
Automated Verification of
Cyber-Physical Systems

A.A. 2023/2024
Corso di Laurea Magistrale in Informatica

Statistical Model Checking

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Statistical Model Checking

In the recent literature, there is not full consensus, as it may
refer to:

estimate the probability of a BLTL property of a stochastic
system

in a stochastic system, transitions between states are not
deterministic, but probabilistic

estimate the probability of an LTL property of a deterministic
system

thus, input is the same of a classical model checking problem
but output is “probabilistic”
also referred to as quantitative model checking or monte-carlo
model checking

Some Background

In our context, a random variable is a function from some
event space Ω to R

X : Ω → R
Suppose we have a probability P defined on 2Ω

thus, P is defined on sets of events E ⊆ Ω
recall the Kolmogorov axioms:

∀E ⊆ Ω. P(E) ∈ [0, 1]
P(Ω) = 1
∀I ⊆ N : (Ei ∈ 2Ω ∧ ∀i ̸= j ∈ I . Ei ∩ Ej = ∅) → P(∪∞

i=1) =∑∞
i=1 P(Ei)

The mean of a random variable, also called expected value, is
defined as µX = E[X] =

∑
ω∈Ω p(ω)X (ω)

here p(ω) = P({ω})
by the axioms above, p(ω) ∈ [0, 1] and

∑
ω∈Ω p(ω) = 1

if Ω is continuously infinite, then an integral should be used
instead

Some Background

Suppose that |Ω| = 2, i.e., we have just two possible
outcomes

without loss of generality, Ω = {0, 1}
again, p(0) and p(1) are defined in some way
for sure, p(1) = 1− p(0); often p(1) is simply p and p(0) is
q = 1− p

A Bernoulli random variable Z on Ω is s.t. Z : {0, 1} → {0, 1}

we simply write Z instead of Z (x)
given P on 2Ω, we define pZ = P(Z = 1)
following the notation above,
µZ = E[Z] = Z (1)pZ + Z (0)qZ = pZ

Some Background

A Bernoulli process consists in repeatedly running independent
trials on a Bernoulli variable Z

either finite or infinite sequence of trials
“independent” means that the probability of outcome o1 . . . on
is
∏n

i=1 p(oi)
if there are k outcomes such that oi = 1, then
P({o1 . . . on}) = pkZq

n−k
Z = pkZ (1− pZ)

n−k

We can define a geometric random variable XZ s.t.
X : Ω∞ → N

XZ (ω) = n iff Z = 1 for the first time after exactly n
independent trials (with probability pZ)

Thus, P(XZ = N) = qN−1
Z pZ

as a consequence, P(XZ ≤ N) =
∑

n≤N qN−1
Z pZ = 1− qNZ

Some Background

Suppose now that, in some way, you know the value of pZ

How many trials would we need to see Z = 1?

Well, in these terms, you would need infinitely many trials

special case 1: you can’t see Z = 1 if pZ = 0
special case 2: you see Z = 1 after 1 trial if pZ = 1
we are interested in 0 < pZ < 1

Let’s relax a bit: how many trials would we need to see Z = 1
with a given confidence 1− δ?

e.g.: I want to be 90% sure, so δ = 0.1

We have P(XZ ≤ N) = 1− (1− pZ)
N ≥ 1− δ

solving N as a function of δ and pZ , we have N ≥ log(δ)
log(1−pZ)

note that both numerator and denominator are negative, as
0 < δ, pZ < 1

Some Background

For fixed pZ , N decreases with δ
i.e., increases with 1− δ
you are ok if you are less confident? you can try less
you want to be more confident? you have to try more

Some Background

For fixed δ, N decreases with pZ
you want to detect something with big probability? you can
try less
you want to detect something with small probability? you have
to try more

Some Background

... But we do not know pZ
indeed, it is exactly what we want to estimate by making trials

Again, getting at the precise value pZ is too difficult, but we
can choose an accuracy

we may choose some value ε > 0 of interest and test if pZ ≥ ε
ε is our error margin, H0 ≡ (pZ ≥ ε) is the null hypothesis

We have that M = log(δ)
log(1−ε) ≥

log(δ)
log(1−pZ)

= N

Recalling the steps before, we have
P(XZ ≤ M) ≥ P(XZ ≤ N) ≥ 1− δ

Thus: pZ ≥ ε implies P
(
XZ ≤ log(δ)

log(1−ε)

)
≥ 1− δ

using conditional probabilities and putting M back in, we have
P (XZ ≤ M | pZ ≥ ε) ≥ 1− δ

Some Background

Suppose we want to decide if H0 ≡ pZ ≥ ε holds (hypothesis
testing)

We perform M =
⌈

log(δ)
log(1−ε)

⌉
trials on Z

if we never see Z = 1, then we reject H0

otherwise, we accept H0

There are 4 possible “higher outcomes”

type-I error: H0 is rejected, but pZ ≥ ε holds
type-II error: H0 is accepted, but pZ < ε holds
we were right in rejecting/accepting H0 (2 cases)

The probability of a type-I error is denoted by α, the
probability of a type-II error is β

generally speaking, they could be dependent on each other

We have α = P(X > M | H0) = 1− P(X ≤ M | H0) ≤ δ

since P(X ≤ M | H0) ≥ 1− δ

LTL Monte-Carlo Model Checking

Grosu, Smolka: “Monte Carlo Model Checking”, Proc. of
TACAS 2005

In LTL Monte-Carlo Model Checking, the first part of the
input is as in standard LTL Model Checking:

a Kripke structure S = ⟨S , I ,R, L⟩
an LTL formula φ
let us say that we directly have the Büchi Automaton
B = B¬φ × BS

as it is computed by explicit on-the-fly model checkers like
SPIN

Then, we also have two additional inputs: 0 < δ, ε < 1

Output as in standard LTL Model Checking:

either PASS...
... or FAIL with a counterexample

LTL Monte-Carlo Model Checking

If FAIL with a counterexample σ is returned, then for sure we
have an error in our model

that is, S ̸|= φ holds
σ is a counterexample showing that S ̸|= φ

Otherwise, it may still be the case that, notwithstanding the
PASS result, S ̸|= φ

However, the probability that S ̸|= φ is less than δ

indeed, this does only work with a huge assumption (which
involves the remaining input ε), as we will see
however, the huge assumption could be made reasonable

How is this achieved? Exactly through the steps outlined
above!

