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o In the recent literature, there is not full consensus, as it may
refer to:

o estimate the probability of a BLTL property of a stochastic
system

o in a stochastic system, transitions between states are not
deterministic, but probabilistic

o estimate the probability of an LTL property of a deterministic
system

o thus, input is the same of a classical model checking problem
o but output is “probabilistic”

o also referred to as quantitative model checking or monte-carlo
model checking



o In our context, a random variable is a function from some
event space 2 to R

o X:Q—R
o Suppose we have a probability P defined on 29
o thus, P is defined on sets of events E C Q
o recall the Kolmogorov axioms:
o VE C Q.P(E) €[0,1]
o P(Q)=1
o VICN:(E€2PAVi#4jel. ENE =2) - PUZ) =
221 IP)(Ei)
o The mean of a random variable, also called expected value, is
defined as ux = E[X] = .q p(w)X(w)

o here p(w) = P({w})
o if Q is continuously infinite, then an integra

o by the axioms above, p(w) € [0,1] and }_ o p(w) =1

uld: be us .
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o Suppose that [Q] = 2, i.e., we have just two possible
outcomes
o without loss of generality, Q@ = {0,1}
o again, p(0) and p(1) are defined in some way
o for sure, p(1) = 1 — p(0); often p(1) is simply p and p(0) is
g=1-p
o A Bernoulli random variable Z on Q is s.t. Z:{0,1} — {0,1}

o we simply write Z instead of Z(x)
o given P on 22, we define p; = P(Z = 1)
o following the notation above,

nz =E[Z] = Z(1)pz + Z(0)qz = pz

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA ]



o A Bernoulli process consists in repeatedly running independent
trials on a Bernoulli variable Z
o either finite or infinite sequence of trials
o "“independent” means that the probability of outcome o ... 0,
is [[_; p(or)
o if there are k outcomes such that o; = 1, then
P({o1...0n}) = psas = ps(1 - pz)"*
o We can define a geometric random variable X7 s.t.
X: Q% >N
o Xz(w) = niff Z =1 for the first time after exactly n
independent trials (with probability pz)

o Thus, P(Xz = N) = g5 'p7
N
Z|

o as a consequence, P(Xz < N) =3, .y Y 2pz=1-¢q .
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Suppose now that, in some way, you know the value of pz

©

How many trials would we need to see Z = 17

©

Well, in these terms, you would need infinitely many trials
o special case 1: you can'tsee Z=1if py =0
o special case 2: you see Z =1 after 1 trial if py =1
o we are interested in 0 < py <1

©

Let's relax a bit: how many trials would we need to see Z =1
with a given confidence 1 — §7?

o e.g.: | want to be 90% sure, so 6 = 0.1

We have P(Xz < N)=1—(1—-pz)N>1-6§
o solving N as a function of § and pz, we have N > %
o note that both numerator and denominator are negative, as

0<é,pzr<1 % B .
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o For fixed pz, N decreases with §
o i.e., increases with 1 — ¢

o you are ok if you are less confident? you can try less

o you want to be more confident? you have to try more
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o For fixed §, N decreases with pz
o you want to detect something with big probability? you can

try less
o you want to detect something with small probability? you have
to try more
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o ... But we do not know pz
o indeed, it is exactly what we want to estimate by making trials
o Again, getting at the precise value p7 is too difficult, but we
can choose an accuracy

o we may choose some value € > 0 of interest and test if py > ¢
o ¢ is our error margin, Hy = (pz > €) is the null hypothesis
__log(d) log(d) _
o We have that M = log(1—¢) 2 log(1—pz) —
o Recalling the steps before, we have
P(Xz<M)>P(Xz<N)>1-9§
Thus: pz > ¢ implies P (XZ < Iolg(g]_(i)g)) >1-96§
o using conditional probabilities and putting M back in, we have

