(q_0, L(s))$
- Hence:
 - where T_{Acc} is the union of all **accepting BSCCs** in $D \otimes A$
 - an **accepting BSCC** T of $D \otimes A$ is such that, for some $1 \leq i \leq k$:
 - $q \models \neg I_i$ for all $(s, q) \in T$ and $q \models k_i$ for some $(s, q) \in T$
 - i.e. $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$
 - Reduces to computing BSCCs and reachability probabilities

LTL model checking for DTMCs

- Model check LTL specification $P_{\sim p} [\psi]$ against DTMC D
- 1. Generate a deterministic Rabin automaton (DRA) for ψ
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88]
- 2. Construct product DTMC $D \otimes A$
- 3. Identify accepting BSCCs of $D \otimes A$
- 4. Compute probability of reaching accepting BSCCs
 - from all states of the $D \otimes A$
- 5. Compare probability for (s, q_s) against p for each s
- Qualitative LTL model checking – no probabilities needed

Example 3 (Lec 17) revisited

- Model check $P_{>0.2} [\text{FG } a]$



- Result:
 - $\text{Prob}(\text{FG } a) = [0.125, 0.5, 1, 0, 0, 1]$
 - $\text{Sat}(P_{>0.2} [\text{FG } a]) = \{ s_1, s_2, s_5 \}$

Measurability of ω -regular properties

- For any ω -regular property Ψ
 - the set of Ψ -satisfying paths in any DTMC D is measurable
- Hence, the same applies to
 - any regular safety property
 - any LTL formula
- Proof sketch
 - any ω -regular property can be represented by a DRA A
 - we can construct $D \otimes A$, in which there is a direct mapping from any path ω in D to a path ω' in $D \otimes A$
 - $\omega \models \Psi$ iff $\omega' \models \bigvee_{1 \leq i \leq k} (FG \neg I_i \wedge GF k_i)$
 - $GF \Phi$ and $FG \Phi$ are measurable (see lecture 3)
 - \wedge and \vee = intersection/union (which preserve measurability)

Complexity

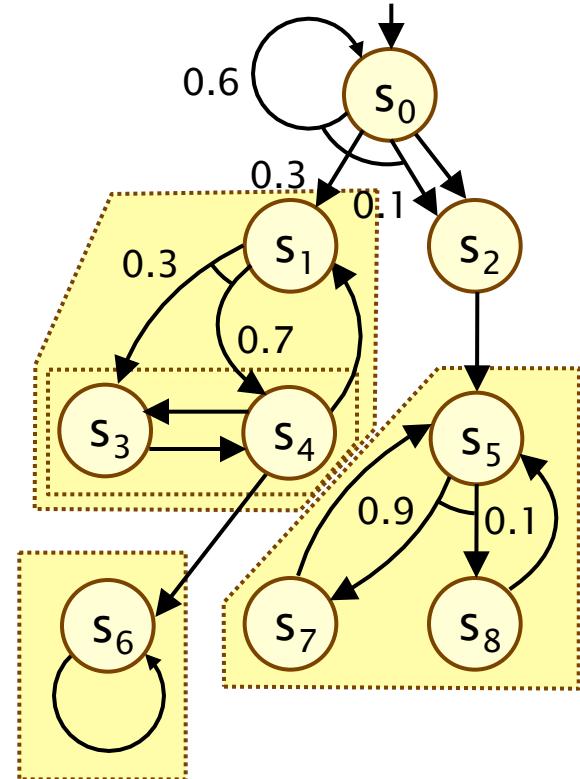
- Complexity of model checking LTL formula ψ on DTMC D
 - is doubly exponential in $|\psi|$ and polynomial in $|D|$
 - (for the algorithm presented in these lectures)
- Converting LTL formula ψ to DRA A
 - for some LTL formulae of size n , size of smallest DRA is 2^{2^n}
- BSCC computation
 - Tarjan algorithm – linear in model size (states/transitions)
- Probabilistic reachability
 - linear equations – cubic in (product) model size
- In total: $O(\text{poly}(|D|, |A|))$
- In practice: $|\psi|$ is small and $|D|$ is large
- Complexity can be reduced to single exponential in $|\psi|$
 - see e.g. [CY88, CY95]

PCTL* model checking

- PCTL* syntax:
 - $\phi ::= \text{true} \mid a \mid \phi \wedge \phi \mid \neg\phi \mid P_{\sim p} [\psi]$
 - $\psi ::= \phi \mid \psi \wedge \psi \mid \neg\psi \mid X \psi \mid \psi \cup \psi$
- Example:
 - $P_{>p} [GF (\text{send} \rightarrow P_{>0} [F \text{ ack}])]$
- PCTL* model checking algorithm
 - bottom-up traversal of parse tree for formula (like PCTL)
 - to model check $P_{\sim p} [\psi]$:
 - replace maximal state subformulae with atomic propositions
 - (state subformulae already model checked recursively)
 - modified formula ψ is now an LTL formula
 - which can be model checked as for LTL

Recall – end components in MDPs

- End components of MDPs are the analogue of BSCCs in DTMCs
- An end component is a strongly connected sub-MDP
- A sub-MDP comprises a subset of states and a subset of the actions/distributions available in those states, which is closed under probabilistic branching

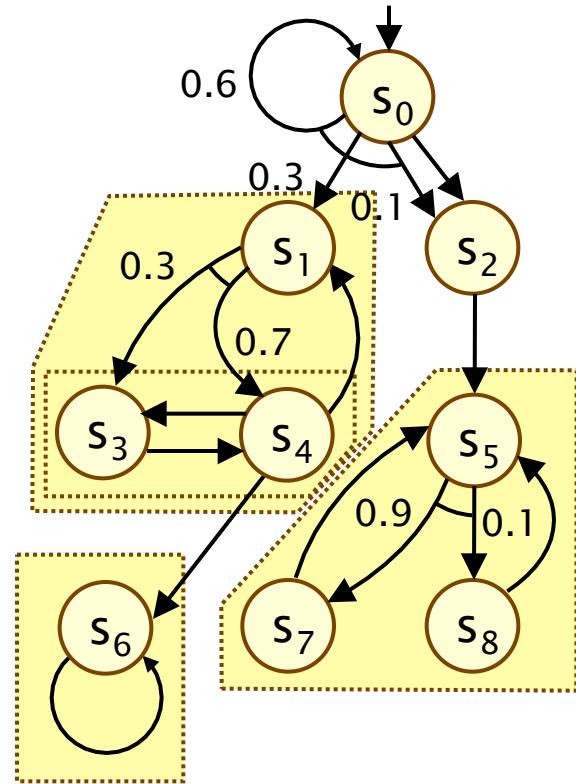


Note:

- action labels omitted
- probabilities omitted where = 1

Recall – end components in MDPs

- End components of MDPs are the analogue of BSCCs in DTMCs
- For every end component, there is an adversary which, with probability 1, forces the MDP to remain in the end component, and visit all its states infinitely often
- Under every adversary σ , with probability 1, the set of states visited infinitely often forms an end component



Recall – long-run properties of MDPs

- Maximum probabilities
 - $p_{\max}(s, \text{GF } a) = p_{\max}(s, \text{F } T_{\text{G}Fa})$
 - where $T_{\text{G}Fa}$ is the union of sets T for all end components (T, Steps') with $T \cap \text{Sat}(a) \neq \emptyset$
 - $p_{\max}(s, \text{FG } a) = p_{\max}(s, \text{F } T_{\text{FG}a})$
 - where $T_{\text{FG}a}$ is the union of sets T for all end components (T, Steps') with $T \subseteq \text{Sat}(a)$
- Minimum probabilities
 - need to compute from maximum probabilities...
 - $p_{\min}(s, \text{GF } a) = 1 - p_{\max}(s, \text{FG } \neg a)$
 - $p_{\min}(s, \text{FG } a) = 1 - p_{\max}(s, \text{GF } \neg a)$

Automata-based properties for MDPs

- For an MDP M and automaton A over alphabet 2^{AP}
 - consider probability of “satisfying” language $L(A) \subseteq (2^{AP})^\omega$
 - $\text{Prob}^{M,\sigma}(s, A) = \Pr_s^{M,\sigma}\{ \omega \in \text{Path}^{M,\sigma}(s) \mid \text{trace}(\omega) \in L(A) \}$
 - $p_{\max}^M(s, A) = \sup_{\sigma \in \text{Adv}} \text{Prob}^{M,\sigma}(s, A)$
 - $p_{\min}^M(s, A) = \inf_{\sigma \in \text{Adv}} \text{Prob}^{M,\sigma}(s, A)$
- Might need minimum or maximum probabilities
 - e.g. $s \models P_{\geq 0.99} [\Psi_{\text{good}}] \Leftrightarrow p_{\min}^M(s, \Psi_{\text{good}}) \geq 0.99$
 - e.g. $s \models P_{\leq 0.05} [\Psi_{\text{bad}}] \Leftrightarrow p_{\max}^M(s, \Psi_{\text{bad}}) \leq 0.05$
- But, Ψ -regular properties are closed under negation
 - as are the automata that represent them
 - so can always consider maximum probabilities...
 - $p_{\max}^M(s, \Psi_{\text{bad}})$ or $1 - p_{\max}^M(s, \neg \Psi_{\text{good}})$

LTL model checking for MDPs

- Model check LTL specification $P_{\sim p} [\psi]$ against MDP M
- 1. Convert problem to one needing maximum probabilities
 - e.g. convert $P_{>p} [\psi]$ to $P_{<1-p} [\neg\psi]$
- 2. Generate a DRA for ψ (or $\neg\psi$)
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88]
- 3. Construct product MDP $M \otimes A$
- 4. Identify accepting end components (ECs) of $M \otimes A$
- 5. Compute **max.** probability of reaching accepting ECs
 - from all states of the $D \otimes A$
- 6. Compare probability for (s, q_s) against p for each s

Product MDP for a DRA

- For a MDP $M = (S, s_{\text{init}}, \text{Steps}, L)$
- and a (total) DRA $A = (Q, \Sigma, \delta, q_0, \text{Acc})$
 - where $\text{Acc} = \{ (L_i, K_i) \mid 1 \leq i \leq k \}$
- The product MDP $M \otimes A$ is:
 - the MDP $(S \times Q, (s_{\text{init}}, q_{\text{init}}), \text{Steps}', L')$ where:
$$q_{\text{init}} = \delta(q_0, L(s_{\text{init}}))$$
$$\text{Steps}'(s, q) = \{ \mu^q \mid \mu \in \text{Step}(s) \}$$
$$\mu^q(s', q') = \begin{cases} \mu(s') & \text{if } q' = \delta(q, L(s)) \\ 0 & \text{otherwise} \end{cases}$$

$l_i \in L'(s, q)$ if $q \in L_i$ and $k_i \in L'(s, q)$ if $q \in K_i$
(i.e. state sets of acceptance condition used as labels)