LTL Monte-Carlo Model Checking

Recall that a (non-deterministic) Büchi Automaton (BA) is a
5-tuple B = ⟨Σ,Q, δ,Q0,F ⟩ where:

Σ is the alphabet, i.e., a finite set of symbols
Q is the finite set of states, Q0 ⊆ Q are the initial states and
F ⊆ Q are the final states
δ ⊆ Q × Σ× Q is the transition relation

We suppose that B = B¬φ × BS is the Cartesian product of
the Kripke structure S and the Büchi automaton generated
from φ using known algorithms

e.g., as it is implemented in SPIN

A lasso of B is a sequence σ = q0x0q1 . . . qn s.t.:

∀0 ≤ i < n. (qi , xi , qi+1) ∈ δ
∃0 ≤ k ≤ n : ∀0 ≤ i , j < n − 1. qi ̸= qj ∧ qn = qk

A lasso is accepting if ∃k ≤ i ≤ n : qi ∈ F

LTL Monte-Carlo Model Checking

We may easily define a probability distribution on the finite
runs σ of B:

P(q0) = 1
|Q0|

P(q0x0q1 . . . qn−1xn−1qn) = P(q0x0q1 . . . qn−1)
1

|δ(qn−1)|
being δ(q) = {(q, x , q′) | (q, x , q′) ∈ δ}
that is: each time we have a (non-deterministic) choice, we
choose one uniformly at random

Such probability is well-defined: we may extend it to obtain a
(discrete) probability space (2L,P)

being L = {σ | σ is a lasso in B}
furthermore, L ⊇ La = {σ | σ is an accepting lasso in B}
Ln = L \ La is the set of non-accepting lassos

LTL Monte-Carlo Model Checking

Given (2L,P), our Bernoulli variable Z is defined by:

take one lasso σ from L, following the rules defined by P
that is: make a random walk (see the algorithm below)
Z = 1 iff σ ∈ La is accepting

From a theoretical point of view, since |L| < ∞, we would be

tempted to say that pZ = |La|
|L|

But this is not true, since lassos do not have the same
probability, according to P
Thus, pZ = P(Z = 1) =

∑
λa∈La P(λa)

not actually useful for computation: La requires generating L,
which may run out of computational resources

LTL Monte-Carlo Model Checking

MC2(KS_BA SA, double ε, double δ) {

for i in 1..
⌈

log(δ)
log(1−ε)

⌉
i f (SampleLasso(SA) == (1, σ))

return (FAIL , σ);
return PASS;

}

SampleLasso(KS_BA SA = ⟨Σ,Q, δ,Q0,F ⟩) {

(i , f ,H, q) = (0, 0,∅, pick_unif_random(Q0);

while(H(q) =⊥) {

H(q) = i + 1; i = i + 1;

i f (q ∈ F) f = i;

q = pick_unif_random(δ(q));
}

i f (H(q) ≤ f) return (1, getCurrLasso(H));

e l se return (0, ⊥);

}

Nested DFS for LTL Model Checking

DFS(KS_BA SA, state (s, q), bool n, state a) {

let SA = ⟨SA, IA,RA, LA⟩;
foreach (s ′, q′) ∈ SA s.t. ((s, q), (s ′, q′)) ∈ RA {

i f (n ∧ (s, q) == a)

exit reporting error;

i f ((s ′, q′,n) ̸∈ T) {

T = T ∪ {(s ′, q′,n)};
DFS(SA, (s ′, q′), n, a);

i f (¬n ∧ (s ′, q′) is accepting) {

DFS(SA, (s ′, q′), true , (s ′, q′));
} } } }

LTLMC(KS S, LTL φ) {

A = BA_from_LTL(φ); T = ∅;

let S = ⟨S , I ,R, L⟩, A = ⟨Σ,Q, δ,Q0,F ⟩;
foreach s ∈ I , q ∈ Q0

DFS(S ×A, (s, q), fa l se , null);

}

LTL Monte-Carlo Model Checking

Standard LTL Model Checking requires both time and space
to be at least O(|S |)

easily billion of states, often unaffordable for real-world systems

Here, time is O(MD) and space is O(D)

being D the diameter of S , i.e., the length of the longest lasso
starting from an initial state

M =
⌈

log(δ)
log(1−ε)

⌉
as usual

No type-II errors: if we find a counterexample, we are happy

Given the discussion on the background, if the answer is
PASS, then the probability that an error is present but came
undetected through the M trials is less than δ

However, this is only true if we assume that pZ ≥ ε

LTL Monte-Carlo Model Checking: pZ ≥ ε

Recall that Z = 1 iff, making a random walk on the given BA,
I find an accepting lasso

recall also that an accepting lasso is “bad”, i.e., the property
does not hold in the system

Thus, we are saying that the probability that, among all lassos
I can find with a random walk, the probability that it is
accepting is at least ε
There are two cases:

pZ ≥ ε, then all what we have said before is ok: the probability
that a counterexample exists is less than δ
the real problem is: what if pZ < ε?
e.g., if there are not errors in the system, we have pZ = 0 < ε
by recalling the actual definition of pZ , we still have a “good”
result: the probability of extracting an error within the systems
behaviors is less than ε
thus in both cases we have a bound (ε or δ) on the error,
though defined in two different ways

LTL Monte-Carlo Model Checking: Experimental Results

Results for classical systems: dining philosophers and
Needham-Schroeder protocol

for dining philosophers, two properties: one is false (with
counterexample), one is false
Needham-Schroeder is the bugged version (with
counterexample)
δ = 0.1, ε = 0.0018 → M = 1257

Columns meaning:

ph: number of philosophers
mr: parameter in the Needham-Schroeder protocol

the bigger the value, the bigger the number of states

entr: number of entries in the hash table (RAM usage...)
mxl: max length of a lasso
cxl: length of the counterexample found
M: number of trials to find a counterexample

Unfair Dining Philosophers

Fair Dining Philosophers

Unfair Needham-Schroeder

LTL Quantitative Model Checking

Grosu, Smolka: “Quantitative Model Checking”, Proc. of
ISOLA 2004

Input is the same as before: a KS S, an LTL formula φ,
0 < δ, ε < 1

again, let’s say we have B = B¬φ × BS

Output is the same: PASS or (FAIL, counterexample)

FAIL is FAIL as before

Much easier interpretation for PASS: as we will see, with
confidence 1− δ we have a bound ε on the probability of
S ̸|= φ

LTL Quantitative Model Checking

Let Z be a random variable with values in [0, 1]

thus, Z is generally not a Bernoulli variable
but Bernoulli variables are a special case, so the methodology
discussed below can be applied

Recall that the mean of Z is
µZ = E[Z] =

∑
ω∈Ω p(ω)Z (ω) ∈ [0, 1]

recall that, if Z is a Bernuolli variable, µZ = pZ

The purpose here is exactly to compute µZ

The exact value cannot be directly computed, so let us say we
output µ̃Z instead

The methodology proposed here ensures that
P(µZ (1− ε) ≤ µ̃Z ≤ µZ (1 + ε)) ≥ 1− δ

so again, ε is a tolerance and δ is a confidence on the result
typically, they should be close to zero
often, this is called a (ε, δ)-approximation

OAA: Optimal Approximation Algorithm

Dagum, Karp, Luby, Ross: “An Optimal Algorithm for Monte
Carlo Estimation”. SIAM Journal on Computing,
29(5):1484–1496, 2000.

We have Z as a random variable in [0, 1]: how do we compute
an (ε, δ)-approximation µ̃Z of µZ?

Idea: perform N independent trials of Z , callect results

Z1, . . . ,Zn and then output µ̃Z =
∑N

i=1 Zi

N

Straightforward problem: how to choose N, so as we have an
(ε, δ)-approximation?