P(Xz <M|[pz=e)=>21-14 %

©




o Suppose we want to decide if Hy = pz > ¢ holds (hypothesis

testing)
o We perform M = Lo:(gl(f)gﬂ trials on Z
o if we never see Z =1, then we reject Hy
o otherwise, we accept Hy

o There are 4 possible “higher outcomes”
o type-l error: Hy is rejected, but pz > ¢ holds
o type-Il error. Hy is accepted, but py < € holds
o we were right in rejecting/accepting Hy (2 cases)

o The probability of a type-l error is denoted by «, the
probability of a type-Il error is 5
o generally speaking, they could be dependent on each other

o We have a = (X>/\/I|Ho)—1— X< H\Qm—

o since ]P(X S M | HO) Z 1— BECEAGUI
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Grosu, Smolka: “Monte Carlo Model Checking”, Proc. of
TACAS 2005
o In LTL Monte-Carlo Model Checking, the first part of the
input is as in standard LTL Model Checking:

o a Kripke structure S = (S,/, R, L)

o an LTL formula ¢

o let us say that we directly have the Biichi Automaton

B =B, x Bs
o as it is computed by explicit on-the-fly model checkers like
SPIN

Then, we also have two additional inputs: 0 < §,e < 1
Output as in standard LTL Model Checking:

o either PASS...

o ... or FAIL with a counterexample l%J puivEsiTA m o
\ DELL'AQUILA o
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o If FAIL with a counterexample o is returned, then for sure we
have an error in our model

o thatis, S [~ ¢ holds
o o is a counterexample showing that S }£ ¢
o Otherwise, it may still be the case that, notwithstanding the
PASS result, S £~ ¢
o However, the probability that S [~ ¢ is less than ¢

o indeed, this does only work with a huge assumption (which
involves the remaining input ¢), as we will see
o however, the huge assumption could be made reasonable

o How is this achieved? Exactly through the steps outlined

abovel N



o Recall that a (non-deterministic) Biichi Automaton (BA) is a
5-tuple B = (¥, Q, 0, Qo, F) where:
o X is the alphabet, i.e., a finite set of symbols
o @ is the finite set of states, Qy C @ are the initial states and
F C @ are the final states
0 0 C @ x X x Q@ is the transition relation
o We suppose that B = B-, x Bgs is the Cartesian product of
the Kripke structure S and the Biichi automaton generated
from ¢ using known algorithms
o e.g., as it is implemented in SPIN
o A lasso of B is a sequence 0 = qoxoq1 .- - gn S.t.
o VO i< n. (q;,x,',q;+1) €
0 0 k<n: VOLi,j<n=1.qi# q Aqn= qx

o A lasso is accepting if 3k <i<n: g €F %\ purvessm ‘



o We may easily define a probability distribution on the finite
runs o of B:
P(qo0) = Wlo\
P(qox0q1 - - - Gn-1Xa—19n) = P(qoxoq1 - - - Qn—l)m
being 0(q) = {(9,x,9") | (9. x,¢') € 6}
that is: each time we have a (non-deterministic) choice, we
choose one uniformly at random
o Such probability is well-defined: we may extend it to obtain a
(discrete) probability space (2L, P)
o being L={o| o is alasso in B}
o furthermore, L O L, = {0 | o is an accepting lasso in B}
o L, =L\ L, is the set of non-accepting lassos
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Given (2L, P), our Bernoulli variable Z is defined by:
o take one lasso o from L, following the rules defined by P
o that is: make a random walk (see the algorithm below)
o Z=1Iiff o € L, is accepting

From a theoretical point of view, since |L| < oo, we would be

tempted to say that py = ‘|LLa|‘

©

But this is not true, since lassos do not have the same
probability, according to PP
Thus, pz=P(Z=1) = Z/\aeLa P(\,)
o not actually useful for computation: L, requires generating L,
which may run out of computational resources
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MC2(KS_BA SA, double ¢, double §) {

for i in 1..%0';(%1@8)1

if (SampleLasso(SA) == (1, o))
return (FAIL, o);
return PASS;