Product MDP for a DRA

- For MDP M and DRA A

$$p_{\max}^M(s, A) = p_{\max}^{M \otimes A}((s, q_s), \bigvee_{1 \leq i \leq k} (FG \neg l_i \wedge GF k_i))$$

- where $q_s = \delta(q_0, L(s))$

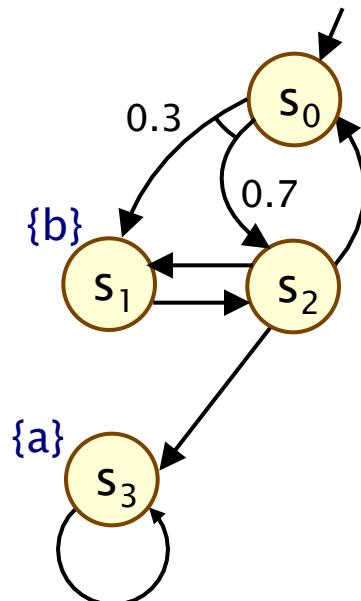
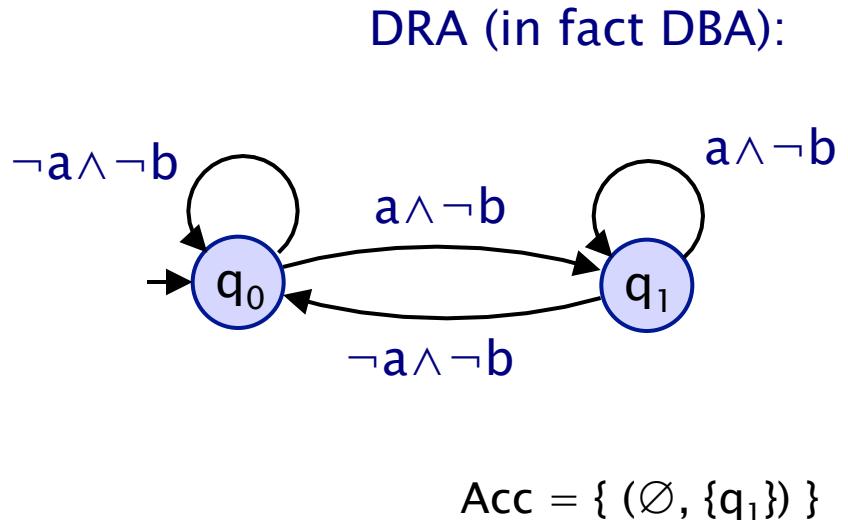
- Hence:

$$p_{\max}^M(s, A) = p_{\max}^{M \otimes A}((s, q_s), F T_{\text{Acc}})$$

- where T_{Acc} is the union of all sets T for **accepting end components** (T, Steps') in $D \otimes A$
- an **accepting end components** is such that, for some $1 \leq i \leq k$:
 - $(s, q) \models \neg l_i$ for all $(s, q) \in T$ and $(s, q) \models k_i$ for some $(s, q) \in T$
 - i.e. $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$

MDPs – Example 1

- Model check $P_{<0.8} [G \neg b \wedge GF a]$

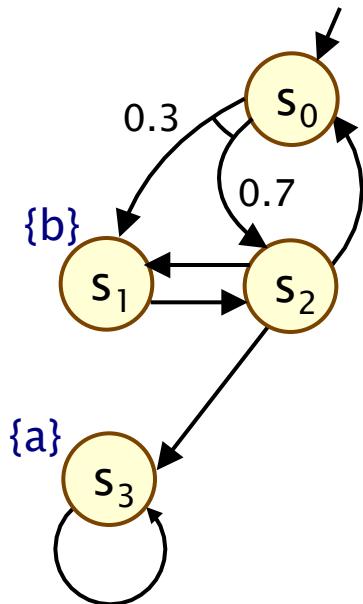
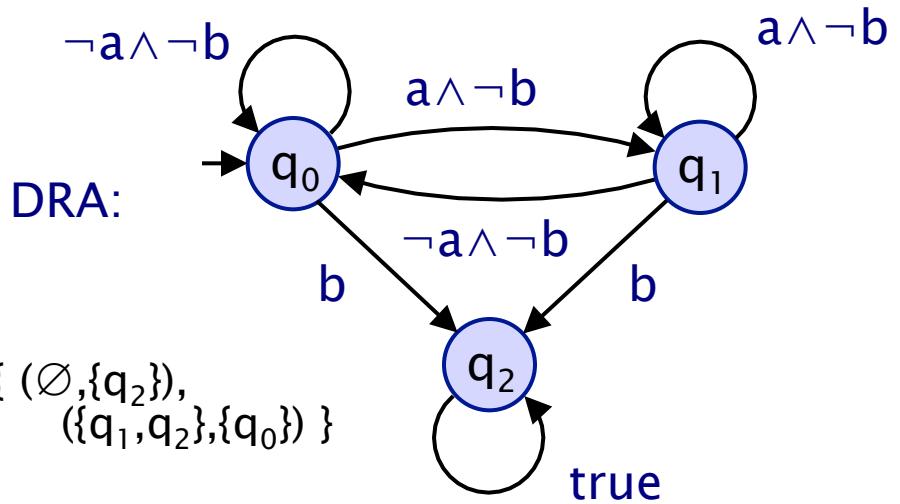


- Result:

- $p_{\max}(G \neg b \wedge GF a) = [0.7, 0, 1, 1]$
 - $\text{Sat}(P_{<0.8} [G \neg b \wedge GF a]) = \{ s_0, s_1 \}$

MDPs – Example 2

- Model check $P_{>0} [G \neg b \wedge GF a]$
 - $p_{\min}(s, G \neg b \wedge GF a) = 1 - p_{\max}(s, \neg(G \neg b \wedge GF a))$
 $= 1 - p_{\max}(s, F b \vee FG \neg a))$



- Result: $p_{\min}(G \neg b \wedge GF a) = [0, 0, 0, 1]$
 - $\text{Sat}(P_{>0} [G \neg b \wedge GF a]) = \{s_3\}$

LTL model checking for MDPs

- **Maximal end components**
 - can optimise LTL model checking using maximal end components (there may be exponentially many ECs)
- **Qualitative LTL model checking**
 - no numerical computation: use Prob1E, Prob0A algorithms
- **Complexity of model checking LTL formula ψ on MDP M**
 - is doubly exponential in $|\psi|$ and polynomial in $|M|$
 - unlike DTMCs, this cannot be improved upon
- **PCTL* model checking**
 - LTL model checking can be adapted to PCTL*, as for DTMCs
- **Optimal adversaries for LTL formulae**
 - memoryless adversary always exists for $p_{\max}(s, \text{GF } a)$ and for $p_{\max}(s, \text{FG } a)$ but not for arbitrary LTL formulae

Summing up...

- Deterministic ω -automata (DBA or DRA) and DTMCs
 - probability of language acceptance reduces to probabilistic reachability of set of accepting BSCCs in product DTMC
- LTL model checking for DTMCs
 - via construction of DRA for LTL formula
 - complexity: (doubly) exponential in the size of the LTL formula and polynomial in the size of the DTMC
 - measurability of any ω -regular property on a DTMC
- PCTL* model checking for DTMCs
 - combination of PCTL and LTL model checking algorithms
- LTL model checking for MDPs
 - max. probabilities of reaching accepting end components
 - min. probabilities through negation and max. probabilities

Lecture 19

Probabilistic symbolic model checking

Dr. Dave Parker

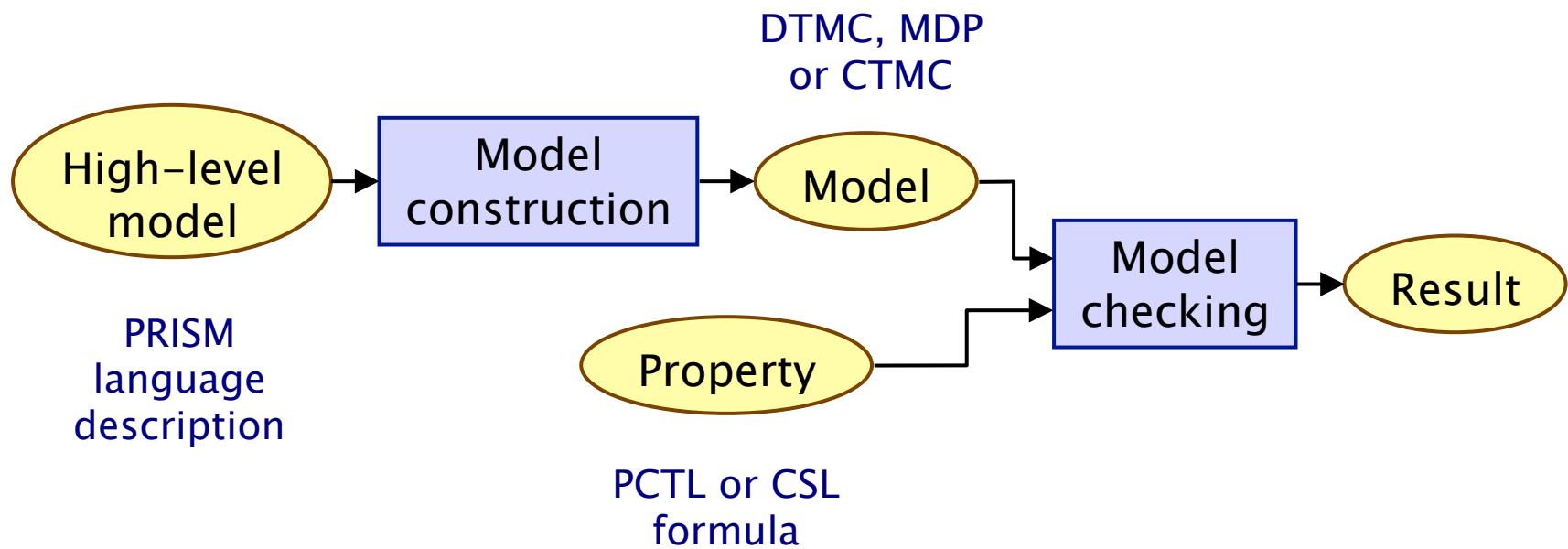
Department of Computer Science
University of Oxford