OAA: Optimal Approximation Algorithm

We may employ an algorithm which dynamically adjusts the
value of N on the basis of the results obtained so far

In doing so, we use an auxiliary function SRA (Stopping Rule
Algorithm)

We also suppose to have a procedure PZ which performs an
experiment on Z and returns the corresponding value in [0, 1]

of course, different calls to PZ will return different values

Big limitation: µZ > 0, or SRA does not terminate

OAA: Optimal Approximation Algorithm

OAA(procedure_for_Z PZ , double ε, double δ) {

µ̂Z = SRA(PZ ,min{ 1
2 ,
√
ε}, δ

3);

Υ = 2(1 +
√
ε)(1 + 2

√
ε)

(
1 + log(3)−log(2)

log(2)−log(δ)

)
4(e−2)(log(2)−log(δ))

ε2 ;

N = εΥ
µ̂Z

;

S = 1
2

∑N
i=1(PZ ()− PZ ())

2;

ρZ = max
{

S
N , εµ̂Z

}
;

N = ρZΥ
µ̂2
Z
;

µ̃Z = 1
N

∑N
i=1 PZ ();

return µ̃Z ;

}

SRA: Stopping Rule Algorithm

SRA(procedure_for_Z PZ , double ε, double δ) {

Υ = 1 + (1 + ε) 4(e−2)(log(2)−log(δ))
ε2 ;

N = 1;

S = 0;

while (S ≤ Υ) {

N = N + 1;

S = S + P();
}

return µ̂Z = S
N ;

}

LTL Quantitative Model Checking

Leveraging on OAA, we use the almost same framework used
for Monte-Carlo Model Checking

Bernoulli variable Z s.t. Z = 1 iff, making a random walk, you
detect an non-accepting lasso
note that we reversed the previous definition: we will be back
on this
Z is a special case of the random variables of OAA, so we may
apply OAA to Z
also the probability space (2L,P) is the same

The subroutine SampleLasso is the same as above

LTL Quantitative Model Checking

OAA∗ is a modified version of OAA: as soon as Z = 0 for some
trial, exit with probability 0

i.e., if a counterexample has been found

Thus, OAA∗ returns either 0 (in the previous case) or 1
(otherwise)

QMC(KS_BA SA, double ε, double δ) {

p̃Z = OAA∗(SampleLasso(SA), ε, δ);
i f (p̃Z == 0) {

σ = extract the accepting lasso from the

last trial;

return (FAIL , σ);
}

e l se
return PASS;

}

LTL Quantitative Model Checking

Why Z = 1 if we find a “good” lasso?

instead of Z = 1 if we find a counterexample, as it was for
MC2?

Recall that OAA only works if pZ = µZ > 0, otherwise SRA
does not terminate

With the current definition, pZ > 0 means “there is at least a
good lasso”

with the MC2 definition, pZ > 0 means “there is at least a
counterexample”: could easily be false!

Even if “there is at least a good lasso” is false, QMC
terminates as OAA∗ immediately exit after the first trial...

LTL Quantitative Model Checking

Recall that P(µZ (1− ε) ≤ µ̃Z ≤ µZ (1 + ε)) ≥ 1− δ

If Z = 1 for all trials, µ̃Z = 1

Thus, 1 = µ̃Z ≥ µZ (1− ε) always holds

What remains is P(µZ (1 + ε) ≥ 1) ≥ 1− δ

better: P(µZ ≥ 1
1+ε) ≥ 1− δ

If we recall that µZ = pZ = 1− qZ we have that
P(qZ ≤ 1− 1

1+ε) = P(qZ ≤ ε
1+ε) ≥ 1− δ

Actually, for small ε, ε
1+ε ≈ ε, thus we are saying that

P(qZ ≤ ε) ≥ 1− δ!

qZ is the probability that, making a random walk, we find a
counterexample
much better than the obscure assumption of MC2

LTL Quantitative Model Checking

QMC seems extremely better than MC2

So why MC2 has been published as an improvement of QMC
one year later?

Because the OAA methodology requires much more steps

For MC2, the worst-case number of trials is M = log(δ)
log(1−ε)

For QMC, we can show that worst-case number of trials is
bound by N = O(4 log(2)−log(δ)

ε)

recall that log(δ) < 0
N > 5M
e.g., δ = 0.1, ε = 0.0018 → M = 1257 for MC2

but N = 1257 with δ = ε = 0.1 for QMC

RAM space is O(D) for both

Unfair Dining Philosophers

Fair Dining Philosophers

Combining QMC and MC2: a Case Study

Mancini, Mari, Melatti, Salvo, Tronci, Gruber, Hayes,
Prodanovic, and Elmegaard. “Parallel Statistical Model
Checking for Safety Verification in Smart Grids.” In Proc.
SmartGridComm 2018.

EDN: Electric Distribution Network, also called “grid”

brings to residential houses, commercial buildings and
industries the electricity they need
till some decades ago, simply based on demands

Smart grid: usage of computational services to improve
electricity distribution

e.g.: electricity usage is measured and then rendered in a web
app

Combining QMC and MC2: a Case Study

Combining QMC and MC2: a Case Study

Distribution System Operators (DSOs) and energy retailers
compute price tariffs for residential users

Expected Power Profiles (EPPs): how residential users will
respond to price tariffs

DSOs compute price tariffs so that EPPs do not threat
substations safety

in each t, Aggregated Power Demand (APD) must be below
the substation safety power threshold (e.g., 400 kW)
DSOs main goal is to achieve peak shaving

Problem at a Glance

Autonomous Demand Response

Residential users may or may not follow their corresponding
Expected Power Profiles (EPPs)

there may be automatic tools to enforce EPPs
implemented on small devices on users premises
still, there is no guarantee, due to unexpected needs, bad
forecasts, limited computational resources, etc.

Problem

Given that users may deviate from EPPs with a given probability
distribution, what is the resulting probability distribution for the
aggregated power demand (APD)?

Combining QMC and MC2: a Case Study

Combining QMC and MC2: a Case Study

Problem at a Glance

APD-Analyser

We present the APD-Analyser tool

APD: Aggregated Power Demand

Main goal: compute the probability distribution for the APD

given probability distributions on each residential user
Expected Power Profile (EPP)

APD-Analyser: Input and Output

APD-Analyser: Input

Set of residential users U connected to the same substation

Set of time-slots T (e.g., one month with 15 minutes step)

Expected Power Profiles (EPP)

one for each user u ∈ U: for each time-slot t ∈ T , the
expected power demand of u in t
pu : T → R

A probabilistic model for users deviations from EPPs

a real function devu : R → [0, 1], for each user u ∈ U∫ +∞
−∞ devu(x)dx = 1∫ b

a
devu(x)dx = probability that actual power demand of u in

any time-slot t ∈ T is in [(1 + a)pu(t), (1 + b)pu(t)]

e.g.:
∫ 0.02

−0.02
devu(x)dx = probability that actual power demand

of u in any time-slot t ∈ T deviates at most by 2% from EPP
of u

APD-Analyser: Input and Output

APD-Analyser: Input

Substation safety requirements

ps : T → R
for each t ∈ T , DSO wants the APD to be below ps(t)
that is, ∀t ∈ T →

∑
u∈U [(1 + deviationu)pu(t)] ≤ ps(t)

Key Performance Indicators (KPIs)

e.g., probability distribution that ps(t) is exceeded in any
t ∈ T

Parameters
0 < δ, ε < 1: as for output probability distributions, the values
must be correct up to tolerance ε with statistical confidence δ

Pr[(1− ε)µ ≤ µ̃ ≤ (1 + ε)µ] ≥ 1− δ
µ: (unknown) correct value, µ̃: computed value

γ ∈ R+: discretisation step for output probability distribution

APD-Analyser: Input and Output

APD-Analyser: Output

Probability distribution for APD resulting from EPPs
disturbed with given probabilistic disturbance model

easy to evaluate KPIs once such distribution is computed
formally: Ψ(W) is the probability that APD takes a value in
interval W in any time-slot t ∈ T

Exactly computing Ψ is infeasible, thus we compute Ψ̃ as a
(ε, δ) approximation of a γ-discretisation of the APD

