Probabilistic Model Checking Michaelmas Term 2011

Lecture 1
Introduction

Dr. Dave Parker

UNIVERSITY OF

OXFORD

Department of Computer Science
University of Oxford

Probabilistic model checking

Probabilistic model checking...

— is a formal verification technique

for modelling and analysing systems
that exhibit probabilistic behaviour

Formal verification...

— is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems

DP/Probabilistic Model Checking, Michaelmas 2011

Outline

- Introducing probabilistic model checking...

- Topics for this lecture
— the role of automatic verification
— what is probabilistic model checking?
— why is it important?
— where is it applicable?
— what does it involve?

- About this course
— aims and organisation
— information and links

DP/Probabilistic Model Checking, Michaelmas 2011

Conventional software engineering

From requirements to software system
— apply design methodologies
— code directly in programming language
— validation via testing, code walkthroughs

Informal
requirements

| > System

Validation

DP/Probabilistic Model Checking, Michaelmas 2011

Formal verification

- From requirements to formal specification
— formalise specification, derive model
— formally verify correctness

Fariel | P Model
specification Verification

v)

v s =
TES gﬂ ﬂ%

v - |

e 0

o < ®
L.

Informal System

requirements

,00

DP/Probabilistic Model Checking, Michaelmas 2011

But my program works!

- True, there are many successful large-scale complex
computer systems...

— online banking, electronic commerce

— information services, online libraries, business processes
— supply chain management
— mobile phone networks

- Yet many new potential application domains with far
greater complexity and higher expectations

— automotive drive-by-wire
— medical sensors: heart rate & blood pressure monitors
— intelligent buildings and spaces, environmental sensors

- Learning from mistakes costly...

DP/Probabilistic Model Checking, Michaelmas 2011

Toyota Prius

- Toyota Prius
— first mass—-produced hybrid vehicle

February 2010

— software “glitch” found in
anti-lock braking system

— in response to humerous
complaints/accidents

Eventually fixed via software update
— in total 185,000 cars recalled, at huge cost

— handling of the incident prompted
much criticism, bad publicity

DP/Probabilistic Model Checking, Michaelmas 2011

Ariane 5

- ESA (European Space Agency) Ariane 5 launcher

— shown here in maiden flight
on 4th June 1996

- 37secs later self-destructs

— uncaught exception: numerical
overflow in a conversion routine
results in incorrect altitude sent
by the on-board computer

- Expensive, embarrassing...

DP/Probabilistic Model Checking, Michaelmas 2011 8

The London Ambulance Service

London Ambulance Service
computer aided despatch system

— Area 600sq miles

— Population 6.8million

— 5000 patients per day

— 2000-2500 calls per day

— 1000-1200 999 calls per day

Introduced October 1992

- Severe system failure:

— position of vehicles incorrectly recorded

— multiple vehicles sent to the same location

— 20-30 people estimated to have died as a result

DP/Probabilistic Model Checking, Michaelmas 2011 9

What do these stories have in common?

Programmable computing devices
— conventional computers and networks

— software embedded in devices
. airbag controllers, mobile phones, etc

Programming error direct cause of failure

Software critical
— for safety
— for business
— for performance
High costs incurred: not just financial

Failures avoidable...

DP/Probabilistic Model Checking, Michaelmas 2011

10

Why must we verify?

“Testing can only show the presence of errors, not their absence.”

To rule out errors need to

consider all possible executions
often not feasible mechanically!

— need formal verification...

“In their capacity as a tool,
computers will be but a ripple
on the surface of our culture.

In their capacity as intellectual Edsger Dijkstra
challenge, computers are
without precedent in the 1930-2002

cultural history of mankind.”

DP/Probabilistic Model Checking, Michaelmas 2011

11

Automatic verification

- Formal verification...

— the application of rigorous, mathematics-based techniques
to establish the correctness of computerised systems

— essentially: proving that a program satisfies it specification

— many techniques: manual proof, automated theorem proving,
static analysis, model checking, ...

10500,000 ctates 1070 atoms

- Automatic verification =
— mechanical, push-button technology
— performed without human intervention

DP/Probabilistic Model Checking, Michaelmas 2011 12

Verification via model checking

Finite-state
System model
Result
_}
— v X
~
Model checker
—p| €9 SMV, Spin
v
00:: —EF fail — N Counter-
° —> example
System Temporal logic (error trace)
require- specification ~0+0+0~0
ments

DP/Probabilistic Model Checking, Michaelmas 2011 13

Model checking in practice

Model checking now routinely applied to real-life systems
— not just “verification”...

— model checkers used as a debugging tool

— at IBM, bugs detected in arbiter that could not be found with
simulations

Now widely accepted in industrial practice
— Microsoft, Intel, Cadence, Bell Labs, IBM,...

Many software tools, both commercial and academic
— smyv, SPIN, SLAM, FDR2, FormalCheck, RuleBase, ...
— software, hardware, protocols, ...

Extremely active research area

— 2008 Turing Award won by Edmund Clarke, Allen Emerson
and Joseph Sifakis for their work on model checking

DP/Probabilistic Model Checking, Michaelmas 2011

New challenges for verification

- Devices, ever smaller
— laptops, phones, sensors...

- Networking, wireless, wired & global
— wireless & internet everywhere

- New design and engineering challenges

— adaptive computing,
ubiquitous/pervasive computing,
context-aware systems

— trade-offs between e.g. performance,
security, power usage, battery life, ...

DP/Probabilistic Model Checking, Michaelmas 2011 15

New challenges for verification

Many properties other than correctness are important
Need to guarantee...
— safety, reliability, performance, dependability

— resource usage, e.g. battery life
— security, privacy, trust, anonymity, fairness
— and much more...

Quantitative, as well as qualitative requirements:
— “how reliable is my car’s Bluetooth network?”
— “how efficient is my phone’s power management policy?”
— “how secure is my bank’s web-service?”

- This course: probabilistic verification

DP/Probabilistic Model Checking, Michaelmas 2011

16

Why probability?

- Some systems are inherently probabilistic...

- Randomisation, e.qg. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- Examples: real-world protocols featuring randomisation

— Randomised back-off schemes
- IEEE 802.3 CSMA/CD, IEEE 802.11 Wireless LAN

— Random choice of waiting time
. |EEE 1394 Firewire (root contention), Bluetooth (device discovery)

— Random choice over a set of possible addresses
. IPv4 Zeroconf dynamic configuration (link-local addressing)

— Randomised algorithms for anonymity, contract signing, ...

DP/Probabilistic Model Checking, Michaelmas 2011

17

Why probability?

Some systems are inherently probabilistic...

Randomisation, e.qg. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

Modelling uncertainty and performance
— to quantify rate of failures, express Quality of Service

Examples:
— computer networks, embedded systems
— power management policies
— nano-scale circuitry: reliability through defect-tolerance

DP/Probabilistic Model Checking, Michaelmas 2011 18

Why probability?

Some systems are inherently probabilistic...

Randomisation, e.qg. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

Modelling uncertainty and performance
— to quantify rate of failures, express Quality of Service

For quantitative analysis of software and systems
— to quantify resource usage given a policy
“the minimum expected battery capacity for a scenario...”

- And many others, e.g. biological processes

DP/Probabilistic Model Checking, Michaelmas 2011 19

Probabilistic model checking

Probabilistic model

: —3p Result
System e.g. Markov chain /
0.5 +0.4 x
_} 0.1
—_— Quantitative
~ results
Probabilistic I |
model checker o AT
e.g. PRISM S
= B
00@ Py, [Ffail]| =—— Counter-
System_’ —) example
. Probabilistic temporal
remqeur:gg— logic specification ~o~o 30
e.g. PCTL, CSL, LTL

DP/Probabilistic Model Checking, Michaelmas 2011 20

Case study: FireWire protocol

FireWire (IEEE 1394) o+
— high-performance serial bus for networking o

multimedia devices; originally by Apple g

— "hot-pluggable” - add/remove
devices at any time

— no requirement for a single PC (need acyclic topology)

&

Root contention protocol
— leader election algorithm, when nodes join/leave
— symmetric, distributed protocol
— uses electronic coin tossing and timing delays
— nodes send messages: "be my parent”
— root contention: when nodes contend leadership
— random choice: "fast"/"slow" delay before retry

DP/Probabilistic Model Checking, Michaelmas 2011 21

FireWire example

DP/Probabilistic Model Checking, Michaelmas 2011 22

FireWire leader election

FireWire root contention

FireWire root contention

FireWire analysis

- Probabilistic model checking
— model constructed and analysed using PRISM E

— timing delays taken from IEEE standard
— model includes:
. concurrency: messages between nodes and wires

. underspecification of delays (upper/lower bounds)
— max. model size: 170 million states

uuuuuu

p, x
uuuuu

- Analysis:

— verified that root contention always
resolved with probability 1

— investigated time taken for leader election
— and the effect of using biased coin
. based on a conjecture by Stoelinga

DP/Probabilistic Model Checking, Michaelmas 2011 26

FireWire: Analysis results

I_

a

]

e

(4]

08

(4]

[@)]

=

g 06

)

5 | [

204

=

]

0

e

ap2

g — short wire

g — |ong wire

IS . 2 4 & &
T (10° ns)

DP/Probabilistic Model Checking, Michaelmas 2011

10

“minimum probability
of electing leader
by time T”

27

FireWire: Analysis results

'—

> 14

308 “minimum probability
] .

0.6 of electing leader
= by time T’

T 0.4+

Yo

(©

-80.2 .

5 (short wire length)
£ O

£ 1

Using a biased coin

DP/Probabilistic Model Checking, Michaelmas 2011 28

FireWire: Analysis results

@ x 10

— 10}

5

()

kS

o 8 “« .

= maximum expected
(] .]
© time to elect a leader
S 6

£

g 4 .

3 (short wire length)
Q.

>

o 2

g Using a biased coin
% 0 l

£ 0.2 0.4 0.6 0.8

probability of choosing fast

DP/Probabilistic Model Checking, Michaelmas 2011 29

FireWire: Analysis results

n

£

9 3850

(4]

o

~ 3800

2 “maximum expected
© time to elect a leader”
2 3750}

£

3 3700|

D (short wire length)
<3650

E Using a biased coin
g 3600 e T . is beneficiall

£ 045 05 055 06 0.65 0.7

probability of choosing fast

DP/Probabilistic Model Checking, Michaelmas 2011 30

Probabilistic model checking

Probabilistic model

: —3p Result
System e.g. Markov chain /
0.5 +0.4 x
_} 0.1
—_— Quantitative
~ results
Probabilistic I |
model checker o AT
e.g. PRISM S
= B
00@ Py, [Ffail]| =—— Counter-
System_’ —) example
. Probabilistic temporal
remqeur:gg— logic specification ~o~o 30
e.g. PCTL, CSL, LTL

DP/Probabilistic Model Checking, Michaelmas 2011 31

Probabilistic model checking inputs

- Models: variants of Markov chains
— discrete-time Markov chains (DTMCs)
. discrete time, discrete probabilistic behaviours only
— continuous-time Markov chains (CTMCs)
. continuous time, continuous probabilistic behaviours
— Markov decision processes (MDPs)
. DTMC s, plus nondeterminism
- Specifications
— informally:
. “probability of delivery within time deadline is ...”

. “expected time until message delivery is ...”
. “expected power consumption is ...”

— formally:
. probabilistic temporal logics (PCTL, CSL, LTL, PCTL*, ...)
- e.9. P_gos [Ferr/total>0.1], P_, [F=t reply_count=k]

DP/Probabilistic Model Checking, Michaelmas 2011

32

Probabilistic model checking involves...

- Construction of models
— from a description in a high-level modelling language

- Probabilistic model checking algorithms
— graph-theoretical algorithms
. e.g. for reachability, identifying strongly connected components
— numerical computation
. linear equation systems, linear optimisation problems
. iterative methods, direct methods
. uniformisation, shortest path problems

— automata for regular languages

— also sampling-based (statistical) for approximate analysis
. e.g. hypothesis testing based on simulation runs

DP/Probabilistic Model Checking, Michaelmas 2011

33

Probabilistic model checking involves...

- Efficient implementation techniques
— essential for scalability to real-life systems
— symbolic data structures based on binary decision diagrams
— algorithms for bisimulation minimisation, symmetry reduction

- Tool support
— PRISM: free, open-source probabilistic model checker
— currently based at Oxford University
— supports all probabilistic models discussed here

DP/Probabilistic Model Checking, Michaelmas 2011 34

Course aims

Introduce main types of probabilistic models and
specification notations

— theory, syntax, semantics, examples
— probability, expectation, costs/rewards
Explain the working of probabilistic model checking
— algorithms & (symbolic) implementation
Introduce software tools
— probabilistic model checker PRISM
Examples from wide range of application domains

— communication & coordination protocols, performance &
reliability modelling, biological systems, ...

Mix of theory and practice

DP/Probabilistic Model Checking, Michaelmas 2011 35

Course outline

- Discrete-time Markov chains (DTMCs) and their properties
- Probabilistic temporal logics: PCTL, LTL, etc.

+ PCTL model checking for DTMCs

- The PRISM model checker

+ Costs & rewards

- Continuous-time Markov chains (CTMCs)

- Counterexamples & bisimulation

- Markov decision processes (MDPs)

- Probabilistic LTL model checking

- Implementation and data structures: symbolic techniques

DP/Probabilistic Model Checking, Michaelmas 2011

36

Course information

Prerequisites/background
— basic computer science/maths background
— no probability knowledge assumed

Lectures
— 20 lectures: Mon 2pm, Wed 3pm, Thur 12pm (wks 1-4)
- Classes/practicals (please sign up on-line)

— 4 problem sheets + 1 hr classes
(Tue 3pm, Wed 12pm, wks 3, 5, 7, 8)

— 4 practical exercises, based on PRISM,

4 scheduled 2 hr practical sessions (Tue 4pm, wks 3, 4, 6, 7),

+ work outside lab sessions
- Assessment
— take-home assignment

DP/Probabilistic Model Checking, Michaelmas 2011

37

Further information

- Course lecture notes are self-contained
— www.cs.ox.ac.uk/teaching/materials11-12/probabilistic/

- For further reading material...

— two online tutorial papers also cover a lot of the material

. Stochastic Model Checking
Marta Kwiatkowska, Gethin Norman and David Parker

. Automated Verification Techniques for Probabilistic Systems
Vojtéch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker

— DTMC/MDP material also based on Chapter 10 of:

]

Principles of Model Checking
: Christel Baier and Joost-Pieter Katoen
meei®s MIT Press

I

— PRISM web site: http://www.prismmodelchecker.org/

DP/Probabilistic Model Checking, Michaelmas 2011

38

Next lecture(s)

- Wed 3pm
- Thur 12pm

- Discrete-time Markov chains

DP/Probabilistic Model Checking, Michaelmas 2011

39

Acknowledgements

-+ Much of the material in the course is based on an existing
lecture course prepared by:

— Marta Kwiatkowska
— Gethin Norman
— Dave Parker

- Various material and examples also appear courtesy of:
— Christel Baier I

— Joost-Pieter Katoen [“F.'H\\‘]

Principles of Model Checking
Christel Baler and Joost-Pleter Katoen

DP/Probabilistic Model Checking, Michaelmas 2011

40

Probabilistic Model Checking Michaelmas Term 2011

Lecture 2
Discrete-time Markov Chains

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Probabilistic Model Checking

Formal verification and analysis of systems that exhibit
probabilistic behaviour

— e.g. randomised algorithms/protocols
— e.g. systems with failures/unreliability

Based on the construction and analysis of precise
mathematical models

- This lecture: discrete-time Markov chains

DP/Probabilistic Model Checking, Michaelmas 2011

Overview

- Probability basics

- Discrete-time Markov chains (DTMCs)
— definition, properties, examples

- Formalising path-based properties of DTMCs
— probability space over infinite paths

- Probabilistic reachability
— definition, computation

- Sources/further reading: Section 10.1 of [BK08]

DP/Probabilistic Model Checking, Michaelmas 2011

Probability basics

First, need an experiment
— The sample space Q is the set of possible outcomes
— An event is a subset of Q, can form events AN B, AUB,Q\ A

Examples:
— toss a coin: Q = {H,T}, events: “H”, “T”
— toss two coins: Q = {(H,H),(H,T),(T,H),(T, T},
event: “at least one H”
— toss a coin co-often: Q is set of infinite sequences of H/T
event: “H in the first 3 throws”
Probability is:

— Pr("H”) = Pr("T”) = 1/2, Pr(“at least one H”) = 3/4
— Pr(“H in the first 3 throws”) =1/2 +1/4+1/8=7/8

DP/Probabilistic Model Checking, Michaelmas 2011

Probability example

Modelling a 6-sided die using a fair coin
— algorithm due to Knuth/Yao:
— start at O, toss a coin
— upper branch when H
— lower branch when T
— repeat until value chosen

Is this algorithm correct?
— e.g. probability of obtaining a 4?
— Obtain as disjoint union of events
— THH, TTTHH, TTTTTHH, ...
— Pr(“eventually 47)
=(1/22+Q0Q/2°>+0/2) +...=1/6

DP/Probabilistic Model Checking, Michaelmas 2011 5

Example...

- Other properties?
— “what is the probability of termination?”
- e.g. efficiency?

— “what is the probability of needing
more than 4 coin tosses?”

— “on average, how many
coin tosses are needed?”’

- Probabilistic model checking provides a framework for
these kinds of properties...

— modelling languages
— property specification languages
— model checking algorithms, techniques and tools

DP/Probabilistic Model Checking, Michaelmas 2011 6

Discrete-time Markov chains

State-transition systems augmented with probabilities

States

— set of states representing possible configurations of the
system being modelled

- Transitions

— transitions between states model
evolution of system’s state;
occur in discrete time-steps

Probabilities

— probabilities of making transitions
between states are given by
discrete probability distributions

DP/Probabilistic Model Checking, Michaelmas 2011

Markov property

If the current state is known, then the future states of the
system are independent of its past states

i.e. the current state of the model contains all information
that can influence the future evolution of the system

also known as “memorylessness”

DP/Probabilistic Model Checking, Michaelmas 2011

Simple DTMC example

Modelling a very simple communication protocol
— after one step, process starts trying to send a message
— with probability 0.01, channel unready so wait a step
— with probability 0.98, send message successfully and stop
— with probability 0.01, message sending fails, restart

{succ}

DP/Probabilistic Model Checking, Michaelmas 2011

Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s
— Sis a set of states (“state space”)
— Siie € Sis the initial state
— P:S xS —[0,1]is the transition probability matrix

P,L) where:

inity

where 2., P(s,s’) = 1 foralls €S

— L:S — 2AP s function labelling states with atomic propositions
(taken from a set AP)

DP/Probabilistic Model Checking, Michaelmas 2011 10

Simple DTMC example

AP = {try, fail, succ}

D = (5,Sinit,P,L) L(sg)=9
L(S ={tr ’
S ={sq, S1, Sz, S3!} L(s;;=§faT|}},
Sinit = S0 L(s3)={succ}
0 1 0 0]
o 0 0.01 0.01 0.98
110 0 0
0 0 0 1

DP/Probabilistic Model Checking, Michaelmas 2011 11

Some more terminology

P is a stochastic matrix, meaning it satisifes:
— P(s,s’) € [0,1] forall s,s’ € Sand ... P(s,s’) =1 foralls € S

- A sub-stochastic matrix satisfies:
— P(s,s’) € [0,1] forall s,s’ € Sand ... P(s,s’) < 1 foralls €S

- An absorbing state is a state s for which:
— P(s,s) = 1 and P(s,s’) = O for all s#5s’
— the transition from s to itself is sometimes called a self-loop

Note: Since we assume P is stochastic...
— every state has at least one outgoing transition
— i.e. no deadlocks (in model checking terminology)

DP/Probabilistic Model Checking, Michaelmas 2011 12

DTMCs: An alternative definition

- Alternative definition... a DTMC is:

— a family of random variables { X(k) | k=0,1,2,... }
— where X(k) are observations at discrete time-steps
— i.e. X(k) is the state of the system at time-step k
— which satisfies...

- The Markov property (“memorylessness”)
— Pr(X(k)=s, | X(k-T)=s,_{, ... , X(0)=s,)
= Pr(X(k)=s, | X(k-1)=s,_;)
— for a given current state, future states are independent of past

- This allows us to adopt the “state-based” view presented so
far (which is better suited to this context)

DP/Probabilistic Model Checking, Michaelmas 2011 13

Other assumptions made here

- We consider time-homogenous DTMCs

— transition probabilities are independent of time
— P(s,_¢,5,) = Pr(X(k)=s, | X(k-T)=s,_;)

— otherwise: time-inhomogenous

- We will (mostly) assume that the state space S is finite
— in general, S can be any countable set

Initial state s,;, € S can be generalised...

— to an initial probability distribution s, : S — [0,1]

- Transition probabilities are reals: P(s,s’) € [0,1]
— but for algorithmic purposes, are assumed to be rationals

DP/Probabilistic Model Checking, Michaelmas 2011 14

DTMC example 2 - Coins and dice

- Recall Knuth/Yao’s die algorithm from earlier:

{done}
{done}

{done, four}

{done}

{done}

DP/Probabilistic Model Checking, Michaelmas 2011

{done} S=1{5sg Syy ..y Sgy 1, 2, ..

Sinit = S0
P(sg,57)=0.5
etc.

L(sy) = {init}
etc.

6}

15

DTMC example 3 - Zeroconf

Zeroconf = “Zero configuration networking”
— self-configuration for local, ad-hoc networks
— automatic configuration of unique IP for new devices
— simple; no DHCP, DNS, ...

Basic idea:
— 65,024 available IP addresses (IANA-specified range)
— new hode picks address U at random
— broadcasts “probe” messages: “Who is using U?’

— a node already using U replies to the probe
— in this case, protocol is restarted

— messages may not get sent (transmission fails, host busy, ...)
— s0: nodes send multiple (n) probes, waiting after each one

DP/Probabilistic Model Checking, Michaelmas 2011 16

DTMC for Zeroconf

— n=4 probes, m existing nodes in network

— probability of message loss: p
— probability that new address is in use: g = m/65024

DP/Probabilistic Model Checking, Michaelmas 2011

17

Properties of DTMCs

Path-based properties

— what is the probability of observing a particular behaviour (or
class of behaviours)?

— e.g. “what is the probability of throwing a 4?”

- Transient properties
— probability of being in state s after t steps?

- Steady-state
— long-run probability of being in each state

Expectations
— e.g. “what is the average number of coin tosses required?”

DP/Probabilistic Model Checking, Michaelmas 2011 18

DTMCs and paths

- A path in a DTMC represents an execution (i.e. one possible
behaviour) of the system being modelled

Formally:

— infinite sequence of states s,5;5,5;...
such that P(s;,s;,;) > 0 Vi=0

— infinite unfolding of DTMC
Examples:

— hever succeeds: (5,5;5,)"

— tries, waits, fails, retries, succeeds: $,5;5;5,505;(S3)®
Notation:

— Path(s) = set of all infinite paths starting in state s

— also sometimes use finite (length) paths

— Pathy, (s) = set of all finite paths starting in state s

DP/Probabilistic Model Checking, Michaelmas 2011 19

Paths and probabilities

- To reason (quantitatively) about this system
— need to define a probability space over paths

Intuitively: -
. . /\—}

— sample space: Path(s) = set of all __,__*
infinite paths from a state s (}E»:.'I.’I.'

— events: sets of infinite paths from s ST

— basic events: cylinder sets (or “cones”)

— cylinder set Cyl(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: Cyl(ss;s,)

DP/Probabilistic Model Checking, Michaelmas 2011 20

Probability spaces

Let Q be an arbitrary non-empty set

- A o-algebra (or o-field) on Q is a family 2 of subsets of Q
closed under complementation and countable union, i.e.:

— if A € %, the complement Q \ Aisin X
— if A, € £fori € N, the union U, A, is in X
— the empty set @ is in X

Elements of X are called measurable sets or events

- Theorem: For any family F of subsets of Q, there exists a
unique smallest o-algebra on Q containing F

DP/Probabilistic Model Checking, Michaelmas 2011 21

Probability spaces

Probability space (Q, Z, Pr)
— Q is the sample space

— > is the set of events: o-algebra on Q

— Pr: 2 - [0,1] is the probability measure:
Pr(QQ) = 1 and Pr(u, A)) = £, Pr(A) for countable disjoint A,

DP/Probabilistic Model Checking, Michaelmas 2011 22

Probability space - Simple example

- Sample space Q
- Q=1{1,2,3}

- Event set 2

— e.g. powerset of Q

-2 ={0, {1} {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }

— (closed under complement/countable union, contains &)

- Probability measure Pr

— e.g. Pr(1) = Pr(2) = Pr(3) = 1/3
— Pr1,2) =1/3+1/3 = 2/3, etc.

DP/Probabilistic Model Checking, Michaelmas 2011

23

Probability space - Simple example 2

- Sample space Q
- 0=N={0,1,2,3,4,... }

- Event set 2
—e.g.2={0, “odd”, “even”, N }

— (closed under complement/countable union, contains &)

- Probability measure Pr
— e.dg. Pr(fodd”) = 0.5, Pr(*even”) = 0.5

DP/Probabilistic Model Checking, Michaelmas 2011

24

Probability space over paths

- Sample space QO = Path(s)
set of infinite paths with initial state s
Event set 2, s
— the cylinder set Cyl(w) = { w’ € Path(s) | w is prefix of w’ }

— Zpathes) IS the least o-algebra on Path(s) containing Cyl(w) for
all finite paths w starting in s

Probability measure Pr,
— define probability P,(w) for finite path w = ss,...s, as:
- P,(w) = 1 if w has length one (i.e. w = s)
- P(w) = P(s,s;) - ... - P(s,_,5,) otherwise
. define Pr(Cyl(w)) = P,(w) for all finite paths w
— Pr, extends uniquely to a probability measure Prg:3,. 6 —[0,1]

- See [KSK76] for further details

DP/Probabilistic Model Checking, Michaelmas 2011 25

Paths and probabilities - Example

Paths where sending fails immediately
— W = 545;5;
— Cyl(w) = all paths starting s,s;s,...
— P.o(w) = P(sg,s;) - P(s;,S5)
=1 -0.01 =0.01T
— Pr,(Cyl(w)) = P,o(w) = 0.01

Paths which are eventually successful and with no failures
— Cyl(sgs;53) U Cyl(s45;5:53) U Cyl(syS;5,5:53) U ...
— Pro(Cyl(sgs;s3) U Cyl(s45:5:53) U Cyl(s¢S;5;5:S3) U ...)
= P.o(505153) + P.o(S0S15153) + P,o(S¢S:5151S3) + ...
=1-0.98 +1-:0.01-0.98 + 1-0.01-0.01-0.98 + ...
= 0.9898989898...
= 98/99

DP/Probabilistic Model Checking, Michaelmas 2011 26

Reachability

Key property: probabilistic reachability
— probability of a path reaching a state in some target set T < S
— e.g. “probability of the algorithm terminating successfully?”
— e.g. “probability that an error occurs during execution?”

Dual of reachability: invariance
— probability of remaining within some class of states
— Pr(“remain in set of states T") = 1 - Pr(“reach set S\T")
— e.g. “probability that an error never occurs”

- We will also consider other variants of reachability
— time-bounded, constrained (“until”), ...

DP/Probabilistic Model Checking, Michaelmas 2011 27

Reachability probabilities

Formally: ProbReach(s, T) = Pr,(Reach(s, T))
— where Reach(s, T) = { 5455, ... € Path(s) | s;in T for some i }

Is Reach(s, T) measurable forany T = S ? Yes...

— Reach(s, T) is the union of all basic cylinders
Cyl(sgs;-..S,) where s,s,...s, in Reachg, (s, T)

— Reachy, (s, T) contains all finite paths s;s,...s, such that:
So=S, Sgs--sSp-1 € 1, S, €T

— set of such finite paths s;s,...s,, is countable

Probability
— in fact, the above is a disjoint union
— so probability obtained by simply summing...

DP/Probabilistic Model Checking, Michaelmas 2011 28

Computing reachability probabilities

- Compute as (infinite) sum...

- Example:
— ProbReach(s,, {4})

DP/Probabilistic Model Checking, Michaelmas 2011 29

Computing reachability probabilities

- ProbReach(s,, {s¢}) : compute as infinite sum?
— doesn’t scale...

DP/Probabilistic Model Checking, Michaelmas 2011

Computing reachability probabilities

- Alternative: derive a linear equation system
— solve for all states simultaneously
— i.e. compute vector ProbReach(T)

- Let x, denote ProbReach(s, T)

- Solve: :

] ifseT

X, = - 0 if T is not reachable from s
EP(s,s') - X, Otherwise

s'eS

DP/Probabilistic Model Checking, Michaelmas 2011

31

Example

- Compute ProbReach(s,, {4})

DP/Probabilistic Model Checking, Michaelmas 2011

32

Unique solutions

- Why the need to identify states that cannot reach T?

- Consider this simple DTMC:
— compute probability of reaching {s,} from s,

Qg

1

— linear equation system: x,, = 1, X;, = X,

— multiple solutions: (x;,, X,,) = (1,p) for any p € [0,1]

sQ?

DP/Probabilistic Model Checking, Michaelmas 2011

33

Computing reachability probabilities

- Another alternative: least fixed point characterisation

. Consider functions of the form:

— F:[0,1]5 = [0,1]° T —
\ vectors of

. probabilities :
- And define: . for each state

ey iy <y foralls
- vis afixed pointof Fif Fly) =y

- A fixed point x of F is the least fixed point of F if x <y for
any other fixed pointy

DP/Probabilistic Model Checking, Michaelmas 2011

34

Least fixed point

ProbReach(T) is the least fixed point of the function F:

1 ifseT
EP(S’S')' Y(') otherwise.

s'eS

F(y)(s) =

- This yields a simple iterative algorithm to approximate
ProbReach(T):

— x® =0 (i.e. x©O(s) = 0 for all s) in practice, terminate
when for example:
— x(+1) = F(xM)

max, | X(+1(s) - x(s)) | < €
— x0 < x(M < x@ < xB® < .

_ ProbReach(T) = lim.__ x®™ for some user-defined
n—oo ==
tolerance value ¢

DP/Probabilistic Model Checking, Michaelmas 2011 35

Least fixed point

- Expressing ProbReach as a least fixed point...

— corresponds to solving the linear equation system
using the power method

. other iterative methods exist (see later)
. power method is guaranteed to converge

— generalises non-probabilistic reachability

— can be generalised to:
. constrained reachability (see PCTL “until”)
. reachability for Markov decision processes

— also yields bounded reachability probabilities...

DP/Probabilistic Model Checking, Michaelmas 2011

36

Bounded reachability probabilities

- Probability of reaching T from s within k steps

- Formally: ProbReach=K(s, T) = Pr,(Reach=k(s, T)) where:
— Reach=K(s, T) = { s45;S, ... € Path(s) | s;in T for some i<k }

- ProbReach=K(T) = x&+1 from the previous fixed point
— which gives us...

] ifseT
ProbReach¥(s, T) = 0 ifk=0&s¢&T
EP(s,s')- ProbReach™'(s', T) ifk>0&s¢&T
[S'ES

DP/Probabilistic Model Checking, Michaelmas 2011 37

(Bounded) reachability

- ProbReach(s,, {1,2,3,4,5,6}) =1

- ProbReach=k (s,, {1,2,3,4,5,6}) = ...

o0 *—@ *—0

Probability
o
(9]
o

0.00 ' }—=

DP/Probabilistic Model Checking, Michaelmas 2011

38

Summing up...

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

Formalising path-based properties of DTMCs
— probability space over infinite paths

Probabilistic reachability
— infinite sum
— linear equation system
— least fixed point characterisation
— bounded reachability

DP/Probabilistic Model Checking, Michaelmas 2011

39

Next lecture

- Thur 12pm

- Discrete-time Markov chains...
— transient

— steady-state
— long-run behaviour

DP/Probabilistic Model Checking, Michaelmas 2011

40

Probabilistic Model Checking Michaelmas Term 2011

Lecture 3
Discrete-time Markov Chains...

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Next few lectures...

- Today:
— Discrete-time Markov chains (continued)

- Mon 2pm:
— Probabilistic temporal logics

- Wed 3pm:
— PCTL model checking for DTMCs

- Thur 12pm:
— PRISM

DP/Probabilistic Model Checking, Michaelmas 2011

Overview

- Transient state probabilities

Long-run / steady-state probabilities

Qualitative properties
— repeated reachability
— persistence

DP/Probabilistic Model Checking, Michaelmas 2011

Transient state probabilities

- What is the probability, having started in state s, of being in
state s’ at time k?

— i.e. after exactly k steps/transitions have occurred
— this is the transient state probability: T, (s’)

- Transient state distribution: T,
— vector 1, i.e. T, (s’) for all states s’

Note: this is a discrete probability distribution
— sowe have g, : S — [0,1]
— rather than e.g. Prg: 3,1 — [0,1] where X, S 2PathG)

DP/Probabilistic Model Checking, Michaelmas 2011 4

Transient distributions

DP/Probabilistic Model Checking, Michaelmas 2011

Computing transient probabilities

- Transient state probabilities:
= T (87) = Zgneg P(s7,87) + 1T, (™)
— (i.e. look at incoming transitions)

Computation of transient state distribution:
— T, is the initial probability distribution
— e.g. inour case T o(s’) = 1 if s’=s and 11, ,(s’) = O otherwise
— Ty = Mg P

i.e. successive vector-matrix multiplications

DP/Probabilistic Model Checking, Michaelmas 2011

Computing transient probabilities

@oﬁ 025 LN TeeT

O Tz -

DP/Probabilistic Model Checking, Michaelmas 2011

0 05 0 05 0 O]
05 0 025 0 0.25 0 T3 =
O 0 0 0 1 0
O 0 0 1 0 0
0O 0 0 0 1 0
O 0 1 0 0 0

:1,0,0,0,0,0]

Computing transient probabilities

* Mg = Mg P = T o - Pk
kth matrix power: Pk
— P gives one-step transition probabilities
— Pk gives probabilities of k-step transition probabilities
— i.e. PX(s,s’) = 114, (s”)

- A possible optimisation: iterative squaring

— e.g. P8 = ((P?)?)?

— only requires log k multiplications

— but potentially inefficient, e.q. if P is large and sparse

— in practice, successive vector-matrix multiplications preferred

DP/Probabilistic Model Checking, Michaelmas 2011

Notion of time in DTMCs

- Two possible views on the timing aspects of a system
modelled as a DTMC:

Discrete time-steps model time accurately
— e.g. clock ticks in a model of an embedded device
— or like dice example: interested in number of steps (tosses)

- Time-abstract

— no information assumed about the time transitions take
— e.g. simple Zeroconf model

In the latter case, transient probabilities are not very useful
In both cases, often beneficial to study long-run behaviour

DP/Probabilistic Model Checking, Michaelmas 2011

Long-run behaviour

- Consider the limit: g = lim, 11,

— where 11, | is the transient state distribution at time k
having starting in state s

— this limit, where it exists, is called the limiting distribution

- Intuitive idea
— the percentage of time, in the long run, spent in each state

— e.g. reliability: “in the long-run, what percentage of time is the
system in an operational state”

DP/Probabilistic Model Checking, Michaelmas 2011 10

Limiting distribution

- Example:

DP/Probabilistic Model Checking, Michaelmas 2011

Ms00 =

Meo0,1 =

M2 =

M3 =

:1,0,0,0,0,0]

Long-run behaviour

- Questions:
— when does this limit exist?
— does it depend on the initial state/distribution?