Overview

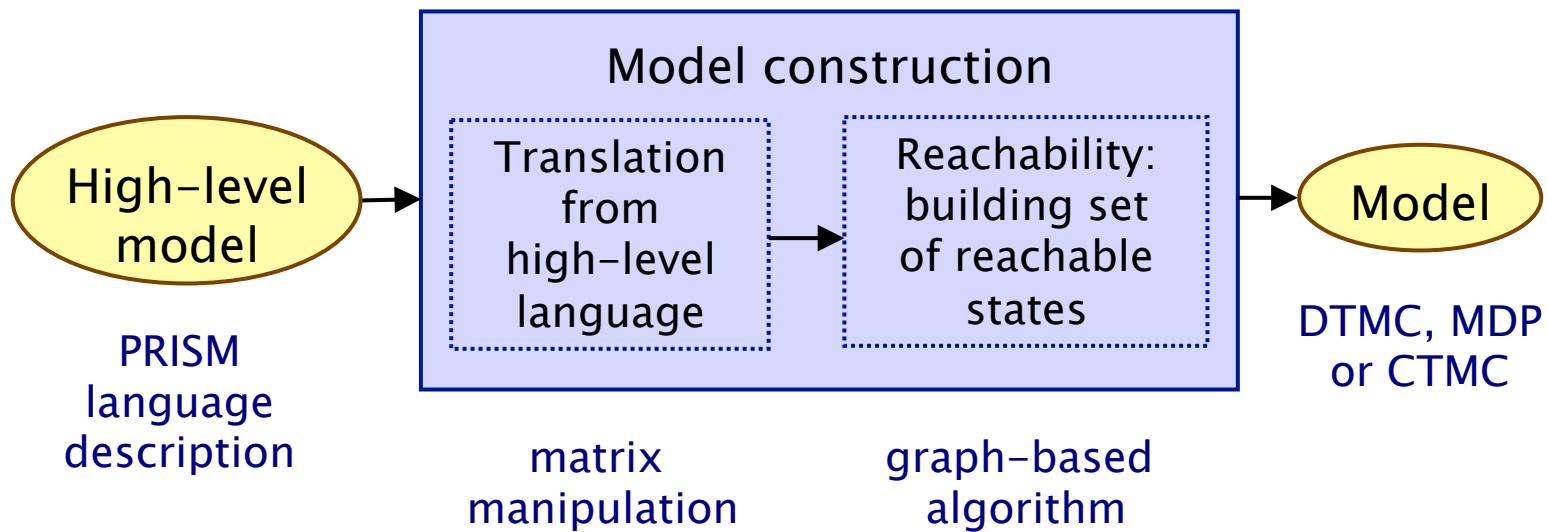
- **Implementation of probabilistic model checking**
 - overview, key operations, symbolic vs. explicit
- **Binary decision diagrams (BDDs)**
 - introduction, sets, transition relations, ...
- **Multi-terminal BDDs (MTBDDs)**
 - introduction, vectors, matrices, ...
- **Operations on/with BDDs and MTBDDs**

Implementation overview

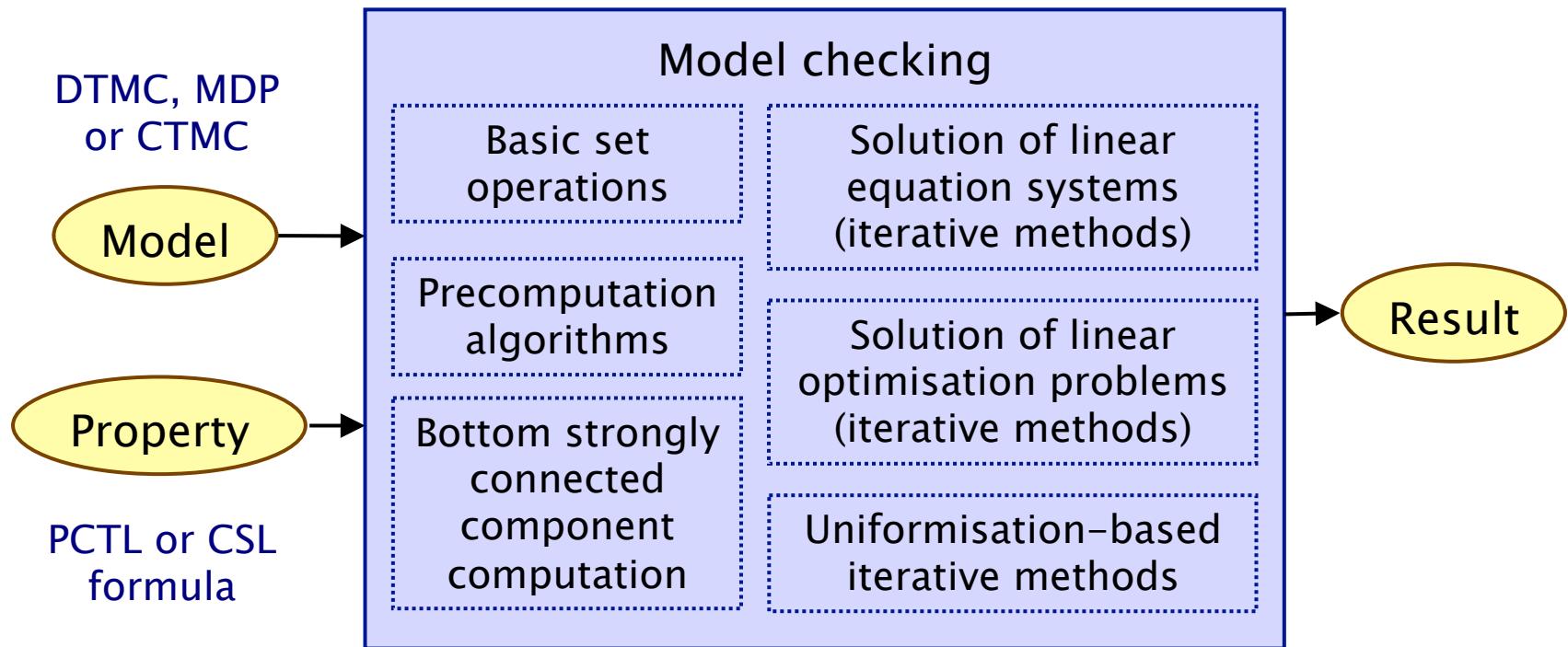
- Overview of the probabilistic model checking process
 - two distinct phases: **model construction**, **model checking**
 - three different models, several different logics, various different solution/analysis methods
 - but... all these processes have much in common



Model construction



Model checking



Two distinct classes of techniques:
graph-based algorithms
iterative numerical computation

Underlying operations

- Key objects/operations for probabilistic model checking
- Graph-based algorithms
 - underlying transition relation of DTMC/MDP/CTMC
 - manipulation of **transition relation and state sets**
- Iterative numerical computation
 - transition matrix of DTMC/MDP/CTMC, real-valued vectors
 - manipulation of **real-valued matrices and vectors**
 - in particular: **matrix–vector multiplication**

State-space explosion

- Models of real-life systems are typically huge
 - familiar problem for verification/model checking techniques
- State-space explosion problem
 - linear increase in size of system can result in an exponential increase in the size of the model
 - e.g. n parallel components of size m , can give up to m^n states
- Need efficient ways of storing models, sets of states, etc.
 - and efficient ways of constructing, manipulating them
- Here, we will focus on **symbolic approaches**

Explicit vs. symbolic data structures

- Symbolic data structures
 - usually based on **binary decision diagrams** (BDDs) or variants
 - avoid explicit enumeration of data by **exploiting regularity**
 - potentially **very compact storage** (but not always)
- Sets of states:
 - **explicit**: bit vectors
 - **symbolic**: BDDs
- Real-valued vectors:
 - **explicit**: arrays of reals (in practice, doubles/floats)
 - **symbolic**: multi-terminal BDDs (MTBDDs)
- Real-valued matrices:
 - **explicit**: sparse matrices
 - **symbolic**: MTBDDs

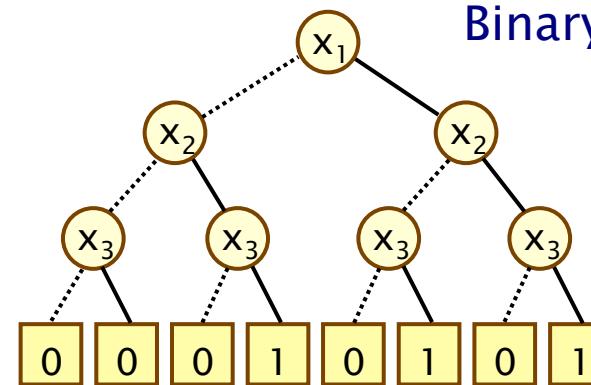
Representations of Boolean formulas

- Propositional formula: $f = (x_1 \vee x_2) \wedge x_3$

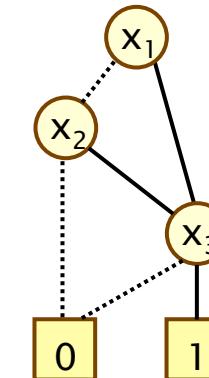
Truth table

x_1	x_2	x_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Binary decision tree

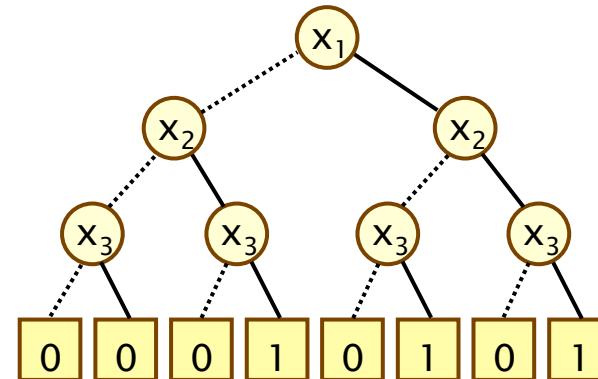


Binary decision diagram



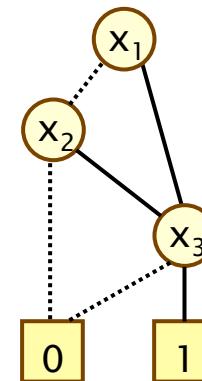
Binary decision trees

- Graphical representation of Boolean functions
 - $f(x_1, \dots, x_n) : \{0,1\}^n \rightarrow \{0,1\}$
- Binary tree with two types of nodes
- Non-terminal nodes
 - labelled with a Boolean variable x_i
 - two children: 1 (“then”, solid line) and 0 (“else”, dotted line)
- Terminal nodes (or “leaf” nodes)
 - labelled with 0 or 1
- To read the value of $f(x_1, \dots, x_n)$
 - start at root (top) node
 - take “then” edge if $x_i=1$
 - take “else” edge if $x_i=0$
 - result given by leaf node



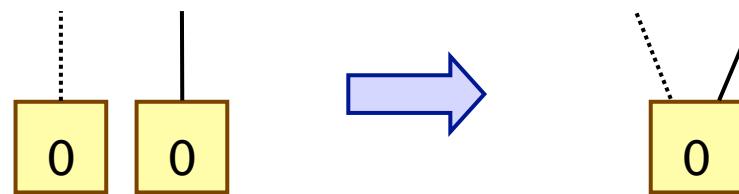
Binary decision diagrams

- Binary decision diagrams (BDDs) [Bry86]
 - based on binary decision trees, but **reduced** and **ordered**
 - sometimes called reduced ordered BDDs (ROBDDs)
 - actually directed acyclic graphs (DAGs), not trees
 - **compact, canonical** representation for **Boolean functions**
- Variable ordering
 - a BDD assumes a fixed total ordering over its set of Boolean variables
 - e.g. $x_1 < x_2 < x_3$
 - along any path through the BDD, variables appear at most once each and always in the correct order