For each γ-discretised value w = APDmin + kγ, we compute
Ψ̃(w) s.t., with confidence at least 1− δ:

if Ψ̃(w) =⊥/∈ [0, 1] then Ψ([w ,w + γ)) < ε
otherwise, Ψ̃([w ,w + γ)) is within (1± ε)Ψ(w)

APD-Analyser: Algorithm

Monte-Carlo model checking
goal: estimate the mean of a 0/1 random variable Zw

Zw = 1 iff, taken at random a t ∈ T , the value of the APD is
in [w ,w + γ), when EPPs are perturbed using deviations
model devu
then, the mean is exactly our Ψ̃(w)

Method: perform N independent experiments (samples) for

Zw , and then the mean of Zw is
∑N

i=1 Ẑi

N ∈ [0, 1]
Optimal Approximation Algorithm (OAA) by Dagum & al.
(2000) + Monte-Carlo Model Checking (MCMC) by Grosu &
Smolka (2005)
sequential analysis: use outcomes of previous experiments to
compute N
the value of N is automatically adjusted, at run-time, while
performing the samples
so that the desired tolerance ε is achieved with desired
accuracy δ

Optimal Approximation Algorithm (OAA)

1 Phase 1
1 Perform N1 = f1(ε, δ) experiments Ẑ1,1, . . . , Ẑ1,N1

2 Compute mean of successful experiments µ̂Z = 1
N1

∑N1

i=1 Ẑ1,i

2 Phase 2
1 Perform 2N2 = 2f2(ε, δ, µ̂Z) experiments Ẑ2,0, . . . , Ẑ2,2N2−1

2 Compute S = 1
N2

∑N2−1
i=0

|Ẑ2,2i−Ẑ2,2i+1|
2

3 Phase 3
1 Perform N3 = f3(ε, δ, µ̂Z ,S ,N2) experiments Ẑ3,1, . . . , Ẑ3,N3

2 Return mean of successful experiments µ̃Z = 1
N3

∑N3

i=1 Ẑ1,i

It holds that Pr[(1− ε)µZ ≤ µ̃Z ≤ (1 + ε)µZ] ≥ 1− δ

OAA + Monte-Carlo Model Checking (MCMC)

Correct phase 1 using statistical hypothesis testing

If
∑M

i=1 Ẑ1,i = 0 for M = f4(ε, δ) =
⌈

ln(δ)
ln(1−ε)

⌉
, terminate the

computation

Return µ̃Z = 0

It holds that Pr[µZ < ε] ≥ 1− δ

APD-Analyser: HPC Algorithm

N = N1 + N2 + N3 can be prohibitively high

easily order of 109 in our experiments
OAA+MCMC to be run for each different value of w
if performed with a sequential algorithm, order of 1 month for
the computation time

We re-engineer the OAA to be run on a HPC infrastructure,
i.e., a cluster (distributed memory)

main obstacle: value of N depends on samples outcomes! To
be computed at run-time

One orchestrator node instructs worker nodes to perform
given number of samples

worker nodes perform samples in parallel and send results to
the orchestrator
the orchestrator keeps track of phases of each worker and of
different values of w

As a result, less than 2 hours of computation with 89 workers

APD-Analyser: HPC Implementation Sketch

Different workers may be in different phases and different w

Orchestrator

Worker

1.
 P

er
fo

rm
 1

00
00

 s
am

pl
es

2.
 S

am
pl

es
 re

su
lts

3.
 T

er
m

. i
f a

ll
ph

as
es

 d
on

e
in

 O
A

A
+M

C
M

C
,

O
th

er
w

is
e

go
 b

ac
k

to
 1

.

Worker

1. Perform
 10000 sam

ples

2. Sam
ples results

3. Term
. if all phases done in O

AA+M
C

M
C

,

O
therw

ise go back to 1.

4. Output APD distribution

. . .

Experimental Evaluation: Case Study

130 houses in Denmark, all connected to the same substation

EPPs computed by using methodologies from the literature

starting point: historical data collected on those houses for one
year (SmartHG FP7 project)
computed as shifts within given flexibilities so as to
collaboratively respond to price policies

Very liberal deviation model: up to ±40% variations with 10%
probability, up to ±20% variations with 20% probability

We want to compute the APD for each month of the year

by using time-slots of 1 day, we have 530×130 overall number of
deviations

Experimental Evaluation: Case Study

Experimental Results

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

0 100 200 300 400 500

Dec

Min exec time: 4782 secs
Max exec time: 6448 secs
Avg exec time: 1 hour, 28
minutes and 7 seconds

Experimental Results: HPC Scalability

speedup = sk
s1
, efficiency = sk

ks1

Conclusions

We presented the HPC-based tool APD-Analyser

Main purpose: support DSOs in analysing effects of price
policies on aggregated power demand (APD) at substation
level

especially for highly-fluctuating and individualised price policies

From expected power profiles disturbed by probabilistic
deviations (input) to probability distribution for APD (output)

As a result, APD-Analyser enables safety assessment of price
policies in highly dynamic ADR schemas

Statistical Model Checking for Everything

Zuliani, Platzer, Clarke: “Bayesian Statistical Model Checking
with Application to Stateflow/Simulink Verification”, Formal
Methods in System Design vol. 43, 2013

In the works above, it was necessary to have some simple
language defining the system

e.g., Promela of SPIN, though they use a different language
needed to perform the Cartesian product of the property and
the system itself
and also to actually make a random walk of the system
actually, such a limitation is not difficult to overcome, but it is
presented in this way
especially ok for systems already expressed in the language,
but which went out of resources

Here, we directly use simulators

Simulink, but conceptually also Modelica

Some Background

As before, we have to define our probability space; this time is
not easy

Given a set X , a σ-algebra on X is Y ⊆ 2X s.t. Y is closed for
complements, countable unions and countable intersections,
i.e.:

∀Y ∈ Y. Ȳ ∈ Y, with Ȳ = {x ∈ X | x /∈ Y } being the
complement of Y
∀I ⊆ N s.t. Yi ∈ Y:

∀i , j ∈ I . Yi ∪ Yj ∈ Y
∀i , j ∈ I . Yi ∩ Yj ∈ Y

Example: Y1 = 2X and Y2 = {∅,X} are always σ-algebras

Example: for X = {a, b}, Y = {{a}, {b}, {a, b}} is not a
σ-algebra since {a} ∩ {b} = ∅ /∈ Y

Some Background

If X ⊆ Rn, the Borel set on X , denoted by B(X), is the
smallest σ-algebra of X which contains all open sets of X

recall that a set A ⊆ Rn is open iff, for all a ∈ A, there exists a
n-dimensional ball (border excluded) centered in a which is
contained in A
that is, ∃ε > 0 : ∀x ∈ Rn. |a− x | < ε ⇒ x ∈ A

The pair (X ,B(X)) is called measureable space

Thus, given X ⊆ Rn, B(X) retains all open sets already in X
and ensures that intersection, union and complementation are
still in B(X)

We are interested in this since our systems are defined via
variables on real intervals

sets of states are subsets of Rn

Some Background

A stochastic kernel on (X ,B(X)) is a function
K : X × B(X) → [0, 1] s.t.:

for all x ∈ X , the function KX : B(X) → [0, 1] defined by
KX (B) = K (x ,B) is a probability measure on B

that is, the three Kolmogorov axioms are true
note that KX actually takes subsets...