}

SamplelLasso (KS_BA SA=(X,Q,5, Qo F)) {
(i,f,H,q) = (0,0,2, pick_unif_random(Qp) ;
while (H(g) =1) {

H(g) = i + 1; i = i + 1;
if (qeF) £ = i;
g = pick_unif_random(i(q));

}
if (H(q)< £f) return (1, getCurrLasso(H));

else return (0, 1); 1%}:”\“.‘5”3‘\‘ m ‘
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DFS(KS_BA SA, state (s,q), bool n, state a) {
let SA:<5A,IA,RA,LA>;
foreach (s',¢')€ Sa s.t. ((s,9),(s',4")) € Ra {
if (n A (s,q) == a)
exit reporting error;
if ((s,¢'n)¢g T) {
T =T U{(sdm)}s
DFS(SA, (’,q’), n, a);
if (-n A (s',¢') is accepting) {
DFS(SA, (s,q¢'), true, (5,¢'));
Y}

LTLMC(XS S, LTL (,D) {
A = BA_from_LTL(p); T = g;
let S=(S,,R/ L), A=(¥X,Q,0,Q,F);

foreach sel,ge @ 1»/-\ — @ osu
DFS(Sx A, (s,q), false, null); 3 :



o Standard LTL Model Checking requires both time and space
to be at least O(|S])

o easily billion of states, often unaffordable for real-world systems
o Here, time is O(MD) and space is O(D)
o being D the diameter of S, i.e., the length of the longest lasso
starting from an initial state

o M= Lo:(gl(i)e)—‘ as usual

o No type-ll errors: if we find a counterexample, we are happy

o Given the discussion on the background, if the answer is
PASS, then the probability that an error is present but came
undetected through the M trials is less than ¢

o However, this is only true if we assume that pgz> ¢
% | GRS '@ R



o Recall that Z =1 iff, making a random walk on the given BA,
| find an accepting lasso
o recall also that an accepting lasso is “bad”, i.e., the property
does not hold in the system
o Thus, we are saying that the probability that, among all lassos
| can find with a random walk, the probability that it is
accepting is at least ¢
o There are two cases:
o pz > ¢, then all what we have said before is ok: the probability
that a counterexample exists is less than ¢
o the real problem is: what if py < &7
o e.g., if there are not errors in the system, we have py =0 < ¢
o by recalling the actual definition of pz, we still have a “good”
result: the probability of extracting an error within the systems

behaviors is less than ¢ = =] .
o thus in both cases we have a bound (¢ or 5%thé\té.wor, A

though defined in two different ways )



o Results for classical systems: dining philosophers and
Needham-Schroeder protocol

o

[+]

(*]

for dining philosophers, two properties: one is false (with
counterexample), one is false

Needham-Schroeder is the bugged version (with
counterexample)

0 =0.1,6 =0.0018 - M = 1257

o Columns meaning:

o ph: number of philosophers

©

mr: parameter in the Needham-Schroeder protocol
o the bigger the value, the bigger the number of states

entr: number of entries in the hash table (RAM usage...)
mx1: max length of a lasso

cx1l: length of the counterexample found <.
M: number of trials to find a counterexampl%s‘ BrETSHEY ”” :