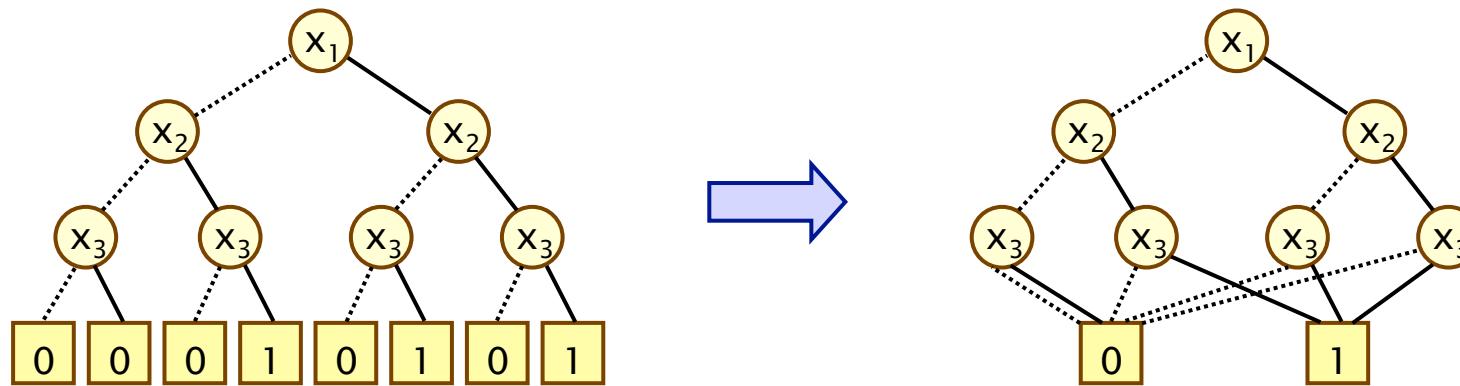


BDD reduction rule 1

- Rule 1: Merge identical terminal nodes

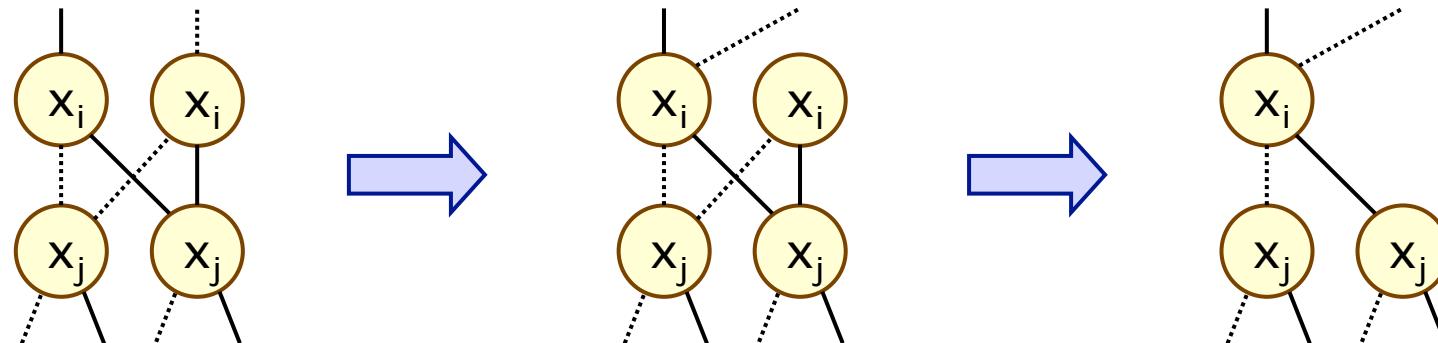


- Example:

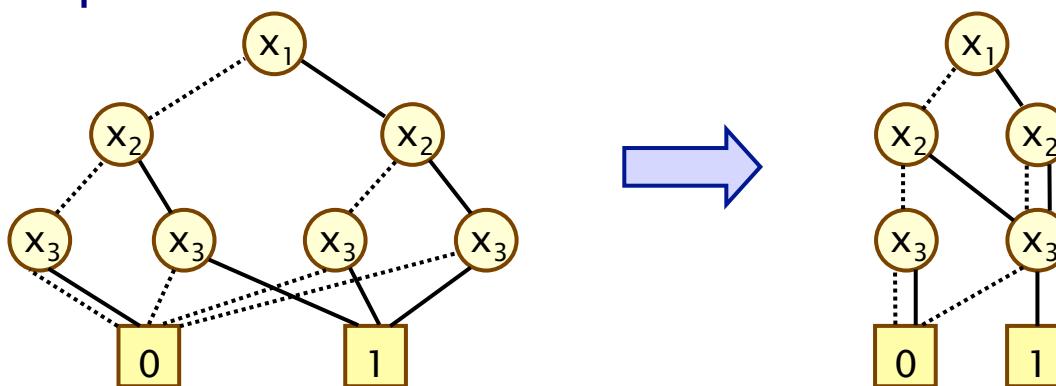


BDD reduction rule 2

- Rule 2: Merge isomorphic nodes, redirect incoming nodes

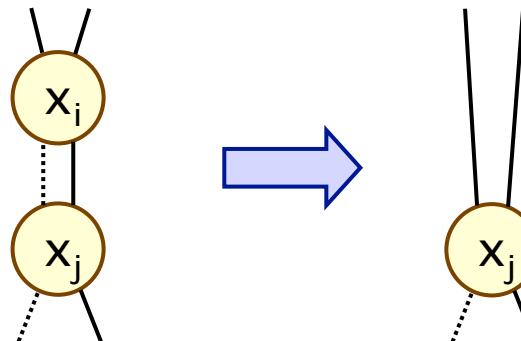


- Example:

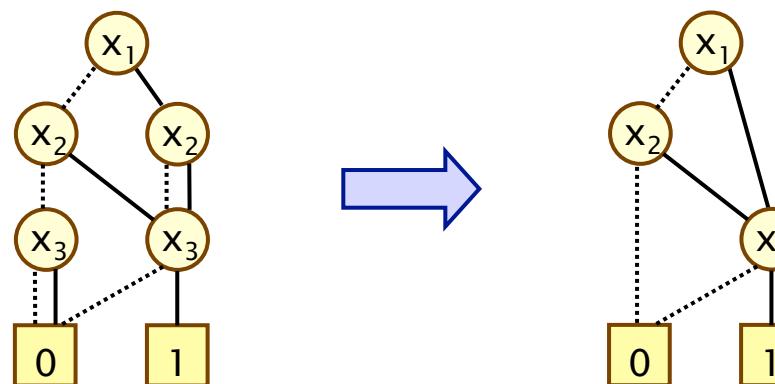


BDD reduction rule 3

- Rule 3: Remove redundant nodes (with identical children)

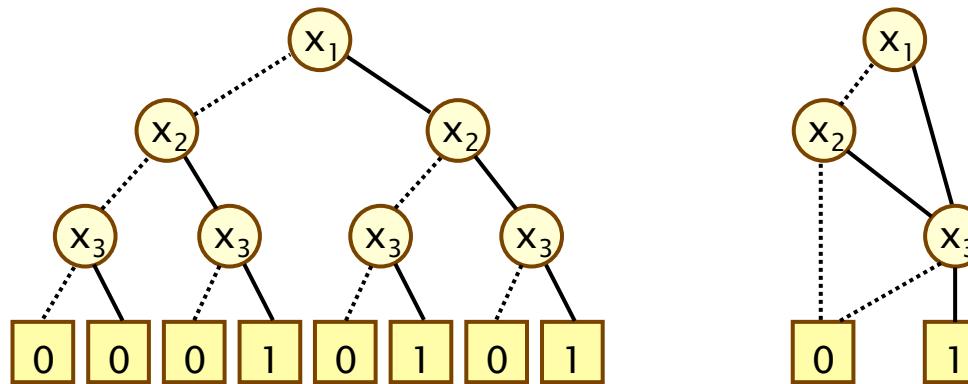


- Example:



Canonicity

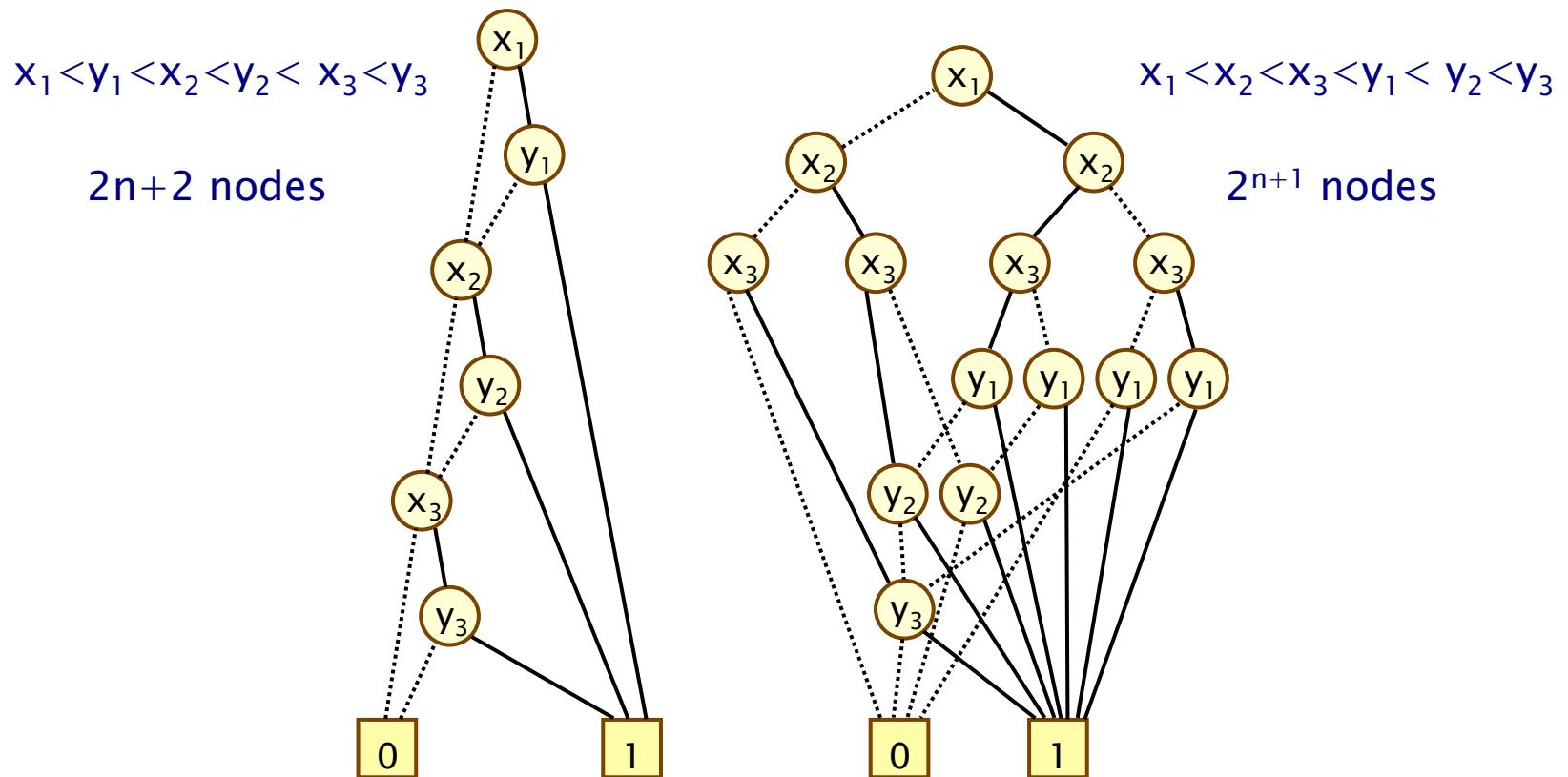
- BDDs are a canonical representation for Boolean functions
 - two Boolean functions are **equivalent** if and only if the BDDs which represent them are **isomorphic**
 - uniqueness relies on: **reduced BDDs, fixed variable ordered**