for all B ∈ B(X), the function KB : X → [0, 1] is a
measureable function on X

we are less interested on this point

Some Background

Since each state is a point x ∈ X ⊆ R, execution traces are
sequences σ ∈ Xω

for finite (terminated) runs, we may add a loop on the last
state (stuttering)

We want to define probabilities on traces, thus Ω = Xω

Usually, we define the probability on (Ω, 2Ω)

For these types of Ω, we are happy with something contained
in 2Ω, namely F as the cylindric σ-algebra built on Ω

essentially, such sequences behave “well”

Some Background

We suppose to have a stochastic kernel K defined on (Ω,F)

Together with an initial state x ∈ X , this defines a probability
on (Ω,F)

P(X1 ∈ B) = 1 if x ∈ B and 0 otherwise;
P(Xi+1 ∈ B) = K (xi ,B)

K defines the outgoing transitions probability

Thus, if we are able to define a K , we have a probability space
for our SMC methodology

Discrete Time Hybrid Automaton

Giving a precise semantics of Simulink (or Modelica) is
difficult, but the following definition is quite close

A Discrete Time Hybrid Automaton (DTHA) is defined as
D = ⟨Q,E , n, q0, x0,Φ, J⟩ where:

n is the dimension of the state space, which is understood to
be Rn

(Q,E) is a directed graph

Q is a set of locations, E is a set of control switches or
modalities

(q0, x0) is the starting state, (q0, x0) ∈ Q × Rn

Φ = {ϕq : R+ × Rn → Rn | q ∈ Q}
J = {je : Rn → Rn | e ∈ E}

Discrete Time Hybrid Automaton Semantics

The transition relation δ of a DTHA D defines when we go
from a state in Q × Rn to another

not simple as for Kripke structures, where one step is one step:
here, also time passing is important

2 underling ideas:

time only passes within locations, handled by Φ
jumps within locations happen in time 0, defined by E with
conditions given by J
either the time pass within a location, or a jump between
locations is performed

δ ∈ Q × Rn × (R+∪̇E)× Q × Rn

Discrete Time Hybrid Automaton Semantics

δ ∈ Q × Rn × (R+∪̇E)× Q × Rn

(q, x , t, q, x ′) ∈ δ ≡ (q, x) →t (q, x
′) iff x ′ = ϕq(t, x)

note that q does not change

(q, x , e, q′, x ′) ∈ δ ≡ (q, x) →e (q′, x ′) iff
x ′ = je(x) ∧ e = (q, q′)

note that time does not pass

∆ : Q × Rn → (R+∪̇E) is the simulation function

decides if, in a given state, a location jump or a time pass has
to be performed
if time passes, decides how much
unified notation (q, x) →∆(q,x) (q

′, x ′)

Discrete Time Hybrid Automaton Semantics

δ may be non-deterministic

in a given state (q, x), both some je and ϕq could be enabled
even if only ϕq is enabled, many values for t may apply

∆ is deterministic; in Simulink:

if both a discrete and a continuous transition can be taken,
take the discrete one
if continuous, stay for the maximum time allowed before a
location change
an ordering on outgoing edge is always available, so the first
one is selected when multiple edges are present

Discrete Time Hybrid Automaton Semantics

A trace is a sequence σ = (s0, t0), . . . , (si , ti), . . . s.t.

s0 = (q0, x0)
∀i ≥ 0. si ∈ Q × Rn, ti ∈ R+

∀i ≥ 0. si →∆(si) si+1

∀i ≥ 0. ti = ∆(si) if ∆(si) ∈ R+

∀i ≥ 0. ti = 0 if ∆(si) ∈ E

At step σi = (si , ti), the global time is
∑i−1

j=0 tj

For an infinite trace σ,
∑∞

j=0 tj = ∞
there must be finitely many location switches in finite time

Probabilistic Discrete Time Hybrid Automaton Semantics

For a set X , let D(X) = {f | f is a probability density
function on X}

for X = {x1, . . . , xn}, f (t) =
∑n

i=1 piδ(t − xi), for any choice
of πi ∈ [0, 1] s.t.

∑n
i=1 pi = 1

here δ is the Dirac function, i.e. δ(0) = 1,∀x ̸= 0. δ(x) = 0

otherwise, for continuous X , f (t) is s.t.
∫ b

a
f (x)dx ∈ [0, 1] for

any [a, b] ⊆ X and
∫
X
f (x)dx = 1

A probabilistic transition function Π for a DTHA D is a
function Π : Q × Rn → D({0, 1})× D(R+)× D(E)

since Π returns 3 values, we will denote its components by
Π(s) = ⟨Πa(s),Πc(s),Πd(s)⟩
the following must be true:
∀(q, q′) ∈ E , r ∈ Q, x ∈ Rn. q ̸= r → Πd(r , x)(q, q

′) = 0

Probabilistic Discrete Time Hybrid Automaton Semantics

Informally, a probabilistic transition function Π has the goal of
definining a (possibly non-uniform) “random walk” on a
DTHA

suppose we are in a state s = (q, x)
both a location change and a continuous move may be taken?
choose at random with probability Πa(s)
if a location change must take place, choose one at random
with probability Πd(s)
if time must pass, decide how much with probability πc(s)

Probabilistic Discrete Time Hybrid Automaton Semantics

Thus, K ((q, x),B) = pa
∑

e∈E(B,q,x)Πd(q, x)(e) + (1−
pa)

∫∞
0 Πc(q, x)(t)IB(q, ϕq(t, x))dt

B is a Borel set over Q × Rn

pa = Πa(q, x)(0)

arbitrary choice, could also have been pa = Πa(q, x)(1)

E ⊇ E (B, q, x) = {(q, q′) ∈ E | (q′, j(q,q′)(x)) ∈ B}
to be well-defined, we must stay in the same Borel set

IB is the indicator function of B, i.e. IB(q, x) = 1 iff
(q, x) ∈ B, and 0 otherwise

again, to be well-defined, we must stay in the same Borel set

It may be shown that K is a stochastic kernel, so probability is
well-defined over infinite traces

Probabilistic DTHA in Simulink/Stateflow

n is the number of variables in a Simulink/Stateflow model

some of them may be discrete, but Rn is for sure a superclass

Q corresponds to “states” of Stateflow and E are states
transitions

Simulink only perform deterministic transitions, so probability
density function output by Π all consists in just one point
being defined

Differently from the Grosu & Smolka works, here we cannot
provide a deterministic model and let the methodology turn it
probabilistic

the user must define something probabilistic
typically done by introducing probabilistic blocks in the design
Uniform Random Number block

Bayes Theorem

Conditional probability: P(A|B) is the probability of event A,
under the assumption that event B already occured

by definition, P(A|B) = P(A∩B)
P(B)

Which is the relationship between P(A|B) and P(B|A)?
The well-known Bayes Theorem states that

P(A|B) = P(B|A)P(A)
P(B)

P(Ai |B) = P(B|Ai)P(Ai)∑n
j=1 P(B|Aj)P(Aj)

, if ∪n
j=1Aj = B

Here we need a more refined version of the Bayes Theorem

First of all, the conditional probability density function of a
Bernoulli random variable X and a random variable U with
values in (0, 1) is f (xi |u) = uxi (1− u)1−xi

then, f (xi = 1|u) = u and f (xi = 0|u) = 1− u

Bayes Theorem

Our refined version of the Bayes Theorem states that

f (u|x1 . . . xn) = f (x1...xn|u)g(u)∫ 1
0 f (x1...xn|v)g(v)dv

u is the unknown probability that we have an error in our
system
xi are “observations” of u: we make a simulation and see if it
fails or not
g is the probability prior distribution of u

prior as opposed to posterior f (u|x1 . . . xn): without having
taken samples
we will assume it to have a given shape

since we assume observations to be independent,
f (x1 . . . xn|u) =

∏n
i=1 f (xi |u)