CWBC o)

1
G0,

Need to consider underlying graph
— (V,E) where V are vertices and E < VxV are edges
—V=SandE ={(s,s’) s.t. P(s,s’) > 0}

DP/Probabilistic Model Checking, Michaelmas 2011

Graph terminology

- A state s’ is reachable from s if there is a finite path
starting in s and ending in s’

- A subset T of S is strongly connected if, for each pair of
states s and s’ in T, s’ is reachable from s passing only
through states in T

- A strongly connected component (SCC) is a maximally
strongly connected set of states (i.e. no superset of it is
also strongly connected)

- A bottom strongly connected component (BSCC) is an SCC
T from which no state outside T is reachable from T

- Alternative terminology: “s communicates with s’”,

“‘communicating class”, “closed communicating class”

DP/Probabilistic Model Checking, Michaelmas 2011 13

Example - (B)SCCs

..

DP/Probabilistic Model Checking, Michaelmas 2011

14

Graph terminology

Markov chain is irreducible if all its states belong to a
single BSCC; otherwise reducible

1

- A state s is periodic, with period d, if
— the greatest common divisor of the set{ n | f,W>0} equals d

— where f,™ is the probability of, when starting in state s,
returning to state s in exactly n steps

- A Markov chain is aperiodic if its period is 1

DP/Probabilistic Model Checking, Michaelmas 2011

Steady-state probabilities

For a finite, irreducible, aperiodic DTMC...
— limiting distribution always exists
— and is independent of initial state/distribution

- These are known as steady-state probabilities

— (or equilibrium probabilities)
— effect of initial distribution has disappeared, denoted 1t

- These probabilities can be computed as the unique solution
of the linear equation system:

T-P =11 and Esesﬂ(s)ﬂ

DP/Probabilistic Model Checking, Michaelmas 2011 16

Steady-state — Balance equations

- Known as balance equations

m-P =1 and ESESE(S)=1

..

- That is: . balance the
. probability of

«— leaving and

_entering a state s’

— T1(S") = Z,c5 T1(S) - P(s,S’)

DP/Probabilistic Model Checking, Michaelmas 2011 17

Steady-state — Example

0

9

0 x ~[0.332215, 0.335570,

0 0.003356, 0.328859]

DP/Probabilistic Model Checking, Michaelmas 2011

Steady-state - Example

= x ~[0.332215, 0.335570,
P X(s) =1 0.003356, 0.328859]

w Long-run percentage of time
Sy

spent in the state “try”

) © ~ 33.6%

{succ}
1

' Long-run percentage of time
O] O O = 1] L B2 b} 7

spent in “fail”/”succ

p_|0 0.01 0.01 0.98 ~ 0.003356 + 0.328859

1 O 0 0 ~ 33.2%
L 0 0

DP/Probabilistic Model Checking, Michaelmas 2011

19

Periodic DTMCs

For (finite, irreducible) periodic DTMCs, this limit:

() = T) oo

1
does not exist, but this limit does:

(and where both limits exist,

lim 1 (s") e.g. for aperiodic DTMCs,
n— o pn Zﬂsk these 2 limits coincide)

Steady-state probabilities for these DTMCs can be
computed by solving the same set of linear equations:

m-P =1 and ESESE(S)=1

DP/Probabilistic Model Checking, Michaelmas 2011 20

Steady-state — General case

- General case: reducible DTMC

— compute vector 1T,

— (note: distribution depends on initial state s)

- Compute BSCCs for DTMC; then two cases to consider:
- (I)sisinaBSCCT

— compute steady-state probabilities x in sub-DTMC for T
— 1 (s)) = x(s’) ifs’inT

—m(s)=0 ifs’notinT

« (2) sis not in any BSCC

— compute steady-state probabilities x; for sub-DTMC of each
BSCC T and combine with reachability probabilities to BSCCs

— 11(s’) = ProbReach(s, T) - x4(s’) if s’ isin BSCCT
— 1(s’) = 0 if s’ is not in a BSCC

DP/Probabilistic Model Checking, Michaelmas 2011 21

Steady-state - Example 2

- 1, depends on initial state s

0s T=[000100]

/\ e s : ES4=[OOOO]O]
0.25 :
> 0.5 y nsZ_HSSZ[OOlOO]]

0.25
0-5 1 1
: : : Ty = Ty oy oy~
@] 'I —s0 [0,0’12’3’6’]2]
T, =

DP/Probabilistic Model Checking, Michaelmas 2011 22

Qualitative properties

Quantitative properties:
— “what is the probability of event A?”

Qualititative properties:
— “the probability of event Ais 17 (“almost surely A”)
— or: “the probability of event Ais > 0" (“possibly A”)

For finite DTMCs, qualititative properties do not depend on
the transition probabilities - only need underlying graph

— e.g. to determine “is target set T reached with probability 1?”
(see DTMC model checking lecture)

— computing BSCCs of a DTMCs yields information about
long-run qualitative properties...

DP/Probabilistic Model Checking, Michaelmas 2011 23

Fundamental property

- Fundamental property of (finite) DTMCs...

- With probability 1,
a BSCC will be reached
and all of its states
visited infinitely often

- Formally:

— Prg(505:S5-.. | 3i1=0, 3 BSCC T such that
Vjzis; €Tand
V seT s, = s for infinitely many k) = 1

DP/Probabilistic Model Checking, Michaelmas 2011

24

Zeroconf example

- 2 BSCCs: {sg}, {sg}

- Probability of trying to acquire a new address infinitely
often is O

DP/Probabilistic Model Checking, Michaelmas 2011

Aside: Infinite Markov chains

. Infinite-state random walk
p p p N

"

Neoc@oGcG oty

1-p 1-p 1-p

- Value of probability p does affect qualitative properties

— ProbReach(s, {sg}) = 1 if p < 0.5

— ProbReach(s, {so}) < 1 if p > 0.5

DP/Probabilistic Model Checking, Michaelmas 2011

26

Repeated reachability

Repeated reachability:

— “always eventually...”, “infinitely often...”
Prio(5¢51S5... | Vi=0 3 j=is; € B)

— where B < S is a set of states

e.g. “what is the probability that the protocol successfully
sends a message infinitely often?”

Is this measurable? Yes...
— set of satisfying paths is: ﬂ UCm

n=0 m=n

— where C_, is the union of all cylinder sets Cyl(s,s;...s,,) for
finite paths sys,...s,, such that s, € B

DP/Probabilistic Model Checking, Michaelmas 2011

27

Qualitative repeated reachability

Pr., (“always eventually B") = 1

if and only if

- Tn B = @ for each BSCC T that is reachable from s,

Example:

B:{53,54,55}

DP/Probabilistic Model Checking, Michaelmas 2011

28

Persistence

Persistence properties:
— “eventually forever...”
Prio(5¢8:S,... | 3i=0 V j=is; € B)
— where B € S is a set of states

e.g. “what is the probability of the leader election algorithm
reaching, and staying in, a stable state?”

e.g. “what is the probability that an irrecoverable error
occurs?”

Is this measurable? Yes...

DP/Probabilistic Model Checking, Michaelmas 2011 29

Qualitative persistence

Pr., (“eventually forever B”) = 1

if and only if

- T < B for each BSCC T that is reachable from s,

Example:

B :{st S35 Sy 55}

DP/Probabilistic Model Checking, Michaelmas 2011

30

Summing up...

- Transient state probabilities
— successive vector-matrix multiplications

- Long-run/steady-state probabilities
— requires graph analysis
— irreducible case: solve linear equation system
— reducible case: steady-state for sub-DTMCs + reachability

- Qualitative properties
— repeated reachability
— persistence

DP/Probabilistic Model Checking, Michaelmas 2011

31

Probabilistic Model Checking Michaelmas Term 2011

Lecture 4
Probabilistic temporal logics

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Overview

- Temporal logic

Non-probabilistic temporal logic
— CTL

Probabilistic temporal logic
— PCTL = CTL + probabilities

Qualitative vs. quantitative

Linear-time properties
— LTL, PCTL*

DP/Probabilistic Model Checking, Michaelmas 2011

Temporal logic

- Temporal logic

— formal language for specifying and reasoning about how the
behaviour of a system changes over time

— extends propositional logic with modal/temporal operators

— one important use: representation of system properties to be
checked by a model checker

- Logics used in this course are probabilistic extensions of
temporal logics devised for non-probabilistic systems

— So we revert briefly to (labelled) state-transition diagrams

{fail}

{succ}

DP/Probabilistic Model Checking, Michaelmas 2011

State-transition systems

Labelled state-transition system (LTS) (or Kripke structure)
— is a tuple (S,s,;,,—,L) where:

— S is a set of states (“state space”) Q
— Sinit € Sis the initial state

) ° | OO0 1
— — = S x Sis the transition relation . @’

— L:S — 2AP s function labelling {succ}
states with atomic propositions
(taken from a set AP)

DTMC (S,s;,i;,P,L) has underlying LTS (S,s;,;;,—,L)
— where — ={(s,s’) s.t. P(s,s’) > 0}

DP/Probabilistic Model Checking, Michaelmas 2011

Paths - some notation

- Path w = s45;5,... such that (s;,s;,;) € = fori >0
— we write s, — s, as shorthand for (s;,s,,;) € —

- w(i) is the (i+1)th state of w, i.e. s,

+ wl[...i] denotes the (finite) prefix ending in the (i+1)th state
— i.e. W[...i] = 545, S,

- wli...] denotes the suffix starting from the (i+1)th state
— i.e. wfi...] =5;5;,1Si.2---

+ As for DTMCs, Path(s) = set of all infinite paths from s

DP/Probabilistic Model Checking, Michaelmas 2011

CTL

CTL - Computation Tree Logic

Syntax split into state and path formulae

— specify properties of states/paths, respectively
— a CTL formula is a state formula

: Some of these

operators (e.q.
. State formulae: . op (e.g

A, F, G) are
~¢ o=true|aldnd|-d|Ap|EY | derivable...
— where a € AP and is a path formula

Path formulae X = "next’ '
. F = “future”
-~y =Xo|Fod[Chd[dUD G = “globally”
— where ¢ is a state formula U = “until”

DP/Probabilistic Model Checking, Michaelmas 2011 6

CTL semantics

- Intuitive semantics:

— of quantifiers (A/E) and temporal operators (F/G/U)

fﬁﬂz

60) ee o 0
AF red AG red
DP/Probabilistic Model Checking, Michaelmas 2011

._ :._'l; .

".l‘, .’ V‘ i‘ .: \T

E [yellow U red]

1 ':; ';::l‘ T

¢o ¢ o

A [yellow U red]

CTL semantics

Semantics of state formulae:
— s = ¢ denotes “s satisfies ¢” or “P is true in s’

For a state s of an LTS (5,s,,ir,—,L):

— S E true always

— SEa < a e L(s)

— SE ¢, A P, < sEJ, and s E ¢,

— s kE —¢ < sE

—SEAVY < w E= Y forall w € Path(s)
—SEEY < w E P for some w € Path(s)

DP/Probabilistic Model Checking, Michaelmas 2011

CTL semantics

- Semantics of path formulae:
— w = P denotes “w satisfies P” or “P is true along w’

- For a path w of an LTS (S,s;,;,—,L):

~wEX$ = wl)EeEdéd

-~ wEF® < Jk=0 s.t. wk) = ¢

—wEGP < Viz0 w(i) Ed

- wE ¢, Ud, < Jk=0 s.t. w(k) = d, and Vi<k w(i) = ¢,

DP/Probabilistic Model Checking, Michaelmas 2011

CTL examples

- Some examples of satisfying paths:

— Wy E X succ {try} {succ} {succ} {succ}

— w, E —fail U succ

{try} {try} {succ} {succ}

Heoreoroloos -

e
Example CTL formulas: @ G

— s; E try A —fail ' @’

—s;=EE[Xsucc]ands,,s; A[X succ] {succ}
— so = E [—fail U succ] but s, # A [—fail U succ]

DP/Probabilistic Model Checking, Michaelmas 2011 10

CTL examples

AG (—(crit; Acrit,))
— mutual exclusion

AG EF initial

— for every computation, it is always possible to return to the
initial state

AG (request — AF response)
— every request will eventually be granted

AG AF crit; A AG AF crit,
— each process has access to the critical section infinitely often

DP/Probabilistic Model Checking, Michaelmas 2011

11

CTL equivalences

- Basic logical equivalences:

— false = —true (false)
— & Vb, = (=P A =) (disjunction)
— ¢ > =P, vV P, (implication)

- Path quantifiers:
— AyY = —E(—y)

- EY = -A(=Y)
For example:

. Temporal operators: AG ¢ = ~EF(=)

— Fd=trueU ¢
- G = ~F(-¢)

DP/Probabilistic Model Checking, Michaelmas 2011

12

CTL - Alternative notation

- Some commonly used notation...

- Temporal operators:
—Fd = 0P (“diamond”’)
- God = 0o (“box”)

- Xd = 0d
- Path quantifiers:
— Ay =V Y
—EY =4y
- Brackets: none/round/square
— AFy
- A(p, Uy,)
— Ay, Uy,]

DP/Probabilistic Model Checking, Michaelmas 2011

13

PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H)94]
— essentially the same as the logic pCTL of [ASB+95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — P45 [F<'0 deliver]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

DP/Probabilistic Model Checking, Michaelmas 2011 14

PCTL syntax

..

PCTL syntax: - Wis true with |
" _probability ~p _
— ¢ ::= true | a | b AP | - | PolWw] (state formulae)
—yp =X | Uk | dUGP (path formulae)
T A
next” i 1w i until
............................ until

— where a is an atomic proposition, p € [0,1] is a probability
bound, ~ € {<,>,<,>}, k e N

- A PCTL formula is always a state formula
— path formulae only occur inside the P operator

DP/Probabilistic Model Checking, Michaelmas 2011 15

PCTL semantics for DTMCs

- Semantics for non-probabilistic operators same as for CTL:
— s = ¢ denotes “s satisfies ¢” or “P is true in s’
— w E P denotes “w satisfies Y” or “Y is true along w”

- For a state s of a DTMC (S,s,,;;,P,L):

..

— S E true always - U=k not in CTL
—SkFa < a€l(s) (but could easily
~sE b, A b, < skE¢, and s &= ¢, . be added)

—sE ¢ S sk
- For a path w of a DTMC (S,s,,;;,P,L):
- wEX$ s wl)Eoe

- wE ¢, Uskdp, <« 3Fi<k such that w(i) = $,
and Vj<i, w(j) = ¢,

- wkE ¢, Udd, < dk=0 s.t. w(k) = §, and Vi<k w(i) = ¢,
DP/Probabilistic Model Checking, Michaelmas 2011 16

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s & P., [@] means that “the probability,
from state s, that P is true for an outgoing path satisfies ~p”

— example: s = P_y,: [X fail] & “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

— formally: s = P_, [y] < Prob(s,) ~p
— where: Prob(s, @) = Pr, { w € Path(s) | w = @ }

DP/Probabilistic Model Checking, Michaelmas 2011 17

PCTL equivalences for DTMCs

- Basic logical equivalences:

— false = —true (false)
— & Vb, = (=P A =) (disjunction)
— ¢ > =P, vV P, (implication)

- Negation and probabilities
— €e.q. _'P>p[¢] UCI)Z]Eng[CI)] UCI)Z]

DP/Probabilistic Model Checking, Michaelmas 2011

18

Reachability and invariance

Derived temporal operators, like CTL...

Probabilistic reachability: P_, [F ¢]
— the probability of reaching a state satisfying ¢
—Fd=trueU o
— “¢ is eventually true”
— bounded version: F=k ¢ = true Usk ¢

. strictly speaking,
: G d¢ cannot be

Probabilistic invariance: P., [G] derived from the
— the probability of ¢ always remaining true | PCTLsyntaxin
/ this way since
-~ Gd =—~(F~Pp) = —~(trueU ~p) there is no
_ “CI) is always true" negation Of path
formulae

— bounded version: G=k ¢ = =(F=k =)

DP/Probabilistic Model Checking, Michaelmas 2011 19

Derivation of P_, [G ¢]

- In fact, we can derive P_; [G ¢] directly in PCTL...

DP/Probabilistic Model Checking, Michaelmas 2011

20

PCTL examples

P_oos [Ferr/total>0.1]

— “with probability at most 0.05, more than 10% of the NAND
gate outputs are erroneous?”

P.og [F<Xreply_count=n]

— “the probability that the sender has received n
acknowledgements within k clock-ticks is at least 0.8”

— “the probability that component B fails before component A is
less than 0.4”

—oper — P_; [F (P.gg9 [G=190 0per])]

— “if the system is not operational, it almost surely reaches a
state from which it has a greater than 0.99 chance of staying
operational for 100 time units”

DP/Probabilistic Model Checking, Michaelmas 2011 21

PCTL and measurability

. All the sets of paths expressed by PCTL are measurable
— i.e. are elements of the o-algebra >,
— see for example [Var85] (for a stronger result in fact)

Recall: probability space (Path(s), 25, Prs)

— Zpathis) CONtains cylinder sets C(w) for all finite paths w starting
in s and is closed under complementation, countable union

Next (X ¢)
— cylinder sets constructed from paths of length one
Bounded until (¢, U=k ¢,)
— (finite number of) cylinder sets from paths of length at most k

Until (¢, U &)

— countable union of paths satisfying ¢, U=k ¢, for all k=0

DP/Probabilistic Model Checking, Michaelmas 2011 22

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

+ Qualitative PCTL properties
— P, [W] where pis either 0 or 1
- Quantitative PCTL properties
— P_, [W] where p is in the range (0,1)

- P.o[F o]isidentical to EF ¢
— there exists a finite path to a ¢-state

. P_, [F & 1is (similar to but) weaker than AF ¢
— a ¢-state is reached “almost surely”
— see next slide...

DP/Probabilistic Model Checking, Michaelmas 2011 23

Example: Qualitative/quantitative

- Toss a coin repeatedly until “tails” is thrown

Is “tails” always eventually thrown? 1 {heads}
— CTL: AF “tails”
— Result: false
— Counterexample: s45,5¢51505---

Does the probability of eventually
throwing “tails” equal one?

— PCTL: P., [F “tails”] {tails}
— Result: true
— Infinite path s,5,5,5,50,S;-.- has zero probability

DP/Probabilistic Model Checking, Michaelmas 2011 24

Quantitative properties

Consider a PCTL formula P_, []

— if the probability is unknown, how to choose the bound p?

- When the outermost operator of a PTCL formula is P

— PRISM allows formulae of the form P_, [W]

— “what is the probability that path formula p is true?”
Model checking is no harder: compute the values anyway
Useful to spot patterns, trends
Example

— P_, [F err/total>0.1]

— “what is the probability
that 10% of the NAND
gate outputs are erroneous?”

PRISM [21]

—o— A =0.01
—a— A =0.02
—&—) =0.03
—— L =0.04
Analytical [7]
-&-e-)1 =0.01
-a- A =0.02
-&- A =0.03
-9~ A=0.04

Probability

1 2 3 4 5 6 7
Number of restorative stages

DP/Probabilistic Model Checking, Michaelmas 2011 25

Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

More expressive logics can be used, for example:

— LTL [Pnu77], the non-probabilistic linear-time temporal logic
— PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL

- To introduce these logics, we return briefly again to
non-probabilistic logics and models...

DP/Probabilistic Model Checking, Michaelmas 2011 26

Branching vs. Linear time

In CTL, temporal operators always appear inside A or E
— in LTL, temporal operators can be combined

LTL but not CTL:
— F[req A X ack]

— “eventually a request occurs, followed immediately by an
acknowledgement”

- CTL but not LTL;:
— AG EF initial

— “for every computation, it is always possible to return to the
initial state”

DP/Probabilistic Model Checking, Michaelmas 2011 27

LTL

LTL syntax
— path formulae only

o= truelalpAaw|-p[Xp|lwuy
— where a € AP is an atomic proposition

LTL semantics (for a path w)

w = true
W Ea
wE P AW,
wE Y
wEXY

w =Y, Uy,

g 20010

always

a € L(w(0))

wE Y, and w = Y,
w E P

wll...]EYp

Jk>0 s.t. w[k...] = Y, and
Vi<k wli...] =y,

DP/Probabilistic Model Checking, Michaelmas 2011

28

LTL

LTL semantics
— implicit universal quantification over paths
— i.e. foran LTS M = (§,s;,;,—,L) and LTL formula g
— s = Y iff w = P for all paths w € Path(s)
- MEeyiffs,F W
e.g:.
— AF[reg A X ack]

— “it is always the case that, eventually, a request occurs,
followed immediately by an acknowledgement”

Derived operators like CTL, for example:
— FY =truelU Y
- Gy = —F(-y)

DP/Probabilistic Model Checking, Michaelmas 2011

29

LTL + probabilities

- Same idea as PCTL: probabilities of sets of path formulae
— for a state s of a DTMC and an LTL formula y:
— Prob(s, W) = Pr,{ w € Path(s) | w = @ }
— all such path sets are measurable (see later)
Examples (from DTMC lectures)...
Repeated reachability: “always eventually...”
— Prob(s, GF send)

— e.g. “what is the probability that the protocol successfully
sends a message infinitely often?”

Persistence properties: “eventually forever...”
— Prob(s, FG stable)

— e.g. “what is the probability of the leader election algorithm
reaching, and staying in, a stable state?”

DP/Probabilistic Model Checking, Michaelmas 2011 30

PCTL*

- PCTL* subsumes both (probabilistic) LTL and PCTL

. State formulae:
—¢d u=true|aldAd| - |P W]

— where a € AP and is a path formula

- Path formulae:

—pi=d|lwap|-w[Xplwuy
— where ¢ is a state formula

- A PCTL* formula is a state formula ¢
—e.g. Py, [GF crit;] A P_y, [GF crit,]

DP/Probabilistic Model Checking, Michaelmas 2011

31

Summing up...

- Temporal logic:

— formal language for specifying and reasoning about how the
behaviour of a system changes over time

CTL ¢
non-probabilistic
TL " (e.g. LTSs)
PCTL ¢
probabilistic
LTL + prob. | Prob(s,) (e.g. DTMCs)
PCTL* ¢

DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic Model Checking Michaelmas Term 2011

Lecture 5
PCTL Model Checking for DTMCs

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Probabilistic model checking

Probabilistic model

System e.g. Markov chain

0.5 +0.4

_} 0.1

®}

. —

rSeysl’j(iarrg_ Probabilistic temporal

mqents logic specification
e.g. PCTL, CSL, LTL

Probabilistic

model checker

e.g. PRISM

/

Q P.oq [Ffail]| =

DP/Probabilistic Model Checking, Michaelmas 2011

1
j 08| s PRISM [21]
g RS % =0.02
26 a A=0.03
5 U F ~ 1= 0.04
3 (Analytical
a 04 ®- L =0.01
e - 1=0.02
4- % =0.03

— Result

v X

Quantitative

Counter-

—) example

~o~o(30

Overview

PCTL model checking for DTMCs

- Computation of probabilities for PCTL formulae
— next

— bounded until

— (unbounded) until

- Solving large linear equation systems
— direct vs. iterative methods
— iterative solution methods

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL

..

PCTL syntax: - Wis true with |
" _probability ~p _
— ¢ ::= true | a | b AP | - | PolWw] (state formulae)
—yp =X | Uk | dUGP (path formulae)
T A
next” i 1w i until
............................ until

— where a is an atomic proposition, p € [0,1] is a probability
bound, ~ € {<,>,<,>}, k e N

Remaining operators can be derived (false, v, —, F, G, ...)
— hence will not be discussed here

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,H)94,CY95]
— inputs: DTMC D=(5,s;,,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s E d}=setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— often, just want to know if s, . = &, i.e. if 5, .. € Sat(})
— sometimes, want to check thats E ¢ V s € S, i.e. Sat(p) = S

- Sometimes, focus on quantitative results
— e.g. compute result of P_, [F error]
— e.g. compute result of P_, [F=k error] for 0<k<100

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL model checking for DTMCs

.+ Basic algorithm proceeds by induction on parse tree of ¢
— example: ¢ = (—fail A try) — P_j 45 [—fail U succ]

- For the non-probabilistic operators:
— Sat(true) = S —

— Sat(a) ={seS|aeclL(s)} ‘\

— Sat(—¢) = S \ Sat(d) Pooos[-U -]

/
A
— Sat(d, A §,) = Sat(d,) N Sat(Pp,) / ; / ?

- For the P_, [@] operator:
— need to compute the © ©
probabilities Prob(s, V) fail fail

for all states s € S

— Sat(P.,[w]) ={s €S| Prob(s,p) ~p}
DP/Probabilistic Model Checking, Michaelmas 2011 6

Probability computation

- Three temporal operators to consider:
Next: PNp[X o]

Bounded until: P_ [¢; U=k ¢,]
— adaptation of bounded reachability for DTMCs

Until: P_[&, U &, |
— adaptation of reachability for DTMCs
— graph-based “precomputation” algorithms
— techniques for solving large linear equation systems

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL next for DTMCs

- Computation of probabilities for PCTL next operator
— Sat(P_,[Xd]) ={s €S| Prob(s,X) ~p}
— need to compute Prob(s, X ¢) forall s € S

- Sum outgoing probabilities for
transitions to ¢-states

— Prob(s, X ¢) = Zy sy P(S,S") O

. Compute vector Prob(X ¢) of w9
probabilities for all states s

— ProbX ¢) =P - ¢
— where ¢ is a 0-1 vector over S with ¢(s) = 1 iff s E ¢
— computation requires a single matrix-vector multiplication

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL next - Example

- Model check: P_y 4 [X (=try V succ)]

— Sat (—try Vv succ) = (S \ Sat(try)) U Sat(succ)
= ({50,51,52,53} \ {51} U {s3} = {s¢,5,,53}

— Prob(X (—try Vv succ)) = P - (=try V succ) = ...

0 1 0 0 71[11 [0]
0 0.01 0.01 0.98| |0| [0.99

1t o o o ||1] | 1
o o o 1 |[1] |1

- Results:
— Prob(X (—try v succ)) = [0, 0.99, 1, 1]
— Sat(P.y 4 [X (—=try Vv succ)]) = {s;, S5, S3}

DP/Probabilistic Model Checking, Michaelmas 2011 9

PCTL bounded until for DTMCs

- Computation of probabilities for PCTL U=k operator

— Sat(P_ [¢, Uskd, 1) ={s €S| Prob(s, ¢; Usk ;) ~p}
— need to compute Prob(s, ¢, U=k ¢,) forall s € S

- First identify (some) states where probability is trivially 1/0

— Sves = Sat(dp,)
VRN

— Sno = S\ (Sat(,) U Sat(d,))

DP/Probabilistic Model Checking, Michaelmas 2011 10

PCTL bounded until for DTMCs

- Let:

— Syes — Sat(d)z) %
— Sno = S\ (Sat(d,) U Sat(d,)) - \
- And let: %

~ S =5\ (S¥es U S™)

- Compute solution of recursive equations:

if s&SY*®
if s&S™
ifseS’and k=0

]

<k O

Prob(s, ¢, U™ ¢,) = | 0 N
b(s’, &, U™ &) ifseS’and k>0

;P()-Pro

DP/Probabilistic Model Checking, Michaelmas 2011 11

PCTL bounded until for DTMCs

- Simultaneous computation of vector Prob(¢d, U=k ¢,)
— i.e. probabilities Prob(s, ¢, Usk ¢,) foralls € S

Iteratively define in terms of matrices and vectors

— define matrix P’ as follows: P’(s,s’) = P(s,s’) if s € S?,
P'(s,s’) =1 if s € S¥s and s=s’, P’(s,s’) = 0 otherwise

— Prob(¢, U=0 ¢,) = ¢,
— Prob(¢, U=k ¢,) = P’ - Prob(¢; U=k ¢,)
— requires k matrix-vector multiplications

Note that we could express this in terms of matrix powers
— Prob(d, U=k $,) = (P’)k - &b, and compute (P’)% in log,k steps
— but this is actually inefficient: (P’)* is much less sparse than P’

DP/Probabilistic Model Checking, Michaelmas 2011 12

PCTL bounded until - Example

- Model check: P g5 [F<2 succ] = P, 45 [true U=? succ]
— Sat (true) = S = {s(,5,5,,53}, Sat(succ) = {s;}
— Sves = {s;}, Sro=J, §'={sy,s;,5,}, PP =P

— Prob(true U=% succ) = succ = [0, O, O, 1]
0 1 0 0 1 (0]

0
0 0.01 0.01 0.98| [0] |0.98
1 0 0 0 0

Prob(true U'succ) = P'-Prob(true U= succ)

Prob(true U=* succ) = P'-Prob(true U succ)

1 0 0 o0]]|oO
o o o 1|71

— Sat(P. 495 [F=2 succ]) = {s;, s3}

DP/Probabilistic Model Checking, Michaelmas 2011

0 0 0 LI I L I
0 1 0 O 7707 [0.98]
0 0.01 0.01 0.98| |0.98| [0.9898

13

PCTL until for DTMCs

- Computation of probabilities Prob(s, &, U &) forall s € S
- First, identify all states where the probability is T or 0

— Sves = Sat(P., [, U,])

— S"° = Sat(P_,[¢, U ¢,])

- Then solve linear equation system for remaining states

- Running example:

DP/Probabilistic Model Checking, Michaelmas 2011

14

Precomputation

- We refer to the first phase (identifying sets Sves and S"°) as
“precomputation”

— two algorithms: ProbO (for S™) and Prob1 (for Sves)
— algorithms work on underlying graph (probabilities irrelevant)

Important for several reasons

— ensures unique solution to linear equation system
. only need ProbO for uniqueness, Prob1 is optional

— reduces the set of states for which probabilities must be
computed numerically

— gives exact results for the states in S¥¢s and S™ (no round-off)

— for model checking of qualitative properties (P_,[-] where p is
0 or 1), no further computation required

DP/Probabilistic Model Checking, Michaelmas 2011 15

Precomputation - ProbO

Prob0 algorithm to compute S" = Sat(P_,[¢, U $,] :
— first compute Sat(P.,[¢, U &b,]) = Sat(E[$, U b,])

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢,-states

— i.e. find all states from which there is a finite path through ¢,-
states to a ¢,—state: simple graph-based computation

— subtract the resulting set from S

Smo = Sat(P_o [7aUb)y 5

Example:

Sat(Byo [~aUDb])

DP/Probabilistic Model Checking, Michaelmas 2011 16

Prob0 algorithm

PROBO(Sat(¢1), Sat(¢ps))

1. R := Sat(¢o)

2. done := false

3. while (done = false)

4. R' =R U{s € Sat(¢p1) | 3s’ € R.P(s,s") > 0}
5. if (R' = R) then done := true

6. R:=FR

7. endwhile

8. return S\R

Note: can be formulated as a least fixed point computation
— also well suited to computation with binary decision diagrams

DP/Probabilistic Model Checking, Michaelmas 2011 17

Precomputation - Prob]

Prob1 algorithm to compute S¥es = Sat(P_., [¢, U ¢,]):
— first compute Sat(P_, [¢, U &,]), reusing Sn°

— this is equivalent to the set of states which have a non-zero
probability of reaching S"°, passing only through ¢,-states

— again, this is a simple graph-based computation
— subtract the resulting set from S

SnOSﬁtﬂaE PLﬂE[#hw]b])0 3

Example:

Qyes —

O7 Sat(P_, [-aUb])

DP/Probabilistic Model Checking, Michaelmas 2011 18

Prob1 algorithm

PrROB1(Sat(¢1), Sat(gpa), S™)

R := 5™

done := false

while (done = false)
R = R U{s € (Sat(¢1)\Sat(p2)) | 38’ € R.P(s,s") > 0}
if (R = R) then done := true
R:=FR

endwhile

return S\ R

= e

© N o o

DP/Probabilistic Model Checking, Michaelmas 2011

19

Prob 1 explanation

DP/Probabilistic Model Checking, Michaelmas 2011

20

PCTL until - linear equations

- Probabilities Prob(s, ¢, U ¢,) can now be obtained as the
unique solution of the following set of linear equations

— essentially the same as for probabilistic reachability

1 if seSY*
Prob(s, ¢, Ud,) = 0 if s&Sm
EP(s,s')- Prob(s', ¢, U ¢,) otherwise
[s'SS

- Can also be reduced to a system in |S?| unknowns instead
of |S| where S” =S\ (Sves U Sn9)

DP/Probabilistic Model Checking, Michaelmas 2011 21

PCTL until - linear equations

Example: P.yg[-a Ub] Sno —
Let x, = Prob(s;, —a U b) Sat(P_,[-aUb])

Syes —

7 sat(P., [~aUb)

X; =x3=0 —
X4 = Xg = 1 0.1 1
X; = 0.1%x,+0.1x3+0.3x5+0.5x, = 8/9

Xo = 0.1%,+0.9x, = 0.8

Prob(-a Ub) =x=10.8, 0, 89,0, 1, 1]

Sat(P.og["aUDb]) =1{5s,,54,5:}

DP/Probabilistic Model Checking, Michaelmas 2011 22

PCTL Until - Example 2

. Example: P_,: [G=b] Sne = Sat(P_, [Fb])

- Prob(s,, G—b)
= 1 - Prob(s;, =(G—b))
= 1 - Prob(s;, F b)

Qyes —

Sat(P.; [Fb])
- Let x; = Prob(s;, F b)

X3 =0 and x, = Xg = 1
X, = 0.1x,+0.1x53+0.3x5;+0.5x, = 8/9

X; = 0.6X3+0.4%x, = 0.4X%,

Xo = 0.1%,+0.9x, = 5/6 and x;=1/3
Prob(G—-b) =1-x=1[1/6,2/3,1/9,1,0,0]
Sat(P.os [G—=b]) ={s,,55}

DP/Probabilistic Model Checking, Michaelmas 2011 23

Linear equation systems

Solution of large (sparse) linear equation systems
— size of system (number of variables) typically O(|S|)
— state space S gets very large in practice

- Two main classes of solution methods:

— direct methods - compute exact solutions in fixed number of
steps, e.g. Gaussian elimination, L/U decomposition

— iterative methods, e.g. Power, Jacobi, Gauss-Seidel, ...
— the latter are preferred in practice due to scalability

General form: A-x = b 1S|—1

— indexed over integers, Z A(i,7)-z(7) = bli)
—i.e.assumeS={0,1,.,IS|-1} "

DP/Probabilistic Model Checking, Michaelmas 2011 24

Ilterative solution methods

Start with an initial estimate for the vector x, say x©
Compute successive (increasingly accurate) approximations
— approximation (solution vector) at kt" iteration denoted x®
— computation of x® uses values of xk-1
Terminate when solution vector has converged sufficiently
Several possibilities for convergence criteria, e.g.:
— maximum absolute difference

max; |2 (i) — 1’("’_1)(72)‘ <

(n

A A

— maximum relative difference

X l X l
max; (|_ () — ()| > < £

2™ (@),

DP/Probabilistic Model Checking, Michaelmas 2011 25

Jacobi method

- Based on fact that:

1S]—1

> A(ig)-z(i) = bi)
- can be rearranged as:

x(1) (b(z Z A(i,7)

- yielding this update scheme:

: For probabilistic :
: model checking,
: A(i,i) is always
: non-zero

2®(i) = (Q(z‘)—ZAci.J)-_r“‘—“cj)) JA(i,1)
j#i

DP/Probabilistic Model Checking, Michaelmas 2011

26

Gauss-Seidel

- The update scheme for Jacobi:
2R (7)) = (Q(z Z A(i,) 2 1)(])) AT, 1)

can be improved by using the most up-to-date values of
x0 that are available

- This is the Gauss-Seidel method:

™) = (b z)—Z Ai,g) - 2™y Z Ai,j) - z*~ “u)) JA(i, 1)

DP/Probabilistic Model Checking, Michaelmas 2011 27

Over-relaxation

Over-relaxation:
— compute new values with existing schemes (e.g. Jacobi)
— but use weighted average with previous vector

Example: lacobi + over-relaxation

2M(@) = (1—w)-z% V()
+ w- (b)) =D A 5) - 2% V(G)) AL)

- where w € (0,2) is a parameter to the algorithm

DP/Probabilistic Model Checking, Michaelmas 2011 28

Comparison

Gauss-Seidel typically outperforms Jacobi
— i.e. faster convergence
— also: only need to store a single solution vector

Both Gauss-Seidel and Jacobi usually outperform the Power
method (see least fixed point method from Lecture 2)

However Power method has guaranteed convergence
— Jacobi and Gauss-Seidel do not

Over-relaxation methods may converge faster
— for well chosen values of w
— need to rely on heuristics for this selection

DP/Probabilistic Model Checking, Michaelmas 2011 29

Model checking complexity

Model checking of DTMC (S,s,,;;,P,L) against PCTL formula ¢
complexity is linear in |®| and polynomial in |S|

- Size |®| of @ is defined as number of logical connectives
and temporal operators plus sizes of temporal operators

— model checking is performed for each operator

- Worst-case operatoris P_, [&, U @,]
— main task: solution of linear equation system of size |S|

— cahn be solved with Gaussian elimination: cubic in |S|
— and also precomputation algorithms (max |S| steps)

- Strictly speaking, U=k could be worse than U for large k
— but in practice k is usually small

DP/Probabilistic Model Checking, Michaelmas 2011 30

Summing up...