- Important implications for implementation efficiency
 - can be tested in linear (or even constant) time

BDD variable ordering

- BDD size can be very sensitive to the variable ordering
 - example: $f = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee (x_3 \wedge y_3)$



BDDs to represent sets of states

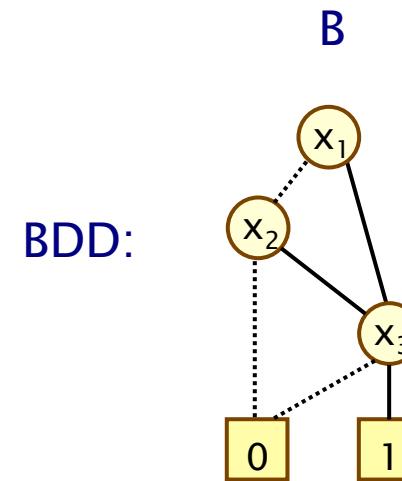
- Consider a state space S and some subset $S' \subseteq S$
- We can represent S' by its characteristic function $\chi_{S'}$
 - $\chi_{S'} : S \rightarrow \{0,1\}$ where $\chi_{S'}(s) = 1$ if and only if $s \in S'$
- Assume we have an encoding of S into n Boolean variables
 - this is always possible for a finite set S
 - e.g. enumerate the elements of S and use a **binary encoding**
 - (note: there may be more efficient encodings though)
- So $\chi_{S'}$ can be seen as a function $\chi_{S'}(x_1, \dots, x_n) : \{0,1\}^n \rightarrow \{0,1\}$
 - which is simply a Boolean function
 - which can therefore be represented as a BDD

BDD and sets of states – Example

- State space S : $\{0, 1, 2, 3, 4, 5, 6, 7\}$
- Encoding of S : $\{000, 001, 010, 011, 100, 101, 110, 111\}$
- Subset $S' \subseteq S$: $\{3, 5, 7\} \rightarrow \{011, 101, 111\}$

Truth table:

x_1	x_2	x_3	f_B
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1



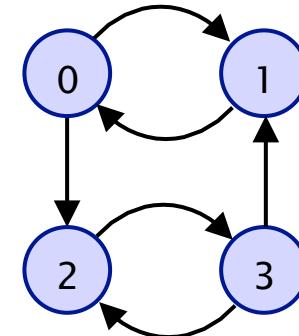
BDDs and transition relations

- Transition relations can also be represented by their characteristic function, but over pairs of states
 - relation: $R \subseteq S \times S$
 - characteristic function: $\chi_R : S \times S \rightarrow \{0,1\}$
- For an encoding of state space S into n Boolean variables
 - we have Boolean function $f_R(x_1, \dots, x_n, y_1, \dots, y_n) : \{0,1\}^{2n} \rightarrow \{0,1\}$
 - which can be represented by a BDD
- Row and column variables
 - for efficiency reasons, we **interleave** the **row variables** x_1, \dots, x_n and **column variables** y_1, \dots, y_n
 - i.e. we use function $f_R(x_1, y_1, \dots, x_n, y_n) : \{0,1\}^{2n} \rightarrow \{0,1\}$

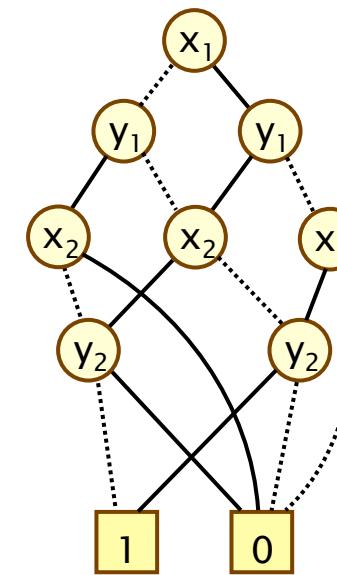
BDDs and transition relations

- Example:

- 4 states: 0, 1, 2, 3
- Encoding: $0 \mapsto 00$, $1 \mapsto 01$, $2 \mapsto 10$, $3 \mapsto 11$



Transition	x_1	x_2	y_1	y_2	$x_1 y_1 x_2 y_2$
$(0,1)$	0	0	0	1	0001
$(0,2)$	0	0	1	0	0100
$(1,0)$	0	1	0	0	0010
$(2,3)$	1	0	1	1	1101
$(3,1)$	1	1	0	1	1011
$(3,2)$	1	1	1	0	1110

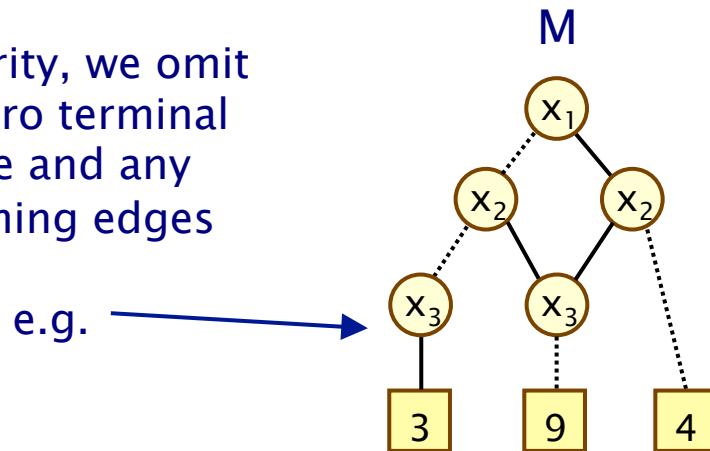


Multi-terminal binary decision diagrams

- Multi-terminal BDDs (MTBDDs), sometimes called ADDs
 - extension of BDDs to represent **real-valued functions**
 - like BDDs, an MTBDD M is associated with n Boolean variables
 - MTBDD M represents a function $f_M(x_1, \dots, x_n) : \{0,1\}^n \rightarrow \mathbb{R}$

For clarity, we omit the zero terminal node and any incoming edges

e.g.



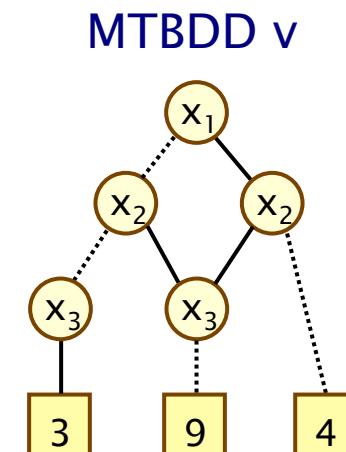
x_1	x_2	x_3	f_M
0	0	0	0
0	0	1	3
0	1	0	9
0	1	1	0
1	0	0	4
1	0	1	4
1	1	0	9
1	1	1	0

MTBDDs to represent vectors

- In the same way that BDDs can represent sets of states...
 - MTBDDs can represent **real-valued vectors** over states S
 - e.g. a vector of probabilities $\text{Prob}(s, \psi)$ for each state $s \in S$
 - assume we have an encoding of S into n Boolean variables
 - then vector $\underline{v} : S \rightarrow \mathbb{R}$ is a function $f_v(x_1, \dots, x_n) : \{0,1\}^n \rightarrow \mathbb{R}$

Vector \underline{v}
[0,3,9,0,4,4,9,0]

x_1	x_2	x_3	i	f_v
0	0	0	0	0
0	0	1	1	3
0	1	0	2	9
0	1	1	3	0
1	0	0	4	4
1	0	1	5	4
1	1	0	6	9
1	1	1	7	0



MTBDDs to represent matrices

- MTBDDs can be used to represent **real-valued matrices** indexed over a set of states S
 - e.g. the **transition probability/rate matrix** of a DTMC/CTMC
- For an encoding of state space S into n Boolean variables
 - a matrix M maps pairs of states to reals i.e. $M : S \times S \rightarrow \mathbb{R}$
 - this becomes: $f_M(x_1, \dots, x_n, y_1, \dots, y_n) : \{0,1\}^{2n} \rightarrow \mathbb{R}$
- Row and column variables
 - for efficiency reasons, we **interleave** the **row variables** x_1, \dots, x_n and **column variables** y_1, \dots, y_n
 - i.e. we use function $f_M(x_1, y_1, \dots, x_n, y_n) : \{0,1\}^{2n} \rightarrow \mathbb{R}$

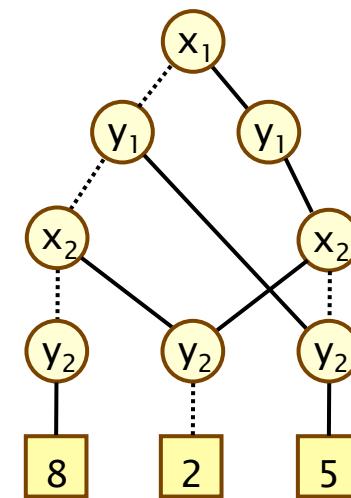
Matrices and MTBDDs – Example

Matrix M

$$\begin{bmatrix} 0 & 8 & 0 & 5 \\ 2 & 0 & 0 & 5 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