We want to know p as the probability of the posterior
f (u|x1 . . . xn)
We use the posterior Bayes estimator of p

Bayes Theorem

From the Bayes theorem it follows that∫ t1
t0

f (u|x1 . . . xn)du = F(x+α,n−x+β)(t1)− F(x+α,n−x+β)(t0)
where:

t0, t1 ∈ (0, 1)
x =

∑n
i=1 xi is the number of successes in the n trials

α, β ∈ R+ are given parameters
FA,B(t) =

∫ t

0
gA,B(u)du is a Beta distribution function

g above is the prior density, here we assume it to be

gA,B(u) =
uA−1(1−u)B−1∫ 1

0
tA−1(1−t)B−1dt

thus, FA,B(t) =
∫ t
0
uA−1(1−u)B−1du∫ 1

0
tA−1(1−t)B−1dt

F may be easily made explicit, or simply computed using
mathematical tools like MATLAB

When sampling from a Bernoulli distribution with a Beta prior
of parameters α, β, it is known that the mean of the posterior
is p̂ = x+α

n+α+β

The Algorithm for BSMC

BSMC: Bayes-based Statistical Model Checking

The input is as follows:
S as the simulator model for the system to be verified

may be black-box, Simulink, Modelica or proprietary
must have some probabilistic behaviour, i.e., 2 consecutive
simulations may have different results

φ as the BLTL property to be verified

Bounded LTL: all U operators must be bounded, i.e., they are
of the form U≤t , with t > 0
hence, also F and G must be bounded too

α, β ∈ R+ as the parameters for the prior Beta distribution
δ ∈ (0, 1) as the desired size of the output interval
c ∈ (12 , 1) as the desired interval coverage coefficient

The Algorithm for BSMC

The output is as follows:

(t0, t1) such that t1 − t0 = δ
p̂ as the estimate of the probability p that S |= φ

It holds that:

(t0, t1) is a 100c Bayesian interval estimate
p̂ ∈ (t0, t1)

usually at half interval, but with some adjustments

Thus, we want δ to be small

implies our output interval is narrow, and the estimate is
accurate

We want c to be high

implies we are confident on the estimate

Needless to say, the smaller δ and the higher c , the higher
computation time required

The Algorithm

BSMC(ProbModel S, BLTL property φ,
double α, β, c , δ) {

(n, x) = (0, 0);

do {

σ = simulate(S, time(φ));
n = n + 1; i f (σ |= φ) x = x + 1;

p̂ = x+α
n+α+β ; (t0, t1) = (p̂ − δ

2 , p̂ + δ
2);

i f (t1 > 1) (t0, t1) = (1− δ, 1);
i f (t0 < 0) (t0, t1) = (0, δ);
γ = F(x+α,n−x+β)(t1)− F(x+α,n−x+β)(t0);

} while (γ < c);
return ⟨(t0, t1), p̂⟩;

}

BLTL Logic, Formally

Φ ::= p | Φ1 ∧ Φ2 | ¬Φ | (Φ) | Φ1 U
≤t Φ2

t ∈ Q+ is a time

Atomic propositions p are of the form y ∼ v , being y a
variable in the model, ∼∈ {<,>,≤,≥,=} and v ∈ Q
Some other derived operators:

of course true, false, OR and other propositional logic
connectors
future (or eventually): F≤tΦ = true U≤t Φ
globally: G≤tΦ = ¬(true U≤t ¬Φ)

As for LTL, S |= φ when, for all executions σ of S, σ satisfies
φ

For a given σ, σ |= φ iff σ, 0 |= φ

BLTL Logic, Formally

To define when σ, i |= φ, a recursive definition over the
recursive syntax of BLTL is provided

recall that σ = (s0, t0), . . . , (si , ti), . . .

at step σi = (si , ti), the global time is
∑i−1

j=0 tj

σ, i |= y ∼ v iff σ(i)(y) ∼ v

σ, i |= Φ1 ∧ Φ2 iff σ, i |= Φ1 ∧ σ, i |= Φ2

σ, i |= ¬Φ iff σ, i ̸|= Φ

σ, i |= Φ1 U≤t Φ2 iff
∃k ≥ i : σ, k |= Φ2 ∧ ∀i ≤ j < k. σ, j |= Φ1 and

∑k−1
j=i tj ≤ t

Note this is different from the bounded semantics of LTL used
in Bounded Model Checking

On BSMC Algorithm

Crucial steps in BSMC algorithm:

simulate, i.e., invoking our simulator, whatever it is
evaluating σ |= φ

Does simulate actually returns σ?

typically, simulators output is a log with lines (ti , vi1, . . . , vin)
being vi1, . . . , vin the values at time ti for each of the n
variables used in the simulator model
usually, state locations may be inferred from vi1, . . . , vin
usually, ti+1 = ti +∆t for a fixed (and small) ∆t > 0
thus, a simple postprocess computation may translate the log
in an execution σ = (s0, t0), . . . , (si , ti), . . .
this also allows to compute σ(i)(y) for any variable y

On BSMC Algorithm

The first 2 inputs of the BSMC algorithm are straightforward

if I want to verify something, of course I need a model and a
property

We may understand δ, c : they control accuracy and
confidence of the result

the more accuracy/confidence is required, the longer the
computation

What about α, β?

informally, it is a measure of the “weight” we believe passes
and fails should have
if none is known, it is probably good to choose a uniform Beta
distribution, i.e., α = β
e.g., α = β = 1

On BSMC Algorithm

It may be proven that BSMC nearly always terminates:

for all possible valid inputs, BSMC terminates with probability 1
no, this does not imply that BSMC always terminates (we are in
an infinite space)
but it is enough for practical applications

It may be proven that errors on BSMC output are unlikely

let our null hypothesis be p ∈ (t0, t1)

both type-I and type-II errors are bounded by π0(1−c)
c(1−π0)

recall: type-I is saying that p /∈ (t0, t1) when instead
p ∈ (t0, t1)
recall: type-II is saying that p ∈ (t0, t1) when instead
p /∈ (t0, t1)

c is the coverage input as in BSMC

π0 is the actual (prior) probability that p ∈ (t0, t1)

BSMC Results

Case study: Fault-Tolerant Fuel Control System
for details, see
http://www.mathworks.com/help/simulink/examples/

modeling-a-fault-tolerant-fuel-control-system.

html

Gasoline engine (e.g., used in avionics), must provide power
for vehicle operations
This model focuses on a critical parameter: the air/fuel rate,
which must be kept close to a reference value, i.e., 14.6

air is pumped away by intake manifold, fuel is pumped in by
injectors

http://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html

BSMC Results

The model uses sensors for some key measurements: EGO
(exhaust gas residual oxygen), engine speed, throttle, pressure

If all sensors works well, it is rather easy to control the
actuators so that the air/fuel ratio is 14.6

the actuator is on the fuel rate

But sensors may fail: the controller is able to detect such
failures and adjust actuators accordingly

If more than one sensor fail, the engine is shut down

We need a stochastic system, thus sensor failures are made
probabilistic

independent Poisson processes with different arrival rates:
P(N(t) = n) = λntn

n!eλt

The other parts of the system are deterministic

there should be the throttle command as input, but it is
replaced by a triangular deterministic input