DDFS MC” DDFS MC”
ph|| time [entr| time| mxl Jex]| M ph[ time [entr[[time[mxI]exI[M
4 0.02{ 31} 0.08 101 10f 3 4 0.17( 29} 0.02] 8| 8| 2
8 1.62( 511|| 0.20 25| 8| T 8 0.71 77]0.01 7 71
12 3:13(8191) 0.25 37| 11| 11 12)[ 1:08| 125)] 0.02| 9] 9| 1
16]|>20:0:0/ || 0.57| 55| 8| 18 16||7:47:0| 173/ 0.11| 18| 18| 1
20 —|oom|| 3.16| 484| 9| 20 20 —|oom|| 0.06| 14| 14[ 1
30 —|oom|| 35.4| 1478| 11{100 30 —|loom|| 1.12{223|223| 1
40 —{oom||11:06{13486| 10{209 40 —|oom|| 1.23(218|218| 1
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DDFS Mc* DDFS Mc*
ph Lime” entr time ‘ mxl | avl ph Lime” entr time ‘ mx! | avl
4]l 0:01 178 0:20 49 21 4/ 0:01 538 0:20 50 21
6]l 0:03] 177 0:45] 116 42 6| 0:17[ 9106 0:46( 123 42
8|l 0:58| 18244 2:421 365 99 8| 7:56[161764 2:17( 276 97
10([16:44|192476 7:200 720 234 10 —|  oom 7:37| 760 240
12 —|  oom 21:20| 1665| 564 12 —|  oom 21:34| 1682 57
16 —|  oom| 3:03:40| 7358| 3144 16 —|  oom| 2:50:50| 6124| 2983
20 —|  oom|19:02:00{34158(14923 20 —|  ooml||22:59:10(44559(17949
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DDFS Mc* DDFS mMc?
mr Lime‘ entr Lime|mxl‘cxl‘ M mr Lime| entr Lime‘mxl|cxl| M
4)[0.38] 607| 1.68 87|87 103 40(| 1:11|158431| 1:46|325|117| 7818
8| 1.24] 2527| 11.3/208| 65| 697 48|] 2:03|264607|| 1:45|232| 25| 6997
16| 5.87]13471| 10.2|223| 61| 612 56(| 3:24|409951|] 6:54|278|133|28644
24| 18.7/39007|| 3:06| 280| 44|12370 64| 5:18|600607|| 7:12|347| 32|29982
32(| 36.2|85279|| 2:54|269| 63|11012 72 ~|  ooml|[11:53]336| 63[43192
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o Grosu, Smolka: "Quantitative Model Checking”, Proc. of
ISOLA 2004

o Input is the same as before: a KS S, an LTL formula ¢,
0<dex<l

o again, let's say we have B = B_, X Bgs
o Output is the same: PASS or (FAIL, counterexample)
o FAIL is FAIL as before

@ Much easier interpretation for PASS: as we will see, with
confidence 1 — § we have a bound € on the probability of
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o Let Z be a random variable with values in [0, 1]

o thus, Z is generally not a Bernoulli variable
o but Bernoulli variables are a special case, so the methodology
discussed below can be applied

o Recall that the mean of Z is
pz =E[Z] =3 cqp(w)Z(w) €[0,1]

o recall that, if Z is a Bernuolli variable, uz = pz
o The purpose here is exactly to compute uz

o The exact value cannot be directly computed, so let us say we
output jiz instead
o The methodology proposed here ensures that
Pluz(l1—¢) <jiz <pz(l+¢e)>1-46
© so again, ¢ is a tolerance and ¢ is a confidence on the result

o typically, they should be close to zero T @ b
o often, this is called a (e, §)-approximation e ‘



o Dagum, Karp, Luby, Ross: “An Optimal Algorithm for Monte
Carlo Estimation". SIAM Journal on Computing,
29(5):1484-1496, 2000.

o We have Z as a random variable in [0, 1]: how do we compute
an (g, d)-approximation fiz of pz?

o ldea: perform N independent trials of Z, callect results
Z1,...,Z, and then output iy = %

o Straightforward problem: how to choose N, so as we have an

(e, §)-approximation?