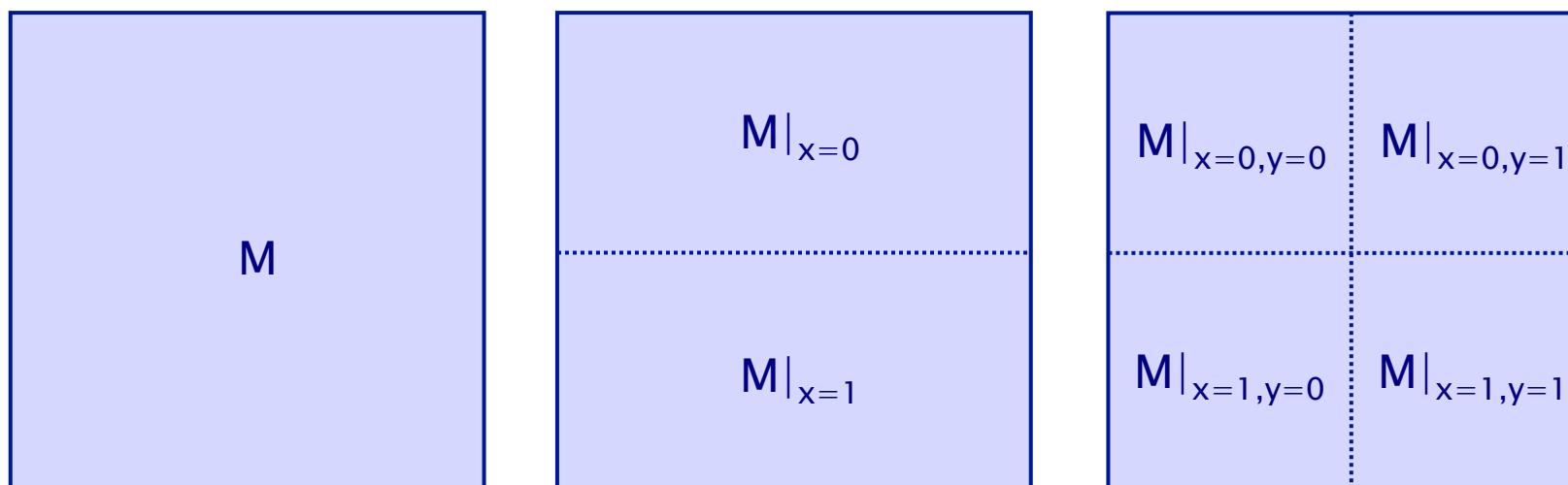
Entry in M	x_1	x_2	y_1	y_2	$x_1y_1x_2y_2$	f_M
$(0,1) = 8$	0	0	0	1	0001	8
$(1,0) = 2$	0	1	0	0	0010	2
$(0,3) = 5$	0	0	1	1	0101	5
$(1,3) = 5$	0	1	1	1	0111	5
$(2,3) = 5$	1	0	1	1	1101	5
$(3,2) = 2$	1	1	1	0	1110	2

MTBDD M



Matrices and MTBDDs – Recursion

- Descending one level in the MTBDD (i.e. setting $x_i = b$)
 - splits the matrix represented by the MTBDD in half
 - row variables (x_i) give horizontal split
 - column variables (y_i) give vertical split



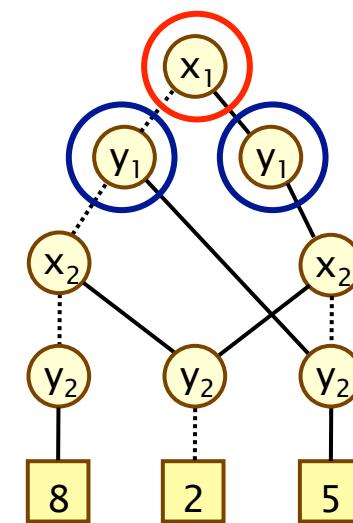
Matrices and MTBDDs – Recursion

Matrix M

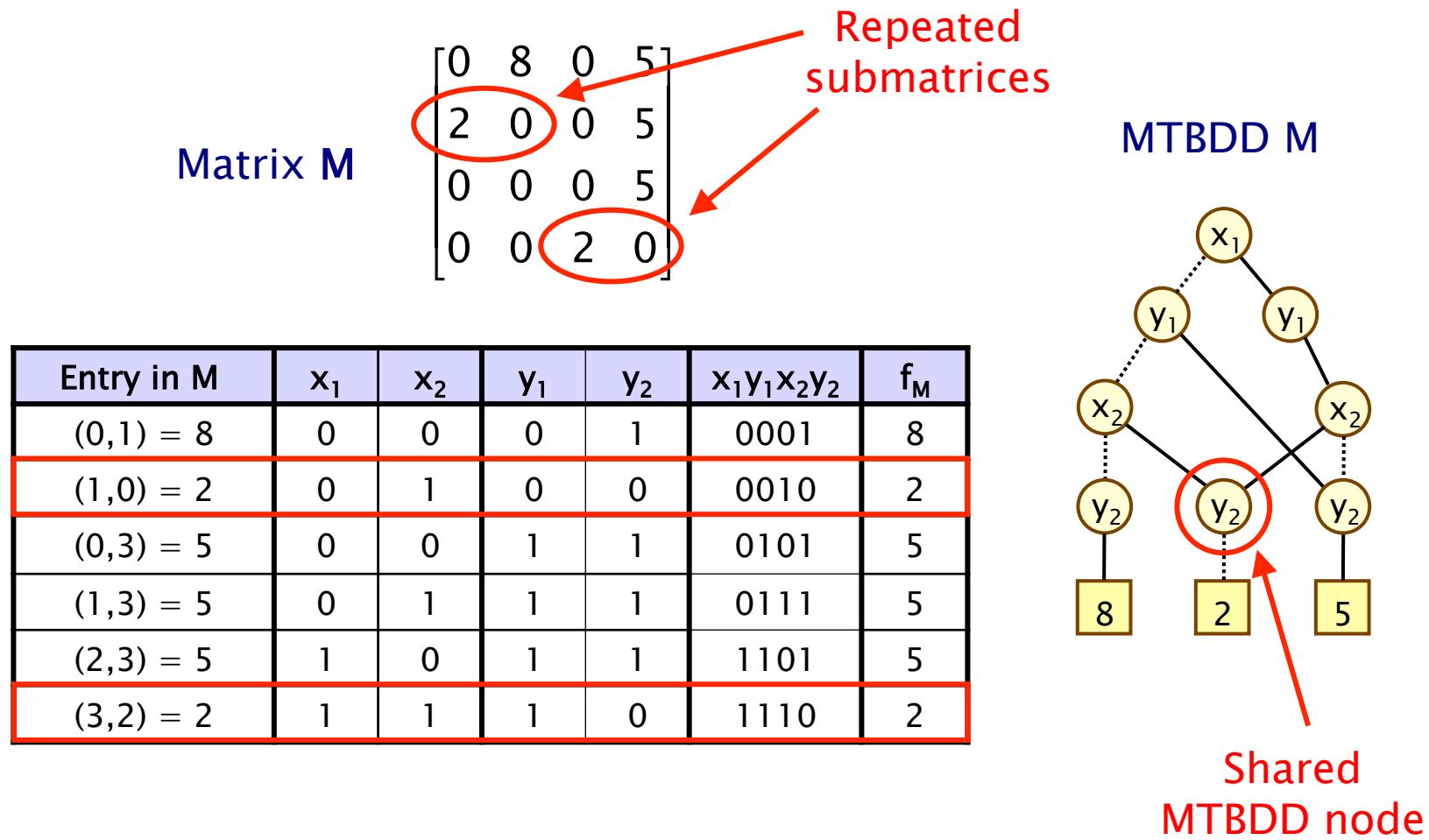
$$\left[\begin{array}{cc|cc} 0 & 8 & 0 & 5 \\ 2 & 0 & 0 & 5 \\ \hline 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 \end{array} \right]$$

Entry in M	x_1	x_2	y_1	y_2	$x_1y_1x_2y_2$	f_M
$(0,1) = 8$	0	0	0	1	0001	8
$(1,0) = 2$	0	1	0	0	0010	2
$(0,3) = 5$	0	0	1	1	0101	5
$(1,3) = 5$	0	1	1	1	0111	5
$(2,3) = 5$	1	0	1	1	1101	5
$(3,2) = 2$	1	1	1	0	1110	2

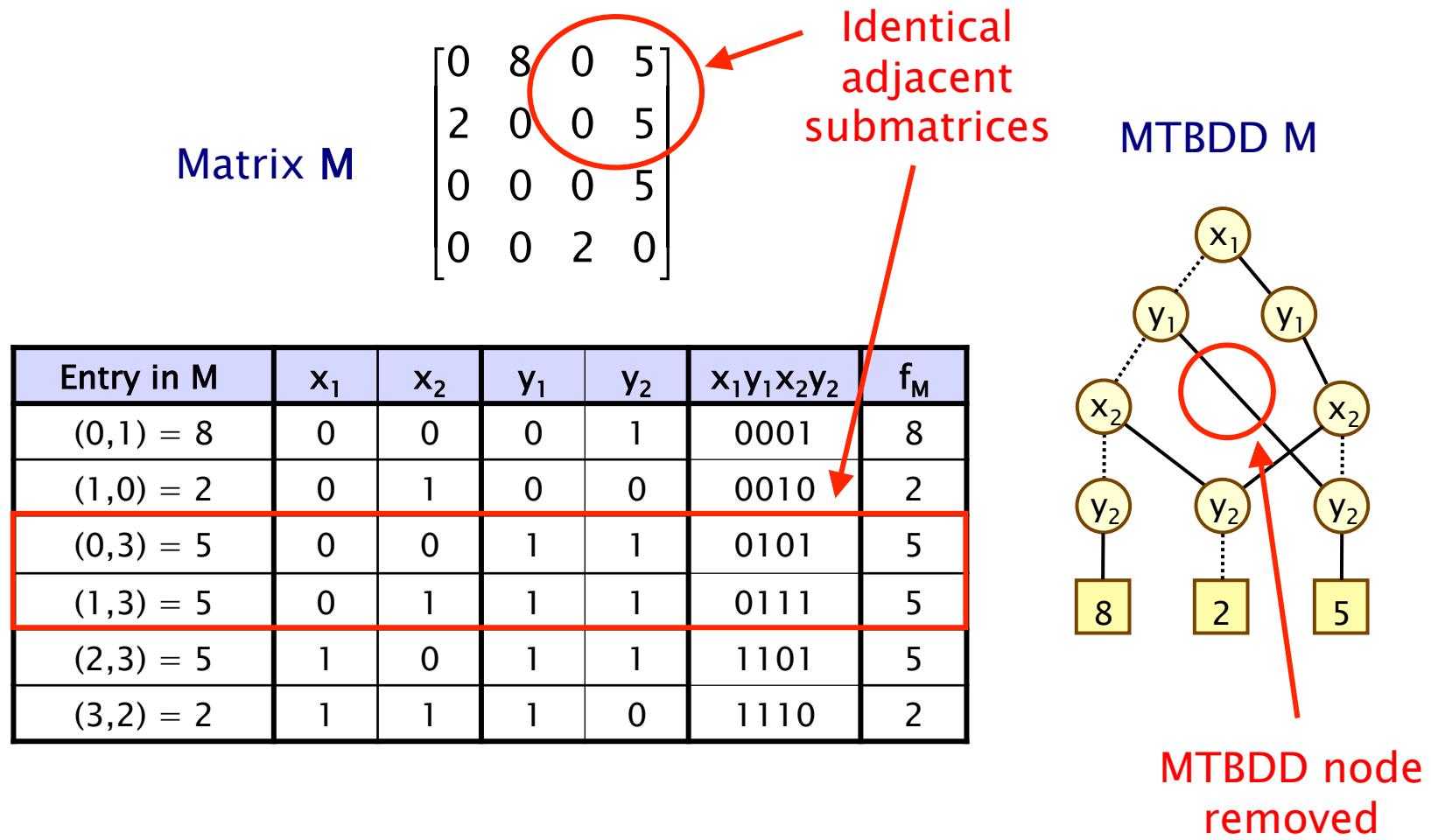
MTBDD M



Matrices and MTBDDs – Regularity



Matrices and MTBDDs – Regularity



Matrices and MTBDDs – Sparseness

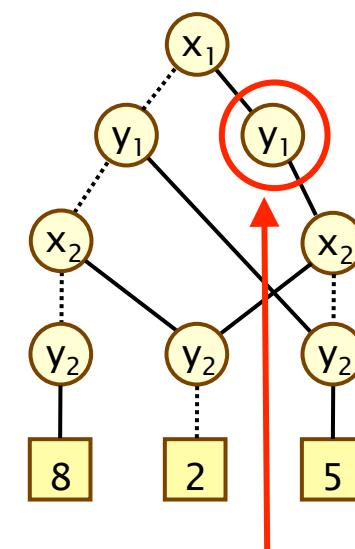
Matrix M

$$\begin{bmatrix} 0 & 8 & 0 & 5 \\ 2 & 0 & 0 & 5 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