BSMC Results

BSMC Results

BSMC Results

BSMC Results

BLTL formula to be checked: ¬F100G1FuelFlowRate = 0

it must not happen that, within 100 seconds, the fuel flow rate
becomes zero for 1 second
referred as (15) in the tables following

Different experiments varying:

(δ, c) ∈ {0.05, 0.01} × {0.99, 0.999} (4 possible pairs)
fault rates for sensors in
{(3, 7, 8), (10, 8, 9), (20, 10, 20), (30, 30, 30)}

The C-H bound is also computed: how many experiments
should be done with the Chernoff-Hoeffding methodology

BSMC Results

Statistical Model Checking: Last Improvements

Jegourel, Sun, Dong: “Sequential Schemes for Frequentist
Estimation of Properties in Statistical Model Checking”, ACM
Transactions on Modeling and Computer Simulation, Vol. 29,
No. 4, Article 25, 2019

Main result: reduce the amount of samples needed to get the
final answer

In Bayesian SMC, the probability to estimate must be given
by a prior random variable whose density is based on previous
experiments and knowledge about the system

This article focuses on “frequentist” estimation approaches to
overcome this problem

the battle “Bayesian” vs. “frequentist” is frequent in Statistics

Theoretical Framework

A stochastic system S is a set of interacting components in
which the state is determined randomly w.r.t. a global
probability distribution

this means that there must be something probabilistic, so that
different runs may have different outcome
could also be a totally deterministic system, but with input
probabilistically picked from an input space

Let (Ω, F , µ) be the probability space induced by the system:

Ω is the set of finite paths of S
F is a σ-algebra of Ω
µ the probability distribution defined over F

We consider properties φ that are violated or satisfied by an
arbitrary execution of the system with probability 1 in finite
time

SMC may also address the problem of verifying whether a
property probability exceeds a threshold or not

Theoretical Framework: Notation

S |= P(φ) = γ iff P(φ) = γ in the probability space (Ω, F , µ)

S |=a
ε P(φ) = γ iff P(φ) ∈ [γ − ε, γ + ε]

absolute margin of error

S |=r
ε P(φ) = γ iff P(φ) ∈ [(1− ε)γ, (1 + ε)γ]

relative margin of error

S |=a
ε,δ P(φ) = γ̂n iff P(P(φ) ∈ [γ̂n − ε, γ̂n + ε]) ≥ 1− δ

S |=r
ε,δ P(φ) = γ̂n iff

P(P(φ) ∈ [(1− ε)γ̂n, (1 + ε)γ̂n]) ≥ 1− δ

γ̂i for i = 1, . . . , n is a sequence of estimates of P(φ) = γ
usually, you run S for i times and then the estimate γ̂i is the
mean on the i values
two sided bounds

Theoretical Framework

z : Ω → {0, 1}, z(ω) = 1 iff ω |= φ

If ω is extracted from Ω with some probability, then we have a
Bernoulli variable Z described by z

recall that ω is a path of S
If the probability of extraction is µ, then S |= P(φ) = Eµ[Z]

by definition, γ = Eµ[Z] =
∫
Ω
z(ω)dµ(ω)

i.e., the average value γ is the integral of function z w.r.t.
distribution µ over space Ω

Theoretical Framework

A (Monte-Carlo) estimator runs S for n times, each time
selecting a path ωi ∈ Ω with probability µ, and then computes
γ̂n = 1

n

∑n
i=1 z(ωi) ≈ Eµ[Z]

path selection may be done offline, online or both
depending on S accepting inputs at the beginning only, at
execution time only, or both

Let m =
∑n

i=1 z(ωi) be the number of successes

so, γ̂n = m
n

Let σ2 = γ(1− γ) be the variance of Z

Theoretical Framework

Let I = [ℓI , uI] be a (1− δ)-confidence interval for a
probability γ based on n samples

that is, after n samples, we may say P(γ ∈ I) ≥ 1− δ
ℓI , uI are two random variables which depend on the number of
successes among n samples

Let I (m, n) be the evaluation of I given m successes on n
samples, then the coverage of γ is defined by
C (γ, I) = P(γ ∈ I) =

∑n
m=0[γ ∈ I (m, n)]P(

∑n
i=1 z(ωi) = m)

[A] = 1 if A is true, otherwise [A] = 0
note that I (m, n) varies when n (and possibly m) grows

Thus, we want C (γ, In) ≥ 1− δ, where In is an interval built
after n samples

how to build it?

Theoretical Framework

Let Φ be the standard normal distribution function

Φµ,σ(x) =
1
2 + 1√

π

∫ x√
2

0 e−t2dt

usually written with x−µ
σ instead of x

Let z δ
2
= Φ−1(1− δ

2)

Theoretical Framework

Thanks to the central limit theorem, we could use the
following as our I with 1− δ confidence:[

m

n
− z δ

2

σ√
n
,
m

n
+ z δ

2

σ√
n

]
Unfortunately, σ = γ(1− γ), so, since we do not know γ, we
do not know σ as well

Thus, we replace the σ of the Bernoulli distribution with the

standard deviation of the n samples: σn =
√

m
n2
(1− m

n)

Hence, we have

I (m, n) =
[m
n

− z δ
2
σn,

m

n
+ z δ

2
σn

]
with C (γ, I (m, n)) ≥ 1− δ

Theoretical Framework

An alternative interval providing the same (actually, more
strict) guarantee is the Clopper-Pearson interval:

J =

[
β−1(

δ

2
,m, n −m + 1), β−1(1− δ

2
,m + 1, n −m)

]
being β(x , a, b) =

∫ x

0
ta−1(1− t)b−1dt

Theoretical Framework

A further alternative interval providing the same guarantee is
the Agresti-Coull interval: instead of

I (m, n) =
[m
n

− z δ
2
σn,

m

n
+ z δ

2
σn

]
we have

I (m, n) =

m +
z2δ
2

n + z2δ
− z δ

2
σn+z2δ

,
m +

z2δ
2

n + z2δ
+ z δ

2
σn+z2δ


especially useful when m << n

Theoretical Framework

What about the number of samples? Here are the most
important upper bounds

Okamoto (1958): for all 0 < ε < 1 we have that

P
(∣∣∣m

n
− γ

∣∣∣ > ε
)
≤ 2e−2nε2

we want it to be ≤ δ, so we simply put δ = 2e−2nε2

hence, the minimum number of samples is n =
⌈
log δ

2

−2ε2

⌉
too rough, e.g., for δ = 0.1, ε = 0.001 we have n > 106

Theoretical Framework

Hoeffding (1963), rivisited: for all 0 < ε, γ < 1 we have that

P
(∣∣∣m

n
− γ

∣∣∣ > ε
)
≤ 2e−nε2f (γ)

being

f (γ) =
log 1−γ

γ

1− 2γ

note that γ ∈ {0, 1} is not allowed
note that f (12) is undefined, so we set f (12) = 2
problem: γ is unknown, but this can be tackled in practice
better, but still improvable

Theoretical Framework

Massart (1990): for all 0 < γ < 1, 0 < ε < min{γ, 1− γ} we
have that

P
(∣∣∣m

n
− γ

∣∣∣ > ε
)
≤ 2e−nε2ha(γ,ε)

being

ha(γ, ε) =


9

2(3γ+ε)(3−3γ−ε) if 0 < γ < 1
2

9
2(3γ+ε)(3−3γ+ε) otherwise

again, γ ∈ {0, 1} is not allowed
furthermore, ε must be smaller than both the searched
probability and its complement
problem: γ is unknown, but this can be tackled in practice