Model checking a PCTL formula ¢ on a DTMC
— i.e. determine set Sat(¢)
— recursive: bottom-up traversal of parse tree of ¢

- Atomic propositions and logical connectives: trivial

Key part: computing probabilities for P_ [...] formulae
— X ® : one matrix-vector multiplications
— @&, U=k @, : k matrix-vector multiplications

— &, U &, : graph-based precomputation algorithms + solution
of linear equation system in at most |S| variables

Iterative methods for solving large linear equation systems

DP/Probabilistic Model Checking, Michaelmas 2011 31

Probabilistic Model Checking Michaelmas Term 2011

Lecture 6
PRISM

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Practicals

4 practical exercises

4 scheduled 2 hour practical sessions:
— Tuesday 4-6pm, room 379, weeks 3, 4, 6 and 7
— demonstrator: Aistis Simaitis

Note:

— you will also be expected to complete some of the practical
work outside these hours

— final assignment will include practical (PRISM) exercises

http://www.prismmodelchecker.org/courses/pmcl112/

DP/Probabilistic Model Checking, Michaelmas 2011

Overview

» Tool support for probabilistic model checking
— motivation, existing tools

- The PRISM model checker
— functionality, features

— modelling language

— property specification

Running example
— leader election protocol

PRISM tool demo

DP/Probabilistic Model Checking, Michaelmas 2011

Motivation

Complexity of PCTL model checking
— generally polynomial in model size (number of states)

State space explosion problem
— models for realistic case studies are typically huge

Clearly (efficient) tool support is required

Benefits:
— fully automated process
— high-level languages/formalisms for building models
— visualisation of quantitative results

DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic model checkers

PRISM (this lecture): DTMCs, MDPs, CTMCs, PTAs + rewards

Markov chain model checkers
— MRMC: DTMCs, CTMCs + reward extensions
— PEPA toolset: CTMCs + CSL
Markov decision process (MDP) tools
— LiQuor: LTL verification for MDPs (Probmela language)
— RAPTURE: prototype for abstraction/refinement of MDPs
— ProbDiVinE: parallel/distributed LTL model checking of MDPs
- Simulation-based probabilistic model checking:
— APMC, Ymer (both based on PRISM language), VESTA

- And more
— APNN-Toolbox, SMART, CADP, Mobius, PASS, PARAM, ...
— see: http://www.prismmodelchecker.org/other-tools.php

DP/Probabilistic Model Checking, Michaelmas 2011

The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999

— free, open source (GPL)
— versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs

Modelling of:
— DTMCs, CTMCs, MDPs + costs/rewards

— probabilistic timed automata (PTAs) (not covered here)

Model checking of:
— PCTL, CSL, LTL, PCTL* + extensions + costs/rewards

DP/Probabilistic Model Checking, Michaelmas 2011

PRISM functionality

High-level modelling language
Wide range of model analysis methods
— efficient symbolic implementation techniques
— also: approximate verification using simulation + sampling
Graphical user interface
— model/property editor
— discrete-event simulator - model traces for debugging, etc.
— easy automation of verification experiments
— graphical visualisation of results
Command-line version
— same underlying verification engines
— useful for scripting, batch jobs

DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic model checking

Overview of the probabilistic model checking process
— two distinct phases: model construction, model checking

DTMC, MDP
or CTMC

High-level Model
model construction _L
Model
PRISM —| checking
language _

description

PCTL/CSL/LTL/...
formula

DP/Probabilistic Model Checking, Michaelmas 2011 8

Model construction

Model construction

. Translation | | Reachability:

from i i building set
high-level {”: of reachable

High-level
model

. language i | states .| DTMC, MDP
PRISM ... Or CTMC
language
description matrix graph-based
manipulation algorithm

DP/Probabilistic Model Checking, Michaelmas 2011

Modelling languages/formalisms

Many high-level modelling languages, formalisms available

For example:
— probabilistic/stochastic process algebras
— stochastic Petri nets
— stochastic activity networks

- Custom languages for tools, e.q.:
— PRISM modelling language

— Probmela (probabilistic variant of Promela, the input language
for the model checker SPIN) - used in LiQuor

DP/Probabilistic Model Checking, Michaelmas 2011 10

PRISM modelling language

Simple, textual, state-based language
— modelling of DTMCs, CTMCs, MDPs, ...
— based on Reactive Modules [AH99]

Basic components...
Modules:

— components of system being modelled
— composed in parallel

- Variables

— finite (integer ranges or Booleans)
— local or global
— all variables public: anyone can read, only owner can modify

DP/Probabilistic Model Checking, Michaelmas 2011

11

PRISM modelling language

+ Guarded commands
— describe behaviour of each module
— i.e. the changes in state that can occur
— labelled with probabilities (or, for CTMCs, rates)
— (optional) action labels

[send] (s=2) -> p, ... : (s'=3)&(lost'=lost+1) + (1-p,...) : (s'=4);

— — — —- G— G—
action guard probability update probability update

DP/Probabilistic Model Checking, Michaelmas 2011 12

PRISM modelling language

- Parallel composition
— model multiple components that can execute independently

— for DTMC models, mostly assume components operate
synchronously, i.e. move in lock-step

+ Synchronisation
— simultaneous transitions in more than one module
— guarded commands with matching action-labels

— probability of combined transition is product of individual
probabilities for each component

- More complex parallel compositions can be defined
— using process-algebraic operators
— other types of parallel composition, action hiding/renaming

DP/Probabilistic Model Checking, Michaelmas 2011

13

Simple example

module M1
x : [0..3] init O;
[a] x=0 -> (X’=1);
[b] x=1 -> 0.5:(x’=2) + 0.5:(x’=3);

endmodule

module M2
y : [0..3] init O;
[a]l y=0 -> (y’=1);
[bl] y=1 -> 0.4:(y’=2) + 0.6:(y'=3);

endmodule

DP/Probabilistic Model Checking, Michaelmas 2011

14

Example: Leader election

Randomised leader election protocol
— due to Itai & Rodeh (1990)
Set-up: N nodes, connected in a ring
— communication is synchronous (lock-step)
- Aim: elect a leader
— i.e. one uniquely designated node
— by passing messages around the ring
Protocol operates in rounds. In each round:
— each node choose a (uniformly) random id € {0,...,k-1}
— (k is a parameter of the protocol)

— all nodes pass their id around the ring
— if there is (maximum) unique id, node with this id is the leader

— if not, try again with a new round

DP/Probabilistic Model Checking, Michaelmas 2011 15

PRISM code

DP/Probabilistic Model Checking, Michaelmas 2011

16

PRISM property specifications

Based on (probabilistic extensions of) temporal logic
— incorporates PCTL, CSL, LTL, PCTL*
— also includes: quantitative extensions, costs/rewards

Leader election properties

— P_, [F elected]
. with probability 1, a leader is eventually elected

— P_gg [FEk elected]
. with probability greater than 0.8, a leader is elected within k steps

Usually focus on quantitative properties:
— P_, [F=k elected]
. what is the probability that a leader is elected within k steps?

DP/Probabilistic Model Checking, Michaelmas 2011 17

PRISM property specifications

Best/worst-case scenarios
— combining “quantitative” and “exhaustive” aspects

e.g. computing values for a range of states...

P_, [F=t elected {tokens<k}{min}] -

— “minimum probability of the leader election algorithm
completing within t steps from any state where there are at
most k tokens”

R_,[F end {"init"{max}] -

— “maximum expected run-time over all possible initial
configurations”

DP/Probabilistic Model Checking, Michaelmas 2011

18

PRISM property specifications

Experiments:

— ranges of model/property parameters

— e.g. P_,[F=T error] for N=1..

5, T=1..100

where N is some model parameter and T a time bound
— identify patterns, trends, anomalies in quantitative results

—e—N=19
—a—N=17
—a&—N=15
——N=13
——N=11
N=9

~
(=]

Expected time
w
o

—a— N=7
—a— N\ =5

N
[=]

——N=3

—_
o

1 3 5 7 9 11 13 15 17 19
K

min. probab. electing leader by T

//

& ””//%

flim)=
=2z
// __y,,/

/
2

=

T g‘
! ?.n.-'

10

DP/Probabilistic Model Checking, Michaelmas 2011 19

PRISM...

DP/Probabilistic Model Checking, Michaelmas 2011

20

More info on PRISM

PRISM website: http://www.prismmodelchecker.orqg/

— tool download: binaries, source code (GPL)
— on-line example repository (50+ case studies)
— on-line documentation:

. PRISM manual
. PRISM tutorial

— support: help forum, bug tracking, feature requests
— related publications, talks, tutorials, links

Course practicals info at:

— http://www.prismmodelchecker.org/courses/pmcl112/

DP/Probabilistic Model Checking, Michaelmas 2011 21

Probabilistic Model Checking Michaelmas Term 2011

Lecture 7/
Costs & Rewards

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Overview

Specifying costs and rewards
— DTMCs
— PRISM language
Properties: expected reward values
— instantaneous
— cumulative
— reachability
— temporal logic extensions
Model checking
— computing reward values
Case study
— randomised contract signing

DP/Probabilistic Model Checking, Michaelmas 2011

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

- Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

- Costs? or rewards?
— mathematically, no distinction between rewards and costs

— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

— we will consistently use the terminology “rewards” regardless

DP/Probabilistic Model Checking, Michaelmas 2011

Reward-based properties

Properties of DTMCs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion used here: expected value of rewards
— formal property specifications will be in an extension of PCTL

More precisely, we use two distinct classes of property...

Instantaneous properties
— e.g. the expected value of the reward at some time point

Cumulative properties
— e.g. the expected cumulated reward over some period

DP/Probabilistic Model Checking, Michaelmas 2011

DTMC reward structures

- For a DTMC (S,s,,,P,L), a reward structure is a pair (p,U)
— p:S— R_,is the state reward function (vector)
—1:S XS — R,,is the transition reward function (matrix)

- Example (for use with instantaneous properties)

— “size of message queue”: p maps each state to the number of
jobs in the queue in that state, L is not used

- Examples (for use with cumulative properties)

— “time-steps”: p returns 1 for all states and v is zero
(equivalently, p is zero and v returns 1 for all transitions)

— “number of messages lost”: p is zero and L maps transitions
corresponding to a message loss to 1

— “power consumption”: p is defined as the per-time-step
energy consumption in each state and v as the energy cost of
each transition

DP/Probabilistic Model Checking, Michaelmas 2011

Rewards in the PRISM language

rewards “total_queue_size” rewards “time”
true : queuel +queue?; true : 1;
endrewards endrewards
(instantaneous, state rewards) (cumulative, state rewards)
rewards “power”
rewards "dropped"” sleep=true : 0.25;
[receive] g=g_max : 1; sleep=false : 1.2 * up;
endrewards [wake] true : 3.2;
endrewards

(cumulative, transition rewards)
(g = queue size, g_max = max.
queue size, receive = action label)

(cumulative, state/trans. rewards)
(up = num. operational components,
wake = action label)

DP/Probabilistic Model Checking, Michaelmas 2011 6

Expected reward properties

Expected (“average”) values of rewards...

Instantaneous
— “the expected value of the state reward at time-step k”
— e.g. “the expected queue size after exactly 90 seconds”

Cumulative (time-bounded)
— “the expected reward cumulated up to time-step k”
— e.g. “the expected power consumption over one hour”
Reachability (also cumulative)
— “the expected reward cumulated before reaching states T<S”
— e.g. “the expected time for the algorithm to terminate”

DP/Probabilistic Model Checking, Michaelmas 2011

Expectation

- Probability space (Q, 2, Pr)
— probability measure Pr: ¥ — [0,1]

- Random variable X
— a measurable function X : Q — A
— usually real-valued, i.e.: X: Q - R

- Expected (“average”) value of the random variable: Exp(X)

Exp(X) = Ex(w), Pr(o) e

WEQ irssssrssessssssessssssessssssssssssseassssesans :

Exp(X) = [__X(w)dPr

DP/Probabilistic Model Checking, Michaelmas 2011

Reachability + rewards

Expected reward cumulated before reaching states T<S

Define a random variable:
- XReach(T) Path(S) - [RZO
— where for an infinite path w= s45;5,...
0 ifs, €T
Xgeach(m (W) = % ifs,&Tforalli=0
kq-1 .
N o Ps)+Us,s,,) otherwise

— where k; = min{j | S; € T}

- Then define:

— ExpReach(s, T) = Exp(s, Xgeachm)

— denoting: expectation of the random variable Xgqacnm
with respect to the probability measure Pr,, i.e.:

waPath(s) XReach(T) ((D) d Prs

DP/Probabilistic Model Checking, Michaelmas 2011

Computing the rewards

- Determine states for which ProbReach(s, T) = 1

- Solve linear equation system:

— ExpReach(s, T) =

00 if ProbReach(s, T) < 1
< 0 ifseT
p(s) + EP(S,S')' (L(S,S')+ ExpReach(s’, T)) otherwise

s'eS

DP/Probabilistic Model Checking, Michaelmas 2011 10

Example

- Letp=1[0,1,0,0]and us,s’) =0 forall s,s’ €S

- Compute ExpReach(s,, {s3})

— (“expected number of times pass through s, to get to s;”)
- First check:

— ProbReach({s;}) ={1,1,1,1}

- Then solve linear equation system:
— (letting x;, = ExpReach(s;, {s3})):

— X =0+ 1-(0 + x;)

- X; =1+ 0.01-(0+x,)+0.01-(0+x,)+0.98 -(0+x3)

— X, =0+ 1-(0 + Xxg)

- X3=0

— Solution: ExpReach({s;}) = [100/98, 100/98, 100/98, 0]
- So: ExpReach(s,, {s3}) = 100/98 = 1.020408

DP/Probabilistic Model Checking, Michaelmas 2011 11

Specifying reward properties

- PRISM extends PCTL to include expected reward properties
— add an R operator, which is similar to the existing P operator

FEEEEEsEEEsEEsEEsEEssEssEEsEEsEEsEEEaEEEEEEE

expected

/reward'5~r _____
g }

—¢ = | PLIw] | RATIER] | RLICK]T | R, [Fé]

___ B

. “instantaneous” | | “cumulative” : | “reachability” !

— wherere R_,, ~ € {<,>,<,2}, ke N

- R_, [-] means “the expected value of - satisfies ~r”

DP/Probabilistic Model Checking, Michaelmas 2011 12

Random variables for reward formulae

- Definition of random variables for the R operator:
— for an infinite path w= s,s,5,...

X (W) = E(Sk) XF¢
. same as
X
0 ifk =0 Reach(Sat(¢))
Xeal®) ={ $57) 15,5, otherwise _from earlier _
0 if s, €Sat(d)
Xio(W) = o0 if s, &Sat(dp) forall i=0
E:(:“;)_]_p(si)ﬂ(si,sm) otherwise

— where kg, = min{j | S| é }

DP/Probabilistic Model Checking, Michaelmas 2011 13

Reward formula semantics

Formal semantics of the three reward operators:

For a state s In the DTMC , ...

» same as
—sE=R_[IFK] < Exp(s, X,_) ~r . ExpReach(s, Sat(®))

—~sER,[Ck] & Exp(s, Xco) ~ r/ from earlier

—sER,[F®P] & Exp(s, Xpp) ~ 1

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R_, with respect to the probability measure Pr,

- We can also define R_, [...] properties, as for the P operator
— e.g. R, [F ®] returns the value Exp(s, X;4)

DP/Probabilistic Model Checking, Michaelmas 2011 14

Model checking reward operators

Like for model checking P_,[...], to check R_,[...]
— compute reward values for all states, compare with bound r

Instantaneous: R_, [=¥] - compute Exp(X,_,)
— solution of recursive equations
— essentially: k matrix-vector multiplications e e :
: . Model checking
. <t | —
Cumulative: R_, [C=t] - compute Exp(Xc_,) Roperator
— solution of recursive equations . same complexity

_ essentially: k matrix-vector multiplications ~ :..23.for P operator :

Reachability: R_, [F ¢] - compute Exp(X¢e)
— graph analysis + linear equation system
— (see computation of ExpReach(s, T) earlier)

DP/Probabilistic Model Checking, Michaelmas 2011 15

Model checking R_, [I7¥]

Expected instantaneous reward at step k
— can be defined in terms of transient probabilities for step k

Exp(s, Xi_p) = Zgcs T, (S7) - p(s')

- Exp(X,_) = P< - p

- Yielding recursive definition:

— Exp(Xi_¢) = p

- E_XQ(X|:|<) =P E_XIQ(X|:(|<_1))

— i.e. k matrix-vector multiplications

— note: “backwards” computation (like bounded until prob.s)
rather than “forwards” computation (like transient prob.s)

DP/Probabilistic Model Checking, Michaelmas 2011 16

Example

- Letp=1[0,1,0,0]and us,s’) =0 forall s,s’ €S
- Compute Exp(sy, X,_,)

— (“probability of being in state s;”)
— Exp(X,_o) =[0,1,0,0]

— Exp(X,_;) = P - Exp(X,_o)

0 1 0 0 0
|0 0.01 0.01 0.98| |1]_|O.
(1 O 0 0 ol | O
0O O 0] 0 0
— Exp(X,_;) = P - Exp(X,_,)
0 1 0 0 1 0.01
|0 0.01 0.01 0.98| |0.01f _|0.0001
11 0 0 0 0 |]
0O O 0 1 0 0

. Result: Exp(sy, X,_,) = 0.01

DP/Probabilistic Model Checking, Michaelmas 2011 17

Model checking R_, [C=k]

- Expected reward cumulated up to time-step k

- Again, a recursive definition:

0 ifk =0
Exp(s, Xc,) = {p(s) + ;P(s,s') -(LGs,s") + Exp(s', Xcy) ifk>0

- And in matrix/vector notation:

ExD(X...) - 0 ifk =0
EXP{Ack) = {E+(P'L)']+P‘EX_I3(XCS|<-1) ifk >0

— where ¢ denotes Schur (pointwise) matrix multiplication
— and 1 is a vector of all 1s

DP/Probabilistic Model Checking, Michaelmas 2011 18

Case study: Contract signing

- Two parties want to agree on a contract

— each will sign if the other will sign, but do not trust each other
— there may be a trusted third party (judge)

— but it should only be used if something goes wrong

In real life: contract signing with pen and paper
— sit down and write signatures simultaneously

On the Internet...
— how to exchange commitments on an asynchronous network?
— “partial secret exchange protocol” [EGL85]

DP/Probabilistic Model Checking, Michaelmas 2011 19

Contract signing - EGL protocol

Partial secret exchange protocol for 2 parties (A and B)

- A (B) holds 2N secrets a,,...,a,y (by,...,boy)

— a secret is a binary string of length L

— secrets partitioned into pairs: e.g.{ (a;,, ay,;) | i=1,...,N}
— A (B) committed if B (A) knows one of A’s (B’s) pairs

Uses “1-out-of-2 oblivious transfer protocol” OT(S,R,x,y)
— Sender S sends x and y to receiver R
— R receives x with probability /2 otherwise receives y
— S does not know which one R receives
— if S cheats then R can detect this with probability %2

DP/Probabilistic Model Checking, Michaelmas 2011

EGL protocol - Step 1

Party A Party B
1...L 1...L
— —

OT(A,B,a,ay.)

_>
OT(B.A.b;by.) I
N+1...2N N+1...2N

> <

Sy

(repeat for i=1...N)

DP/Probabilistic Model Checking, Michaelmas 2011 21

EGL protocol - Step 2

Party A o Party B
A sends bit i
1...L _ 1...L
of_aJ to B for
> <
==
1...N > 1...N
> 4
v > <+ v
‘EEEEs 5
> 4+
= —
N+1...2N > Then B does I N+T1...2N
> the same <+
v > for b R v

(repeat for i=1...L)

DP/Probabilistic Model Checking, Michaelmas 2011 22

Contract signing - Results

Modelled in PRISM as a DTMC (no concurrency) [NSO6]

Highlights a weakness in the protocol
— party B can act maliciously by quitting the protocol early
— this behaviour not considered in the original analysis

PRISM analysis shows

— if B stops participating in the protocol as soon as he/she has
obtained one of A pairs, then, with probability 1, at this point:

. B possesses a pair of A’s secrets
. A does not have complete knowledge of any pair of B’s secrets

— protocol is not fair under this attack:
— B has a distinct advantage over A

DP/Probabilistic Model Checking, Michaelmas 2011 23

Contract signing - Results

- The protocol is unfair because in step 2:
— A sends a bit for each of its secret before B does

- Can we make this protocol fair by changing the message
sequence scheme?

- Since the protocol is asynchronous the best we can hope
for is:

— B (or A) has this advantage with probability 2

- We consider 3 possible alternative message sequence
schemes (EGL2, EGL3, EGL4)

DP/Probabilistic Model Checking, Michaelmas 2011 24

Contract sighing — EGL?2

(step 1)

(step 2)
for (i=1,...,L)
for (j=1,...,N) A transmits bit i of secret a; to B
for (j=1,...,N) B transmits bit i of secret b; to A
for (j=N+1,...,2N) A transmits bit i of secret a; to B
for (j=N+1,...,2N) B transmits bit i of secret b, to A

DP/Probabilistic Model Checking, Michaelmas 2011

25

Modified step 2 for EGL2

Party A Party B
Y A sends bit i Y

1...L 1...L
ofjali 'ﬁo BNfor

1111

Z
VVYVYVYYY

> <
> <

—
—

N+1...2N Then B does N+1...2N
the same
v for b, v

(after j=1...N, send j=N+1...2N)
(then repeat for i=1...L)

DP/Probabilistic Model Checking, Michaelmas 2011 26

Contract signing - EGL3

(step 1)

(step 2)

for (i=1,...,L) for (j=1,...,N)
A transmits bit i of secret a; to B
B transmits bit i of secret b, to A

for (i=1,...,L) for (j=N+1,...,2N)
A transmits bit i of secret a, to B
B transmits bit i of secret b, to A

DP/Probabilistic Model Checking, Michaelmas 2011

27

Modified step 2 for EGL3

Party A o Party B
A sends bit i
1...L _ 1...L

of a; toB for

A > < A

1..N I::> 1...N
v v
A = A
N+1...2N Then B does N+1...2N

the same

v for b, v

(repeat for j=1...N and for i=1...L)
(then send j=N+1...2N fori=1...L)

DP/Probabilistic Model Checking, Michaelmas 2011 28

Contract sighing - EGL4

(step 1)

(step 2)
for (i=1,...,L)
A transmits bit i of secret a, to B
for (j=1,...,N) B transmits bit i of secret b; to A
for (j=2,...,N) A transmits bit i of secret a; to B
for (i=1,...,L)
A transmits bit i of secret a,,, to B
for (j=N+1,...,2N) B transmits bit i of secret b, to A
for (j=N+2,...,2N) A transmits bit i of secret atoB

DP/Probabilistic Model Checking, Michaelmas 2011

29

Modified step 2 for EGL4

Party A A sends bit | Party B
of a, toB

1...L 1...L
e |::> e

Then B sends
bit i of bj to B
for j=1...N

o

Then A sends
N+1...2N bit i Ofaj to B N+1...2N
for j=2...N

\/ ::> \/

(repeat for i=1...L)
(then send j=N+1...2N in same fashion)

11111

> <
> <

DP/Probabilistic Model Checking, Michaelmas 2011 30

Contract signing - Results

- The chance that the protocol is unfair
— probability that one party gains knowledge first
— P_,[F knowg A —know,] and P_,[F know, A —know]

1
; | |Party A

—e—EGL
~edb-d-b-b-d-bd-A-b-A-d-A-A-a-4 | —8—EGL2
—&—EGL3
—o—EGL4
o Party B

- ¢ -EGL4
_AA-AMLAAA-A—A-AAAA&-A-A -‘-EGLQ
-8 -EGL2
-e-EGL

o
®

o
o

Probability
o
(o))
.(

o
N

\
]

-8

0-e0o0800000000000000
2 4 6 8 1ON12 14 16 18 20

DP/Probabilistic Model Checking, Michaelmas 2011

31

Contract signing - Results

- The influence that each party has on the fairness

— once a party knows a pair, the expected number of messages
from this party required before the other party knows a pair

LA A AAALAAAALAALAL

Expected Messages

Q

2 4 6 8 10 12 14 16 18 20
N

DP/Probabilistic Model Checking, Michaelmas 2011

Party A
—e—EGL
—a—EGL2
—4&—EGL3
—EGL4

" |Party B

EGL4
-4 -EGL3
-8 -EGL2
-e-EGL

R=?[F know,]

Reward structure:

Assign 1 to transitions
corresponding to messages
being sent from B to A

after B knows a pair

(and O to all other transitions)

32

Contract signing - Results

- The duration of unfairness of the protocol

— once a party knows a pair, the expected total number of
messages that need to be sent before the other knows a pair

B
o

W
(8]

Party A
—e—EGL
—a—EGL2
—4&—EGL3
| | ——EGL4

Party B

¢ -EGL4
-4 -EGL3
¢ |-=-EGL2
-e-EGL

W
o

10

Expected Messages (total)
N

. »
2468101214161820
N

R=?[F know,]

Reward structure:

Assign 1 to transitions
corresponding to any message
being sent between A and B

after B knows a pair

(and O to all other transitions)

DP/Probabilistic Model Checking, Michaelmas 2011 33

Contract signing - Results

- Results show EGL4 is the ‘fairest’ protocol

- Except for “duration of fairness” measure

— expected messages that need to be sent for a party to know a
pair once the other party knows a pair

— this value is larger for B than for A

— and, in fact, as n increases, this measure:
. increases for B
. decreases for A

- Solution:

— if a party sends a sequence of bits in a row (without the other
party sending messages in between), require that the party
send these bits as as a single message

DP/Probabilistic Model Checking, Michaelmas 2011 34

Contract signing - Results

- The duration of unfairness of the protocol
— (with the solution on the previous slide applied to all variants)

2.5 —— . -
2%&%‘ Party A

—e—EGL
-8 -EGL2
1| —*—EGL3
- o -EGL4
Party B

- ¢ -EGL4
- &-EGL3
-8 -EGL2
-0 -EGL

Expected Messages (total)

2 4 6 8 10 12 14 186 18 20
N

DP/Probabilistic Model Checking, Michaelmas 2011 35

Summing up...

Costs and rewards

— real-valued assigned to states/transitions of a DTMC
Properties

— expected instantaneous/cumulative reward values

— PRISM property specifications: adds R operator to PCTL
Model checking

— instantaneous: matrix-vector multiplications

— cumulative: matrix-vector multiplications

— reachability: graph analysis + linear equation systems
Case study

— randomised contract signing

DP/Probabilistic Model Checking, Michaelmas 2011

36

Probabilistic Model Checking Michaelmas Term 2011

Lecture 8
Continuous-time Markov chains

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Time in DTMCs

- Time in a DTMC proceeds in discrete steps

- Two possible interpretations:

— accurate model of (discrete) time units
. e.g. clock ticks in model of an embedded device

— time-abstract
. no information assumed about the time transitions take

- Continuous-time Markov chains (CTMCs)
— dense model of time
— transitions can occur at any (real-valued) time instant
— modelled using exponential distributions

DP/Probabilistic Model Checking, Michaelmas 2011

Overview

Exponential distribution and its properties

Continuous-time Markov chains (CTMCs)
— definition, examples
— race condition
— embedded DTMC
— generator matrix

Paths and probabilities
— probabilistic reachability

DP/Probabilistic Model Checking, Michaelmas 2011

Continuous probability distributions

- Defined by:

— cumulative distribution function

Il

F(t) =Pr(X <t) = f f(x) dx

— where f is the probability density function

— Pr(X=t) = 0 for all t

- Example: uniform distribution: U(a,b)

(¥, ifastsb
i) _{ 0 otherwise

(0 ift<a
F(t) =Jws/ ifast<b
] ift=b

DP/Probabilistic Model Checking, Michaelmas 2011

Exponential distribution

- A continuous random variable X is exponential with
parameter A>0 if the density function is given by:

P W P —— :

— we write: X ~ Exponential(\)
- Cumulative distribution function (for t=0):

F(t) = Pr(X fk e dx = [-e™*]\ =1-e

- Other properties:

— negation: Pr(X > t) = :
— mean (expectation): E[X] = fo°°x, A e Xdx = —
— variance: Var(X) = 1/A? A

-\t

DP/Probabilistic Model Checking, Michaelmas 2011

Exponential distribution - Examples

. Probability density function Cumulatlve distribution function :
3 : 1
= A=5
— =1
2.5 — =05 0.8}
2
0.6
1.5
0.4
1
0.5 = med
— =1
—\=0.5
0 1 2 3 4 0 1 2 3 4

The more A increases, the faster the c.d.f. approaches 1

DP/Probabilistic Model Checking, Michaelmas 2011 6

Exponential distribution

- Adequate for modelling many real-life phenomena

— failures
. e.g. time before machine component fails

— inter-arrival times
. e.g. time before next call arrives to a call centre

— biological systems
. e.g. times for reactions between proteins to occur

- Maximal entropy (“uncertainty”) if just the mean is known
— i.e. best approximation when only mean is known

- Can approximate general distributions arbitrarily closely
— phase-type distributions

DP/Probabilistic Model Checking, Michaelmas 2011

Exponential distribution - Property 1

- The exponential distribution has the memoryless property:

- The exponential distribution is the only continuous
distribution which is memoryless

— discrete-time equivalent is the geometric distribution

DP/Probabilistic Model Checking, Michaelmas 2011

Exponential distribution - Property 2

- The minimum of two independent exponential distributions
is an exponential distribution (parameter is sum)

— X, ~ Exponential(A;), X, ~ Exponential(A,)
— Y = min(X,,X,)

— Y ~ Exponential(A;+A,)
- Generalises to minimum of n distributions

DP/Probabilistic Model Checking, Michaelmas 2011 9

Exponential distribution - Property 3

- Consider two independent exponential distributions
— X, ~ Exponential(A;), X, ~ Exponential(A,)
— what is the probability that X, <X, ?

— probability that X; <X, is A;/(\;+X,)
- Generalises to n distributions

DP/Probabilistic Model Checking, Michaelmas 2011

10

Continuous-time Markov chains

Continuous-time Markov chains (CTMCs)
— labelled transition systems augmented with rates
— discrete states
— continuous time-steps
— delays exponentially distributed

Suited to modelling:
— reliability models
— control systems
— queueing networks
— biological pathways
— chemical reactions

DP/Probabilistic Model Checking, Michaelmas 2011

Continuous-time Markov chains

Formally, a CTMC C is a tuple (5,s;,,R,L) where:
— Sis a finite set of states (“state space”)
— Siie € Sis the initial state
— R:S XS - R_,is the transition rate matrix
— L:S — 2APjs a labelling with atomic propositions

- Transition rate matrix assigns rates to each pair of states
— used as a parameter to the exponential distribution

— transition between s and s’ when R(s,s’)>0

— probability triggered before t time units: 1 - e RG:s)t

DP/Probabilistic Model Checking, Michaelmas 2011 12

Simple CTMC example

Modelling a queue of jobs
— initially the queue is empty
— jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3)
— jobs are served with rate 3 (i.e. mean service time is 1/3)
— maximum size of the queue is 3
— state space: S = {s;},_, 3 Where s, indicates i jobs in queue

{empty} 3/2 3/2 ffully

DP/Probabilistic Model Checking, Michaelmas 2011

13

Race conditions

- What happens when there exists multiple s’ with R(s,s’)>07?
— race condition: first transition triggered determines next state

— two questions:
— 1. How long is spent in s before a transition occurs?
— 2. Which transition is eventually taken?

- 1. Time spent in a state before a transition
— minimum of exponential distributions
— exponential with parameter given by summation:

E(s) = Y R(s,S")

— probability of leaving a state s within [0,t] is 1-e E®)-t
— E(s) is the exit rate of state s
— s is called absorbing if E(s)=0 (no outgoing transitions)

DP/Probabilistic Model Checking, Michaelmas 2011

14

Race conditions...

- 2. Which transition is taken from state s?
— the choice is independent of the time at which it occurs
— e.g. if X; ~ Exponential(A,), X, ~ Exponential(\,)
— then the probability that X; <X, is A;/(A;+X,)
— more generally, the probability is given by...

- The embedded DTMC: emb(C)=(S,s,;;,Pe™*©,L)
— state space, initial state and labelling as the CTMC
— for any s,s’eS

R(s,s')/E(s) if E(s)>0
pemP©(s s') =] if E(s) =0ands=s¢'
0 otherwise

- Probability that next state from s is s’ given by Pemb©)(s s’)

DP/Probabilistic Model Checking, Michaelmas 2011

15

Two interpretations of a CTMC

Consider a (non-absorbing) state s € S with multiple
outgoing transitions, i.e. multiple s’ € S with R(s,s’)>0

1. Race condition
— each transition triggered after exponentially distributed delay
. i.e. probability triggered before t time units: 1 - e R:s)t
— first transition triggered determines the next state

2. Separate delay/transition

— remain in s for delay exponentially distributed with rate E(s)

. i.e. probability of taking an outgoing transition from s within [0,t]
is given by 1-e-Es):t

— probability that next state is s’ is given by Pemb(©(s,s’)
. i.e. R(s,s’)/E(s) = R(s,s’) / 2,5 R(s,S’)

DP/Probabilistic Model Checking, Michaelmas 2011 16

More on CTMCs...