We may employ an algorithm which dynamically adjusts the
value of N on the basis of the results obtained so far

In doing so, we use an auxiliary function SRA (Stopping Rule
Algorithm)

We also suppose to have a procedure Pz which performs an
experiment on Z and returns the corresponding value in [0, 1]

o of course, different calls to Pz will return different values

Big limitation: pz > 0, or SRA does not terminate
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OAA(procedure_for_Z Pz, double ¢, double §) {
iz = SRA(PZJnm{l Vﬁhg)-
L I —2)( —log(8
T = (1+f)(1+2\f)( CE)on) ) Se2ilon(-los(O)

ﬂz
S = 13N (P20 - Pz()%s
Pz = max{%aEﬂZ};
N = pEZT’

Kz

fiz = NZ:’:1PZ()§

return jiz;
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SRA (procedure_for_Z Pz, double ¢, double §) {

X‘l - 1_|_(1+5)4(e72)(|og€(22)7|og(6));
= 1;
S = 0;
while (S < T) {
N =N+ 1;
S =5+ P0O;

}

return iz = %;

| UNIVERSITA
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o Leveraging on OAA, we use the almost same framework used
for Monte-Carlo Model Checking

o Bernoulli variable Z s.t. Z = 1 iff, making a random walk, you
detect an non-accepting lasso

o note that we reversed the previous definition: we will be back
on this

o Z is a special case of the random variables of OAA, so we may
apply OAA to Z

o also the probability space (2L, P) is the same

o The subroutine SampleLasso is the same as above
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o DAA* is a modified version of OAA: as soon as Z = 0 for some
trial, exit with probability 0
o i.e., if a counterexample has been found

o Thus, 0AA* returns either O (in the previous case) or 1
(otherwise)

QMC (KS_BA SA, double &, double §) {
pz = 0AA*(Samplelasso(SA), e, §);
if (pz == 0) {
o = extract the accepting lasso from the
last trial;
return (FAIL, o);
}

else

return PASS; S = o
} O Bt =



o Why Z =1 if we find a “good” lasso?
o instead of Z =1 if we find a counterexample, as it was for
MC2?
o Recall that OAA only works if pz = 1z > 0, otherwise SRA
does not terminate
o With the current definition, pzy > 0 means “there is at least a
good lasso”
o with the MC? definition, pz > 0 means “there is at least a
counterexample”: could easily be false!
o Even if “there is at least a good lasso” is false, QMC
terminates as OAA* immediately exit after the first trial...
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o Recall that P(uz(1—¢) <jfiz <pz(l1+¢))>1-9§
o If Z=1 for all trials, iy =1
o Thus, 1 = fiz > pz(1 — ¢) always holds
o What remains is P(uz(1+¢)>1)>1-6§
o better: P(uz > ﬁlg) >1-96
o If we recall that uz = pz =1 — gz we have that
P( Z<1_m) IP’(qZ< 1+€)>1—(5
o Actually, for small ¢ ~ ¢, thus we are saying that
P(gz <e)>1-4!
o gz is the probability that, making a random walk, we find a
counterexample

o much better than the obscure assumption 0%2 @
B

! 1+€
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QMC seems extremely better than MC?

So why MC? has been published as an improvement of QMC
one year later?

Because the OAA methodology requires much more steps
For MC2, the worst-case number of trials is M = Iolog(f)
g(l—¢)

For QMC, we can show that worst-case number of trials is
bound by N = O(4'8(2)1oe0))

recall that log(d) < 0

N >5M

e.g., 6 =0.1,6 =0.0018 - M = 1257 for MC2

but N = 1257 with § = ¢ = 0.1 for QMC

RAM space is O(D) for both %

© 06 0 o



DDFS QuC DDFS QMC
phf| time |entr timel mxl| lcxll N ph|| time lentr timelmxllcxllN
4 0.02| 31| 0.08 10110 3 4f 0.17] 29]10.02[ 8§ 8|2
8 1.62| 511 0.20 25| 8| T 8 0.71] 7r|j0.01f T 7|1
12 3:13|8191)| 0.25 37|11 11 12| 1:08| 125([0.02] 9| 9|1
16|[>20:0:0 || 0.57 55| 8| 18 16||7:47:0 173/ 0.11| 18] 18|1
20 —|oom|| 3.16| 484 9| 20 20 —|oom|| 0.06] 14| 14| 1
30 —|oom|| 35.4| 1478[ 11100 30 —|oom|| 1.12]223|223| 1
40 —|oom|(11:06|13486| 10|209 40 —|oom|| 1.23| 218|218| 1
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DDFS QMcC DDFS QuC