Theoretical Framework

Hoeffding (before 1979), rivisited: for all 0 < ε, γ < 1 we have
that

P
(∣∣∣m

n
− γ

∣∣∣ > εγ
)
≤ 2e−

nε2γ
2+ε

Massart (1990): for all 0 < γ < 1, 0 < ε < 1−γ
γ we have that

P
(∣∣∣m

n
− γ

∣∣∣ ≥ εγ
)
≤ 2e−nε2hr (γ,ε)

being

hr (γ, ε) =


9γ

2(3γ+ε)(3−3γ−γε) if 0 < γ < 1
2

9γ
2(3γ−ε)(3−3γ+γε) otherwise

Theoretical Framework

Algorithms

SMC0(procedure_for_Z PZ , double ε, double δ) {

n = m = 0;

do {

n += 1;

i f (PZ ())
m += 1;

} while (n <
log δ

2

−2ε2);

return m
n ;

}

Ok for absolute error specification; too conservative (i.e., more
samples than necessary)

Algorithms: UPPAAL-SMC

SMC1(procedure_for_Z PZ , double ε, double δ) {

n = m = 0;

do {

n += 1;

i f (PZ ())
m += 1;

[l , u] = [β−1(δ2 ,m, n −m + 1), β−1(1− δ
2 ,m + 1, n −m)];

} while (u − l > 2ε);

return u−l
2 ;

}

No guarantee that S |=a
ε,δ P(φ) = γ̂n!

Approximation may be biased; absolute error specification

Algorithms

SMC2(procedure_for_Z PZ , double ε, double δ) {

n = m = 0;

do {

n += 1;

i f (PZ ())
m += 1;

} while (n < 2
log δ

2

ε2 (14 − (|mn − 1
2 | −

2
3))

2);

return m
n ;

}

Ok for P(P(φ) ≤ γ̂n + ε) ≥ 1− δ
The other bound is only conjectured; absolute error specification

Algorithms: OAA

SMC3(procedure_for_Z PZ , double ε, double δ) {

µ̂Z = SRA(PZ ,min{ 1
2 ,
√
ε}, δ

3);

Υ = 2(1 +
√
ε)(1 + 2

√
ε)

(
1 + log(3)−log(2)

log(2)−log(δ)

)
4(e−2)(log(2)−log(δ))

ε2 ;

N = εΥ
µ̂Z

;

S = 1
2

∑N
i=1(PZ ()− PZ ())

2;

ρZ = max
{

S
N , εµ̂Z

}
;

N = ρZΥ
µ̂2
Z
;

S = 1
N

∑N
i=1 PZ ();

return µ̃Z = S
N ;

}

SRA: Stopping Rule for OAA

SRA(procedure_for_Z PZ , double ε, double δ) {

Υ = 1 + (1 + ε) 4(e−2)(log(2)−log(δ))
ε2 ;

N = 1;

S = 0;

while (S ≤ Υ) {

N = N + 1;

S = S + P();
}

return µ̂Z = S
N ;

}

Ok for any random variable in [0, 1], thus not optimized for
Bernoulli variables

Algorithms: Watanabe

SMC4(procedure_for_Z PZ , double ε, double δ) {

n = m = 0;

do {

n += 1;

i f (PZ ())
m += 1;

} while (m < 3+3ε
ε2 log 2

δ);

return m
n ;

}

Surprising (what if the mean is close to 0???), but it works;
relative error specification

The Ultimate SMC Algorithm (Absolute Error)

SMC(procedure_for_Z PZ , double ε, double δ,
double δ′) {

assert(δ′ < δ);

n = m = 0; ℓ = M =
⌈
log 2

δ

2ε2

⌉
;

do {

n += 1;

i f (PZ ()) m += 1;

[l , u] = [β−1(δ
′

2 ,m, n −m + 1), β−1(1− δ′

2 ,m + 1, n −m)];

i f (1
2 ∈ [l , u]) ℓ = M;

e l se i f (u < 1
2) ℓ =

⌈
1

ha(u,ε)ε2
log 2

δ−δ′

⌉
;

e l se ℓ =
⌈

1
ha(l,ε)ε2

log 2
δ−δ′

⌉
;

ℓ = min{ℓ,M};
} while (n < ℓ);
return m

n ;

}

The Ultimate SMC Algorithm (Relative Error)

SMC(procedure_for_Z PZ , double ε, double δ,
double δ′, double γmin) {

assert(δ′ < δ);

n = m = 0; ℓ = M =
⌈

log 2
δ

hr (γmin,ε)ε2

⌉
;

do {

n += 1;

i f (PZ ()) m += 1;

[l , u] = [β−1(δ
′

2 ,m, n −m + 1), β−1(1− δ′

2 ,m + 1, n −m)];
i f (γmin ≥ l) ℓ = M;

e l se ℓ =
⌈

1
hr (l,ε)ε2

log 2
δ−δ′

⌉
;

ℓ = min{ℓ,M};
} while (n < ℓ);
return m

n ;

}

The Ultimate SMC Algorithm

There are either one or two additional parameters

a δ′ is present for both relative and absolute error algorithms
a γmin is present for the relative error algorithm only

Actually, γmin is not a problem

we must guarantee that γmin ≤ γ
either there is not an error (OK!), or γmin may be set, e.g., to
the IEEE-754 precision

Thus we focus on the parameter δ′ < δ: given a δ, which
value should we choose?

impossible to a-priori optimise δ′: it also depends on the
unknown γ
empirically, better to set it closer to 0 than to δ

The Ultimate SMC Algorithm

Experimental Results

Experimental Results

On a toy example

Experimental Results

On a toy example

Experimental Results

A Better Stopping Rule Algorithm

It may be shown that OAA is “optimal” w.r.t. the number of
samples

That is, any other stopping rule (ε, δ) approximation may be
faster by at most a multiplicative constant

OAA: ∃C : P(T ≤ C log 2−log δ
ε2µ2 max{σ2, εµ}) ≥ 1− δ

where µ, σ are the mean and the variance of the samples
any other stopping rule:
∃C ′ : P(T ≥ C ′ log 2−log δ

ε2µ2 max{σ2, εµ}) ≥ 1− δ

recall that an (ε, δ) approximation is s.t.
P(|µ̂− µ| ≤ ε|µ|) ≥ 1− δ

A Better Stopping Rule Algorithm

Adapted from Mnih, Szepesvári, Audibert: “Empirical
Bernstein Stopping”, Proc. of ICML 2008

Slightly more general setting: we want to compute a set K of
KPIs

Key Performance Indicator for some cyber-physical system
e.g.: average response time, throughput, ...
OAA is the same with |K| = 1, and with the only KPI
accepting values in (0, 1]

We need two parameters for the algorithm: β, p

typical values β = p = 1.1

m = 1, 2, i.e., there are two alternative versions

we pick m = 2

A Better Stopping Rule Algorithm

A Better Stopping Rule Algorithm

Just one phase; as for number of samples:

∃C : P(T ≤ C (log 1
δ + log R

ε|µ|)max{ σ2

ε2µ2 ,
R

ε|µ|}) ≥ 1− δ

Also works for negative-valued samples (and for variables with
mean 0)