Infinitesimal generator matrix Q

: R(s,s") 3
Q(s,s') = { —ES¢S,R(S,S') ?)thserwise

. Alternative definition: a CTMC is:

— a family of random variables { X(t) [t € R_, }

— X(t) are observations made at time instant t

— i.e. X(t) is the state of the system at time instant t
— which satisfies...

Memoryless (Markov property)
Pr(X(tk):Sk | X(tk—]):Sk—]’ ""X(tO):SO) = Pr(X(tk):Sk | X(tk—]):Sk—])

DP/Probabilistic Model Checking, Michaelmas 2011 17

Simple CTMC example...

C:(S, Sil’lit’ R,L) 3/2 3/2

{empty} {fuII}
. (o) 6 @

AP = {empty, full}
L(sg)={empty}, L(s,)=L(s,)=9 and L(s;)={full}

0 3/2 0 0 (0 1 0 0 3/2 32 0 0
c 30 32 0| pemo_[2/3 0 U3 0 o |3 -9/2 32 0
0O 3 0O 3/2 O 2/3 0 1/3 0 3 -9/2 3/2
0O O 3 0 0 0 1 0 0 0 3 -3
. transition embedded . infinitesimal
. rate matrix : . DTMC . generator matrix :

..

DP/Probabilistic Model Checking, Michaelmas 2011 18

Example 2

- 3 machines, each can fail independently

— delay modelled as exponential distributions

— failure rate A, i.e. mean-time to failure (MTTF) = 1/ A
- One repair unit

— repairs a single machine at rate u (also exponential)

- State space:
— S ={s;}_o. 3 Where s, indicates i machines operational

{high} 3N {high} 2\ {low} N finactive}

M M M

DP/Probabilistic Model Checking, Michaelmas 2011

19

Example 3

Chemical reaction system: two species A and B

- Two reactions:)

A+ B «—— AB
k

— reversible reaction under which
species A and B bind to form AB
(forwards rate = |A|-[B|-k;,
backwards rate = |AB|-k,)

— degradation of A (rate |A[-k3)

— |X] denotes number of
molecules of species X

CTMC with state space
— (|Al,[B],|AB])
— initially (2,2,0)

DP/Probabilistic Model Checking, Michaelmas 2011 20

Paths of a CTMC

- An infinite path w is a sequence s,t,s;t;5,t,... such that
— R(s;,s,7) >0and t; e R, foralli e N
— t, denotes the amount of time spent in s,
or a sequence s,t,s;t;S,t,...t,_;S, such that
— R(s;,s,7) > 0and t, € R, foralli<k
— s, is absorbing (i.e. R(s,s’) = 0 forall s’ € S)
— i.e. remain in state s, indefinitely

Path(s) denotes all infinite paths starting in state s
Further notation:

— time(w,j) = amount of time spent in the jth state, i.e. t,
— W@t = state occupied at time t:

— see e.g. [BHHKO3, KNPO7a] for precise definitions

DP/Probabilistic Model Checking, Michaelmas 2011 21

Recall: Probability spaces

- A o-algebra (or o-field) on Q is a set 2 of subsets of Q
closed under complementation and countable union, i.e.:

— if A € %, the complement Q \ Aisin X
— if A, € £fori € N, the union U, A, is in X
— the empty set @ is in X
Elements of X are called measurable sets or events

- Theorem: For any set F of subsets of Q, there exists a
unique smallest o-algebra on Q containing F

Probability space (Q, 2, Pr)
— Q is the sample space
— 2 is the set of events: og-algebra on Q
— Pr: 2 — [0,1]is the probability measure:
Pr(Q) = 1 and Pr(u; A) = Z; Pr(A,) for countable disjoint A,

DP/Probabilistic Model Checking, Michaelmas 2011 22

Probability space

Sample space: Path(s) (set of all paths from a state s)
Events: sets of infinite paths
Basic events: cylinders

— cylinders = sets of paths with common finite prefix
— include time intervals in cylinders

Finite prefix is a sequence sg,ly,S1,lq,---,1,-1,5,
— $0,51,52,---,S, Sequence of states where R(s;,s;.;)>0 fori<n

— lg,ly,15,-.,1,; Sequence of of non-empty intervals of R_

Cylinder Cyl(sg,ly,S1,l15---51,-1,5,) is the set of infinite paths:
— w(i)=s; forall i < nand time(w,i) €|, foralli <n

DP/Probabilistic Model Checking, Michaelmas 2011 23

Probability space

- Define probability measure over cylinders inductively
- Pr (Cyl(s))=1

. PrS(Cyl(S’I’S]’I]""’In—]’sni ’S)) equals
Pr.(Cyl(s,I,s,,1,...,] ,5.)) - P™O(s_s") - (e—asn)-inf r _e-E<sn>-SUpr)

probability of transition

froms, to s’ (defined = | propapility time spent in state s,
LSling embedded DTMC) | is within the interval I’

DP/Probabilistic Model Checking, Michaelmas 2011 24

Probability space - Example

- Probability of leaving the initial state s, and moving to state
s, within the first 2 time units of operation

. Cylinder Cyl(s,,(0,2],s,) {emptyi| i| il{fun}
+ Preo(Cyl(s0,(0,21,5,)) 3 3 3

= PI’SO(CYKSO)) - Pemb(c)(so’s]) . (e—E(SO)-O _ e_E(so).z)
=1 - Pemb(C)(SO,S])] (e—E(SO)-O _ e—E(sO)-Z)

=1-1 - (e—3/2-0 _ e_3/2.2)

— 1-e3

~ 0.95021

DP/Probabilistic Model Checking, Michaelmas 2011 25

Probability space

Probability space (Path(s), 25, Pry) (see [BHHKO3])

Sample space Q = Path(s)
— i.e. all infinite paths
Event set 25,00

— least o-algebra on Path(s) containing all cylinders sets
Cyl(sgslgs---,1,-1,S,) wWhere:

- Sgy---»S, Fanges over all state sequences with R(s;,s;,;)>0 for all i

- lg,--,1,_; ranges over all sequences of non-empty intervals in R_,
(where intervals are bounded by rationals)

Probability measure Pr,
— Pr, extends uniquely from probability defined over cylinders

DP/Probabilistic Model Checking, Michaelmas 2011 26

Probabilistic reachability

- Probabilistic reachability
— the probability of reaching a target set T<S

— measurability:

- union of all basic cylinders Cyl(s,,(0,),s,,(0,),...,(0,00),s.)
wheres, €T

- set of such state sequences s;s;...s, is countable

- Time-bounded probabilistic reachability
— the probability of reaching a target set T<S within t time units

— measurability:

- union of all basic cylinders Cyl(sg,l,S1,11,---511-1,S,)
where s, € T and sup(lp)+...+sup(l,_;) <t

. set of such state sequences s;s,...s,, is countable
. set of rational-bounded intervals is countable

DP/Probabilistic Model Checking, Michaelmas 2011 27

Summing up...

- Exponential distribution
— suitable for modelling failures, waiting times, reactions, ...
— nice mathematical properties

- Continuous-time Markov chains
— transition delays modelled as exponential distributions
— race condition
— embedded DTMC
— generator matrix

- Probability space over paths
— (untimed and timed) probabilistic reachability

DP/Probabilistic Model Checking, Michaelmas 2011

28

Probabilistic Model Checking Michaelmas Term 2011

Lecture 9
Continuous-time Markov chains...

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Overview

- Transient probabilities
— uniformisation

Steady-state probabilities

CSL: Continuous Stochastic Logic
— syntax
— semantics
— examples

DP/Probabilistic Model Checking, Michaelmas 2011

Recall

- Continuous-time Markov chain: C = (5,s,,,,R,L)
— R:S XS = R,,is the transition rate matrix
— rates interpreted as parameters of exponential distributions

- Embedded DTMC: emb(C)=(S,s,,,PemP©) L)

R(s,s")/E(s) if E(s)>0
pemb©(g ¢') =] if E(s) =0ands =s'
0 otherwise

- Infinitesimal generator matrix

' R(s,s") = S'
Q(s,s') = { _ES¢S'R(S’S') Séthse’:rwise

DP/Probabilistic Model Checking, Michaelmas 2011

Transient and steady-state behaviour

- Transient behaviour
— state of the model at a particular time instant

— 1< (s’) is probability of, having started in state s, being in
state s’ at time t (in CTMC O)

— 1% (s’) = Prd w € Path®(s) | w@t=s’ }

Steady-state behaviour
— state of the model in the long-run

— 1t (s’) is probability of, having started in state s, being in
state s’ in the long run

o Ecs(s’) = Iimt—»oo Ecs,t(s’)
— intuitively: long-run percentage of time spent in each state

DP/Probabilistic Model Checking, Michaelmas 2011

Computing transient probabilities

- Consider a simple example
— and compare to the case for DTMCs

- What is the probability of being in state s, at time t?

1.oo§\ 1 "
- DTMC/CTMC: \
0.75
1 > g
3 L\ e, : , \
e -~ CTMC
1 N A ~DTMC
0.25 \ \ "
0.00— Yy y)
0.0 0.5 1.0 1.5 20 25 3.0 3.5 40 45 50
T

DP/Probabilistic Model Checking, Michaelmas 2011 5

Computing transient probabilities

- TT, - matrix of transient probabilities
— TT(s,s)=11, ((S")

- TI, solution of the differential equation: TT,” =TI, - Q
— where Q is the infinitesimal generator matrix

- Can be expressed as a matrix exponential and therefore
evaluated as a power series

M =e¥ =3 (@Q-1)/i!

— computation potentially unstable
— probabilities instead computed using uniformisation

DP/Probabilistic Model Checking, Michaelmas 2011

Uniformisation

- We build the uniformised DTMC unif(C) of CTMC C
- If C =(5,s,,+wR,L), then unif(C) = (S,s;;,PU"C),L)

— set of states, initial state and labelling the same as C
— Punif©O = | + Q/q

— | is the |S|Xx|S| identity matrix

— g =max{E(s)| s eS}isthe uniformisation rate

- Each time step (epoch) of uniformised DTMC corresponds
to one exponentially distributed delay with rate g

— if E(s)=q transitions the same as embedded DTMC (residence
time has the same distribution as one epoch)

— if E(s)<q add self loop with probability 1-E(s)/qg (residence
time longer than 1/q so one epoch may not be ‘long enough’)

DP/Probabilistic Model Checking, Michaelmas 2011

Uniformisation - Example

- CTMC C:

@Q R-12 0] Q-2

- Uniformised DTMC unif(C)
— let uniformisation rate q = max, { E(s) } = 3

punif(C)=I+Q/q=[(]) (])]Jr[_%] —%]]=l% %]

1/3

DP/Probabilistic Model Checking, Michaelmas 2011

Uniformisation

Using the uniformised DTMC the transient probabilities can
be expressed by:

.I_I.t th _ eq Punlf 1)t _ e(q t)- Punlf . e_q't

= @ dt. (EZO (|_PI , (Punif(C))i)
= Eoo (e‘q’t (at)) (punif(©))i
i=0 i!

punif© js stochastic (all entries in
_ _ : [0,1] & rows sum to 1);

ith Poisson probability with therefore computations with P are
: parameter q-t more numerically stable than Q

DP/Probabilistic Model Checking, Michaelmas 2011

Uniformisation

I, = E:o Yoti (punt©)i

- (PunifQ)i js probability of jumping between each pair of
states in i steps

" Yq.t; IS the ith Poisson probability with parameter g-t

— the probability of i steps occurring in time t, given each has
delay exponentially distributed with rate q

» Can truncate the (infinite) summation using the techniques
of Fox and Glynn [FG88], which allow efficient computation
of the Poisson probabilities

DP/Probabilistic Model Checking, Michaelmas 2011 10

Uniformisation

Computing 1, for a fixed state s and time t
— can be computed efficiently using matrix-vector operations
— pre-multiply the matrix TT, by the initial distribution
— in this case: 11, ((s’) equals 1 if s=s’ and 0 otherwise

3 . _ O [punif(©)’
Es,t - 13s,0 nt - ES,O Ei=qu-t,i (P)

E:O Ygti "Hso (punit(©)i

— compute iteratively to avoid the computation of matrix powers

(Tr .Punif(C))i” _ (Tr .Punif(C))i . punif(c)

—=s,t —s,t

DP/Probabilistic Model Checking, Michaelmas 2011 11

Uniformisation - Example

- CTMC C, uniformised DTMC for q=3
3

canolN FERER RN
2

- Initial distribution: Tt o =1[1, 0]
- Transient probabilities for time t = 1:

o0 _ ([punif(©))’
Eso,l = Ei=0 Yq-t,i ESO 0 (P)
2

~¥oo 001 g v BOL[5 1]+ vs 001 |57] e

~ [0.404043, 0.595957]

DP/Probabilistic Model Checking, Michaelmas 2011 12

Steady-state probabilities

Limit m<(s™) = lim_ , 1% (s")
— exists for all finite CTMCs
— (see next slide)

+ As for DTMCs, need to consider the underlying graph
structure of the Markov chain:

— reachability (between pairs) of states

— bottom strongly connected components (BSCCs)

— one special case to consider: absorbing states are BSCCs
— note: can do this equivalently on embedded DTMC

- CTMC is irreducible if all its states belong to a single BSCC;
otherwise reducible

DP/Probabilistic Model Checking, Michaelmas 2011 13

Periodicity

- Unlike for DTMCs, do not need to consider periodicity

- e.g. probability of being in state s, at time t?

- DTMC/CTMC: 1.00 “\ " '
: 0.751 \\
b ",‘ n
GU O fow o))
1 Q = DTMC
0.25
00— Ao
0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 40 4.5 5.0
T

DP/Probabilistic Model Checking, Michaelmas 2011 14

Irreducible CTMCs

For an irreducible CTMC:

— the steady-state probabilities are independent of the starting
state: denote the steady state probabilities by 11¢(s’)

- These probabilities can be computed as
— the unique solution of the linear equation system:

m Q=0 and Yy 1w (s)=1

where Q is the infinitesimal generator matrix of C

- Solved by standard means:
— direct methods, such as Gaussian elimination
— iterative methods, such as Jacobi and Gauss-Seidel

DP/Probabilistic Model Checking, Michaelmas 2011

15

Balance equations

. balance the rate of !
. leaving and entering :
: a state

R
T(s) - ;. R(s,s") = 2., T1(s") - R(s',9)

DP/Probabilistic Model Checking, Michaelmas 2011

16

Steady-state - Example

- Solve: t-Q=0 and X 11(s)=1

__33/2 _39//22 3(/)2 g fempty} 3/2 3/2 3/2 fFull}
HHara e ololcle
0 0 3 -3 | 3 3 3

-3/2-m(s,) + 3-7(s)) =0
3/2-1(sy) - 9/2-m(s) + 3-1(s,) =0
3/2-m(s)) - 9/2-1(s,) + 3-m(s;) = O

3/2-m(s,) - 3-m(s;) = 0

m(s,) + T(s) o+ m(s) o+ TS =]

m=1[8/15,4/15,2/15,1/15]

DP/Probabilistic Model Checking, Michaelmas 2011 17

Reducible CTMCs

- For a reducible CTMC:
— the steady-state probabilities T1°(s’) depend on start state s

- Find all BSCCs of CTMC, denoted bscc(C)

- Compute:
— steady-state probabilities 7 of sub-CTMC for each BSCC T
— probability ProbReachemb©(s, T) of reaching each T from s
- Then:
(s = {ProbReachemb(C’(s, T -1r'(s') if s'eT for some Tebscc(C)

0 otherwise

DP/Probabilistic Model Checking, Michaelmas 2011 18

CSL

- Temporal logic for describing properties of CTMCs
— CSL = Continuous Stochastic Logic [ASSBOO,BHHKO03]
— extension of (non-probabilistic) temporal logic CTL

Key additions:

— probabilistic operator P (like PCTL)
— steady state operator S
Example: down — P_, ;s [—fail U251 up]

— when a shutdown occurs, the probability of a system recovery

being completed between 1 and 2.5 hours without further
failure is greater than 0.75

Example: S_g [insufficient_routers]

— in the long run, the chance that an inadequate number of
routers are operational is less than 0.1

DP/Probabilistic Model Checking, Michaelmas 2011 19

CSL syntax

- W is true with

. CSL syntax: . E

—¢bu=truelaldAad|-d|P WS, [P] (state formulae)

- =Xd | U \(path formulae)

..

: . i in the “long
T until” with

— where a is an atomic proposition, | interval of R_,and p €
[0,1], ~ € {<,>,<,>}

- A CSL formula is always a state formula
— path formulae only occur inside the P operator

DP/Probabilistic Model Checking, Michaelmas 2011 20

CSL semantics for CTMCs

« CSL formulae interpreted over states of a CTMC

— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”
- Semantics of state formulae:

— for a state s of the CTMC (S,s,,;,R,L):

_ S |: a @ a E L(S) PrObabiIityof’.
—SEG AP < sk ¢ ands E ¢, starting in state s,
—-skE= ¢ & sEIs faM satisfying the path
— s P (W] < Prob(s, p) ~ p . ermuRe
- skES, (] S 2o T (s)~p

Probablllty of, startmg in state s, belng
in state s’ in the long run

DP/Probabilistic Model Checking, Michaelmas 2011 21

CSL semantics for CTMCs

- Prob(s,) is the probability, starting in state s, of satisfying
the path formula @

— Prob(s, W) = Pri{w € Pathy | w =W} if (5(0) is absorbing
. w(1) not defined

- Semantics of path formulae:
— for a path w of the CTMC:
—WEXo® < w(1)is defined and w(1) = ¢
—wed U, < dtel. (wdtE $, A VEU'<t. w@t’ = ¢,)

. there exists a time instant in the interval | where ¢, :
. is true and ¢, is true at all preceding time instants

T mm AR R AR R AR RN R R R R RN RN RN R N R R R R N R R R N R R R N R R R R N R R N R RN AR RN AR AN RN EAENEEEAEEEEEEEEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEER

DP/Probabilistic Model Checking, Michaelmas 2011 22

More on CSL

- Basic logical derivations:

— false, ¢, v d,, ¢ — b,

- Normal (unbounded) until is a special case
— ¢, U d, = ¢, U0 &,

- Derived path formulae:

—Fd=trueUdod, FFd=truelU ¢

-G =-(F—-9), Cd=~(F—-9¢)

- Negate probabilities: ...

—eg. P, [w]l=P_ [w], =S [d]=S5,[0]
- Quantitative properties

— of the form P_,[w]and S_, [¢]

— where P/S is the outermost operator

— experiments, patterns, trends, ...

DP/Probabilistic Model Checking, Michaelmas 2011

23

CSL example - Workstation cluster

- Case study: Cluster of workstations [HHKOO]
— two sub-clusters (N workstations in each cluster)
— star topology with a central switch
— components can break down, single repair unit

left backbone right

sub-cluster sub-cluster

left right
switch switch

— minimum QoS: at least 34 of the workstations operational and
connected via switches

— premium QoS: all workstations operational and connected via
switches

DP/Probabilistic Model Checking, Michaelmas 2011 24

CSL example - Workstation cluster

- S_,[minimum]
— the probability in the long run of having minimum QoS

P_, [FItY minimum]
— the (transient) probability at time instant t of minimum QoS

P_oos[FI%10 —=minimum]

— the probability that the QoS drops below minimum within 10
hours is less than 0.05

—minimum — P_g [FI%2] =minimum]

— when facing insufficient QoS, the chance of facing the same
problem after 2 hours is less than 0.1

DP/Probabilistic Model Checking, Michaelmas 2011 25

CSL example - Workstation cluster

minimum — P_g ¢ [minimum U4 premium]

— the probability of going from minimum to premium QoS
within t hours without violating minimum QoS is at least 0.8

P_,[= minimum U minimum]

— the chance it takes more than t time units to recover from
insufficient QoS

—r_switch_up — P_y; [-r_switch_up U —I_switch_up]

— if the right switch has failed, the probability of the left switch
failing before it is repaired is less than 0.1

P_, [FI2®) S_, o[minimum]]

— the probability of it taking more than 2 hours to get to a state
from which the long-run probability of minimum QoS is >0.9

DP/Probabilistic Model Checking, Michaelmas 2011 26

Summing up...

- Transient probabilities (time instant t)
— computation with uniformisation: efficient iterative method

Steady-state (long-run) probabilities
— like DTMCs
— requires graph analysis
— irreducible case: solve linear equation system
— reducible case: steady-state for sub-CTMCs + reachability

CSL: Continuous Stochastic Logic
— extension of PCTL for properties of CTMCs

DP/Probabilistic Model Checking, Michaelmas 2011 27

Probabilistic Model Checking Michaelmas Term 2011

Lecture 10
Model Checking for CTMCs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Overview

CSL model checking
— basic algorithm
— untimed properties
— time-bounded until
— the S (steady-state) operator

Rewards
— reward structures for CTMCs
— properties: extension of CSL
— model checking

DP/Probabilistic Model Checking, Michaelmas 2011

CSL: Continuous Stochastic Logic

. CSL syntax: s true with

__—_probability ~p

—¢du=truelaldAad|-d|P WS, [P] (state formulae)

- =Xd | UG \(path formulae)

..

: i inthe “long
e i bounded | orun” & is true
until” with

— where a is an atomic proposition, | an interval of R_,,
p € [0,1] and ~ € {<,>,<,>}

DP/Probabilistic Model Checking, Michaelmas 2011

CSL model checking for CTMCs

- Algorithm for CSL model checking [BHHKO3]
— inputs: CTMC C=(S,s,,;,R,L), CSL formula ¢
— output: Sat(d) = {seS | s £ ¢ }, the set of states satisfying ¢

- Often, also consider quantitative results

— e.g. compute result of P_, [FI%U minimum] for 0<t<100

. Basic algorithm similar to PCTL for DTMCs

— proceeds by induction on parse tree of ¢
- For the non-probabilistic operators:

— Sat(true) = S

— Sat(@a) ={seS|aelL(s)}

— Sat(—=¢) = S \ Sat(d)

— Sat(d; A &) = Sat(db,) N Sat(d,)

DP/Probabilistic Model Checking, Michaelmas 2011

o

-

\

=
=

CSL model checking for CTMCs

- Main task: computing probabilities for P,[-]land S_; [-]

~¢bu=true |a|dAd| |

P, [ch]IPNp[chd»]IPNp[cbu'd»]lsz[cb]

A A

~untimed © | bounded | _
until ST

— where ¢, U ¢, = ¢, U0 ¢,

DP/Probabilistic Model Checking, Michaelmas 2011

Untimed properties

Untimed properties can be verified on the embedded DTMC
— properties of the form: P_ [X b JorP_, [, U,]
— use algorithms for checking PCTL against DTMCs

- Certain qualitative time-bounded until formulae can also
be verified on the embedded DTMC

— for any (non-empty) interval |
sEP,[d, U d,]ifand onlyif s =P [d; UL &,]

— can use precomputation algorithm Prob0

DP/Probabilistic Model Checking, Michaelmas 2011 6

Model checking - Time-bounded until

- Compute Prob(s, ¢, U' d,) for all states where | is an
arbitrary interval of the non-negative real numbers

- Note:
— Prob(s, &, U' ¢,) = Prob(s, ¢, U9D ¢,)
where cl(l) denotes the closure of the interval |
— Prob(s, ¢, Ul%>) ¢,) = Probemb©(s, b, U ¢,)
where emb(C) is the embedded DTMC

- Therefore, 3 remaining cases to consider:

— | = [0,t] for some teR_,, | = [t,t’] for some t<t’eR_,
and | = [t,0) for some teR_,

- Two methods: 1. Integral equations; 2. Uniformisation

DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until (integral equations)

- Computing the probabilities reduces to determining the
least solution of the following set of integral equations

— (note similarity to bounded until for DTMCs)

PrOb(S’ d)] U d)z) equals prasere s : probab|||ty’ in state

— 1if s € Sat(d,), . probabilityof | s’ of satisfying
0 _ _ . moving froms { ! until before t-x
0if's €Sat(=b1 A=92) 155 at time x . © time units elapse

_ and OtherW|Se equals / --------------------------------- /

fOtE(Pemb(C)(s,s')- E(s) e‘E‘S)'X)o Prob(s',¢, U ¢,) dx
s'ES

- One possibility: solve these integrals numerically
— e.g. trapezoidal, Simpson and Romberg integration
— expensive, possible problems with numerical stability

DP/Probabilistic Model Checking, Michaelmas 2011 8

Time-bounded until (uniformisation)

- Reduction to transient analysis...

- Make all ¢, states absorbing @
S

— from such a state ¢, Ul0xXI ¢,
holds with probability 1

- Make all =&, A=, states absorbing

— from such a state ¢, U0X] ¢,
holds with probability O

- Formally: Construct CTMC Cl[d,][—d; A—d,]
— where for CTMC C=(S,s,,,R,L), let C[08]=(S,s;,;;,R[O],L) where
R[O](s,s’)=R(s,s’) if s ¢ Sat(B) and O otherwise

DP/Probabilistic Model Checking, Michaelmas 2011

Time-bounded until (uniformisation)

- Problem then reduces to calculating transient probabilities
of the CTMC C[,][—P; A—d,]:

Prob(s,d, U2 ¢,) = § mrlieeli-tinal(qry
s'eSat(¢,)

étransient probability: starting in state s, the :
. probability of being in state s’ at time t |

DP/Probabilistic Model Checking, Michaelmas 2011 10

Time-bounded until (uniformisation)

- Can now adapt uniformisation to computing the vector of
probabilities Prob(¢, U0t ¢,)

— recall TT; is matrix of transient probabilities TT(s,s")=11 (s’)
— computed via uniformisation: TT, = E:o Yo, .(Punif(C) .

. Combining with: Prob(s, &, U ¢,) = znii"’”[“‘"“‘*’”(s')
s'eSat(d,)

Prob(e, U ,) =TIgie:1n-01 g,

- ((punif(Cld ll=d1a-d,D)
- (Ei=0 Yat; (P C))E
. . (punif(Cloll-d1a-dD Y |
=Ei=o (Yq-t,i (P T) ¢,)

DP/Probabilistic Model Checking, Michaelmas 2011

11

Time-bounded until (uniformisation)

- Have shown that we can calculate the probabilities as:
o i
o, if(C “hA-
Prob(¢, U™ ¢,) = Ei=0(Vg, (puntiteztie ¢2D)))

- Infinite summation can be truncated using the techniques
of Fox and Glynn [FG88]

- Can compute iteratively to avoid matrix powers:
(Punif(C))0 ‘b, = b,
i+1 [
if(C) if(C) if(C)
(pemi©) . g, < pon ,((Pun.),q)z)

DP/Probabilistic Model Checking, Michaelmas 2011 12

Time-bounded until - Example

P.ooes [FIO731full] = P_gec [true U731 full]
— “probability of the queue becoming full within 7.5 time units”
- State s; satisfies full and no states satisfy —true
— in C[full][-true A= full] only state s; made absorbing

2/3

2/3

1/3

0

0

1/3

0"

matrix of unif(C[full][-true A—=full])

with uniformisation rate max,cE(s)
=4.5

..

DP/Probabilistic Model Checking, Michaelmas 2011 13

Time-bounded until - Example

- Computing the summation of matrix-vector multiplications

/

: ®© if ~dyA- - |
Prob(é, U ¢,) - 37, (Yq~t,i (punicioali-oin-du) b,
— vyields Prob(FIo.751full) ~ [0.6482, 0.6823, 0.7811, 1]

+ Pl FIO71 full] satisfied in states s, s, and s;

3/2 3/2

{empty.| :i .I{f ull}

DP/Probabilistic Model Checking, Michaelmas 2011 14

Time-bounded until - P_, [, ULt §,]

In this case the computation can be split into two parts:

1. Probability of remaining in ¢, states until time t

— can be computed as transient probabilities on the CTMC
where are states satisfying =&, have been made absorbing

2. Probability of reaching a ¢, state, while remaining in
states satisfying ¢,, within the time interval [0,t’-t]

— i.e. computing Prob(¢, ULt ¢,)

Prob(s, &, U ¢,) = ¥ . T *(s") -Prob(s', b, U ¢,)

__ AN

. sum over states Probability of reaching state prol?oatl’oitgity E
. satisfying ¢, | | S attimetand satisfying | b, UBTH o,

DP/Probabilistic Model Checking, Michaelmas 2011 15

Time-bounded until - P_, [, ULt §,]

- Let Proby, (s, ¢,Ul%t"td,) = Prob(s, ¢,Ul0t-td,) if s€Sat(d,)
and 0 otherwise

- From the previous slide we have:

Prob(¢, U b,) = TIg*! -Prob, (&, U ¢,)

_ (E:O You (Punif(C[ﬁdD]])))Md)] (d)] U[O,t'—t] ¢2)

\

E:O (th’i) (Punif(C[ﬂd)]])) .md)](d)] U[o,t'—t] ¢2))

— summation can be truncated using Fox and Glynn [FG88]

— can compute iteratively (only scalar and matrix-vector
operations)

DP/Probabilistic Model Checking, Michaelmas 2011 16

Time-bounded until - P_, [, U= ¢,]

- Similar to the case for ¢, Ulttl ¢, except second part is now
unbounded, and hence the embedded DTMC can be used

1. Probability of remaining in ¢, states until time t

- 2. Probability of reaching a ¢, state, while remaining in
states satisfying ¢;,

— i.e. computing Prob(¢, U%*) ¢.,)

% Cl-¢,] ' 1
Prob(s,¢, U1 ¢,) = Es'esmwﬂs’t (s"): Prob™®(s,¢, U ¢,)
.. ~ Probability of reaching | \
sum over states | . states’attimetand | probability -
satisfying ¢ .| satisfying ¢, up until this | i ®$; U0 ¢,
T - Lo point . holds ins’ :

DP/Probabilistic Model Checking, Michaelmas 2011 17

Time-bounded until - P_, [, U= ¢,]

- Letting Proby, (s, ¢,U%*)¢,) = Prob(s, ¢,Ul0>)¢,) if s€Sat
($,) and 0 otherwise, we have:

Prob(, U ,) = T -Probg™ (¢, U d,)

= (EZO Yq-t,i . (Punif(C["d)]])))M:ﬂb(c)(d)] U C|>2)

\

E:O (Yq-t,i . (Punif(C["d)]])) . mz:]b(C)(d)] U CI)Z) ,

— summation can be truncated using Fox and Glynn [FG88]

— can compute iteratively (only scalar and matrix-vector
operations

DP/Probabilistic Model Checking, Michaelmas 2011 18

Model Checking - S_ [¢]

- A state s satisfies the formula S_j[$] if =, , ¢ (s’) ~ p

— 1. (s’) is probability, having started in state s, of being in
state s’ in the long run

« Thus reduces to computing and then summing steady-
state probabilities for the CTMC

If CTMC is irreducible:
— solution of one linear equation system
If CTMC is reducible:
— determine set of BSCCs for the CTMC
— solve two linear equation systems for each BSCC T
— one to obtain the vector ProbReachemb©)(T)
— the other to compute the steady state probabilities t7 for T

DP/Probabilistic Model Checking, Michaelmas 2011

19

S.,[¢ |- Example

. S_o [full]

« CTMC is irreducible (comprises a single BSCC)
— steady state probabilities independent of starting state
— can be computed by solving 1-Q=0 and X 11(s)=1

-3/2 3/2 0 0]
3 -9/2 3/2 0
0 3 -9/2 3/2
0 0 3 -3

3/2 3/2 3/2

{empty} {full}
oBo@cBe
3

3 3

DP/Probabilistic Model Checking, Michaelmas 2011 20

S.,[¢ |- Example

-3/2-1(s,) + 3-m(s,) =0
3/2-m(sy) - 9/2-m(s)) + 3-7(s,) =0
3/2-m(s)) - 9/2-m(s,) + 3-m(s;) = O
3/2-m(s,) - 3-m(s;) = O
ms,) + m(s) o+ m(s,) o+ m(s;) =]

3/2 3/2 3/2

{empty} {full}
cgogcge
3 3 3

— solution: Tt =[8/15,4/15,2/15,1/15]
= 2 ¢ saquny () = 1/15 < 0.1
— so all states satisfy S_, [full]

DP/Probabilistic Model Checking, Michaelmas 2011 21

Rewards (or costs)

- Like DTMCs, we can augment CTMCs with rewards
— real-valued quantities assigned to states and/or transitions
— can be interpreted in two ways: instantaneous/cumulative
— properties considered here: expected value of rewards
— formal property specifications in an extension of CSL

- For a CTMC (5,s;,,ir,R,L), a reward structure is a pair (p,l)
- p:S —R_,is avector of state rewards
—1:S XS —-R,,is amatrix of transition rewards

- For cumulative reward-based properties of CTMCs
— state rewards interpreted as rate at which reward gained

— if the CTMC remains in state s for teR_, time units, a reward
of t-p(s) is acquired
DP/Probabilistic Model Checking, Michaelmas 2011 22

Reward structures — Examples

3/2 3/2

{empty} {full}
@‘9 9‘

- Example: “size of message queue”
— p(s)=i and (s;,s)=0 Vi,}]

instantaneous

/ cumulative

- Example: “time for which queue is not full”
— p(s)=1 for i<3, p(s3)=0 and u(s;,s;)=0 Vi,j

DP/Probabilistic Model Checking, Michaelmas 2011 23

Reward structures — Examples

3/2

{empty}
@‘9 9‘

Example: “number of requests served”

‘0

O
O
O

DP/Probabilistic Model Checking, Michaelmas 2011

and

L

O

0)

)

)

0)

0)
0)
)
0)

24

CSL and rewards

PRISM extends CSL to incorporate reward-based properties
— adds R operator like the one added to PCTL

—¢ = ... | R,[IF]T | R,[C=t]| R,[Fodl| R,[S]

é“instantaneous” “cumulative” “reachability” “steady-state”

— wherert € R, ~ € {<,>,<,>}

R., [-] means “the expected value of - satisfies ~r”

DP/Probabilistic Model Checking, Michaelmas 2011 25

Types of reward formulae

Instantaneous: R_ [I7t]

— the expected value of the reward at time-instant t is ~r

— “the expected queue size after 6.7 seconds is at most 2”
Cumulative: R_ [C=t]

— the expected reward cumulated up to time-instant t is ~r

— “the expected requests served within the first 4.5 seconds of
operation is less than 10”

Reachability: R_, [F ¢]

— the expected reward cumulated before reaching ¢ is ~r

— “the expected requests served before the queue becomes full”
Steady-state R_. [S]

— the long-run average expected reward is ~r

— “expected long-run queue size is at least 1.2”

DP/Probabilistic Model Checking, Michaelmas 2011 26

Reward properties in PRISM

Quantitative form:
- eg R:? [CSt]
— what is the expected reward cumulated up to time-instant t?