phi/time[[entries|| time [ mxl | avl philtime|[entries|| time | mxl | avl

4 0:01 178 0:20 49 21 4 0:01 538 0:20 50 21

6|l 0:03] 1772 0:45] 116 42 6| 0:17] 9106 0:46] 123] W42

8|l 0:58] 18244 2:42| 365 99 8|| 7:56/161764 2:17| 276 97
10|(16:44|192476 7:201 720 234 10 —|  oom 7:37) 760| 240
12 —| oom 21:20| 1665| 564 12 —| oom 21:34| 1682} 570
14 —|  ooml|| 1:09:52| 2994| 1442 14 —|  oom|| 1:09:45| 3001| 1363
16 —| oom|| 3:03:40 7358| 3144 16 —| oom| 2:50:50| 6124] 2983
18 —|  ooml|| 6:41:30]13426| 5896 18 —|  oom|| 8:24:10|17962| 7390
20 —|  oom||19:02:00(34158({14923 20 —|  oom||22:59:10|44559({17949
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o Mancini, Mari, Melatti, Salvo, Tronci, Gruber, Hayes,
Prodanovic, and Elmegaard. “Parallel Statistical Model
Checking for Safety Verification in Smart Grids.” In Proc.
SmartGridComm 2018.

o EDN: Electric Distribution Network, also called “grid”

o brings to residential houses, commercial buildings and
industries the electricity they need
o till some decades ago, simply based on demands

o Smart grid: usage of computational services to improve

electricity distribution
o e.g.: electricity usage is measured and then rendered in a web

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA ]



Coal Plant

Industrial Power Plant

=30 MW

Low Voltag
50 kV

Extra High Voltage
65 to 275 kV
(mostly AC, some HVDC)

600 1700 MW
@

Nuclear Plant

| %
=200 MW yyaro.loctric Plant

-

=150 MW

Medium Sized
Power Plant
B 110kvandup

al

Distribution Grid

g

up to
=150 MW |
1

city
Power Plant
=2 MW

Industrial
4(11)—& Customers

\ _ <
UNIVERSITA
DEGLI STUDI
DELL'AQUILA

Wind Farm




o Distribution System Operators (DSOs) and energy retailers
compute price tariffs for residential users

o Expected Power Profiles (EPPs): how residential users will
respond to price tariffs
o DSOs compute price tariffs so that EPPs do not threat
substations safety
o in each t, Aggregated Power Demand (APD) must be below
the substation safety power threshold (e.g., 400 kW)
o DSOs main goal is to achieve peak shaving
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o Residential users may or may not follow their corresponding
Expected Power Profiles (EPPs)

o there may be automatic tools to enforce EPPs

o implemented on small devices on users premises

o still, there is no guarantee, due to unexpected needs, bad
forecasts, limited computational resources, etc.

Given that users may deviate from EPPs with a given probability
distribution, what is the resulting probability distribution for the
aggregated power demand (APD)?
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Time dependemlprice policies
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o We present the APD-Analyser tool
o APD: Aggregated Power Demand

o Main goal: compute the probability distribution for the APD

o given probability distributions on each residential user
Expected Power Profile (EPP)
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o Set of residential users U connected to the same substation
o Set of time-slots T (e.g., one month with 15 minutes step)
o Expected Power Profiles (EPP)
o one for each user u € U: for each time-slot t € T, the
expected power demand of v in t
op,: T —R
o A probabilistic model for users deviations from EPPs