Blocks of zeros

Entry in M	x_1	x_2	y_1	y_2	$x_1y_1x_2y_2$	f_M
$(0,1) = 8$	0	0	0	1	0001	8
$(1,0) = 2$	0	1	0	0	0010	2
$(0,3) = 5$	0	0	1	1	0101	5
$(1,3) = 5$	0	1	1	1	0111	5
$(2,3) = 5$	1	0	1	1	1101	5
$(3,2) = 2$	1	1	1	0	1110	2

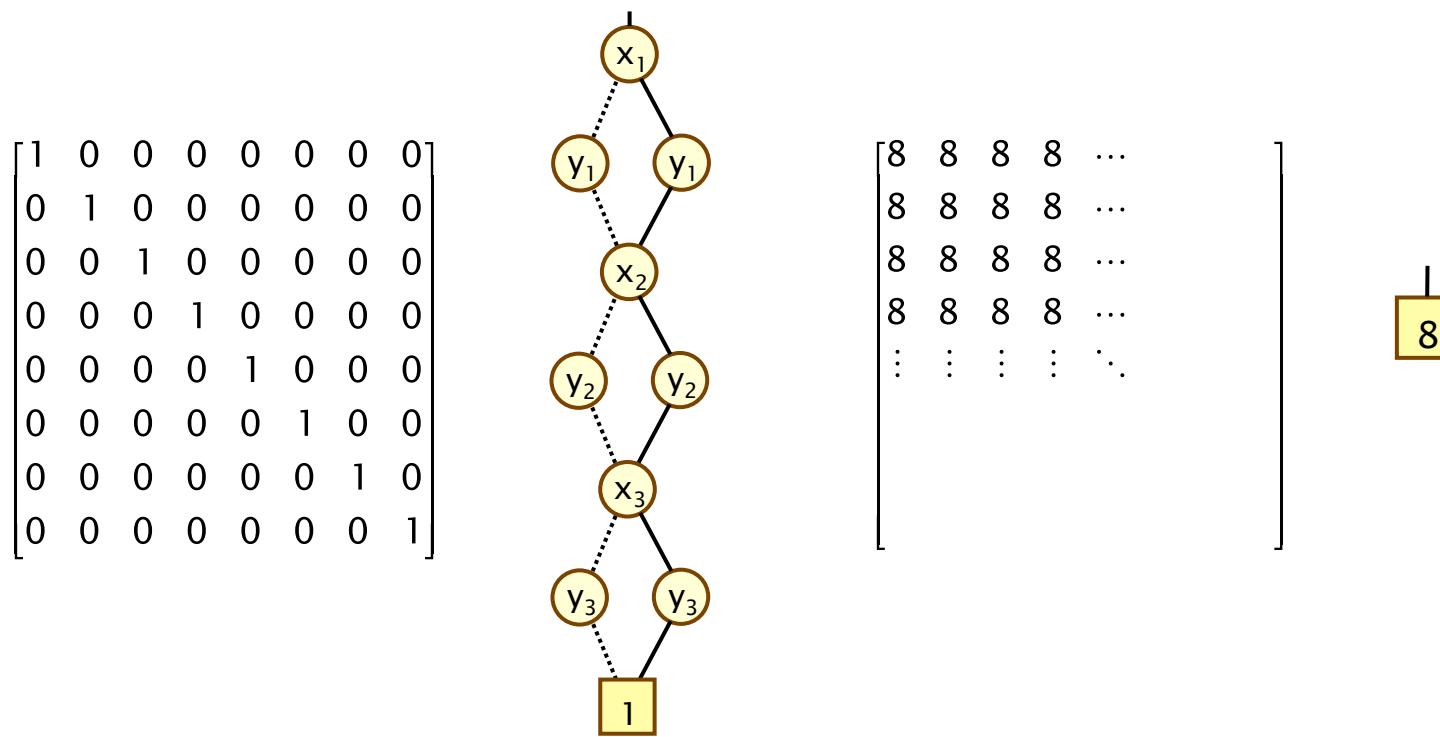
MTBDD M



Edge goes straight to zero node

Matrices and MTBDDs – Compactness

- Some simple matrices have extremely compact representations as MTBDDs
 - e.g. the identity matrix or a constant matrix



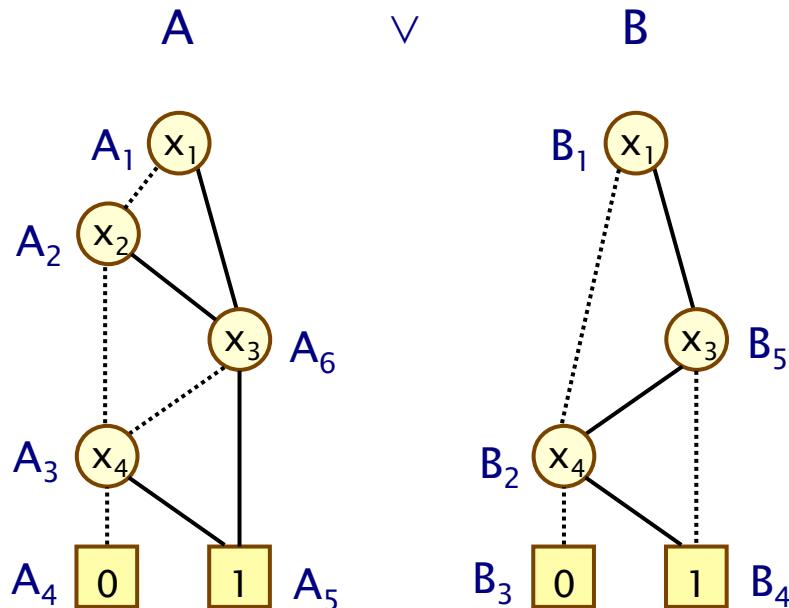
Manipulating BDDs

- Need efficient ways to manipulate Boolean functions
 - while they are represented as BDDs
 - i.e. algorithms which are applied directly to the BDDs
- Basic operations on Boolean functions:
 - negation (\neg), conjunction (\wedge), disjunction (\vee), etc.
 - can all be applied directly to BDDs
- Key operation on BDDs: $\text{Apply}(\text{op}, A, B)$
 - where A and B are BDDs and op is a binary operator over Boolean values, e.g. \wedge , \vee , etc.
 - $\text{Apply}(\text{op}, A, B)$ returns the BDD representing function $f_A \text{ op } f_B$
 - often just use infix notation, e.g. $\text{Apply}(\wedge, A, B) = A \wedge B$
 - efficient algorithm: recursive depth-first traversal of A and B
 - complexity (and size of result) is $O(|A| \cdot |B|)$
 - where $|C|$ denotes size of BDD C

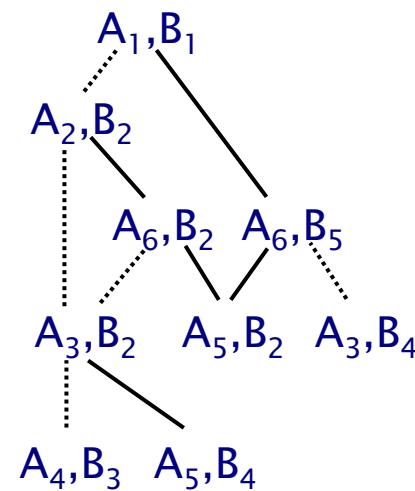
Apply – Example

- Example: $\text{Apply}(\vee, A, B)$

Argument BDDs, with node labels:

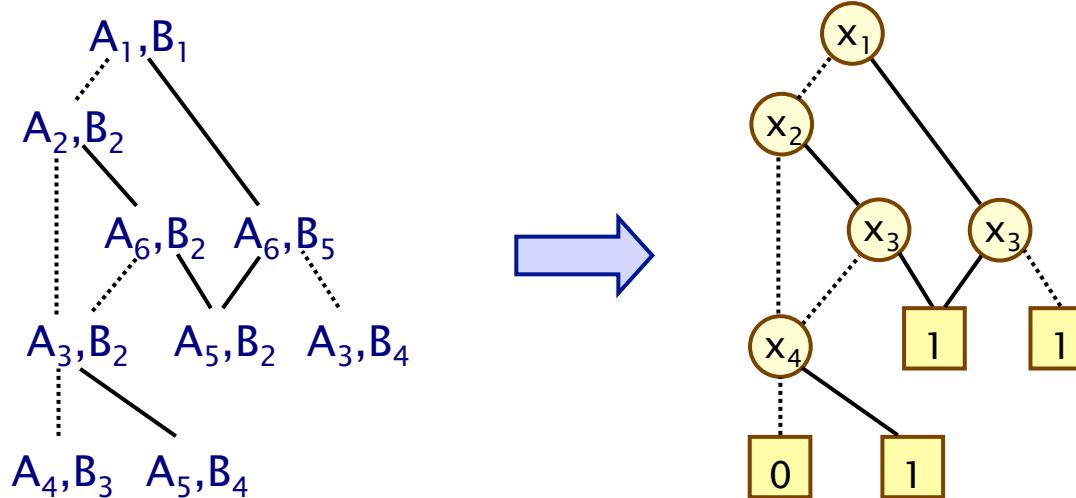


Recursive calls to Apply:



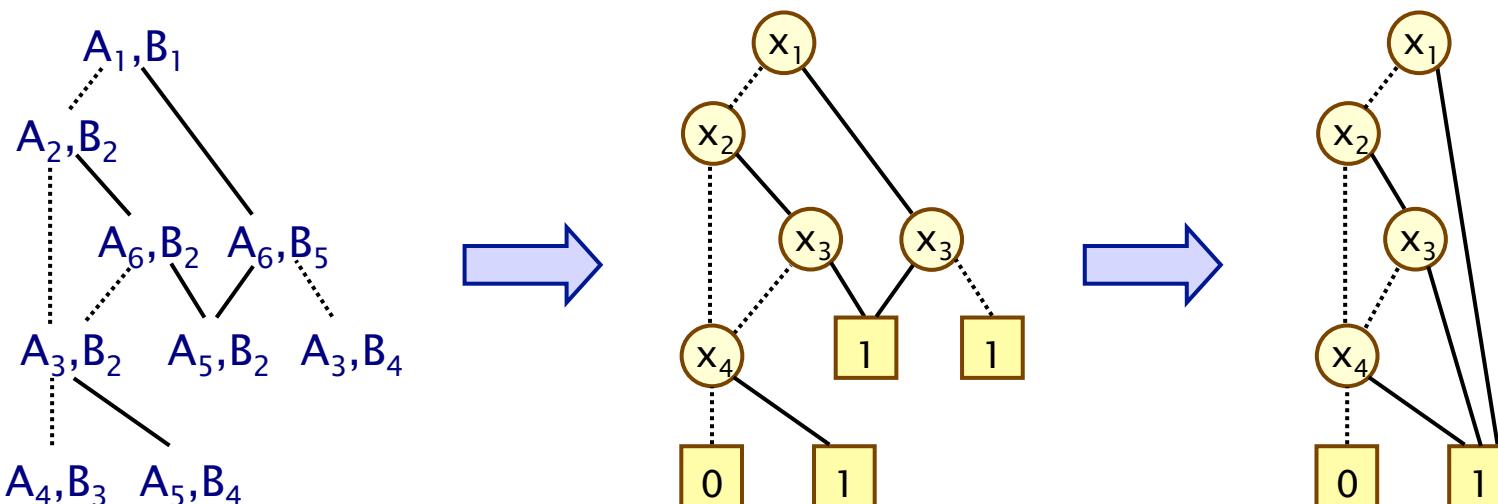
Apply – Example

- Example: $\text{Apply}(\vee, A, B)$
 - recursive call structure implicitly defines resulting BDD



Apply – Example

- Example: $\text{Apply}(\vee, A, B)$
 - but the resulting BDD needs to be reduced
 - in fact, we can do this as part of the recursive Apply operation, implementing reduction rules bottom-up



Implementation of BDDs

- Store all BDDs currently in use as one multi-rooted BDD
 - no duplicate BDD subtrees, even across multiple BDDs
 - every time a new node is created, check for existence first
 - sometimes called the “**unique table**”
 - implemented as set of **hash tables**, one per Boolean variable
 - need: node **referencing/dereferencing, garbage collection**
- Efficiency implications
 - **very significant memory savings**
 - trivial checking of BDD equality (pointer comparison)
- Caching of BDD operation results for reuse
 - store result of every BDD operation (memory dependent)
 - applied at every step of recursive BDD operations
 - relies on fast check for BDD equality

Operations with BDDs

- Operations on sets of states easy with BDDs
 - set union: $A \cup B$, in BDDs: $A \vee B$
 - set intersection: $A \cap B$, in BDDs: $A \wedge B$
 - set complement: $S \setminus A$, in BDDs: $\neg A$
- Graph-based algorithms (e.g. reachability)
 - need forwards or backwards image operator
 - i.e. computation of all successors/predecessors of a state
 - again, easy with BDD operations (conjunction, quantification)
 - other ingredients
 - set operations (see above)
 - equality of state sets (fixpoint termination) – equality of BDDs

Operations on MTBDDs

- The BDD operation `Apply` extends easily to MTBDDs
- For MTBDDs A , B and binary operation op over the **reals**:
 - $\text{Apply}(op, A, B)$ returns the MTBDD representing $f_A \text{ op } f_B$
 - examples for op : $+$, $-$, \times , \min , \max , ...
 - often just use infix notation, e.g. $\text{Apply}(+, A, B) = A + B$
- BDDs are just an instance of MTBDDs
 - in this case, can use Boolean ops too, e.g. $\text{Apply}(\vee, A, B)$
- The recursive algorithm for implementing `Apply` on BDDs
 - can be reused for `Apply` on MTBDDs

Some other MTBDD operations

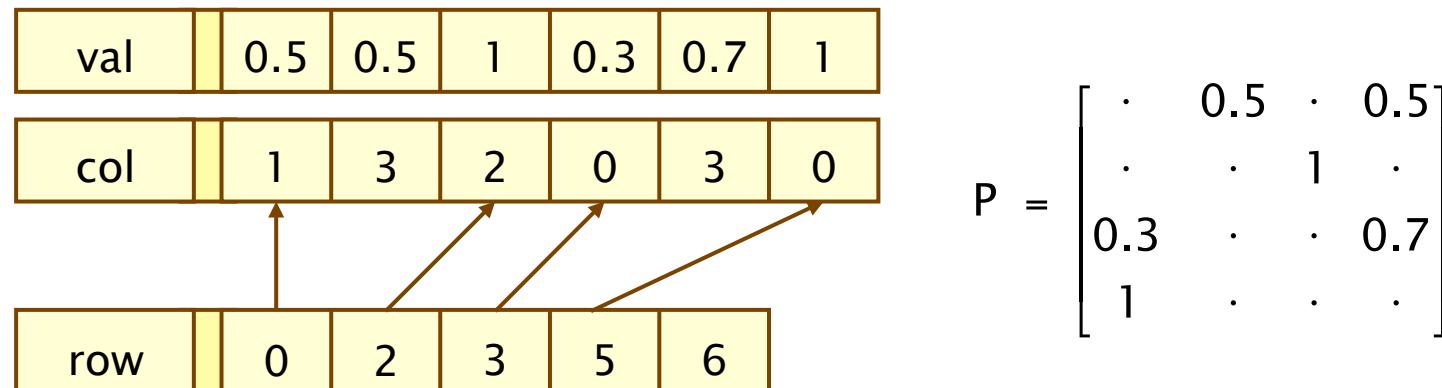
- **Threshold(A, \sim , c)**
 - for MTBDD A , relational operator op and bound $c \in \mathbb{R}$
 - converts MTBDD to BDD based on threshold $\sim c$
 - i.e. builds BDD representing function $f_A \sim c$
 - e.g. computing the underlying transition relation from the probability matrix of a DTMC: $R = \text{Threshold}(P, >, 0)$
- **Abstract(op, $\{x_1, \dots, x_n\}$, A)**
 - for MTBDD A , variables $\{x_1, \dots, x_n\}$ and commutative/associative binary operator over reals op
 - analogue of existential/universal quantification for BDDs
 - e.g. $\text{Abstract}(+, \{x\}, A)$ constructs the MTBDD representing the function $f_{A|x=0} + f_{A|x=1}$
 - e.g. for BDD A : $\exists(x_1, \dots, x_n).A \equiv \text{Abstract}(\vee, \{x_1, \dots, x_n\}, A)$

MTBDD matrix/vector operations

- Pointwise addition/multiplication and scalar multiplication
 - can be implemented with the **Apply operator**
 - Matrices: $\mathbf{A} + \mathbf{B}$, MTBDDs: $\text{Apply}(+, \mathbf{A}, \mathbf{B})$
- Matrix–matrix multiplication $\mathbf{A} \cdot \mathbf{B}$
 - can be expressed recursively based on 4-way matrix splits
$$\begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 \\ \mathbf{B}_3 & \mathbf{B}_4 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_3 & \mathbf{C}_4 \end{bmatrix} \quad \mathbf{A}_1 = \mathbf{B}_1 \cdot \mathbf{C}_1 + \mathbf{B}_2 \cdot \mathbf{C}_3, \text{ etc.}$$
 - which forms the basis of an MTBDD implementation
 - various optimisations are possible
- Matrix–matrix multiplication $\mathbf{A} \cdot \underline{\mathbf{v}}$ is done in similar fashion

Sparse matrices

- Explicit data structure for matrices with many zero entries
 - assume a matrix P of size $n \times n$ with nnz non-zero elements
 - store three arrays: **val** and **col** (of size nnz) and **row** (of size n)
 - for each matrix entry $(r,c)=v$, c and v are stored in **col/val**
 - entries are grouped by row, with pointers stored in **row**
 - also possible to group by column



Sparse matrices

- Advantages
 - **compact storage** (proportional to number of non-zero entries)
 - **fast access** to matrix entries
 - especially if usually need an entire row at once
 - (which is the case for e.g. matrix–vector multiplication)
- Disadvantage
 - less efficient to manipulate (i.e. add/delete matrix entries)
- Storage requirements
 - for a matrix of size $n \times n$ with nnz non-zero elements
 - assume reals are 8 byte doubles, indices are 4 byte integers
 - we need $8 \cdot nnz + 4 \cdot nnz + 4 \cdot n = 12 \cdot nnz + 4 \cdot n$ bytes

Sparse matrices vs. MTBDDs

- Storage requirements
 - MTBDDs: each node is 20 bytes
 - sparse matrices: $12 \cdot \text{nnz} + 4 \cdot n$ bytes (n states, nnz transitions)
- Case study: Kanban manufacturing system, N jobs
 - store transition rate matrix R of the corresponding CTMCs

N	States (n)	Transitions (nnz)	MTBDD (KB)	Sparse matrix (KB)
3	58,400	446,400	48	5,459
4	454,475	3,979,850	96	48,414
5	2,546,432	24,460,016	123	296,588
6	11,261,376	115,708,992	154	1,399,955
7	41,644,800	450,455,040	186	5,441,445
8	133,865,325	1,507,898,700	287	13,193,599

Implementation in PRISM

- PRISM is a **symbolic** probabilistic model checker
 - the key underlying data structures are MTBDDs (and BDDs)
- In fact, has multiple numerical computation engines
 - **MTBDDs**: storage/analysis of very large models (given **structure/regularity**), numerical computation can blow up
 - **Sparse matrices**: fastest solution for smaller models (< 10^6 states), prohibitive memory consumption for larger models
 - **Hybrid**: combine MTBDD storage with explicit storage, ten-fold increase in analysable model size (~ 10^7 states)

Summing up...

- Implementation of probabilistic model checking
 - graph-based algorithms, e.g. reachability, precomputation
 - manipulation of sets of states, transition relations
 - iterative numerical computation
 - key operation: matrix–vector multiplication
- Binary decision diagrams (BDDs)
 - representation for Boolean functions
 - efficient storage/manipulation of sets, transition relations
- Multi-terminal BDDs (MTBDDs)
 - extension of BDDs to real-valued functions
 - efficient storage/manipulation of real-valued vectors, matrices (assuming structure and regularity)
 - can be much more compact than (explicit) sparse matrices