- Add labels to R operator to distinguish between multiple
reward structures defined on the same CTMC
— €.4. R{num_req}=? [C=4-]

— “the expected number of requests served within the first 4.5
seconds of operation”

- eg R{pow}=? [CS4'5]

— “the expected power consumption within the first 4.5 seconds
of operation”

DP/Probabilistic Model Checking, Michaelmas 2011 27

Reward formula semantics

Formal semantics of the four reward operators:

—sER_[I7Y] = Exp(s, X,_p) ~ r

—skER_ [Cst] = Exp(s, Xcop) ~ ¥

—sER.[S] = lim,_ (1/t - Exp(s, Xco)) ~r
- where:

— Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R_, with respect to the probability measure Pr,

DP/Probabilistic Model Checking, Michaelmas 2011 28

Reward formula semantics

Definition of random variables:

— path w=setS 4S5 stateof wattimet | : timespentin :
.. E State Sjt before é
: ttime units

X (W) = 121 (ti -p(s) + L(si!Si+l))+ (t - jzjti) p(s;,)

X (W) = g(w@t)

0 if s, €Sat(d)

X (W) = 0 if s, Sat(p) foralli=0

2 :j)_]ti -p(s) +1(s,s,,) otherwise

— where j=min{j | 2ty >t}land ky, = min{i|s, = ¢}

DP/Probabilistic Model Checking, Michaelmas 2011 29

Model checking reward formulae

Instantaneous: R_, [I7t]
— reduces to transient analysis (state of the CTMC at time t)
— use uniformisation
Cumulative: R_ [C=t]
— extends approach for time-bounded until
— based on uniformisation
Reachability: R_, [F ¢]
— canh be computed on the embedded DTMC
— reduces to solving a system of linear equations
- Steady-state: R_ [S]
— similar to steady state formulae S_ [¢]
— graph based analysis (compute BSCCs)

— solve systems of linear equations (compute steady state
probabilities of each BSCC)

DP/Probabilistic Model Checking, Michaelmas 2011 30

CSL model checking complexity

For model checking of a CTMC complexity:
— linear in |®| and polynomial in |S|
— linear in q-t,,, (t,a IS mMaximum finite bound in intervals)
PNp[dJ] Ul0.2) @], S~p[¢], R.. [F ®] and R_, [S]
— require solution of linear equation system of size |S|
— can be solved with Gaussian elimination: cubic in |S]
— precomputation algorithms (max |S| steps)
PND[CD] U' o,], R, [C=Y] and R_, [I71]
— at most two iterative sequences of matrix-vector products
— operation is quadratic in the size of the matrix, i.e. |S|
— total number of iterations bounded by Fox and Glynn
— the bound is linear in the size of g-t (q uniformisation rate)

DP/Probabilistic Model Checking, Michaelmas 2011

31

Summing up...

Model checking a CSL formula ¢ on a CTMC
— recursive: bottom-up traversal of parse tree of ¢
Main work: computing probabilities for P and S operators

— untimed (X ¢, &, U 9,): perform on embedded DTMC

— time-bounded until: use uniformisation-based methods,
rather than more expensive solution of integral equations

— other forms of time-bounded until, i.e. [t;,t,] and [t,),
reduce to two sequential computations like for [0,t]

— S operator: summation of steady-state probabilities
Rewards - similar to DTMCs
— except for continuous-time accumulation of state rewards

— extension of CSL with R operator
— model checking of R comparable with that of P

DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic Model Checking Michaelmas Term 2011

Lecture 11
Counterexamples + Bisimulation

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Overview

Counterexamples
— non-probabilistic model checking
— counterexamples for PCTL + DTMCs
— computing smallest counterexamples

Bisimulation
— bisimulation equivalences: DTMCs, CTMCs
— preservation of logics: PCTL, CSL
— bisimulation minimisation

DP/Probabilistic Model Checking, Michaelmas 2011

Non probabilistic counterexamples

Counterexamples (for non-probabilistic model checking)
— generated when model checking a (universal) property fails
— trace through model illustrating why property does not hold
— major advantage of the model checking approach
— bug finding vs. verification

Example:

— CTL property AG —err
— (or equivalently, —EF err)
— (“an error state is never reached”)

— counterexample is a finite trace
to a state satisfying err

— alternatively, this is a witness
to the satisfaction of formula EF err

{err}

DP/Probabilistic Model Checking, Michaelmas 2011

Counterexamples for DTMCs?

PCTL example: P_, 4, [F err]
— “the probability of reaching an error state is less than 0.01”
— what is a counterexample fors = P_, 4, [Ferr]?
— not necessarily illustrated by a single trace to an err state

— in fact, “counterexample” is a set of paths satisfying F err
whose combined measure is greater than or equal to 0.01

. Alternative approach to “debugging” seen so far:

— probabilistic model checker provides actual probabilities
— e.g. queries of the form P_, [F err]

— anomalous behaviour identified by examining trends

— e.g.P_,[F=Terr] forT=0,...,100

- This lecture: DTMC counterexamples in style of [HKO7]
— also some work done on CTMC/MDP counterexamples

DP/Probabilistic Model Checking, Michaelmas 2011

DTMC notation

- DTMC: D = (§,s,;,P,L)

- Path(s) = set of all infinite paths starting in state s

+ Pry: o) — [0,1] = probability measure over infinite paths
— where X, is the o-algebra on Path(s)

— defined in terms of probabilities for finite paths

- P,(w) = probability for finite path w = ss;...s,

— P.(s) =1

— P.(ss,...s,) = P(s,s;) - P(s;,S5) - ... - P(s,_1,S,)

— extend notation to sets: P,(C) for set of finite paths C
— P, extends uniquely to Pr,

- Path(s, @) ={ w € Path(s) | w = Y }

— Prob(s, @) = Pr(Path(s,))

- Pathg (s, @) = set of finite paths from s satisfying @

DP/Probabilistic Model Checking, Michaelmas 2011

Counterexamples for DTMCs

- Consider PCTL properties of the form:
— P_,[®, Uk d,], where k € N U {0}

— i.e. bounded or unbounded until formulae with closed upper
probability bounds

Refutation:
—sEP_ [® Uskd,]
— < Pr.(Path(s, ®, U=k ®,)) > p
— i.e. total probability mass of ®, U=k &, paths exceeds p

- Since the property is an until formula
— this is evidenced by a set of finite paths

DP/Probabilistic Model Checking, Michaelmas 2011

Counterexamples for DTMCs

- A counterexample for P_, [®; U=k @,] in state s is:
— a set C of finite paths such that C < Pathg, (s, @) and P,(C) > p

- Example

— Consider the PCTL formula:
o PsO.B [Fa]

— This is not satisfied in s,

— Prob(sy, Fa) =1/44+1/8+1/16+... =1/2
— A counterexample: C = { s4S,, 545055 }

- PO =1/4+(1/2)1/4) =3/8 =0.375

DP/Probabilistic Model Checking, Michaelmas 2011

Finiteness of counterexamples

- There is always a finite counterexample for:
- S I?l: Psp[cb] USkq)z]

- On the other hand, consider this DTMC:
— and the PCTL formula:

— Prob(s,, Fa) =1/4+1/8+1/16+...
=1/2

— counterexample would require infinite set of paths
— {(So)'s; }ien

DP/Probabilistic Model Checking, Michaelmas 2011

Counterexamples for DTMCs

- Aim: counterexamples should be succinct, comprehensible
- Set of all counterexamples:

— CX,(s,p) = set of all counterexamples for P_, [y] in state s
Minimal counterexample
— counterexample C with [C| < [C’| for all C’ € CX(s,p)
- “Smallest” counterexample

— minimal counterexample C with P(C) > P(C’)
for all minimal C’ & CX,(s,W)

— reduces to finding...
- Strongest (most probable) evidence

— finite path w in Pathg (s, W) such that P(w) > P(w’)
for all w’ € Pathg, (s, W)

— i.e. contributes most to violation of PCTL formula

DP/Probabilistic Model Checking, Michaelmas 2011 9

Example

- PCTL formula: P_;,, [Fb]
- SOPI:PS]/Z[Fb]
— since Prob(sy, F b) = 0.9

- Counterexamples:
— €y =1{50515,, 505154525 50515455, S054S52 }
- P,o(Cy) = 0.2+0.2+0.12+0.15 = 0.67 (not minimal)
— C2 — { Sos]SZ, 50515452, 50515455 }
- P,o(C,) =0.2+0.2+0.12 = 0.52 (not “smallest”)
— C3 = 1505152, S0515452, S0545> }
. Po(C3) =0.2+0.2+0.15 = 0.55 (“smallest”)

DP/Probabilistic Model Checking, Michaelmas 2011 10

Weighted digraphs

- A weighted directed graph is a tuple G = (V, E, w) where:
— Vis a set of vertices

— E<V X Vis asetof edges

—w:E— R,,is aweight function

Finite path w in G
— is a sequence of vertices vyv,v,...v, such that (v,,v, ;)€E Vi=0
— the distance of w = vyvv,...v, is: Z_o 1 W(V,Vi,q)

Shortest path problem

— given a weighted digraph, find a path between two vertices v,
and v, with the smallest distance

— i.e. a path w s.t. d(w) < d(w’) for all other such paths w’

DP/Probabilistic Model Checking, Michaelmas 2011 11

Finding strongest evidences

- Reduction to graph problem...

- Step 1: Adapt the DTMC

— make states satisfying —-®, A =®, absorbing
. (i.e. replace all outgoing transitions with a single self-loop)

— add an extra state t and replace all transitions from any o,
state with a single transition to t (with probability 1)

- Step 2: Convert new DTMC into a weighted digraph

— for the (adapted) DTMC D = (S,s;;;,P,L):

— corresponding graph is Gy = (V, E, w) where:
—V=SandE ={(s,s’)eSxS | P(s,s’)>0 }

— w(s,s’) = log(1/P(s,s’))

- Key idea: for any two paths w and w’ in D (and in Gp)
— P(wW’) = P,(w) if and only if d(w’) < d(w)

DP/Probabilistic Model Checking, Michaelmas 2011 12

Example...

PCTL formula: P_, , [F b]

log(1) log(5)

DP/Probabilistic Model Checking, Michaelmas 2011 13

Finding strongest evidences

- To find strongest evidence in DTMC D
— analyse corresponding digraph
For unbounded until formula P_, [®, U &,]
— solve shortest path problem in digraph (target t)
— polynomial time algorithms exist
. e.g. Dijsktra’s algorithm can be implemented in O(|E|+|V/|-log|V|)
For bounded until formula P_, [&, U=k @,]
— solve special case of the constrained shortest path problem
— also solvable in polynomial time
- Generation of smallest counterexamples
— based on computation of k shortest paths
— k can be computed on the fly

DP/Probabilistic Model Checking, Michaelmas 2011 14

Other cases

Lower bounds on probabilities
—ie.sE P [D Uskd,]
— negate until formula to reverse probability bound
— solvable with BSCC computation + probabilistic reachability
— for details, see [HKO7]

- Continuous-time Markov chains

— these techniques can be extended to CTMCs and CSL [HKO7b]
— naive approach: apply DTMC techniques to uniformised DTMC

— modifications required to get smaller counterexamples

— another possibility: directed search based techniques [AHLO5]

DP/Probabilistic Model Checking, Michaelmas 2011

15

Bisimulation

- ldentifies models with the same branching structure
— i.e. the same stepwise behaviour
— each model can simulate the actions of the other
— guarantees that models satisfy many of the same properties

+ Uses of bisimulation:
— show equivalence between a model and its specification
— state space reduction: bisimulation minimisation

- Formally, bisimulation is an equivalence relation over states

— bisimilar states must have identical labelling
and identical stepwise behaviour

DP/Probabilistic Model Checking, Michaelmas 2011 16

Equivalence relations

Let R be a relation over some set S
—i.e.R=S XS
— we write s, R s, as shorthand for (s;,s,) € R

R is an equivalence relation iff:
— Ris reflexive, i.e. sR's
— Ris symmetric, i.e. if s; R's, then s, R s;
— R is transitive, i.e. if s; Rs, and s, R s; then s; R s;

R partitions S:

— equivalence classes: [s]lg ={s’&€S|s'Rs}
— the quotient of S under R is denoted S/R ={[s]g | s €S}

DP/Probabilistic Model Checking, Michaelmas 2011

17

Bisimulation on DTMCs

- Consider a DTMC D = (S,s;,,,P,L)
- Some notation:
— P(s,T) =2, P(s,s’) forT =S

- An equivalence relation R on S is a probabilistic
bisimulation on D if and only if for all s; R s,:

— L(s;) = L(s,)
— P(s;, T) = P(s,, T) for all T € S/R (i.e. for all equivalence classes of R)

- States s, and s, are bisimulation-equivalent (or bisimilar)
— if there exists a probabilistic bisimulation R on D with s; R s,
— denoted s, ~ s,

DP/Probabilistic Model Checking, Michaelmas 2011 18

Simple example

Bisimulation relation ~

- Quotient of S under ~
— { {51}, {U], Uz}, {V1, Vz} }

Bisimilar states:

—U1~U2

DP/Probabilistic Model Checking, Michaelmas 2011

19

Bisimulation on DTMCs

Bisimulation between DTMCs D, and D,
— D, ~ D, if they have bisimilar initial states
Formally:

— state labellings for D, and D, over same set of atomic prop.s
— bisimulation relation is over disjoint union of D, and D,

2/3 1/3
{a} {b}

DP/Probabilistic Model Checking, Michaelmas 2011 20

Simple example

- Bisimilar states: Bisimilar DTMCs: D, ~ D,
- LI] ~ Uz ~ U
— V;~V, ~V

2/3 1/3
{a} {b}

DP/Probabilistic Model Checking, Michaelmas 2011 21

Quotient DTMC

- ForaDTMC D = (§,s;..;,P,L) and probabilistic bisimulation ~

inity
- Quotient DTMC is
T D/N — (S,ls’initip,iL’)

- where:

- S =5/~={[s]l.|s€S}
— Sinit = [Sinitl-

— P'([s]., [s’].) = P(s, [s].) 1 1

- L(sl) = Ls) \ ... 5

well defined since
bisimulation ensures
P(s, [s’].) same for all s in [s].

DP/Probabilistic Model Checking, Michaelmas 2011 22

Bisimulation and PCTL

Probabilistic bisimulation preserves all PCTL formulae

For all states s and s’:

for all PCTL formulae ¢, s = ® if and only if s’ = ®

Note also:

— every pair of non-bisimilar states can be distinguished with
some PCTL formula

— ~ is the coarsest relation with this property
— in fact, bisimulation also preserves all PCTL* formulae

DP/Probabilistic Model Checking, Michaelmas 2011 23

CTMC bisimulation

- Check equivalence of rates, not probabilities...

- An equivalence relation R on S is a probabilistic
bisimulation on CTMC C=(S,s;,;;,R,L)
if and only if for all s; R s,:

— L(s;) = L(s,)
— R(s;, T) = R(s,, T) for all classes T in S/R

- Alternatively, check:
_ I—(S]) = L(52)1 Pemb(c)(S]1 T) = Pemb(c)(521 T)’ E(S]) — E(SZ)

- Bisimulation on CTMCs preserves CSL
— (see [BHHKO3] and also [DP03])

DP/Probabilistic Model Checking, Michaelmas 2011

24

Bisimulation minimisation

More efficient to perform PCTL/CSL model checking on the

quotient DTMC/CTMC

— assuming quotient model can be constructed efficiently
— (see [KKZJO7] for experimental results on this)

Bisimulation minimisation
— algorithm to construct quotient model
— based on partition refinement
— repeated splitting of an initially coarse partition
— final partition is coarsest bisimulation wrt. initial partition
— (optimisations/variants possible by changing initial partition)
— complexity: O(|P|-log|S| + |AP|-|S|) [DHS 03]
. assuming suitable data structure used (splay trees)

DP/Probabilistic Model Checking, Michaelmas 2011

25

Bisimulation minimisation

1. Start with initial partition
—say M ={{seS | L(s)=lab } | labe2AP }

- 2. Find a splitter T € TT for some block B € TT

— a splitter T is a block such that probability of goingto T
differs for some states in block B

—ie ds.s°€B. P(s,T) % P(s’.T) <— rep|acepw|thR

for CTMCs
3_ Sp||t B into Sub_blocks / ...

— such that P(s,T) is the same for all states in each sub-block

- 4. Repeat steps 2/3 until no more splitters exist
— i.e. no change to partition TI

DP/Probabilistic Model Checking, Michaelmas 2011 26

CTMC example

- Consider model checking P_, [FI%Ua] on this CTMC:

Minimisation:

@3@ @ @ Mo, B1=150,51,52,53,54,S5}, Ba={S¢}
B, is a splitter for B,
(since e.g. R(s;,B,)=0+2=R(s,,B,))
T, B;={s(,51,54,5<}, B,={s¢}, B3={s,,55}

Q e @ B; is a splitter for B,

(since e.g. R(s;,B3)=0+4=R(s,,B5))
TT,: B1={5],55}, B2={56}, B?,:{Sz;sg}, B4={50,54}
No more splitters...

S/~ ={ {51,55}, {56}7 {52,53}, {50,54} }

DP/Probabilistic Model Checking, Michaelmas 2011 27

CTMC example...

11 2
{a}

Prob<(s,, FI%Ua) = Prob®/~({s,,s,}, FI%Ua)

DP/Probabilistic Model Checking, Michaelmas 2011

S/~ = {{sy,Ss} {S6}, {52,553}, {S,S4} }

E o s

28

Summing up...

- Counterexamples
— essential ingredient of non-probabilistic model checking

— counterexamples for PCTL + DTMCs

- finite set of paths showing ¥ P_, [®; U=k @,]
— computing smallest counterexamples

. reduction to well-known graph problems

- Bisimulation

— relates states/Markov chains with identical labelling
and identical stepwise behaviour

— preserves PCTL, CSL, ...

— bisimulation minimisation: automated reduction to quotient
model

DP/Probabilistic Model Checking, Michaelmas 2011

29

Probabilistic Model Checking Michaelmas Term 2011

Lecture 12
Markov Decision Processes

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Overview

Nondeterminism

Markov decision processes (MDPs)

Paths, probabilities and adversaries

End components

DP/Probabilistic Model Checking, Michaelmas 2011

Recap: DTMCs

- Discrete-time Markov chains (DTMCs)
— discrete state space, transitions are discrete time-steps

— from each state, choice of successor state (i.e. which
transition) is determined by a discrete probability distribution

- DTMCs are fully probabilistic

— well suited to modelling, for example, simple random
algorithms or synchronous probabilistic systems where
components move in lock-step

DP/Probabilistic Model Checking, Michaelmas 2011

Nondeterminism

But, some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

Concurrency - scheduling of parallel components

— e.g. randomised distributed algorithms - multiple probabilistic
processes operating asynchronously

Unknown environments
— e.g. probabilistic security protocols - unknown adversary
Underspecification - unknown model parameters

— e.g. a probabilistic communication protocol designed for
message propagation delays of between d_.. and d

- Abstraction
— e.g. partition DTMC into similar (but not identical) states

min max

DP/Probabilistic Model Checking, Michaelmas 2011 4

Probability vs. nondeterminism

— (5,54,R,L) where R < SXS

— choice is nondeterministic ' @’

- Labelled transition system wﬁ
OO

- Discrete-time Markov chain
— (5,s,P,L) where P : SxS—[0,1]
— choice is probabilistic

- How to combine?

DP/Probabilistic Model Checking, Michaelmas 2011

Markov decision processes

- Markov decision processes (MDPs)
— extension of DTMCs which allow nondeterministic choice

- Like DTMCs:

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur in discrete time-steps

- Probabilities and nondeterminism

— in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states

DP/Probabilistic Model Checking, Michaelmas 2011 6

Markov decision processes

Formally, an MDP M is a tuple (S,s;,;,Steps,L) where:
— Sis a finite set of states (“state space”)
— Siie € Sis the initial state
— Steps : S — 2AxDist) js the transition probability function

where Act is a set of actions and Dist(S) is the set of discrete
probability distributions over the set S

— L:S — 2APjs a labelling with atomic propositions

Notes:
— Steps(s) is always non-empty,
i.e. no deadlocks

— the use of actions to label
distributions is optional

DP/Probabilistic Model Checking, Michaelmas 2011

Simple MDP example

Modification of the simple DTMC communication protocol
— after one step, process starts trying to send a message

— then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart

1 wait {SUCC}

DP/Probabilistic Model Checking, Michaelmas 2011

Simple MDP example 2

- Another simple MDP example with four states
— from state s, move directly to s, (action a)
— in state s;, nondeterministic choice between actions b and c
— action b gives a probabilistic choice: self-loop or return to s,
— action c gives a 0.5/0.5 random choice between heads/tails

{heads}

DP/Probabilistic Model Checking, Michaelmas 2011

Simple MDP example 2

M = (S,s.,Steps,L) AP = {init,heads,tails}
L(so)={init},
S ={sq, S, Sy, S3} L(s))=4,

St = S L(s,)={heads},

L(s;)={tails}

Steps(sg) ={ (a, [s;,—~1]}

Steps(s;) =1{ (b, [sy—0.7,5,~0.3]), (c, [s,~0.5,5;—0.5]) }
Steps(s,) = { (a, [s,—1]) } {heads}
Steps(s3) =1{ (a, [s3—1]) }

DP/Probabilistic Model Checking, Michaelmas 2011 10

The transition probability function

- It is often useful to think of the function Steps as a matrix
— hon-square matrix with |S| columns and 2. _c |Steps(s)| rows

- Example (for clarity, we omit actions from the matrix)

Steps(sy) ={ (a, s;~1) }
Steps(s;) =1{ (b, [5,—0.7,5,~0.3]), (c, [s,—0.5,5;—~0.5]) }
Steps(s,) ={(a, s,~1) }
Steps(s3) ={ (a, s3—1) }

I
o -

Steps O 0.5 0.5
0O O 1 0
0 0 O 1

DP/Probabilistic Model Checking, Michaelmas 2011

11

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

PRISM code;:

module M1
s : [0..2] init O;
[l s=0 -> (s’=1);
[1s=1-> 0.5:(s’=0) + 0.5:(s’=2);
[l s=2 -> (s’=2);

endmodule

module M2 = M1 [s=t] endmodule

1 .
o=

1
Os0x0D

DP/Probabilistic Model Checking, Michaelmas 2011 12

Example - Parallel composition

Asynchronous parallel
composition of two
3-state DTMCs

Action labels

omitted here m
1 1

DP/Probabilistic Model Checking, Michaelmas 2011

13

Paths and probabilities

. A (finite or infinite) path through an MDP

— is a sequence of states and action/distribution pairs
— e.g. Sp(@g,Mp)S (@, My)s5. ..

— such that (a;,u;) € Steps(s)) and u(s;.;) > 0 for all i=0

— represents an execution (i.e. one possible behaviour) of the
system which the MDP is modelling

Path(s) = set of all paths through MDP starting in state s
— Pathg;(s) = set of all finite paths from s theads]

Paths resolve both nondeterministic
and probabilistic choices

— how to reason about probabilities?

DP/Probabilistic Model Checking, Michaelmas 2011 14

Adversaries

To consider the probability of some behaviour of the MDP
— first need to resolve the nondeterministic choices
— ...which results in a DTMC
— ...for which we can define a probability measure over paths

An adversary resolves nondeterministic choice in an MDP
— also known as “schedulers”, “policies” or “strategies”
Formally:

— an adversary o of an MDP M is a function mapping every finite
path w = sy(ay,Mg)S;---S, to an element o(w) of Steps(s,)

— i.e. resolves nondeterminism based on execution history

Adv (or Adv,,) denotes the set of all adversaries

DP/Probabilistic Model Checking, Michaelmas 2011 15

Adversaries — Examples

- Consider the previous example MDP
— note that s, is the only state for which [Steps(s)| > 1
— i.e. s, is the only state for which an adversary makes a choice

— let py, and y, denote the probability distributions associated
with actions b and c in state s,

- Adversary o,
— picks action c the first time
— 07(5¢S7)=(C, M)
- Adversary o,
— picks action b the first time, then c

— 05(5¢51)=(b,Mp), 0,(5S157)=(C, Uy,
0,(5¢515051)=(C,M.) (Note: actions/distributions
omitted from paths for clarity)

DP/Probabilistic Model Checking, Michaelmas 2011 16

Adversaries and paths

Patho(s) < Path(s)
— (infinite) paths from s where nondeterminism resolved by o

— i.e. paths sy(ag,Mg)s;(a;,H7)S5. .
— for which o(sy(ag,Hg)s;---5,) = (@,,4,)

{heads}

- Adversary o,
— (picks action c the first time)
— Pathoi(sy) =1{545:5,%, (5153 }

- Adversary o,
— (picks action b the first time, then ¢)
— Path92(s;) =1{545:5¢5152%5 S051505153% S0S1515>%, S0S15153% }

DP/Probabilistic Model Checking, Michaelmas 2011 17

Induced DTMCs

- Adversary o for MDP induces an infinite-state DTMC D¢

Do = (Path9 (s),s,P%,) where:
— states of the DTMC are the finite paths of o starting in state s
— initial state is s (the path starting in s of length 0)
— P9 (w,w’)=u(s’) if w’'= w(a, n)s’ and o(w)=(a,u)
— P°(w,w’)=0 otherwise

1-to-1 correspondence between Path9(s) and paths of D°

- This gives us a probability measure Pro, over Patho(s)
— from probability measure over paths of D°

DP/Probabilistic Model Checking, Michaelmas 2011 18

Adversaries — Examples

- Fragment of induced DTMC for adversary o,
— 0, picks action c the first time

DP/Probabilistic Model Checking, Michaelmas 2011

19

Adversaries — Examples

Fragment of induced DTMC for adversary o, {heads}
— 0, picks action b, then c

DP/Probabilistic Model Checking, Michaelmas 2011 20

MDPs and probabilities

- Prob(s, @) = Pro. { w € Patho(s) | w = @ }
— for some path formula @
— e.g. Prob?(s, F tails)

- MDP provides best-/worst-case analysis
— based on lower/upper bounds on probabilities
— over all possible adversaries

pmin(siw) = infoEAdv Prob(’(s,xp)

pmax(siw) = SUP,cagv PrObG(S,lp)

DP/Probabilistic Model Checking, Michaelmas 2011 21

Examples

Probd'(s,, F tails) = 0.5
Prob9?(s,, F tails) = 0.5
— (where o, picks b i-1 times then ¢)

Pmax(So, F tails) = 0.5
Pmin(So, F tails) = 0

Probd'(s,, F tails) = 0.5

Prob9?(s,, F tails)
= 0.3+0.7-0.5 = 0.65

Prob93(s,, F tails)
=0.3+0.7-0.3+0.7-0.7-0.5 = 0.755

Prmax(Sos F tails) =1
Pmin(So, F tails) = 0.5

DP/Probabilistic Model Checking, Michaelmas 2011 22

Memoryless adversaries

Memoryless adversaries always pick same choice in a state
— also known as: positional, Markov, simple
— formally, o(sy(ag,Mg)s;---S,) depends only on s,
— cah write as a mapping from states, i.e. o(s) for each s € S
— induced DTMC can be mapped to a |S|-state DTMC
From previous example:
— adversary o, (picks c in s;) is memoryless; o, is not

{tails} {tails}

DP/Probabilistic Model Checking, Michaelmas 2011 23

Other classes of adversary

Finite-memory adversary
— finite number of modes, which can govern choices made

— formally defined by a deterministic finite automaton
— induced DTMC (for finite MDP) again mapped to finite DTMC

Randomised adversary

— maps finite paths sy(a;,u;)s;...s, in MDP to a probability
distribution over element of Steps(s,)

— generalises deterministic schedulers
— still induces a (possibly infinite state) DTMC

Fair adversary
— fairness assumptions on resolution of nondeterminism

DP/Probabilistic Model Checking, Michaelmas 2011 24

End components

- Consider an MDP M = (§,s;,,,Steps,L)

« A sub-MDP of M is a pair (§’,Steps’) where:
— S’ € Sis a (hon-empty) subset of M’s states
— Steps’(s) < Steps(s) for eachs € §’

— is closed under probabilistic branching, i.e.:

— {8’ | u(s")>0 for some (a,u)eSteps’(s) } = " 7

D

- An end component of M is a
strongly connected sub-MDP

“‘
..................................

....................................

.....................

DP/Probabilistic Model Checking, Michaelmas 2011 25

End components

For finite MDPs...

For every end component, there

is an adversary which,

with probability 1, forces the MDP
to remain in the end component
and visit all its states infinitely often

Under every adversary o,

with probability 1 an end component
will be reached and all of its states
visited infinitely often

— (analogue of fundamental property of finite DTMCs)

DP/Probabilistic Model Checking, Michaelmas 2011 26

Summing up...

Nondeterminism

— concurrency, unknown environments/parameters, abstraction

Markov decision processes (MDPs)
— discrete-time + probability and nondeterminism
— nondeterministic choice between multiple distributions
Adversaries
— resolution of nondeterminism only
— induced set of paths and (infinite state DTMC)
— induces DTMC yields probability measure for adversary
— best-/worst-case analysis: minimum/maximum probabilities
— memoryless adversaries
End components
— long-run behaviour: analogue of BSCCs for DTMCs

DP/Probabilistic Model Checking, Michaelmas 2011

27

Probabilistic Model Checking Michaelmas Term 2011

Lecture 13
Reachability in MDPs

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Recall - MDPs

- Markov decision process: M = (S,s; i, Steps,L)
- Adversary o € Adv resolves nondeterminism

- O induces set of paths Path°(s) and DTMC D°
- Do yields probability space Pro, over Patho(s)

- Prob(s, @) = Pro. { w € Patho(s) | w = @ }

- MDP yields minimum/maximum probabilities:

pmin(siw) = ir".FoeAdv PrObG(S!w)

pmax(siw) = SupoEAdv PrObO(S!w)

DP/Probabilistic Model Checking, Michaelmas 2011

Probabilistic reachability

- Minimum and maximum probability of reaching target set
— target set = all states labelled with atomic proposition a

p...(s,F a)=inf_,, Prob’(s,F a)

P (S,F a) =sup__,, Prob?(s,F a)

- Vectors: p...(Fa) and p,..(F a)
— minimum/maximum probabilities for all states of MDP

DP/Probabilistic Model Checking, Michaelmas 2011

Overview

Qualitative probabilistic reachability
— case where p.,;,,>0 or p,,,>0

Optimality equation

Memoryless adversaries suffice
— finitely many adversaries to consider

Computing reachability probabilities
— value iteration (fixed point computation)
— linear programming problem
— policy iteration

DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative probabilistic reachability

- Consider the problem of determining states for which
Pmin(S, F @) or p,..(s, F a) is zero (or non-zero)

— max case: S0 ={s eS| p,.(s,Fa)=0}

— this is just (non-probabilistic) reachability

R := Sat(a)

done := false

while (done = false)
R"=Ru{s eS| d(au)eSteps(s) . s’ eR . u(s’)>0}
if (R’ =R) then done := true
R:=R

endwhile

return S\R

DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative probabilistic reachability

+ Min case: S0 ={s eS| p,.(s,Fa)=0}

note: quantification
R := Sat(a) : over all choices

Gore o falea e mmmm—
while (done = false)

I’R’ =Ru{seS|V(au)eSteps(s). s’ €R..
u(s’)>0}

if (R’ =R) then done := true
R:=R’
endwhile

TeturmSTR

DP/Probabilistic Model Checking, Michaelmas 2011

Optimality (min)

- The values p,,,(s, F a) are the unique solution of the
following equations:

] if s €Sat(a)
X =1 0 if s & Smin=0

min { EM(S')' X, | (@,u) € Steps (s)} otherwise

: optimal solution for state s uses
. optimal solution for successors s’

- This is an instance of the Bellman equation
— (basis of dynamic programming techniques)

DP/Probabilistic Model Checking, Michaelmas 2011 7

Optimality (max)

- Likewise, the values p.,..(s, F a) are the unique solution of
the following equations:

] if s €Sat(a)
X, =+ 0] if s & Smax-0

max {E w(s') - X, | (a,n) ESteps(s)} otherwise

s'ES

DP/Probabilistic Model Checking, Michaelmas 2011 8

Memoryless adversaries

- Memoryless adversaries suffice for probabilistic reachability
— i.e. there exist memoryless adversaries 0., & 0.« such that:
— Prob%min(s, F a) = p,,(s, F a) for all states s € S

— Probomax(s, F a) (s, Fa) forall statess €S

= pmax

- Construct adversaries from optimal solution:

Omin(s) = argmin {E M(S')) pmin(sliFa) | (a,M) S Steps (S)}
s'eS

Opmax (S) = argmax {E u(s') - Prax(s',Fa) [(a,n) € Steps (S)}

s'ES

DP/Probabilistic Model Checking, Michaelmas 2011 9

Computing reachability probabilities

Several approaches...

Preferable

: : / in practice,
1. Value iteration . e.g. in PRISM

— approximate with iterative solution method
— corresponds to fixed point computation

2. Reduction to a linear programming (LP) problem
— solve with linear optimisation techniques
— exact solution using well-known methods

| | | \ bEtter
3. Policy iteration . complexity;

. good for small
examples

— jteration over adversaries

DP/Probabilistic Model Checking, Michaelmas 2011 10

Method 1 - Value iteration (min)

- For minimum probabilities p,,,,(s, F @) it can be shown that:
— Pmin(s, Fa) = lim__ x,™ where:

] if s €Sat(a)
0 ifs e smn-?
0 ifseS’andn=0

min {E u(s')- xs.(n_]) | (@,u) ESteps(s)} ifseS’andn>0
s'eS

— where: S = S\ (Sat(a) U Smin=0)

- Approximate iterative solution technique
— iterations terminated when solution converges sufficiently

DP/Probabilistic Model Checking, Michaelmas 2011 11

Method 1 - Value iteration (max)

- Value iteration applies to maximum probabilities in the
same way...
— Pmax(s, F @) = lim,_ x,™ where:

] if s €Sat(a)
0 ifs € Moo
(n)
X, =1 0 ifseS andn=0

(

max {E u(s')- X, " | (a,u) €Steps (s)} ifseS’andn>0
L s'ES

— where: 7 = S\ (Sat(a) U Smax=0)

DP/Probabilistic Model Checking, Michaelmas 2011 12

Dave Parker

Example

+ Minimum/maximum probability of reaching an a-state

0.5

DP/Probabilistic Model Checking, Michaelmas 2011

13

Example - Value iteration (min)

Compute: p,,..(s;, F a)
Sat(a) = {s,}, SMn=0 ={s3}, S* = {s¢, 54}

[Xo(n)’x1(n)’xz(n);xg(n)]
n=0: [0,0,1,0]
n=1: [min(1-0, 0.25-0+0.25-0+0.5-1),
0.1-0+0.5-0+0.4-1, 1, 0]
=[0,0.4,1,0]
n=2: [min(1-0.4,0.25-0+0.25-0+0.5-1),
0.1-:0+0.5-0.4+0.4-1, 1, 0]
=[0.4,0.6,1,0]
n=3:

DP/Probabilistic Model Checking, Michaelmas 2011 14

Example - Value iteration (min)

[XO(“),X1(”),X2(”),X3(”)]

[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, 0]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]

5 3 3 3 3 3 5 5 5
Il
XN OV hRWN 7O

n=20: [0.666667,0.933332,1,0]
= n=21: [0.666667,0.933332,1,0]
[2/3,14/15,1,0] ~[2/3,14/15,1,0]

DP/Probabilistic Model Checking, Michaelmas 2011

Generating an optimal adversary

- Min adversary o, [%™, %, x, M, x,™]

n=20: [0.666667,0.933332,1, 0]
n=21: [0.666667,0.933332,1, 0]
~[2/3,14/15,1,0]

So - min(1-14/15,0.5-1+0.25-0+0.25-2/3)
=min(14/15, 2/3)

DP/Probabilistic Model Checking, Michaelmas 2011 16

Generating an optimal adversary

DTMC DOmin

[Xo(n),X] (n)1x2(n)!x3(n)]

n=20: [0.666667,0.933332,1, 0]
n=21: [0.666667,0.933332,1, 0]
~[2/3,14/15,1,0]

So - min(1-14/15,0.5-1+0.25-0+0.25-2/3)
=min(14/15, 2/3)

DP/Probabilistic Model Checking, Michaelmas 2011 17

Value iteration as a fixed point

- Can view value iteration as a fixed point computation over
vectors of probabilities y € [0,1]°, e.g. for minimum:

1 if s&Sat(a)
F(y)(s) =, 0 if seS™"

min {E u(s') - y(s') [(@,u) €Steps (s)} otherwise
S &S

- Let:
— X0 =0 (i.e. xO(s) = 0 for all s)
— x(+1) = F(xM)
- Then:
— X(O) < 1(1) < X(Z) < 5(3) <
— Pin(F @) = lim,_ x™

DP/Probabilistic Model Checking, Michaelmas 2011 18

Linear programming

Linear programming

— optimisation of a linear objective function
— subject to linear (in)equality constraints

General form:
— nvariables: x;, X5, ... ,X,
— maximise (or minimise):

C CXF X+ G X,

— subject to constraints
<A X FanXe+...a X, < by
c Ay X FAnX+ .. X, < b,

<b

mn n — m

DP/Probabilistic Model Checking, Michaelmas 2011

Many standard solution
techniques exist, e.g.

' Slmplex ellipsoid method,

interior point method

..

. In matrix/vector form:
. Maximise (or minimise)
. c-x subjectto A-x <b

..

19

Method 2 - Linear programming problem

Min probabilities p..(s, F a) can be computed as follows:
— Pmin(s, Fa) = 1 if s € Sat(a)
— Pmin(s, Fa) = 0 if s € SMin=0

— values for remaining states in the set S’ = S\ (Sat(a) U S") can
be obtained as the unique solution of the following
linear programming problem:

maximize E , X, subject to the constraints:

EM(S) Xo+ Y u(s")

s'ESat(a)
for all s ES and for all (a,u) € Steps (s)

DP/Probabilistic Model Checking, Michaelmas 2011 20

Linear programming problem (max)

Max probabilities p,,..(s, F @) can be computed as follows:
— Pmax(s, Fa) = 1 if s € Sat(a)
— Pmax(s, F @) = 0 if s € Smax=0

— values for remaining states in the set S’ = S\ (Sat(a) U S") can
be obtained as the unique solution of the following
linear programming problem:

minimize E . X, subject to the constraints:

EM(S) Xg+ D u(s")

s'ESat(a)
for all s ETS and for all (a,u) € Steps (s)

B R— i

Differences
from min case

..

DP/Probabilistic Model Checking, Michaelmas 2011 21

Example - Linear programming (min)

Let X; = p,in(S;, F Q)
Sat(a): x,=1, SMin=0: x.=0

For S’ = {sy, s;}:

e Xp = X
e X; <0.1-X5+0.5-x;, +0.4

DP/Probabilistic Model Checking, Michaelmas 2011

Maximise x,+X; subject to constraints:

22

Example - Linear programming (min)

<

<

X
2/3

| x,<2/3

0

> Xg O

1 0 2/3

DP/Probabilistic Model Checking, Michaelmas 2011

Let X; = p,in(S;, F Q)
Sat(a): x,=1, SMin=0: x.=0

For S’ = {sy, s;}:

»
L

X'l S O.2'XO
+ 0.8

Maximise x,+X; subject to constraints:

v

23

Example - Linear programming (min)

Let X; = p,in(S;, F Q)

Sat(a): x,=1, SMin=0: x.=0

For S’ = {sg, S;}:

Maximise x,+X; subject to constraints:
e Xy < X
e« Xg=2/3
e X3 <0.2:x5 + 0.8

Solution:

1
— |] ma% (Xgy X7)

[2/3,14/15,1,0] - =

(2/3, 14/15)

0 — > X
0 2/3 1 °
DP/Probabilistic Model Checking, Michaelmas 2011 24

Example - Linear programming (min)

Let X; = p,in(S;, F Q)

Sat(a): x,=1, SMin=0: x.=0

For S’ = {sg, S;}:

Maximise x,+X; subject to constraints:
e Xy < X
e« Xg=2/3
e X3 <0.2:x5 + 0.8

2

X; <0.2-x, + 0.8 . ma% \
wo memoryless
+— adversaries

xsx/
0 1/'

XOSZ/?) O T T T T
0 2/3 1

DP/Probabilistic Model Checking, Michaelmas 2011 25

:XO

Example - Value iteration + LP

v

5 3 3 3 3 3 5 5 5
Il
XN OV hRWN 7O

n=20:
n=21:

[XM, x; ™ %, M x;M]

[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, O]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]

[0.666667, 0.933332,1,0]
[0.666667, 0.933332,1,0]

~[2/3,14/15,1,0]

DP/Probabilistic Model Checking, Michaelmas 2011

26

Example - Linear programming (max)

Let X; = Pax(Siy F Q)
For S* = {sy, S1,53}:
. X = X

e« Xog=2/3 + 1/3X%5
e X3 =0.2:x5 + 0.8

1

1 0 2/3]
DP/Probabilistic Model Checking, Michaelmas 2011

0.8]

> X

Sat(a): x,=1, SMax=0 = (7

Minimise X,+X;+X5; subject to constraints:

« X3 = X,
« X3 = X3

] X'l Z O.Z'XO +O.8

v
X
o

27

Example - Linear programming (max)

Let X; = Pax(Siy F Q)

Sat(a): x,=1, SMax=0 =

For S* = {sy, S1,53}:

Minimise X,+X;+X5; subject to constraints:
. Xo = X e X3 = X,
e Xog=2/3 + 1/3X5 «X3=X3
e X3 =0.2:x5 + 0.8

_

0.8 (only feasible)

mii/ solution:

(Xo, X],Xz)

:XO (]1]1])

Xn O —
° "o 2/3
DP/Probabilistic Model Checking, Michaelmas 2011 28

Generating an adversary

Max adversary 0., Let X; = ppa(s;, F a)
Sat(a): x,=1, SMax=0 = (7

Sat@ For §7 = {s, 51,53}

Minimise X,+X;+X5; subject to constraints:

1 e Xo = X e X3 = X,
e« Xo=2/3 + 1/3X5 X3 =X3
e X3 =20.2:x5 + 0.8

Solution:

o (Xgy X9,%3) =(1,1,1)

DP/Probabilistic Model Checking, Michaelmas 2011 29

Method 3 - Policy iteration

- Value iteration:

— iterates over (vectors of) probabilities
Policy iteration:

— iterates over adversaries (“policies”)

1. Start with an arbitrary (memoryless) adversary o

2. Compute the reachability probabilities Prob9(F a) for o
3. Improve the adversary in each state

4. Repeat 2/3 until no change in adversary

- Termination:
— finite number of memoryless adversaries
— improvement (in min/max probabilities) each time

DP/Probabilistic Model Checking, Michaelmas 2011

30

Method 3 - Policy iteration

1. Start with an arbitrary (memoryless) adversary o
— pick an element of Steps(s) for each state s € S
- 2. Compute the reachability probabilities Prob?(F a) for o
— probabilistic reachability on a DTMC
— i.e. solve linear equation system
- 3. Improve the adversary in each state

Y

o'(s) =argmin{ ¥ u(s')- Prob’(s',Fa) | (a,u) € Steps (s)

Y

o'(s) = argmax 4 Y u(s')- Prob°(s',Fa) | (a,u) € Steps (s)

- 4. Repeat 2/3 until no change in adversary

DP/Probabilistic Model Checking, Michaelmas 2011 31

Example - Policy iteration (min)

Arbitrary adversary o:
Compute: Prob?(F a)
Let x; = Prob?(s;, F a)
X,=1, Xx3=0 and:

e Xg = X

e X; =0.1-X5+0.5-x;, + 0.4
Solution:
Prob°(Fa)=[1,1,1,0]
Refine o in state s;:
min{1(1), 0.5(1)+0.25(0)+0.25(1)}
= min{1, 0.75} = 0.75

DP/Probabilistic Model Checking, Michaelmas 2011

32

Example - Policy iteration (min)

Refined adversary o’ :
Compute: Prob? (F a)
Let x, = Prob“ (s, F a)
X,=1, Xx3=0 and:
e Xo=0.25-X, + 0.5
e X; =0.1-X5+0.5-x;, + 0.4
Solution:
Prob®(Fa) =[2/3,14/15,1,0]
This is optimal

DP/Probabilistic Model Checking, Michaelmas 2011 33

Example - Policy iteration (min)

_In f)
X'I — O.Z'XO + 0.8 4 s

0}
Xo:X1§ v
X0:2/3 XO 0 r r r T :XO

0 2/3 1

DP/Probabilistic Model Checking, Michaelmas 2011 34

Summing up...

Probabilistic reachability in MDPs
Qualitative case: min/max probability > O

— simple graph-based computation

— need to do this first, before other computation methods
Memoryless adversaries suffice

— reduction to finite number of adversaries

Computing reachability probabilities...
(and generation of optimal adversary)

1. Value iteration
— approximate; iterative; fixed point computation

2. Reduce to linear programming problem
— good for small examples; doesn’t scale well

3. Policy iteration

DP/Probabilistic Model Checking, Michaelmas 2011 35

Probabilistic Model Checking Michaelmas Term 2011

Lecture 14
Model Checking for MDPs

Dr. Dave Parker

Department of Computer Science
University of Oxford

Overview

PCTL for MDPs
— syntax, semantics, examples

PCTL model checking
— next, bounded until, until
— precomputation algorithms
— value iteration, linear optimisation

— examples

Costs and rewards

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL

- Temporal logic for describing properties of MDPs

_ identical Syntax to the |OgiC PCTL for DTMCS gross s
) is true with

__— probabiliy =p

—¢ =truefaldAd| b |[P Y] (state formulas)

- =X | dUkd | dUP (path formulas)

bt b

y . "bounded A

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=}, k € N

DP/Probabilistic Model Checking, Michaelmas 2011 3

PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP
— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas and of path
formulas are identical to those for DTMCs:

- For a state s of the MDP (§,s,,,;;,Steps,L):

— SEa < a e L(s)
—SE®; AP, < sE®, and s E= ¢,
—sE —® < s kE ¢ is false
- For a path w = sy(a;,u,)s,(a5,H,)s,... in the MDP:
—wWEX® S S Ed

- wE o, Uskd, <« ITi<ksuchthats, = ¢, and Vj<i, s, = ¢,
-~ wEed, Ud, < 3Jk=0 such that w = ¢, U=k ¢,

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
— can only define probabilities for a specific adversary o

— s = P_, [@] means “the probability, from state s, that is true
for an outgoing path satisfies ~p for all adversaries o”

— formally s=P_[w] < Probos, p) ~ p for all adversaries o
— where Prob(s, @) = Pro, { w € Patho(s) | w = P }

..... W Probo(s, Y) ~ p

DP/Probabilistic Model Checking, Michaelmas 2011 5

Minimum and maximum probabilities

- Letting:
_ pmax(S’ LI)) = SUPgeadv PI’ObU(S, L|))
— pmin(S’ Ll)) — irlfcreAdv Prob(s, \I))

- We have:
—if~e{=,>},thens =P [W] < pi(s, W) ~p
—if~e{<,<} thens =P [W] & pr(s, V) ~p

- Model checking P_,[@] reduces to the computation over all
adversaries of either:

— the minimum probability of Y holding
— the maximum probability of P holding

DP/Probabilistic Model Checking, Michaelmas 2011 6

Classes of adversary

- A more general semantics for PCTL over MDPs
— parameterise by a class of adversaries Adv*

+ Only change is:
— S Fagv: Pop [W] < Probo(s, g) ~ p for all adversaries o € Adv*

Original semantics obtained by taking Adv* = Adv

- Alternatively, take Adv* to be the set of all fair adversaries

— path fairness: if a state occurs on a path infinitely often, then
each non-deterministic choice occurs infinitely often

— see e.g. [BK9I8]

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL derived operators

- Many of the same equivalences as for DTMCs, e.g.:

—Fd=trueUod (eventually)
— F=k ¢ = true U=k ¢

— G =—~(F —¢p) = —~(true U =) (always)

— G=k ¢ = =(F=k =)

— etc.

- But... for example:
— P, [Ww]l=x-P W] (negation + probability)

« Duality between min/max:

— for any path formula @: pin(S, W) = T pPrax(S, W)
— so, forexample: P, ,[G]=P ,[F~d]

DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative properties

PCTL can express qualitative properties of MDPs
— like for DTMCs, can relate these to CTL’s AF and EF operators
— need to be careful with “there exists” and adversaries

P.,[F ¢]is (similar to but) weaker than AF ¢
— P.,[Fd] < Prob%s, F ¢) > 1 for all adversaries o
— recall that “probability>1" is weaker than “for all”

- We can construct an equivalence for EF ¢

EFCI) :'EP>O[F¢]
— but:

— EF ¢ E_'Pso[Fd)]

DP/Probabilistic Model Checking, Michaelmas 2011

Quantitative properties

For PCTL properties with P as the outermost operator
— PRISM allows a quantitative form
— for MDPs, there are two types: P, [W]and P ., [W]

— i.e. “what is the minimum/maximum probability (over all
adversaries) that path formula @ is true?”

— model checking is no harder since compute the values of p,;,
(S, W) OF Prmax(s, ¥) anyway

— useful to spot patterns/trends 1
0.8
Example CSMA/CD protocol 206
— “min/max probability ::50_4
that a message is sent o — maximum|
. . . ” : - - -average
within the deadline | | [——minimum
800 1000 1200 1400 1600 1800

-
DP/Probabilistic Model Checking, Michaelmas 2011 10

Some real PCTL examples

Byzantine agreement protocol
— P, [F (agreement A rounds<2)]

— “what is the minimum probability that agreement is reached
within two rounds?”

CSMA/CD communication protocol
— Pax_> [F collisions=k]
— “what is the maximum probability of k collisions?”

Self-stabilisation protocols
— Pin— [FSt stable]

— “what is the minimum probability of reaching a stable state
within k steps?”

DP/Probabilistic Model Checking, Michaelmas 2011 11

PCTL model checking for MDPs

. Algorithm for PCTL model checking [BdA95]

— inputs: MDP M=(S,s;,,Steps,L), PCTL formula ¢

— output: Sat(d) ={s €S |s E ¢} =setof states satisfying ¢
- Often, also consider quantitative results

— e.g. compute result of P_.._, [F<t stable] for 0<t<100

. Basic algorithm same as PCTL for DTMCs
— proceeds by induction on parse tree of ¢
- For the non-probabilistic operators: S~

— Sat(true) = S 7
— Sat(@a) ={seS|aelL(s)} é)

_ sat(~¢) = S \ Sat($) O

— Sat(d; A &) = Sat(db,) N Sat(d,)

DP/Probabilistic Model Checking, Michaelmas 2011 12

PCTL model checking for MDPs

- Main task: model checking P_; [W] formulae
— reduces to computation of min/max probabilities

— i.e. Ppin(s, W) Or P, (s, W) foralls € S
— dependent on whether ~ € {>=,>} or ~ € {<,<}

- Three cases:
— next (X ¢)
— bounded until (¢, U=k ¢,)
— unbounded until (¢, U ¢,)

DP/Probabilistic Model Checking, Michaelmas 2011

13

PCTL next for MDPs

- Computation of probabilities for PCTL next operator
- Consider case of minimum probabilities...

— SatP_ [X b D) ={5ES | Prin(s, X) ~p }
— need to compute p,,; (s, X d) forall s € S

- Recall in the DTMC case

— sum outgoing probabilities for C
transitions to ¢-states (O i

— Prob(s’ X d)) — ZS’ESat(cb) P(S,S’) - 2

- For MDPs, perform computation for each distribution

available in s and then take minimum:
— Pmin(S, X d) = min{ X, g4 M(S) | (a,M)ESteps(s) }

- Maximum probabilities case is analogous

DP/Probabilistic Model Checking, Michaelmas 2011 14

PCTL next - Example

Model check: P_, < [X heads]

— lower probability bound so minimum probabilities required
— Sat (heads)= {s,}

— e.9. Pmin(S;, X heads) = min (0, 0.5) =0

— can do all at once with matrix-vector multiplication:

0] 1 0] 0] 0 [0]
0.7 0.3 O 0] 0 0
Steps -heads= | O O 0.5 0.5]- 1= 0.5
0] 0] 1 0] 0 1
| 0 0] 0] 1% 10 0.3

Extracting the minimum for each state yields
— p.i(X heads) = [0, 0, 1, 0]
— Sat(P.y ¢ [X heads]) = {s,}

DP/Probabilistic Model Checking, Michaelmas 2011 15

PCTL bounded until for MDPs

- Computation of probabilities for PCTL U=k operator

- Consider case of minimum probabilities...
— Sat(P_,[&, U=k,) ={s €S| pmin(s, d; Usk ;) ~p}
— need to compute p.,,(s, d; Usk d,) forall s € S

- First identify (some) states where probability is 1 or O
— Sves = Sat(d,) and S =S\ (Sat(¢,) U Sat(p,))

- Then solve the recursive equations:

! if s€S®

0 .
if s&S™
S, USk =
pmm(CI)] ¢2) O If SES'7 and k = 0

min{%u(s‘)-pmm(st b, U b)) | (a,u)ESteps(S)} ifseS’and k > 0

- Maximum probabilities case is analogous
DP/Probabilistic Model Checking, Michaelmas 2011 16

PCTL bounded until for MDPs

Simultaneous computation of vector p,,;,(o, U=k ¢,)
— i.e. probabilities p,,,(s, ; U=k ,) forall s € S

Recursive definition in terms of matrices and vectors
— similar to DTMC case
— requires k matrix-vector multiplications
— in addition requires k minimum operations

DP/Probabilistic Model Checking, Michaelmas 2011 17

PCTL bounded until - Example

Model check: P_goc [F=3 init] = P_j o5 [true U=3 init]
— upper probability bound so maximum probabilities required
— Sat (true) = S and Sat (init) = {s,}
— Sves = {sy}and S"o = &
— §*={s,,s,,53}
- The vector of probabilities is
computed successively as:
— Prax(true U=Cinit) =[1,0,0,0]
— Prax(true U=t init) =[1,0.7,0,0]
— Prax(true U=2init) =[1,0.91,0, 0]
— Prax(true U=3init) =[1,0.973,0,0]
Hence, the result is:
— Sat(P_ygs [F=3init]) ={s,, S5}

DP/Probabilistic Model Checking, Michaelmas 2011 18

PCTL until for MDPs

- Computation of probabilities for all s € S:
T pmin(si d)] U cI)Z) or pmax(51 CI)] U d)z)

- Essentially the same as computation of reachability
probabilities (see previous lecture)

— just need to consider additional ¢, constraint

- Overview:
— precomputation:
. identify states where the probability is O (or 1)

— several options to compute remaining values:
. value iteration
. reduction to linear programming

DP/Probabilistic Model Checking, Michaelmas 2011

19

PCTL until for MDPs - Precomputation

Determine all states for which probability is O
— min case: S" = {seS | p,,i(s, ¢; U P,)=0} - ProbOE
— max case: S ={seS | pax(S, P; U $,)=01} - ProbOA A
Determine all states for which probability is 1 4+ covered
— min case: $Y¢ = { SES | pn(s, &, U db)=11} - Probta | here
— max case: Y% = { sES | Py (S, ¢; U P,)=1} - ProblE
Like for DTMCs:
— identifying O states required (for uniqueness of LP problem)

— identifying 1 states is optional (but useful optimisation)

- Advantages of precomputation

— reduces size of numerical computation problem

— gives exact results for the states in S¥¢s and S (no round-off)
— suffices for model checking of qualitative properties

DP/Probabilistic Model Checking, Michaelmas 2011 20

PCTL until for MDPs - ProbOE

Minimum probabilities 0
— Sho = { SES | pmin(51 CI)] U ¢2):O } = Sat(_'P>0 [CI)] U C|)2])

PROBOE(Sat(¢y), Sat(pa))

1
2

o =S, S SJU

'g;.

R = Sat(o9)

done = false

while (done = false)
R := R U{s e Sat(oy) | Vu € Steps(s).3Is" € R.pu(s") > 0}
if (R' = R) then done := true
R:= R

endwhile

return S\ R

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for MDPs - ProbOA

Maximum probabilities O
T Sno - { SES | pmax(51 d)] U d)Z):O }

PROBOA (Sat(py), Sat(ds))

1. R := Sat(oy)

2. done := false

3. while (done = false)

4. R = R U{s & Sat(¢y) | 3u € Steps(s).ds" € R.u(s") > 0}

5. if (R" = R) then done := true

6. R = R

7. endwhile

8. return S\R
DP/Probabilistic Model Checking, Michaelmas 2011 22

PCTL until for MDPs - Prob1E

- Maximum probabilities 1

— S8 = { SES | Pax(s, d; U dy)=1} = Sat(=P_; [$; U §,])
- Prob1E algorithm (see next slide)

— two nested loops (double fixed point)

— result, stored in R, will be SYes; initially R is S

— iteratively remove (some) states u with p,...(u, ¢, U $,)<1

. i.e. remove (some) states for which,
under no adversary o, is Probo(s, ¢, U ¢,)=1

— done by inner loop which computes subset R’ of R

- R’ contains ¢,-states with a probability distribution for which all
transitions stay within R and at least one eventually reaches ¢,

— note: after first iteration, R contains:
- {s | ProbA(s, ¢, U ¢,)>0 for some A}
. essentially: execution of ProbOA and removal of S"° from R

DP/Probabilistic Model Checking, Michaelmas 2011 23

PCTL until for MDPs - Prob1E

ProB1E(Sat(¢1), Sat(p2))

O R

-1 & Ot

10.
11.
12.
13.
14.

R:=S5
done := false
while (done = false)
R’ := Sat(¢9)
done’ := false
while (done’ = false)

R":= R U{s € Sat(¢y) | 3u € Steps(s) .

5)
(V' € S.pu(s) >0—=5 € R)A(3s' € R .p(s') > 0)}

if (R” = R') then done’ := true
R = R"
endwhile
if (R' = R) then done := true
R =R
endwhile

return R

DP/Probabilistic Model Checking, Michaelmas 2011

24

Prob1E - Example

- Sves = {seS | pax(S, maUb)=1}

- R={0,1,2,3,4,56}

- R ={2}; R ={1,2,5};R"={1, 2,4,5}; R ={1, 2, 4,5, 6}
- R={1,2,4,5,6}

- R ={2}; R ={1, 2, 5}
- R={1,2,5}

- R ={2}; R ={1, 2, 5}
- R={1,2,5}

- Sves=1{1,2,5}

DP/Probabilistic Model Checking, Michaelmas 2011 25

PCTL until for MDPs - ProbT1A

Minimum probabilities 1
o Syes = { SES | pmin(S’ d)] U CI)2)=] }

- Can also be done with a graph-based algorithm
Details omitted here

For minimum probabilities, just take Syes = Sat(d,)

— recall that computing states for which probability=1 is just an
optimisation: it is not required for correctness

DP/Probabilistic Model Checking, Michaelmas 2011 26

PCTL until for MDPs

Min/max probabilities for the remaining states, i.e.
S? =S\ (S¥es U S"°), can be computed using either...

1. Value iteration
— approximate iterative solution method
— preferable in practice for efficiency reasons

2. Reduction to a linear optimisation problem

— solve with well-known linear programming (LP) techniques
. Simplex, ellipsoid method, interior point method

— yields exact solution in finite number of steps

NB: Policy iteration also possible but not considered here

DP/Probabilistic Model Checking, Michaelmas 2011 27

Method 1 - Value iteration (min)

Minimum probabilities satisfy:
~ Pmin(S, &7 U §,) = lim,_, x, where:

1 if s&SY*
0 if s&S"°
X" =] 0 ifseS andn=0

min {E us) - x."" | (a,u) ESteps (s)} ifseS’andn>0
S ES

- Approximate iterative solution:
— compute vector x™ for “sufficiently large” n

— in practice: terminate iterations when some pre-determined
convergence criteria satisfied

— e.g. max, | x(M(s) - x("-1)(s)) | < € for some tolerance ¢

DP/Probabilistic Model Checking, Michaelmas 2011 28

Method 1 - Value iteration (max)

- Similarly, maximum probabilities satisfy:
— Pmax(S; @1 U &) = lim Xs(n) where:

1 ifseSY®
0 if s&S"°
X" =] 0 ifseS’ andn=0

max {E us) - x."" | (a,u) ESteps (s)} ifseS’andn>0
S S

- ...and can be approximated iteratively

DP/Probabilistic Model Checking, Michaelmas 2011 29

PCTL until - Example

Model check: P, [Fal=P_,:[trueUa]
— lower probability bound so minimum probabilities required

0.5

DP/Probabilistic Model Checking, Michaelmas 2011

30

PCTL until - Example

Model check: P, [Fal =P, [trueUa]
— lower probability bound so minimum probabilities required

Sno ={s&S | pmin(s, Fa)=0}

DP/Probabilistic Model Checking, Michaelmas 2011 31

PCTL until - Example

Compute: p,,..(s;, F a)
Sves = {s,}, SP° ={s3}, S* = {s, s;}

[Xo(n)’xl(n)’xz(n)’xs(n)]
n=0: [0,0,1,0]
n=1: [min(1-0, 0.25-0+0.25-0+0.5-1),
0.1-:0+0.5-0+0.4-1, 1, 0]
=[0,0.4,1,0]
n=2: [min(1-0.4,0.25-0+0.25-0+0.5-1),
0.1-0+0.5-0.4+0.4-1, 1, 0]
=[0.4,0.6,1,0]
n=3:

DP/Probabilistic Model Checking, Michaelmas 2011 32

PCTL until - Example

[)(O(l’l)’)(1 (n)’xz(n)’xg(n)]

n=0: [0.000000, 0.000000, 1, 0]
n=1: [0.000000, 0.400000, 1, 0]
n=2: [0.400000, 0.600000, 1, 0]
n=3: [0.600000, 0.740000, 1, 0]
n=4: [0.650000, 0.830000, 1, 0]
n=5: [0.662500, 0.880000, 1, 0]
n=6: [0.665625, 0.906250, 1, 0]
n=7. [0.666406, 0.919688, 1,0]
n=8 [0.666602, 0.926484, 1,0]
Pmin(F @) =
[2/3.14/15.1.0] n=20: [0.666667,0.933332,1,0]
n=21: [0.666667, 0.933332,1,0]
Sat(P.o < [Fal) = { o, S1, S, } ~12/3,14/15,1,0]

DP/Probabilistic Model Checking, Michaelmas 2011

Example - Optimal adversary

- Like for reachability, can generate an optimal memoryless
adversary using min/max probability values

— and thus also a DTMC

- Min adversary o [Xo™,%; ™, x5, x5]

min

n=20: [0.666667,0.933332,1,0]
n=21: [0.666667,0.933332,1, 0]
~[2/3,14/15,1,0]

=min(14/15, 2/3)

DP/Probabilistic Model Checking, Michaelmas 2011

So - min(1-14/15,0.5-14+0.5-0+0.25-2/3)

34

Method 2 - Linear optimisation problem

- Probabilities for states in S? = S \ (S¥¢s U S"°) can also be
obtained from a linear optimisation problem

- Minimum probabilities:

maximize Eses? X, subject to the constraints:

X, < EM(S')- X + Eu(s')
s'eS’ s'esves
for all s S’ and for all (a,u) € Steps (s)

- Maximum probabilities:

minimize ESES? X, subject to the constraints:

X, = EM(S')- X + Eu(s')
s'eS’ s'esves
for all s S’ and for all (a,u) € Steps (s)

DP/Probabilistic Model Checking, Michaelmas 2011

35

PCTL until - Example

Let X; = p,in(S;, F Q)

Sves: x,=1, S"o: x3=0

For S’ = {sy, $;}:

Maximise x,+X; subject to constraints:
e Xg < X
e X9 =< 0.25-X, + 0.5
e X; <0.1-Xy+0.5-x;, +0.4

DP/Probabilistic Model Checking, Michaelmas 2011 36

PCTL until - Example

Let X, = pmin(Si, F a)

Sves: x,=1, S"o: x3=0

For S’ = {s,, S;}:

Maximise X,+X; subject to constraints:

e Xg = X
« Xo=2/3
e X3 <0.2:x5 + 0.8
Xy X4
'|“]“
Xo < X 1 0.87
- XO S 2/3 - X] S 02X0
+ 0.8
Q¥ X0t X, "
0] %0 23 1 ° 0 p 0

DP/Probabilistic Model Checking, Michaelmas 2011 37

PCTL until - Example

Let X, = p,,i,(S;, F Q)

Sves: x,=1, S"o: x3=0

For S’ = {sy, $;}:

Maximise x,+X; subject to constraints:

¢ Xo < X
« Xog=2/3
e X3 <0.2:x5 + 0.8
X1
]“
Qmin(F a) = 0.81 Solution:
[2/3,14/15,1,0] , ma% (X0, X;)
Sat(P.o s [Fal) = (2/3,14/15)
{501 s]’sz} O - - ;XO
0 2/3 1

DP/Probabilistic Model Checking, Michaelmas 2011 38

Example - Optimal adversary

Get optimal adversary from constraints of
optimisation problem that yield solution

Alternatively, use optimal probability
values in value iteration function, as

shown in value iteration example

)
X; = 0.2-x, + 0.8 . ma% \ |
1+—> w;)dmeerrsnaorrzsess
XO _ X] / Vv |
Xg = 2/3 /o ———— X,
0 2/3 1

DP/Probabilistic Model Checking, Michaelmas 2011 39

PCTL until - Example 2

Model check: P_,, [Fa]
— upper probability bound so maximum probabilities required

0.5

DP/Probabilistic Model Checking, Michaelmas 2011

40

PCTL until - Example 2

Model check: P_,, [Fa]
— upper probability bound so maximum probabilities required

S0 ={seS | pmin(s, Fa)=0}= 0O

© PmaxF)=1[1,1,1,1] and Sat(P,, [Fa]) = @

DP/Probabilistic Model Checking, Michaelmas 2011

41

PCTL until - Example 3

Model check: P_,[Fa]

— lower probability bound so minimum probabilities required
— qualitative property so numerical computation can be avoided

S0 ={seS | pmin(s, Fa)=0}

ProbOE yields S = {s;}

Pmin(Fa) =17,7,72,0] and Sat(P., [Fa]) ={sq,5;,5,}

DP/Probabilistic Model Checking, Michaelmas 2011

42

Costs and rewards

- We can augment MDPs with rewards (or costs)
— real-valued quantities assigned to states and/or actions

— different from the DTMC case where transition rewards
assigned to individual transitions

For a MDP (S,s;,,;;,Steps,L), a reward structure is a pair (p,U)
— p:S — R_,is the state reward function
— L:S X Act — R, is transition reward function

- As for DTMCs these can be used to compute:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

DP/Probabilistic Model Checking, Michaelmas 2011 43

PCTL and rewards

- Augment PCTL with rewards based properties
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards

...

expected reward is ~r :

/ J \
b = ... | RNr[¢I='<] | R, [C=k] | R,[Fo]

wherer e Ry, ~ € {<,>,<,2}, k e N

R.. [-] means “the expected value of - satisfies ~r for all
adversaries”

DP/Probabilistic Model Checking, Michaelmas 2011

Types of reward formulas

- Instantaneous: R_, [I7%]

— the expected value of the reward at time-step k is ~r for all
adversaries

— “the minimum expected queue size after exactly 90 seconds”

- Cumulative: R_ [C=k]

— the expected reward cumulated up to time-step k is ~r for all
adversaries

— “the maximum expected power consumption over one hour”

. Reachability: R_, [F ¢]

— the expected reward cumulated before reaching a state
satisfying ¢ is ~r for all adversaries

— the maximum expected time for the algorithm to terminate

DP/Probabilistic Model Checking, Michaelmas 2011 45

Reward formula semantics

Formal semantics of the three reward operators:
— for a state s in the MDP:
—sER_[IP*K] & Exp9s, X,_,) ~ r for all adversaries o
—skER,[Ck] < Expo(s, Xc.) ~ r for all adversaries o
—sER_,[F®] & Expo(s, Xg) ~ r for all adversaries o

ExpA(s, X) denotes the expectation of the random variable
X : Patho(s) — R., with respect to the probability measure Pro,

DP/Probabilistic Model Checking, Michaelmas 2011

46

Reward formula semantics

- For an infinite path w= sy(ay,My)s;(a;,M;)S5...

X|=k ((L)) = E(Sk)

0 ifk=0
Xea (W) =4 .
Y o PS)+U@) otherwise
0 if s, €Sat(¢p)
Xep (W) = 00 if s, &Sat(e) foralli=0

D “" p(s)+1(a,) otherwise

i=0

where k¢ =min{i| s = ¢}

DP/Probabilistic Model Checking, Michaelmas 2011 47

Model checking reward formulas

- Instantaneous: R_, [I7%]
— similar to the computation of bounded until probabilities
— solution of recursive equations
— k matrix-vector multiplications (+ min/max)

- Cumulative: R_, [C=k]
— extension of bounded until computation
— solution of recursive equations
— k iterations of matrix-vector multiplication + summation

- Reachability: R_. [F ¢]
— similar to the case for until
— solve a linear optimization problem (or value iteration)

DP/Probabilistic Model Checking, Michaelmas 2011

48

Model checking complexity

For model checking of an MDP (S,s,,,,;,Steps,L) and PCTL
formula ¢ (including reward operators)

— complexity is linear in |®| and polynomial in |S|

- Size |d| of ¢ is defined as number of logical connectives
and temporal operators plus sizes of temporal operators

— model checking is performed for each operator

- Worst-case operators areP_, [, U,]andR_[F ¢]

— main task: solution of linear optimization problem of size |S|
— can be solved with ellipsoid method (polynomial in |S|)

— and also precomputation algorithms (max |S| steps)

DP/Probabilistic Model Checking, Michaelmas 2011 49

Summing up...

PCTL for MDPs

— same as syntax as for PCTL

— key difference in semantics: “for all adversaries”

— requires computation of minimum/maximum probabilities
PCTL model checking for MDPs

— same basic algorithm as for DTMCs

— next: matrix-vector multiplication + min/max

— bounded until: k matrix-vector multiplications + min/max

— until : precomputation algorithms + numerical computation
. precomputation: ProbOA and Prob1E for max, ProbOE for min
. numerical computation: value iteration, linear optimisation

— complexity linear in |®| and polynomial in |S|
Costs and rewards

DP/Probabilistic Model Checking, Michaelmas 2011

50

Probabilistic Model Checking Michaelmas Term 2011

Lecture 15
Long-run properties
of DTMCs and MDPs

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Overview

LTL - Linear temporal logic

Repeated reachability and persistence

Long-run properties of DTMCs
— bottom strongly connected components (BSCCs)

Long-run properties of MDPs
— end components (E.C.s)

DP/Probabilistic Model Checking, Michaelmas 2011

Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

More expressive logics can be used, for example:
— LTL [Pnu77] - the non-probabilistic linear-time temporal logic

— PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
— both allow path operators to be combined

In PCTL, temporal operators always appear inside P_,[...]
— (and, in CTL, they always appear inside A or E)
— in LTL (and PCTL¥), temporal operators can be combined

DP/Probabilistic Model Checking, Michaelmas 2011 3

Review - CTL and PCTL

CTL:

~ ¢ i=true|alodrd | -d|AY|EY
~yp = Xd|odUD

PCTL

~¢ n=truela|ldad| - |P (W]
~p = X |dU*kd|dUD

- Notation for paths: w = s;s;5,...

— Path(s) = set of all (infinite) paths with s, = s

— w(i) denotes the (i+1)th state, i.e. w(i) = s,

— wli...] is the suffix starting from s;, i.e. w[i...] = 5;5,,;Si.>...

DP/Probabilistic Model Checking, Michaelmas 2011

LTL - Linear temporal logic

- LTL syntax
— path formulae only

—pu=true lalpAaw|-p|Xw[puy
— where a € AP is an atomic proposition

- LTL semantics (for a path w)

w = true
wkFEa
wE P AW,
wE Y
wEXY

w =P, Uy,

g 20010

always

a € L(w(0))

wE Y, and w = Y,
w P

wll...]EYp

Jk>0 s.t. w[k...] = Y, and
Vi<k wli...] =y,

DP/Probabilistic Model Checking, Michaelmas 2011

LTL - Linear temporal logic

Derived operators like CTL, for example:
—FY=truely
- Gy = —F(-y)

LTL semantics (non-probabilistic)
— implicit universal quantification over paths
— i.e. foran LTS M = (§,s;,,—,L) and LTL formula g
— s = Y iff w = P for all paths w € Path(s)
- MEeyYIiffs,F W
- e.g:
— A F (reg A X ack)

— “it is always possible that a request, followed immediately by
an acknowledgement, can occur”

DP/Probabilistic Model Checking, Michaelmas 2011

More LTL examples

(F tmp_fail;) A (F tmp_fail,)
— “both servers suffer temporary failures at some point”

GF ready
— “the server always eventually returns to a ready-state”

G (reqg — F ack)
— “requests are always followed by an acknowledgement

b

FG stable
— “the system reaches and stays in a ‘stable’ state”

DP/Probabilistic Model Checking, Michaelmas 2011

Branching vs. Linear time

LTL but not CTL:
— FG stable

— “the system reaches and stays in a ‘stable’ state”
— e.g. A FG stable # AF AG stable

CTL but not LTL:
— AG EF init

— e.g. “for every computation, it is always possible to return to
the initial state”

DP/Probabilistic Model Checking, Michaelmas 2011

LTL + probabilities

- Same idea as PCTL: probabilities of sets of path formulae
— for a state s of a DTMC and an LTL formula y:

— Prob(s, W) = Pr,{ w € Path(s) | w = @ }

— all such path sets are measurable (see later lecture)

- For MDPs, we can again consider lower/upper bounds
— pmin(si LP) — irl'I:creAdv ProbU(s, \P)

_ pmax(s1 L|J) = SUPgeadv Probe(s, LI))
— (for LTL formula @)

- For DTMCs or MDPs, an LTL specification often comprises
an LTL (path) formula and a probability bound

—e.g.P.go9[F(req A Xack)]

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL*

- PCTL* subsumes both (probabilistic) LTL and PCTL

. State formulae:

~¢p u=true|laldad| - |P (W]

— where a € AP, ~ € {<,>,<,=}, p € [0,1] and ¥ a path formula
Path formulae:

—p = lwrp|-w|Xplwuy
— where ¢ is a state formula

- A PCTL* formula is a state formula ¢
— e.9. P_y g9 [GF crit;] A P o9 [GF crit,]

DP/Probabilistic Model Checking, Michaelmas 2011

10

Fundamental property of DTMCs

- Strongly connected component (SCC)
— maximally strongly connected set of states
- Bottom strongly connected component (BSCC)
— SCC T from which no state outside T is reachable from T

- With probability 1,
a BSCC will be reached
and all of its states
visited infinitely often

- Formally:

— Pr.{ w € Path(s) | 3i=0, 3 BSCC T such that
V j=i w() € T and
V s’€T w(k) = s' for infinitely many k} = 1

DP/Probabilistic Model Checking, Michaelmas 2011 11

Repeated reachability - DTMCs

- Repeated reachability:
— “always eventually...” or “infinitely often...”

- e.g. “what is the probability that the protocol successfully
sends a message infinitely often?”

- Using LTL notation:

— w kE GF a
=

— Vi=0.3j=i.w() € Sat(a)

. Prob(s, GF a)
= Pr.{w € Path(s) | V i=0 . 3 j=i . w(j) € Sat(a) }

DP/Probabilistic Model Checking, Michaelmas 2011

12

Qualitative repeated reachability

- Pr,{w € Path(s) | Vi=0. 3 j=i.w() € Sat(a) } = 1

* PZ] [GF d] \
. PCTL* |

if and only if

- T n Sat(a) # @ for all BSCCs T reachable from s

Examples:

So E P.; [GF (bvQ)]
So # P., [GF b]
s, =P, [GF c]

DP/Probabilistic Model Checking, Michaelmas 2011 13

Quantitative repeated reachability

- Prob(s, GF a) = Prob(s, F T.p)
— where T, = union of all BSCCs T with T n Sat(a) # @

Example:

Prob(s,, GF b)

= Prob(sy, F Tcpp)

= Prob(s,, F (T,UT),))
= Prob(sy, F {S3,54P
=2/3+1/6=5/6

- From the above, we also have:
- P ,[GFa] & Tn Sat(a) # & for some reachable BSCC T

DP/Probabilistic Model Checking, Michaelmas 2011 14

Persistence - DTMCs

Persistence properties: “eventually always...”

— e.g. “what is the probability of the leader election algorithm
reaching, and staying in, a stable state?”

— e.g. “what is the probability that an irrecoverable error
occurs?”

Using LTL notation:
— wWkEFGa

=

— Ji=0. V j=i.w() € Sat(a)

Prob(s, FG a)
= Pry{ w € Path(s) | 3i=0. V j=i. w(j) € Sat(a) }

DP/Probabilistic Model Checking, Michaelmas 2011

Qualitative persistence

- Pr,{ w € Path(s) | 3i=0.V j=i.w() € Sat(a) } = 1
- P_,[FGal]

if and only if

- T < Sat(a) for all BSCCs T reachable from s

Examples:

So ¥ P.; [FG (bvQ)]
So E P.; [FG (bvcvd)]
s, =P.; [FG (cvd)]

DP/Probabilistic Model Checking, Michaelmas 2011 16

Quantitative persistence

- Prob(s, FG a) = Prob(s, F T¢.,)
— where T;-, = union of all BSCCs T with T<Sat(a)

Example:

Prob(s,, FG (bVv0))

= Prob(sg, F Trgpye)
= Prob(s,, F (T,UT)))
= Prob(sy, F {S3,54P
=2/3+1/6=5/6

DP/Probabilistic Model Checking, Michaelmas 2011

17

Success sets

- The sets T, for property P are called success sets

— T¢pa = union of all BSCCs T with T n Sat(a) + @
— Trc, = union of all BSCCs T with T < Sat(a)

Sometimes denoted Up

— e.9. Ugr,
— we use T, here (to avoid confusion with the until operator)

DP/Probabilistic Model Checking, Michaelmas 2011

18

Repeated reachability + persistence

- Repeated reachability and persistence are dual properties
— GFa = —(FG —a)
— FG a = —-(GF —-a)

- Hence, for example:
— Prob(s, GF a) = 1 - Prob(s, FG —a)

- Can show this through LTL equivalences, or...

- Prob(s, GF a) + Prob(s, FG —a)

= Prob(s, F T, + Prob(s, F T¢-_.)
— Tcp, = union of BSCCs T with TnSat(a)=© (T intersects Sat(a))
— Trc_, = union of BSCCs T with T<(S\Sat(a)) (no intersection)

= Prob(s, F (T¢r, U Tee_n) = 1 (fundamental DTMC property)

DP/Probabilistic Model Checking, Michaelmas 2011 19

End components of MDPs

- Consider an MDP M = (§,s;,,,Steps,L)

« A sub-MDP of M is a pair (T,Steps’) where:
— T < S is a (hon-empty) subset of M’s states
— Steps’(s) < Steps(s) foreachs T

— (T,Steps’) is closed under probabilistic
branching, i.e. the set of states
{s’| u(s’)>0 for some (a,n)eSteps’(s) }
is a subset of T

- An end component of M is a
strongly connected sub-MDP

Note:
. action labels omitted
. probabilities omitted where =1

DP/Probabilistic Model Checking, Michaelmas 2011 20

End components - Examples

« Sub-MDPs
— can be formed from state sets such as:
— {52,55,57,S8}, 150,52:55,57,5g}, {55,57,58},
— {51,53,S4}, 151,53,54,S¢} 153,54} ---

- End components
— can be formed from state sets:

— {53,54} {51,53,54}, {Sg}s {55,57,5s}

- Note that

— state sets do not necessarily
uniquely identify end components

— e.9.{5,53,S4}

DP/Probabilistic Model Checking, Michaelmas 2011 21

End components of MDPs

For finite MDPs...

— (analogue of fundamental property
of finite DTMCs)

For every end component, there

is an adversary which, with
probability 1, forces the MDP

to remain in the end component,
and visit all its states infinitely often

Under every adversary o, : ;
with probability 1 an end component s
will be reached and all of its states

visited infinitely often

DP/Probabilistic Model Checking, Michaelmas 2011 22

Repeated reachability - MDPs (max)

Repeated reachability (GF) for MDPs
— consider first the case of maximum probabilities...
— Pmax(s, GF Q)

First, a simple qualitative property:
— Prob°(s, GF a) > 0 for some adversary g, i.e. p,.,(s, GFa) > 0

A

— T n Sat(a) # @ for some end component T reachable from s

- The quantitative case (for maximum probabilities):

o pmax(si GF a) = pmax(S! F TGFa)

— where T, is the union of sets T for all end components
(T,Steps’) with T n Sat(a) # @ (i.e. at least one a-state in T)

DP/Probabilistic Model Checking, Michaelmas 2011

Example

Check: P_y5 [GF b] for s,

Compute p,,..(GF b)

o pmax(GF b) = pmax(S! F TGFb)

— Tcpp is the union of sets T
for all end components
with T n Sat(b) # &

— Sat(b) ={ s,, s¢}

— Tepp = T{UT,UT; =154, S3 5S4, S¢ }
— Prax(S, F Tep,) = 0.75

— Pmax(GF b) = 0.75

Result: s = P_,5[GF b]

DP/Probabilistic Model Checking, Michaelmas 2011

24

Repeated reachability - MDPs (max)

Quantitative case:
— Pmax(S, GF @) = Prax(S, F Ter)

- This yields the qualitative property given earlier:
— Prob9(s, GF a) > O for some adversary o

S Praxls, GFa) > 0

S Pmax(Ss F Tee) > 0

< Prob°(s, F Tce,) > 0 for some adversary o

o s = EF Tep,

< T n Sat(a) # @ for some E.C. T reachable from s
- Another qualitative property:
— Prob9(s, GF a) = 1 for some adversary o

© Pmax(s, GFa) =1 Compute with
< pmax(ss F TGFa) =1 <+ Prob1E

DP/Probabilistic Model Checking, Michaelmas 2011 25

Repeated reachability - MDPs (min)

- Repeated reachability for MDPs — minimum probabilities
o pmin(sa GF a)

- First, a useful qualitative property:

— Prob°(s, GF a) = 1 for all adversaries o

= gros s
-sEP,,[GFa] <— o

=

— T n Sat(a) +# @ for all end components T reachable from s

DP/Probabilistic Model Checking, Michaelmas 2011

26

Examples

- So= P, [GF (bvcvd)] ?

. sgE P, [GF (bvd)] ?

DP/Probabilistic Model Checking, Michaelmas 2011 27

Repeated reachability - MDPs (min)

- Repeated reachability for MDPs — minimum probabilities
o pmin(sa GF a)

- Quantitative case
— use duality of min/max probabilities for MDPs

o pmin(s’ LI‘,) —]_ pmax(51 _'Ll))
— e.d. Pmin(s, GF @) = 1- p,,..(s, FG—a)

- So min probabilities for repeated reachability (GF)
— can be computed as max probabilities for persistence (FG)

DP/Probabilistic Model Checking, Michaelmas 2011 28

Persistence - MDPs

Persistence for MDPs
— Pmin(s, FG @) or p,,.,(s, FG a)

Quantitative case - maximum probabilities

o pmax(si FG a) = pmax(S! F TFGa)

— where T, is the union of sets T for all end components
(T,Steps’) with T < Sat(a) (i.e. all states in T satisfy a)

DP/Probabilistic Model Checking, Michaelmas 2011 29

Repeated reachability (again)

- We now have way a of computing minimum probabilities
for repeated reachability (GF)
- pmin(S! GFa)=1- pmax(S’ FG_'a)
=1- pmax(S’ F TFGﬁa)
— where T._, is the union of sets T for all end components
(T,Steps’) with T < S\Sat(a)
— ie. Tgc_, is the union of sets T for all end components

(T.Steps’) with T.n Sat@) =&
Opposite of
i condition for GFa

- Can also now show why:

S
— T n Sat(a) # @ for all end components T reachable from s

DP/Probabilistic Model Checking, Michaelmas 2011 30

Examples

DP/Probabilistic Model Checking, Michaelmas 2011 31

Summing up... |

- LTL: path-based, path operators can be combined

- PCTL*: subsumes PCTL and LTL

CTL ¢
non-probabilistic
TL " (LTSs)
PCTL ®
probabilistic
LTL + prob. | Prob(s,) (DTMCs, MDPs)
PCTL* o

DP/Probabilistic Model Checking, Michaelmas 2011

32

Summing up... |l

2 useful instances of LTL formulae:
— repeated reachability: GF a
— persistence: FG a
DTMCs
— qualitative: properties of reachable BSCCs
— quantitative: probability of reaching success set (BSCC set)
MDPs
— end components: MDP analogue of BSCCs
— Pmax(S, GF @) — max. reachability of success set (TnSat(a)+ YD)
— P_, [GF a] - reachability of end components
— Pmin(s, GF @) - one minus max. prob. for dual property
— Pmax(S, FG @) — max. reachability of success set (T < Sat(a))
— Pmin(s, FG a) - again, via dual property

DP/Probabilistic Model Checking, Michaelmas 2011 33

Probabilistic Model Checking Michaelmas Term 2011

Lecture 16
Automata-based properties

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Property specifications

1. Reachability properties, e.g. in PCTL
— Faor F=ta (reachability)
—aUbor aU=tb (until - constrained reachability)
— G a (invariance) (dual of reachability)

— probability computation: graph analysis + solution of linear
equation system (or linear optimisation problem)

2. Long-run properties, e.g. in LTL
— GF a (repeated reachability)
— FG a (persistence)
— probability computation: BSCCs + probabilistic reachability

- This lecture: more expressive class for type 1

DP/Probabilistic Model Checking, Michaelmas 2011

Overview

- Nondeterministic finite automata (NFA)

- Regular expressions and regular languages

- Deterministic finite automata (DFA)

- Regular safety properties

- DFAs and DTMCs

DP/Probabilistic Model Checking, Michaelmas 2011

Some notation

Let > be a finite alphabet

- A (finite or infinite) word w over X is
— a sequence of ;&,... where «; € > for all i

- A prefix w of word w = x;x,... is
— a finite word B, B,... B, with B,=; for all 1<i<n

>* denotes the set of finite words over >

. >w denotes the set of infinite words over X

DP/Probabilistic Model Checking, Michaelmas 2011

Finite automata

- A nondeterministic finite automaton (NFA) is...
— atuple A =(Q, %, 3, Q, F) where:

— Q is a finite set of states

— 2 is an alphabet

— 0:Q X X — 2Qis a transition function

— Q, < Qs a set of initial states X

(S

(9,

_
B

— F< Qis a set of “accept” states

DP/Probabilistic Model Checking, Michaelmas 2011

Language of an NFA

- Consider an NFA A = (Q, 2, 5, Q,, F)

- A run of A on a finite word w=o, 0¢,...x,, is:

— a sequence of automata states q,q,...q, such that:
— dop € Qy and q;,; € d(q;, &) for all 0<i<n

- An accepting run is a run with q, € F

- Word w is accepted by A iff:
— there exists an accepting run of A onw

- The language of A, denoted L(A) is:
— the set of all words accepted by A

- Automata A and A’ are equivalent if L(A)=L(A")

DP/Probabilistic Model Checking, Michaelmas 2011

Example - NFA

DP/Probabilistic Model Checking, Michaelmas 2011

Regular expressions

- Regular expressions E over a finite alphabet X
— are given by the following grammar:

—E:=0|e|a|E+E|EE]|E*
— where x €

- Language L(E) < 2* of a regular expression:

- (V) = (empty language)
—L(e) ={¢e} (empty word)
— L) ={x} (symbol)
— L(E, + E,) = L(E,) U L(E,) (union)
— L(E,.E,) = {w,.w, | w,eL(E,) and w,€L(E,) } (concatenation)
— L(E*) = {w' | weL(E) and ieN } (finite repetition)

DP/Probabilistic Model Checking, Michaelmas 2011

Regular languages

- A set of finite words L is a regular language...

— iff L = L(E) for some regular expression E

— iff L = L(A) for some finite automaton A

(o+B)*B(x+P)

(i.e. penultimate symbol is B)

DP/Probabilistic Model Checking, Michaelmas 2011

Operations on NFA

Can construct NFA from regular expression inductively
— includes addition (and then removal) of e-transitions

4O

— ——

_~,<\ \\
O O’
< ’

-_——— T W e =

Can construct the intersection of two NFA
— build (synchronised) product automaton
— cross product of A; ® A, accepts L(A;) n L(A,)

DP/Probabilistic Model Checking, Michaelmas 2011 10

Deterministic finite automata

- A finite automaton is deterministic if:

— |Qo|:]

— 10(gq,)] <1 forallge Qand x € 2

— i.e. one initial state and no nondeterministic successors

- A deterministic finite automaton (DFA) is total if:
— 10(gq,)] =1 forallge Qand x € 2
— i.e. unique successor states

- A total DFA
— can always be constructed from a DFA
— has a unique run for any word w € >*

DP/Probabilistic Model Checking, Michaelmas 2011

11

Determinisation: NFA — DFA

- Determinisation of an NFA A = (Q, 2, 5, Q,, F)
— i.e. removal of choice in each automata state

- Equivalent DFA is Ay, = (29, 2, d4.t, Qo Fger) Where:

— 6det(Q’! o) = UqEQ' 6(CI, O()

- Fiee ={Q cQ|Q nF =}

- Note exponential blow-up in size...

DP/Probabilistic Model Checking, Michaelmas 2011

12

NFA A

DP/Probabilistic Model Checking, Michaelmas 2011

regexp:

(o+B)*B(x+P)

13

NFA A

DP/Probabilistic Model Checking, Michaelmas 2011

regexp:

(o+B)*B(x+P)

14

Other properties of NFA/DFA

NFA/DFA have the same expressive power
— but NFA can be more efficient (up to exponentially smaller)

NFA/DFA are closed under complementation
— build total DFA, swap accept/non-accept states

For any regular language L, there is a unique minimal DFA
that accepts L (up to isomorphism)

— efficient algorithm to minimise DFA into equivalent DFA
— partition refinement algorithm (like for bisimulation)

Language emptiness of an NFA reduces to reachability
— L(A) # @ iff can reach a state in F from an initial state in Q,

DP/Probabilistic Model Checking, Michaelmas 2011 15

Languages as properties

- Consider a model, i.e. an LTS/DTMC/MDP/ ...

— e.g. DTMCD = (S, s;,it, P, Lab)

— where labelling Lab uses atomic propositions from set AP
— let w € Path(s) be some infinite path

- Temporal logic properties
— for some temporal logic (path) formula g, does w = P ?

- Traces and languages

— trace(w) € (2AP)» denotes the projection of state labels of w
— i.e. trace(syS;5,53...) = Lab(sy)Lab(s,)Lab(s,)Lab(s;)...

— for some language L < (2AP)w, is trace(w) € L ?

DP/Probabilistic Model Checking, Michaelmas 2011 16

Example

- Atomic propositions
— AP = { fail, try }
— 2AP = { @, {fail}, {try}, {fail,try} }

Paths and traces
— €.9. W = 535;51555051525051535353---
— trace(w) = & {try} {try} {fail} D {try} {fail} O {try} © @ O ...

Languages

— e.g. “no failures”
— L={ox,... €)% | o, is @ or {try} for all i }

DP/Probabilistic Model Checking, Michaelmas 2011

17

Regular safety properties

- A safety property P is a language over 2A? such that

— for any word w that violates P (i.e. is not in the language),
w has a prefix w’, all extensions of which, also violate P

- A regular safety property is

— safety property for which the set of “bad prefixes” (finite
violations) forms a regular language

Formally...
— P c (2AP)w js a safety property if:
.V w e ((2AP)w\P) . T finite prefix w’ of w such that:
- Pn{w’e 2AP)w | w’is a prefix of w’ } = &
— Pis a reqgular safety property if:
AW e 2A) | Vw’ e (A)w . w.w’ & P}is regular

DP/Probabilistic Model Checking, Michaelmas 2011 18

Regular safety properties

- A safety property P is a language over 2A? such that

— for any word w that violates P (i.e. is not in the language),
w has a prefix w’, all extensions of which, also violate P

- A regular safety property is

— safety property for which the set of “bad prefixes” (finite
violations) forms a regular language

Examples:
— “at least one traffic light is always on”
— “two traffic lights are never on simultaneously”
— “a red light is always preceded immediately by an amber light”

DP/Probabilistic Model Checking, Michaelmas 2011 19

Example

Regular safety property:
— “at most 2 failures occur”
— language over:
2AP = { &, {fail}, {try}, {fail,try}}

DP/Probabilistic Model Checking, Michaelmas 2011

20

Example

- Regular safety property:
— “at most 2 failures occur”
— language over:
2AP = { &, {fail}, {try}, {fail,try}}

- Bad prefixes (regexp):

(fall) fall (fall) fa|| (_‘fa”) fall , ..

. fail denotes:

T dfail} + {fail tryp |

- Bad prefixes (DFA): . —fail denotes:
s (D + {try}) .

Cfail ofall il e

. . . \ fa||denotes
@ - {fail}, {fail,try}
fa|I fa|I fail —fail denotes:

..

DP/Probabilistic Model Checking, Michaelmas 2011 21

Regular safety properties + DTMCs

- Consider a DTMC D (with atomic propositions from AP)
and a reqgular safety property P < (2AP)w

- Let ProbP(s, P) denote the probability of P being satisfied
— i.e. ProbP(s, P) = Pr°{ w € Path(s) | trace(w) € P}

— where PrP, is the probability measure over Path(s) for D

— this set is always measurable (see later)

- Example (safety) specifications
— “the probability that at most 2 failures occur is >0.999”
— “what is the probability that at most 2 failures occur?”

- How to compute ProbP(s, P) ?

DP/Probabilistic Model Checking, Michaelmas 2011 22

Product DTMC

- We construct the product of

—aDTMCD = (S, s, P, L)

— and a (total) DFA A = (Q, %, 9, q,, F)

— intuitively: records state of A for path fragments of D

- The product DTMC D ® A is:
— the DTMC (SxQ, (Sii,Qini)s P’ L) where:

— Qipit = 6(C|0,|—(5init))

P(s,,s,) if g, =d(q,,L(s,))
0 otherwise

— P'((S1’q1);(52’q2)) = %

— L’(s,q) = { accept }if g € F and L’(s,q) = & otherwise

DP/Probabilistic Model Checking, Michaelmas 2011

23

Example

DFA A

—fail —fail —fail

fail denotes:
{fail}, {fail,try}
—fail denotes:

..

DP/Probabilistic Model Checking, Michaelmas 2011

24

statesbeyondaccept /\
Product DTMC D ® A '

state unimportant {accept}

DP/Probabilistic Model Checking, Michaelmas 2011 25

Product DTMC

One interpretation of D ® A:

— unfolding of D where q for each state (s,q) records state of
automata A for path fragment so far

In fact, since A is deterministic...

— for any w € Path(s) of the DTMC D:

. there is a unique run in A for trace(w)
. and a corresponding (unique) path through D ® A

— for any path w’ € PathP®A(s,q,,,,) where q;,; = 8(q,,L(s))
. there is a corresponding path in D and a runin A

DFA has no effect on probabilities
— i.e. probabilities preserved in product DTMC

DP/Probabilistic Model Checking, Michaelmas 2011

26

Regular safety properties + DTMCs

Regular safety property P < (2AF)w
— “bad prefixes” (finite violations) represented by DFA A

Probability of P being satisfied in state s of D
— ProbP(s, P) = PrP{ w € Path(s) | trace(w) € P}

=1 - Pr°{ w € Path(s) | trace(w) ¢ P}

=1 - PrP{ w € Path(s) | pref(trace(w)) N L(A) = @ }
— where pref(w) = set of all finite prefixes of infinite word w

ProbP(s, P) = 1 - ProbP®A((s,q.), F accept)

— where g, = 8(q,,L(s))

DP/Probabilistic Model Checking, Michaelmas 2011 27

Example

ProbP(s,, “at most 2 failures occur™)
= 1 - ProbP®A((s,,q,), F accept) {accept}
=1-(/99)°
~ 0.9999989694

DP/Probabilistic Model Checking, Michaelmas 2011 28

Summing up...

Nondeterministic finite automata (NFA)

— can represent any regular language, regular expression

— closed under complementation, intersection, ...

— (non-)emptiness reduces to reachability
Deterministic finite automata (DFA)

— can be constructed from NFA through determinisation

— equally expressive as NFA, but may be larger
Regular safety properties

— language representing set of possible traces

— bad (violating) prefixes form a regular language
Probability of a reqgular safety property on a DTMC

— construct product DTMC

— reduces to probabilistic reachability

DP/Probabilistic Model Checking, Michaelmas 2011 29

Probabilistic Model Checking Michaelmas Term 2011

Lecture 17/
w-regular properties

Dr. Dave Parker

UNIVERSITY OF

0):430)23)

Department of Computer Science
University of Oxford

Long-run properties

Last lecture: regular safety properties
— e.g. “a message failure never occurs”
— e.g. “an alarm is only ever triggered by an error”
— bad prefixes represented by a regular language
— property always refuted by a finite trace/path
Liveness properties
— e.g. "for every request, an acknowledge eventually follows”
— no finite prefix refutes the property
— any finite prefix can be extended to a satisfying trace
Fairness assumptions

— e.g. “every process that is enabled infinitely often is scheduled
infinitely often”

Need properties of infinite paths

DP/Probabilistic Model Checking, Michaelmas 2011 2

Overview

w-regular expressions and w-regular languages
Nondeterministic Buchi automata (NBA)
Deterministic Blichi automata (DBA)
Deterministic Rabin automata (DRA)

Deterministic w-automata and DTMCs

DP/Probabilistic Model Checking, Michaelmas 2011

w-regular expressions

- Regular expressions E over alphabet = are given by:
—E:=0|e|x|E+E|EE]|E* (where o € %)

- An w-regular expression takes the form:
— G =E..(F)® + E,.(F))* + ... + E,.(F))*
— where E;, and F, are regular expressions with € ¢ L(F))

- The language L(G) < >* of an w-regular expression G
— is L(E,).L(F,)® U L(E,).L(F,)* + ... + L(E,).L(F)

— where L(E) is the language of regular expression E

— and L(E)®* = { w® | welL(E) }

- Example: (t+B+y)*(B+y)® forZ ={ , B, Y }

DP/Probabilistic Model Checking, Michaelmas 2011

w-regular languages/properties

- Alanguage L < >% over alphabet 2 is an w-regular
language if and only if:

— L = L(G) for some w-regular expression G

w-regular languages are:
— closed under intersection
— closed under complementation

P c (2AP)w is an w-regular property
— if P is an w-regular language over 2AP
— (where AP is the set of atomic propositions for some model)
— path w satisfies P if trace(w) € P
— NB: any regular safety property is an w-regular property

DP/Probabilistic Model Checking, Michaelmas 2011

Examples

- A message is sent successfully infinitely often
— ((—succ)*.succ)®

Every time the process tries to send a message, it
eventually succeeds in sending it

DP/Probabilistic Model Checking, Michaelmas 2011

Bluchi automata

- A nondeterministic Buchi automaton (NBA) is...
— atuple A =(Q, %, 3, Qg, F) where:

— Qis a finite set of states

— 2 is an alphabet

— 0:Q X X — 2Qijs a transition function
— Q, < Qs a set of initial states

— F< Qs a set of “accept” states

— i.e. just like a nondeterministic finite automaton (NFA)

- The difference is the accepting condition...

DP/Probabilistic Model Checking, Michaelmas 2011

Language of an NBA

- Consider a Buchi automaton A = (Q, 2, 8, Q,, F)

- A run of A on an infinite word o 0,... is:
— an infinite sequence of automata states q,q;... such that:

- An accepting run is a run with qg; € F for infinitely many i

- The language L(A) of A is the set of all infinite words on
which there exists an accepting run of A

DP/Probabilistic Model Checking, Michaelmas 2011

Example

- Infinitely often a

DP/Probabilistic Model Checking, Michaelmas 2011

Example...

- As in the last lecture, we use automata to represent
languages of the form L c (2AP)w

- So, if AP = {a,b}, then: a

...is actually:

DP/Probabilistic Model Checking, Michaelmas 2011

10

Properties of Buchi automata

w-regular languages
— L(A) is an w-regular language for any NBA A
— any w-regular language can be represented by an NBA

w-regular expressions

— like for finite automata, can construct an NBA from an
arbitrary w-regular expression E,.(F)®* + ... + E_.(F)¥

— i.e. there are operations on NBAs to:
. construct NBA accepting L» for regular language L
. construct NBA from NFA for (regular) E and NBA for (w-regular) F
. construct NBA accepting union L(A;) U L(A,) for NBA A, and A,

DP/Probabilistic Model Checking, Michaelmas 2011 11

Bliichi automata and LTL

LTL formulae

—ypu=tuelalwayp|-w|[XplpUuy
— where a € AP is an atomic proposition

- Can convert any LTL formula into an NBA A over 2AP
— i.e. w E Y < trace(w) € L(A) for any path w

LTL-to—-NBA translation (see e.g. [VW94], [DGV99])
— construct a generalized NBA (multiple sets of accept states)
— based on decomposition of LTL formula into subformulae
— can convert GNBA into an equivalent NBA
— various optimisations to the basic techniques developed
— not covered here; see e.g. section 5.2 of [BKOS§]

DP/Probabilistic Model Checking, Michaelmas 2011 12

Bliichi automata and LTL

- GFa (“infinitely often a”)

—d

- G@—-Fb) (“balways eventually follows a”)

an—b

-
"

—avb

DP/Probabilistic Model Checking, Michaelmas 2011

13

Deterministic Buchi automata

Like for finite automata...

- A NBA is deterministic if:

- |Qo|:]
—]jo(gq,)] <1 forallge Qand x € 2
— i.e. one initial state and no nondeterministic successors

- A deterministic Bichi automaton (DBA) is total if:
—o(gq,)] =1 forallge Qand x € 2
— i.e. unique successor states

But, NBA can not always be determinised...
— i.e. NBA are strictly more expressive than DBA

DP/Probabilistic Model Checking, Michaelmas 2011 14

NBA and DBA

- NBA and DBA for the LTL formula G b A GF a

NBA:) ’ anb
' aAb

b

a

Ab
DBA:]l’ b
g —aAb Y

—aAb

DP/Probabilistic Model Checking, Michaelmas 2011

15

No DBA possible

Consider the w-regular expression (x+p)*x® over >={x,B}
— i.e. words containing only finitely many instances of B
— there is no deterministic Blichi automata accepting this

In particular, take x = {a} and B = &, i.e. >=2AP, AP={a}
— (x+B)*ox» represents the LTL formula FG a

FG a is represented by the following NBA:

SR

true true

But there is no DBA for FG a
DP/Probabilistic Model Checking, Michaelmas 2011

16

Deterministic Rabin automata

- A deterministic Rabin automaton (DRA) is...
— atuple A =(Q, %, 9, q,, Acc) where:

— Qis a finite set of states

— 2 is an alphabet

— 0 :Q x X - Qs atransition function

— Qo € Qs an initial state

— Acc € 22 x 2Qjs an acceptance condition

- The acceptance condition is a set of pairs of state sets
— Acc ={ (L, K) | 1<i<k'}

DP/Probabilistic Model Checking, Michaelmas 2011

17

Deterministic Rabin automata

- A run of a word on a DRA is accepting iff:

— for some pair (L;, K,), the states in L; are visited finitely often
and (some of) the states in K, are visited infinitely often

— orin LTL: Vk(FG -L. A GF Ki)

l=<i<

Hence:

— a deterministic Buchi automaton is a special case of a
deterministic Rabin automaton where Acc = { (9, {F}) }

DP/Probabilistic Model Checking, Michaelmas 2011 18

FG a

NBA for FG a (no DBA exists)

RN

true d true

DRA for FG a

— where acceptance condition is Acc = { {qyhia;} }

DP/Probabilistic Model Checking, Michaelmas 2011 19

Example - DRA

- Another example of a DRA (over alphabet 2{a.b)

a

— where acceptance condition is Acc = { ({q,}1L{qe}) }

- In LTL: G(a — F(—aAb)) A FG —a

DP/Probabilistic Model Checking, Michaelmas 2011

20

Properties of DRA

- Any w-regular language can represented by a DRA
— (and L(A) is an w-regular language for any DRA A)

i.e. DRA and NBA are equally expressive
— (but NBA may be more compact)

— and DRA are strictly more expressive than DBA

- Any NBA can be converted to an equivalent DRA [Saf88]
— size of the resulting DRA is 20(nlogn)

DP/Probabilistic Model Checking, Michaelmas 2011 21

Deterministic w-automata and DTMCs

- Let A be a DBA or DRA over the alphabet 24P
— i.e. L(A) c (2AP)» jdentifies a set of paths in a DTMC

- Let ProbP(s, A) denote the corresponding probability

— from state s in a discrete-time Markov chain D
— i.e. ProbP(s, A) = PrP{ w & Path(s) | trace(w) € L(A) }

- Like for finite automata (i.e. DFA), we can evaluate
ProbP(s, A) by constructing a product of D and A

— which records the state of both the DTMC and the automaton

DP/Probabilistic Model Checking, Michaelmas 2011 22

Product DTMC for a DBA

- ForaDTMCD = (S, s, P, L)
- and a (total) DBA A = (Q, %, 5, qp, F)

- The product DTMC D ® A is:
— the DTMC (SXQ, (Sihie,Qinit)s P’5 L') where:

Qinit = 0(Ao,L(Sinir)
P(s,,s,) if g, =0(q,,L(s,))

PP 1), (52, G2)) = { 0 otherwise

L’(s,q) = { accept }if g € F and L’(s,q) = @ otherwise

- Since A is deterministic
— unique mappings between paths of D, Aand D ® A

— probabilities of paths are preserved

DP/Probabilistic Model Checking, Michaelmas 2011

23

Product DTMC for a DBA

- For DTMC D and DBA A

ProbP(s, A) = ProbP®A((s,q.), GF accept)

— where g, = 8(qg,L(s))

- Hence:

ProbP(s, A) = ProbP®A((s,q,), F TGFaccept)

— where Tgriccepe = Union of D®A BSCCs T with TnSat(accept)# <

- Reduces to computing BSCCs and reachability probabilities

DP/Probabilistic Model Checking, Michaelmas 2011 24

Example

Compute Prob(s,, GF a)
— property can be represented as a DBA

Result: 1

DP/Probabilistic Model Checking, Michaelmas 2011

25

Example 2

Compute Prob(s,, G =b A GF a)
— property can be represented as a DBA

Result: 0.75

DP/Probabilistic Model Checking, Michaelmas 2011

26

Product DTMC for a DRA

- ForaDTMCD = (S, s, P, L)
- and a (total) DRA A = (Q, %, 9, g4, Acc)
— where Acc ={ (L, K)) | 1<i<k'}

+ The product DTMC D ® A is:
— the DTMC (SxQ, (Si,it,Ginit)s P’ L') where:
init = 0(do;L(Sinit))
, P(s,,s,) if g, =0(q,,L(s,))
P -
(51,05 (55, 0,)) { i 220
. € L'(s,q)ifqe L, and k, € L'(s,q) if g € K

(i.e. state sets of acceptance condition used as labels)

+ (same product as for DBA, except for state labelling)

DP/Probabilistic Model Checking, Michaelmas 2011 27

Product DTMC for a DRA

- For DTMC D and DRA A

ProbP(s, A) = ProbP®A((s,q,), V.- (FG =I; A GF k)

— where g, = 8(qg,L(s))
- Hence:

ProbP(s, A) = ProbP®A((s,q.), F Tx.)

— where T, is the union of all accepting BSCCs in D®A
— an accepting BSCC T of D®A is such that, for some 1=<i<k:

- q k& —l forall (s,q) € Tand q = k,for some (s,q) € T
e, TN(SXxL)=%and TN (SxK)=+D

- Reduces to computing BSCCs and reachability probabilities

DP/Probabilistic Model Checking, Michaelmas 2011 28

Example 3

- Compute Prob(s,, FG a)
— property can be represented as a DRA

Acc = { {qohia} }

- Result: 0.125

DP/Probabilistic Model Checking, Michaelmas 2011

29

Example 4

- Compute Prob(s,, G(b — F(—bAa)) A FG —b)
— property can be represented as a DRA

Acc ={ ({q,hL{geh }

- Result: 1

DP/Probabilistic Model Checking, Michaelmas 2011

b
*‘.‘)) by~
g -bAa @ o

30

Summing up...

w-regular expressions and w-regular languages

— languages of infinite words: E,.(F))®* + E,.(F,)* + ... + E.(F)¥
Nondeterministic Buchi automata (NBA)

— accepting runs visit a state in F infinitely often

— can represent any w-regular language by an NBA

— can translate any LTL formula into equivalent NBA
Deterministic Buchi automata (DBA)

— strictly less expressive than NBA (e.g. no NBA for FG a)
Deterministic Rabin automata (DRA)

— generalised acceptance condition: { (L;, K) | 1<i<k}

— as expressive as NBA; can convert any NBA to a DRA
Deterministic w-automata and DTMCs

— product DTMC + BSCC computation + reachability

DP/Probabilistic Model Checking, Michaelmas 2011

31

Probabilistic Model Checking Michaelmas Term 2011

Lecture 18

LTL model checking
for DTMCs and MDPs

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Overview

Recall
— deterministic w-automata (DBA or DRA) and DTMCs

LTL model checking for DTMCs
— measurability
— complexity
— PCTL* model checking for DTMCs

LTL model checking for MDPs

DP/Probabilistic Model Checking, Michaelmas 2011

Recall - DBA and DRA

Deterministic Bliichi automata (DBA)
- (Q, , o, o, F)
— accepting run must visit some state in F infinitely often
— less expressive than nondeterministic Blichi automata (NBA)

Deterministic Rabin automata (DRA)
T (Qs Zy 61 CIo, ACC)
— Acc ={ (L, K) | 1<i<k}

— for some pair (L, K), the states in L, must be visited finitely
often and (some of) the states in K, visited infinitely often

— equally expressive as NBA
— (i.e. all w-reqgular properties; and hence all LTL formulae)

DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC for a DBA

- For DTMC D and DBA A

ProbP(s, A) = ProbP®A((s,q.), GF accept)

— where g, = 8(qg,L(s))
- Hence:

ProbP(s, A) = ProbP®A((s,qy), F Tcraccept)

— where Tgrccep iS the union of all BSCCs T in D®A with TnSat
(accept)+

- Reduces to computing BSCCs and reachability probabilities

DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC for a DRA

- For DTMC D and DRA A

PI‘ObD(S, A) — PFObD®A((5,q5), v]gigk (FG ﬁli A GF I(I)

— where g, = 8(qg,L(s))
- Hence:

ProbP(s, A) = ProbP®A((s,q,), F Ta.)

— where T, . is the union of all accepting BSCCs in D®A
— an accepting BSCC T of D®A is such that, for some 1=<i<k:

- gk —l forall (s,q) € Tand g = k,for some (s,q) € T
cie.TN(SXL)=@and TN (SxK)=+O

- Reduces to computing BSCCs and reachability probabilities

DP/Probabilistic Model Checking, Michaelmas 2011

LTL model checking for DTMCs

- Model check LTL specification P_,[¢ | against DTMC D

- 1. Generate a deterministic Rabin automaton (DRA) for g
— build nondeterministic Biichi automaton (NBA) for p [VW94]
— convert the NBA to a DRA [Saf88]

- 2. Construct product DTMC D®A

. 3. ldentify accepting BSCCs of DQA

- 4. Compute probability of reaching accepting BSCCs

— from all states of the D®A

- 5. Compare probability for (s, gq.) against p for each s

- Qualitative LTL model checking - no probabilities needed

DP/Probabilistic Model Checking, Michaelmas 2011

Example 3 (Lec 17) revisited

- Model check P_,, [FG a]

Acc = { ({qohiad) }

- Result:
— Prob(FGa) =[0.125,0.5,1,0,0, 1]
— Sat(P.,, [FGa]) =1{s;, Sy S5}

DP/Probabilistic Model Checking, Michaelmas 2011

Measurability of w-regular properties

For any w-regular property Y
— the set of p-satisfying paths in any DTMC D is measurable
Hence, the same applies to

— any regular safety property
— any LTL formula

Proof sketch

— any w-regular property can be represented by a DRA A

— we can construct D®A, in which there is a direct mapping from
any path w in D to a path w’ in D®A

— GF ® and FG @ are measurable (see lecture 3)
— A and Vv = intersection/union (which preserve measurability)

DP/Probabilistic Model Checking, Michaelmas 2011 8

Complexity

» Complexity of model checking LTL formula ¢ on DTMC D
— is doubly exponential in |@| and polynomial in |D|
— (for the algorithm presented in these lectures)
» Converting LTL formula ¢ to DRA A

— for some LTL formulae of size n, size of smallest DRA is 22
BSCC computation

— Tarjan algorithm - linear in model size (states/transitions)
Probabilistic reachability

— linear equations - cubic in (product) model size
In total: O(poly(|D|,|Al))
In practice: |P| is small and |D] is large
- Complexity can be reduced to single exponential in ||
— see e.g. [CY88,CY95]

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL* model checking

PCTL* syntax:
—¢ i=true|aldAad| - |P, (W]

—p i=b YA | -p Xy |lpUuy
Example:
— P, [GF (send — Py [Fack])]

PCTL* model checking algorithm
— bottom-up traversal of parse tree for formula (like PCTL)
— to model check P., RUNE
. replace maximal state subformulae with atomic propositions
. (state subformulae already model checked recursively)
. modified formula @ is now an LTL formula
. which can be model checked as for LTL

DP/Probabilistic Model Checking, Michaelmas 2011

10

Recall - end components in MDPs

End components of MDPs
are the analogue of BSCCs in DTMCs

- An end component is a
strongly connected sub-MDP

« A sub-MDP comprises a subset
of states and a subset of the
actions/distributions available
in those states, which is closed
under probabilistic branching

Note:
. action labels omitted
. probabilities omitted where =1

DP/Probabilistic Model Checking, Michaelmas 2011 11

Recall - end components in MDPs

End components of MDPs
are the analogue of BSCCs in DTMCs

For every end component, there

is an adversary which, with
probability 1, forces the MDP

to remain in the end component,
and visit all its states infinitely often

Under every adversary o, with
probability 1, the set of states
visited infinitely often forms
an end component

DP/Probabilistic Model Checking, Michaelmas 2011

12

Recall - long-run properties of MDPs

Maximum probabilities

o pmax(S’ GF a) = pmax(S! F TGFa)

- where T, is the union of sets T for all end components
(T,Steps’) with T n Sat(a) + @

o pmax(si FG a) = pmax(S! F TFGa)

.- where T, is the union of sets T for all end components
(T,Steps’) with T < Sat(a)

Minimum probabilities
— need to compute from maximum probabilities...
— Pmin(s, GF @) = T- pax(s, FG—a)
— Pmin(s, FG a) = T- pax(s, GF—a)

DP/Probabilistic Model Checking, Michaelmas 2011 13

Automata-based properties for MDPs

For an MDP M and automaton A over alphabet 24P
— consider probability of “satisfying” language L(A) < (2AP)w
— ProbM.o(s, A) = Pr.Mo{ w € PathMo(s) | trace(w) € L(A) }
— Pmax (S, A) = SUP;caqy ProbMo(s, A)
— PminM(s, A) = inf__pq, ProbMo(s; A)

Might need minimum or maximum probabilities
—€.9.5F P9l Wgooda! & Prin" (S Wyooa) = 0.99
—e.9.5F P_gos[Whag] © Prmax" (S, Wpag) < 0.05

But, w-regular properties are closed under negation
— as are the automata that represent them
— so can always consider maximum probabilities...

— pmaxM(S! Ll)bad) orl - pmaxM(s’ _'Lpgood)

DP/Probabilistic Model Checking, Michaelmas 2011 14

LTL model checking for MDPs

- Model check LTL specification P_,[@ | against MDP M

1. Convert problem to one needing maximum probabilities
— e.g. convert P, [p]to P, [~Y]

- 2. Generate a DRA for @ (or —p)

— build nondeterministic Blichi automaton (NBA) for ¢ [VW94]
— convert the NBA to a DRA [Saf88]

- 3. Construct product MDP M®A
- 4. |ldentify accepting end components (ECs) of M®A
- 5. Compute max. probability of reaching accepting ECs

— from all states of the D®A
- 6. Compare probability for (s, gq.) against p for each s

DP/Probabilistic Model Checking, Michaelmas 2011

15

Product MDP for a DRA

- Fora MDP M = (§, s, Steps, L)
- and a (total) DRA A = (Q, 2, 9, q4, AcC)
— where Acc ={ (L, K) | T<i<k}

- The product MDP M ® A is:
— the MDP (SxQ, (S,it,qinit), Steps’, L’) where:
Qinic = 9(AsL(Sinir)
Steps’(s,q) = { u9 | p € Step(s) }
ager oy _ | MG i q'=8(q,L(s))
(s a) { 0 otherwise

. € L'(s,q) if g € L, and k; € L’(s,q) if g € K,
(i.e. state sets of acceptance condition used as labels)

DP/Probabilistic Model Checking, Michaelmas 2011

Product MDP for a DRA

- For MDP M and DRA A

pmaxM(S! A) = pmaxM®A((S’qs)’ \/]SiSk (FG _lli A GF I(I)

— where g, = 8(qg,L(s))

- Hence:

pmaxM(S’ A) - pmaXM®A((S!q5)1 F TACC)

— where T, is the union of all sets T for accepting end
components (T,Steps’) in D®A

— an accepting end components is such that, for some 1<i<k:
. (s,q) & —l forall (s,q) € T and (s,q) = k;for some (s,q) € T
e, TNn(SXxL)=@and TN (SxK) =+ O

DP/Probabilistic Model Checking, Michaelmas 2011 17

MDPs - Example 1

- Model check P_y 3 [G —b A GF a]

O

—an—b an—b
« aA—b .
et

—aA—b

{a}
@ Acc = { (@, {q,}) }
- Result:

— Pmax(G b AGFa)=[0.7,0,1,1]
— Sat(P_ys [G b AGFa])=1{sy s;}

DRA (in fact DBA):

DP/Probabilistic Model Checking, Michaelmas 2011 18

MDPs - Example 2

- Model check P_, [G =b A GF a]
— Pmin(S; G b A GF a) =1 - p,. (s, 7(G —b A GF a))

=1 - pnax(s, Fb Vv FG —a))
0.3 4@

—aA—b
{b}

Q-Q DRA:

{a}
Acc = { (D,{q,},
da,,q,hideb }

- Result: p,,..(G—-b AGFa)=[0,0,0,1]
— Sat(P., [G =b A GF a]) = {s3}
DP/Probabilistic Model Checking, Michaelmas 2011 19

LTL model checking for MDPs

Maximal end components

— can optimise LTL model checking using maximal end
components (there may be exponentially many ECs)

Qualitative LTL model checking
— no numerical computation: use Prob1E, ProbOA algorithms
Complexity of model checking LTL formula ¢ on MDP M
— is doubly exponential in |Q| and polynomial in |M|
— unlike DTMCs, this cannot be improved upon
PCTL* model checking
— LTL model checking can be adapted to PCTL*, as for DTMCs
Optimal adversaries for LTL formulae

— memoryless adversary always exists for p,..(s, GF a)
and for p,,..(s, FG a) but not for arbitrary LTL formulae

DP/Probabilistic Model Checking, Michaelmas 2011 20

Summing up...

Deterministic w—-automata (DBA or DRA) and DTMCs

— probability of language acceptance reduces to probabilistic
reachability of set of accepting BSCCs in product DTMC

LTL model checking for DTMCs
— via construction of DRA for LTL formula

— complexity: (doubly) exponential in the size of the LTL
formula and polynomial in the size of the DTMC

— measurability of any w-regular property on a DTMC
PCTL* model checking for DTMCs

— combination of PCTL and LTL model checking algorithms
LTL model checking for MDPs

— max. probabilities of reaching accepting end components

— min. probabilities through negation and max. probabilities

DP/Probabilistic Model Checking, Michaelmas 2011

21

Probabilistic Model Checking Michaelmas Term 2011

Lecture 19
Probabilistic symbolic model checking

Dr. Dave Parker

UNIVERSITY OF

0):430)23)

Department of Computer Science
University of Oxford

Overview

Implementation of probabilistic model checking
— overview, key operations, symbolic vs. explicit

Binary decision diagrams (BDDs)
— introduction, sets, transition relations, ...

Multi-terminal BDDs (MTBDDs)
— introduction, vectors, matrices, ...

Operations on/with BDDs and MTBDDs

DP/Probabilistic Model Checking, Michaelmas 2011

Implementation overview

Overview of the probabilistic model checking process
— two distinct phases: model construction, model checking

— three different models, several different logics,
various different solution/analysis methods

— but... all these processes have much in common

DTMC, MDP
or CTMC

High-level Model
model construction _L
Model
PRISM —» checking
language _

description

PCTL or CSL
formula

DP/Probabilistic Model Checking, Michaelmas 2011

Model construction

Model construction
. S Reachab|||ty
High-level : from . i building set
mode| . high-level [” of reachable
. language | states .| DTMC, MDP
PRISM .. : or CTMC
language
description matrix graph-based
manipulation algorithm

DP/Probabilistic Model Checking, Michaelmas 2011

Model checking

Model checking

DTMC, MDP | oo et e
or CTMC . Basicset i:i Solution of linear i
operations equation systems
o (iterative methods)

i Precomputation | s :
. algorithms i i Solution of linear

i'.: i optimisation problems
Property J)—®| : Bottom strongly i (iterative methods)

:oconnected i
PCTL or CSL : component : ! Uniformisation-based
formula : computation i iterative methods

Two distinct classes of techniques:
graph-based algorithms
iterative numerical computation

DP/Probabilistic Model Checking, Michaelmas 2011

Underlying operations

Key objects/operations for probabilistic model checking

Graph-based algorithms
— underlying transition relation of DTMC/MDP/CTMC
— manipulation of transition relation and state sets

Iterative numerical computation
— transition matrix of DTMC/MDP/CTMC, real-valued vectors
— manipulation of real-valued matrices and vectors
— in particular: matrix-vector multiplication

DP/Probabilistic Model Checking, Michaelmas 2011

State-space explosion

Models of real-life systems are typically huge
— familiar problem for verification/model checking techniques

State-space explosion problem

— linear increase in size of system can result in an exponential
increase in the size of the model

— e.g. n parallel components of size m, can give up to m" states

Need efficient ways of storing models, sets of states, etc.
— and efficient ways of constructing, manipulating them

Here, we will focus on symbolic approaches

DP/Probabilistic Model Checking, Michaelmas 2011

Explicit vs. symbolic data structures

Symbolic data structures
— usually based on binary decision diagrams (BDDs) or variants
— avoid explicit enumeration of data by exploiting reqgularity
— potentially very compact storage (but not always)
Sets of states:
— explicit: bit vectors
— symbolic: BDDs
Real-valued vectors:
— explicit: arrays of reals (in practice, doubles/floats)
— symbolic: multi-terminal BDDs (MTBDDs)
Real-valued matrices:
— explicit: sparse matrices
— symbolic: MTBDDs

DP/Probabilistic Model Checking, Michaelmas 2011

Representations of Boolean formulas

- Propositional formula: f = (x; V X5) A X5

Truth table Binary decision tree

X
X

N
X

w

— |1 O|—=|1O|—m|O||OCO|O]

—|o|—=|O|—|O|— |0

Binary decision diagram

DP/Probabilistic Model Checking, Michaelmas 2011

Binary decision trees

Graphical representation of Boolean functions

— f(x4,...,x,) : {0,1}" — {0,1}

Binary tree with two types of nodes
Non-terminal nodes

— labelled with a Boolean variable x;

— two children: 1 (“then”, solid line) and O (“else”, dotted line)
- Terminal nodes (or “leaf’” nodes)
— labelled with 0 or 1
- To read the value of f(x,,...,x,)
— start at root (top) node
— take “then” edge if x;=1
— take “else” edge if x;=0
— result given by leaf node

DP/Probabilistic Model Checking, Michaelmas 2011 10

Binary decision diagrams

Binary decision diagrams (BDDs) [Bry86]
— based on binary decision trees, but reduced and ordered
— sometimes called reduced ordered BDDs (ROBDDs)
— actually directed acyclic graphs (DAGSs), not trees
— compact, canonical representation for Boolean functions

- Variable ordering

— a BDD assumes a fixed total ordering
over its set of Boolean variables

— along any path through the BDD,
variables appear at most once each
and always in the correct order

DP/Probabilistic Model Checking, Michaelmas 2011 11

BDD reduction rule 1

- Rule 1: Merge identical terminal nodes

- Example:

&
o o
o o
o o
o o
o K
o o
- 5 5 5
5 5 5 D
o 5 5 .
0 5 D .
o 5 5 ”
5 5 5 5
o .

0|1 0|1 0 1

DP/Probabilistic Model Checking, Michaelmas 2011

BDD reduction rule 2

- Rule 2: Merge isomorphic nodes, redirect incoming nodes

DP/Probabilistic Model Checking, Michaelmas 2011

13

BDD reduction rule 3

Rule 3: Remove redundant nodes (with identical children)

DP/Probabilistic Model Checking, Michaelmas 2011

14

Canonicity

- BDDs are a canonical representation for Boolean functions

— two Boolean functions are equivalent if and only if the BDDs
which represent them are isomorphic

— uniqueness relies on: reduced BDDs, fixed variable ordered

5
D
D
.
0
D
x

0|1 0 1

o
o
o
Q
o
g
Q
o
o D
g D
Q D
Q .
g 0
o D
) N

0|1

o
o
Q
o
g
Q
o
D
D
D
.
0
D

- Important implications for implementation efficiency
— can be tested in linear (or even constant) time

DP/Probabilistic Model Checking, Michaelmas 2011

BDD variable ordering

- BDD size can be very sensitive to the variable ordering
— example: f = (X;AY;) V (X5AY5) V (X3AY3)

X1 <Y1<X<Y2< X3<Y3 X)<Xp<X3<Y1<Y2<Y3

2n+2 nodes 2"+1 nodes

N

0 1 0 1

DP/Probabilistic Model Checking, Michaelmas 2011 16

BDDs to represent sets of states

- Consider a state space S and some subsetS’ < S

- We can represent S’ by its characteristic function xs
— X - S —{0,1} where x.(s) =1 ifandonlyifs ¥’

- Assume we have an encoding of S into n Boolean variables
— this is always possible for a finite set S

— e.g. enumerate the elements of S and use a binary encoding
— (note: there may be more efficient encodings though)

- S0 Xg can be seen as a function X< (x,,...x,) : {0,1}" — {0,1}
— which is simply a Boolean function
— which can therefore be represented as a BDD

DP/Probabilistic Model Checking, Michaelmas 2011 17

BDD and sets of states — Example

.- State space S: {0, 1,2, 3,4,5,6,7}
- Encoding of S: {000, 001, 010, O11, 100, 101,110, 111}
- SubsetS’ < S: {3,5,7}—-{011, 101,111}

X; | X | X3 fg B
0 0 0 0
0 0 1 0
0 1 0 0
Truth table: 0 1 1 1 BDD
1 0 0 0
1 0 1]
1 1 0 0
1 1 1]

DP/Probabilistic Model Checking, Michaelmas 2011

18

BDDs and transition relations

- Transition relations can also be represented by their
characteristic function, but over pairs of states

— relation: R < S x S
— characteristic function: xg : S X S - {0,1}

For an encoding of state space S into n Boolean variables
— we have Boolean function fi(x;,...,X,,¥1,...,¥,) : {0,1}" — {0,1}
— which can be represented by a BDD

Row and column variables

— for efficiency reasons, we interleave the row variables x,,..,x,
and column variables y,,...,y,

— i.e. we use function f(X;,Y1,..., XY, : 10,132 — {0,1}

DP/Probabilistic Model Checking, Michaelmas 2011 19

BDDs and transition relations

Example: Q G
— 4 states: 0, 1,2, 3
— Encoding: 0—~00, 1-01, 2~10, 3~11 a e
w__“

Transition | X, X5 Y, Y2 | XiY1X3Y>
(0,1) 0 0 0 1 0001
(0,2) 0 0 1 0 0100
(1,0) 0 1 0 0 0010
(2,3) 1 0 1 1 1101
(3,1) 1 1 0 1 1011
(3,2) 1 1 1 0 1110

DP/Probabilistic Model Checking, Michaelmas 2011

Multi-terminal binary decision diagrams

Multi-terminal BDDs (MTBDDs), sometimes called ADDs
— extension of BDDs to represent real-valued functions
— like BDDs, an MTBDD M is associated with n Boolean variables
— MTBDD M represents a function fy(x,,...,x,) : {0,1}" - R

X1 X3 X3 fum

For clarity, we omit 0 0 0 0
the zero terminal 0 0 1 3
node and any 0 1 o | 9
incoming edges 0 : : 0
e.g.] O O 4

1 0 1 4

1 1 0 9

1 1 1 0

DP/Probabilistic Model Checking, Michaelmas 2011 21

MTBDDs to represent vectors

In the same way that BDDs can represent sets of states...
— MTBDDs can represent real-valued vectors over states S
— e.g. a vector of probabilities Prob(s,) for each state s € S
— assume we have an encoding of S into n Boolean variables
— then vectorv : S — R is a function f(x,...,x,) : {0,1}" = R

X, X, | X3 i f,
5 5 5 5 5 MTBDD v
0 0 1 1 3
Vector v 0 1 0 2 9
[0,3,9,0,4,4,9,0] 0| 1] 11310
1 0 0 4 4
1 0 1 5 4
1 1 0 6 9
1 1 1 7 0

DP/Probabilistic Model Checking, Michaelmas 2011

22

MTBDDs to represent matrices

MTBDDs can be used to represent real-valued matrices
indexed over a set of states S

— e.g. the transition probability/rate matrix of a DTMC/CTMC

For an encoding of state space S into n Boolean variables
— a matrix M maps pairs of states to reals i.e. M: S X S—R
— this becomes: fy,(X;,...,X,,Y1,-.-,Y,) 1 10,11" = R

Row and column variables

— for efficiency reasons, we interleave the row variables x,,..,X,
and column variables y,,...,y,

— i.e. we use function f,(x;,y,---,X,,Y,) : 10,1}°" — R

DP/Probabilistic Model Checking, Michaelmas 2011 23

Matrices and MTBDDs - Example

0 8 0 5]

O 0 20
Entry in M X; X2 Y Y2 | XiyiXaY2 | fm
0,1) =8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
0,3) =5 0 0 1 1 0101 5
(1,3) =5 0 1 1 1 0111 5
(2,3) =5 1 0 1 1 1101 5
(3,2) =2 1 1 1 0 1110 2

DP/Probabilistic Model Checking, Michaelmas 2011 24

Matrices and MTBDDs - Recursion

Descending one level in the MTBDD (i.e. setting x,=b)
— splits the matrix represented by the MTBDD in half
— row variables (x;) give horizontal split
— column variables (y;) give vertical split

DP/Probabilistic Model Checking, Michaelmas 2011 25

Matrices and MTBDDs - Recursion

0 8|0 5]

O 012 O
Entry in M X; X2 Y Y2 | XiyiXaY2 | fm
0,1) =8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
0,3) =5 0 0 1 1 0101 5
(1,3) =5 0 1 1 1 0111 5
(2,3) =5 1 0 1 1 1101 5
(3,2) =2 1 1 1 0 1110 2

DP/Probabilistic Model Checking, Michaelmas 2011 26

Matrices and MTBDDs - Regularity

/ MTBDD M

_ Repeated
080 submatrices
| (2 0)0 5
Matrix M 00 0 5
0 0oC2 o)
Entry in M X; X2 Y Y2 | XiyiXaY2 | fm
(0,1) =8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
0,3) =5 0 0 1 1 0101 5
(1,3)=5 0 1 1 1 0111 5
2,3)=5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Shared
MTBDD node

DP/Probabilistic Model Checking, Michaelmas 2011 27

Matrices and MTBDDs - Regularity

|dentical
0 80 5]\« adjacent
_ 2 O\NO 5 submatrices MTBDD M
Matrix M 00 05
0 020
Entry in M X; X2 Y Y2 X]lezyz/r fm
0,1) =8 0 0 0 1 0001 8
(1,0) = 2 ol 1| o] ol ootov] 2
(0,3) =5 0 0 1 1 0101 5
(1,3)=5 0 1 1 1 0111 5
2,3)=5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2
MTBDD node
removed

DP/Probabilistic Model Checking, Michaelmas 2011 28

Matrices and MTBDDs - Sparseness

0 8 0 57 Blocks of
2.0 0 5p— e MTBDD M
Matrix M 4)
<O O\O 5
O 0/2 O
Entry in M X; X2 Y Y2 | XiyiXaY2 | fm
0,1) =28 0 0 0 1 0001 8
(1,0) =2 0 1 0 0 0010 2
(0,3) =5 0 0 1 1 0101 5
(1,3) =5 0 1 1 1 0111 5 8 2 5
(2,3) =5 1 0 1 1 1101 5
(3,2) =2 1 1 1 0 1110 2 Edge goes
straight to
zero node
DP/Probabilistic Model Checking, Michaelmas 2011 29

Matrices and MTBDDs - Compactness

Some simple matrices have extremely compact
representations as MTBDDs

— e.g. the identify matrix or a constant matrix

100000 0 0 8 8 8 8
01000000 8 8 8 8
00100000 8 8 8 8 |
00010000 8 8 8 8 .
00001000

00000100

00000010

0000000 1|

DP/Probabilistic Model Checking, Michaelmas 2011 30

Manipulating BDDs

Need efficient ways to manipulate Boolean functions
— while they are represented as BDDs
— i.e. algorithms which are applied directly to the BDDs
Basic operations on Boolean functions:
— negation (—), conjunction (A), disjunction (V), etc.
— can all be applied directly to BDDs
Key operation on BDDs: Apply(op, A, B)

— where A and B are BDDs and op is a binary operator over
Boolean values, e.g. A, Vv, etc.

— Apply(op, A, B) returns the BDD representing function f, op f;
— often just use infix notation, e.g. Apply(A, A, B) = A A B

— efficient algorithm: recursive depth-first traversal of A and B
— complexity (and size of result) is O(|A|-|B]|)

. where |C| denotes size of BDD C
DP/Probabilistic Model Checking, Michaelmas 2011 31

Apply - Example

Example: Apply(v, A, B)

Argument BDDs, with node labels: Recursive calls to Apply:
A v B
A]!B]
A?;E\z\

Ag,B; As,Bs

ALB, AsB, A,B,

A4.’Ba As,B,

DP/Probabilistic Model Checking, Michaelmas 2011 32

Apply - Example

- Example: Apply(v, A, B)
— recursive call structure implicitly defines resulting BDD

AUB]
AZ;BZ

Ao bk —)

A3’BZ A57BZ A3’B4

A4,B3 A:,B,

DP/Probabilistic Model Checking, Michaelmas 2011 33

Apply - Example

- Example: Apply(v, A, B)
— but the resulting BDD needs to be reduced

— in fact, we can do this as part of the recursive Apply operation,
implementing reduction rules bottom-up

AhB]
A,.B,

Ac:By Ag,Bs

N/

A.B, AsB, AyB,

A,,B; Ag,B,

DP/Probabilistic Model Checking, Michaelmas 2011 34

Implementation of BDDs

Store all BDDs currently in use as one multi-rooted BDD
— no duplicate BDD subtrees, even across multiple BDDs
— every time a new node is created, check for existence first
— sometimes called the “unique table”
— implemented as set of hash tables, one per Boolean variable
— need: node referencing/dereferencing, garbage collection
Efficiency implications
— very significant memory savings
— trivial checking of BDD equality (pointer comparison)
Caching of BDD operation results for reuse
— store result of every BDD operation (memory dependent)
— applied at every step of recursive BDD operations
— relies on fast check for BDD equality

DP/Probabilistic Model Checking, Michaelmas 2011 35

Operations with BDDs

Operations on sets of states easy with BDDs
— set union: AU B, in BDDs: A Vv B
— set intersection: An B, in BDDs: A A B
— set complement: S \ A, in BDDs: —A

Graph-based algorithms (e.g. reachability)

— need forwards or backwards image operator

. i.e. computation of all successors/predecessors of a state

. again, easy with BDD operations (conjunction, quantification)
— other ingredients

. set operations (see above)

. equality of state sets (fixpoint termination) - equality of BDDs

DP/Probabilistic Model Checking, Michaelmas 2011 36

Operations on MTBDDs

- The BDD operation Apply extends easily to MTBDDs

For MTBDDs A, B and binary operation op over the reals:

— Apply(op, A, B) returns the MTBDD representing f, op f;
— examples for op: +, -, X, min, max, ...
— often just use infix notation, e.g. Apply(+, A, B) = A + B

BDDs are just an instance of MTBDDs
— in this case, can use Boolean ops too, e.g. Apply(v, A, B)

- The recursive algorithm for implementing Apply on BDDs
— can be reused for Apply on MTBDDs

DP/Probabilistic Model Checking, Michaelmas 2011 37

Some other MTBDD operations

- Threshold(A, ~, ¢)

— for MTBDD A, relational operator op and bound c € R
— converts MTBDD to BDD based on threshold ~c

— i.e. builds BDD representing function f, ~ c

— e.g. computing the underlying transition relation from the
probability matrix of a DTMC: R = Threshold(P, >, 0)

- Abstract(op, {X;,...,X,}, A)

— for MTBDD A, variables {x,,...,x,} and commutative/associative

binary operator over reals op
— analogue of existential/universal quantification for BDDs

— e.g. Abstract(+, {x}, A) constructs the MTBDD representing the

function fp,_g + fajx=
— e.g. for BDD A: 3(Xy,..,X,).A = Abstract(Vv, {x,,...,x,}, A)

DP/Probabilistic Model Checking, Michaelmas 2011

38

MTBDD matrix/vector operations

Pointwise addition/ multiplication and scalar multiplication
— can be implemented with the Apply operator
— Matrices: A + B, MTBDDs: Apply(+, A, B)

Matrix-matrix multiplication A-B
— can be expressed recursively based on 4-way matrix splits

B] BZ
~|B, B,

— which forms the basis of an MTBDD implementation
— various optimisations are possible

C G

A] AZ
[C, C,

A3 A4 A] — B]'C] + Bz . C3, etc.

Matrix-matrix multiplication A-v is done in similar fashion

DP/Probabilistic Model Checking, Michaelmas 2011

Sparse matrices

Explicit data structure for matrices with many zero entries
assume a matrix P of size n X n with nnz non-zero elements

store three arrays: val and col (of size nnz) and row (of size n)
for each matrix entry (r,c)=v, c and v are stored in col/val

entries are grouped by row, with pointers stored in row

also possible to group by column

val 0.5(05| 1 [0.3]0.7] 1
col 1 3 2 0 3 0
row 0 2 3 5 6

DP/Probabilistic Model Checking, Michaelmas 2011

0.3

0.5

0.5]

0.7

40

Sparse matrices

Advantages
— compact storage (proportional to number of non-zero entries)
— fast access to matrix entries
— especially if usually need an entire row at once
— (which is the case for e.g. matrix-vector multiplication)

Disadvantage
— less efficient to manipulate (i.e. add/delete matrix entries)

Storage requirements
— for a matrix of size n X n with nnz non-zero elements
— assume reals are 8 byte doubles, indices are 4 byte integers
— we need 8-nnz+4-nnz+4-n = 12-nnz+4-n bytes

DP/Probabilistic Model Checking, Michaelmas 2011 41

Sparse matrices vs. MTBDDs

- Storage requirements

— MTBDDs: each node is 20 bytes
— sparse matrices: 12-nnz+4-n bytes (n states, nnz transitions)
.+ Case study: Kanban manufacturing system, N jobs

— store transition rate matrix R of the corresponding CTMCs

N States Transitions MTBDD | Sparse matrix
(n) (nnz) (KB) (KB)

3 58,400 446,400 48 5,459

4 454,475 3,979,850 96 48,414

5 2,546,432 24,460,016 123 296,588

6 11,261,376 115,708,992 154 1,399,955

7 41,644,800 450,455,040 186 5,441,445

8 133,865,325 1,507,898,700 287 13,193,599

DP/Probabilistic Model Checking, Michaelmas 2011

42

Implementation in PRISM

PRISM is a symbolic probabilistic model checker
— the key underlying data structures are MTBDDs (and BDDs)

In fact, has multiple numerical computation engines

— MTBDDs: storage/analysis of very large models (given
structure/regularity), numerical computation can blow up

— Sparse matrices: fastest solution for smaller models (<10°
states), prohibitive memory consumption for larger models

— Hybrid: combine MTBDD storage with explicit storage,
ten-fold increase in analysable model size (~107 states)

DP/Probabilistic Model Checking, Michaelmas 2011

43

Summing up...

- Implementation of probabilistic model checking
— graph-based algorithms, e.g. reachability, precomputation
— manipulation of sets of states, transition relations
— iterative numerical computation
— key operation: matrix-vector multiplication
- Binary decision diagrams (BDDs)
— representation for Boolean functions
— efficient storage/manipulation of sets, transition relations

- Multi-terminal BDDs (MTBDDs)

— extension of BDDs to real-valued functions

— efficient storage/manipulation of real-valued vectors, matrices
(assuming structure and regularity)

— can be much more compact than (explicit) sparse matrices

DP/Probabilistic Model Checking, Michaelmas 2011 44