o a real function dev, : R — [0, 1], for each user v € U
f::: dev,(x)dx =1

fab dev,(x)dx = probability that actual power demand of u in
any time-slot t € T is in [(1 4 a)pu(t), (1 + b)pu(t)]

e.g. [00(%2 dev,(x)dx = probability that actual power demand

of uin any time-slot t € T deviates at mos, g\mwl'rc\)m PP
of u R
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©
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o Substation safety requirements
0 pPs T—R
o for each t € T, DSO wants the APD to be below ps(t)
o thatis, Vt € T — >, ,[(1 4 deviation,)p,(t)] < ps(t)

o Key Performance Indicators (KPlIs)
o e.g., probability distribution that ps(t) is exceeded in any
te T
o Parameters

o 0 < d,e < 1: as for output probability distributions, the values
must be correct up to tolerance ¢ with statistical confidence ¢

o Pril—e)up<pa<(1+e)u]>1-06
o p: (unknown) correct value, fi: computed value

o v € R*: discretisation step for output prob%}/ distribu
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o Probability distribution for APD resulting from EPPs
disturbed with given probabilistic disturbance model
o easy to evaluate KPIs once such distribution is computed
o formally: W(W) is the probability that APD takes a value in
interval W in any time-slot t € T
o Exactly computing V is infeasible, thus we compute VU as a
(€,0) approximation of a ~y-discretisation of the APD
o For each ~-discretised value w = APDpjn + kv, we compute
V(w) s.t., with confidence at least 1 — ¢:
o if U(w) =1¢[0,1] then ¥([w,w + 7)) <e¢
o otherwise, W([w, w + +)) is within (1 + )W (w)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA ]



o Monte-Carlo model checking

o goal: estimate the mean of a 0/1 random variable Z,,

o Z, = 1iff, taken at random a t € T, the value of the APD is
in [w, w + ), when EPPs are perturbed using deviations
model dev,

o then, the mean is exactly our W(w)

o Method: perform N independent experiments (samples) for

N
Z,, and then the mean of Z, is h € [0,1]

o Optimal Approximation Algorithm (OAA) by Dagum & al.
(2000) + Monte-Carlo Model Checking (MCMC) by Grosu &
Smolka (2005)

o sequential analysis. use outcomes of previous experiments to
compute N

o the value of N is automatically adjusted, at run—time while
performing the samples z

o so that the desired tolerance ¢ is achieved w EQQJ‘FEH .m :
accuracy



Q Phase 1
@ Perform Ny = fi(e,d) experiments 21’1, R 21,/\,1
@ Compute mean of successful experiments iy = N% Z,N:ll 21’,-
Q Phase 2
@ Perform 2N, = 2f,(e, d, fiz) experiments 2270, e 2272,\,2_1
@ Compute S = N% Z,{\Zgl 7‘22’2"_222’2’*”
O Phase 3
@ Perform N3 = f3(e, 6, iz, S, N2) experiments 23717 .. .,23,/\/3
@ Return mean of successful experiments jiy = N% Zf\ﬁl 21,;
o It holds that Pr[(1 —e)uz < jfiz < (1+¢€)uz] >1—-9



©

©

©

©

Correct phase 1 using statistical hypothesis testing

If Z,’\il 21,/ =0 for M = fa(e,d) = Lnla(f)e)-‘, terminate the

computation
Return iy =0
It holds that Priuz <e]>1—-4
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N = N; + N> + N3 can be prohibitively high
easily order of 10° in our experiments
OAA+MCMC to be run for each different value of w
if performed with a sequential algorithm, order of 1 month for
the computation time
o We re-engineer the OAA to be run on a HPC infrastructure,
i.e., a cluster (distributed memory)
o main obstacle: value of N depends on samples outcomes! To
be computed at run-time

© ©

©

()

One orchestrator node instructs worker nodes to perform
given number of samples
o worker nodes perform samples in parallel and send results to
the orchestrator
o the orchestrator keeps track of phases of each worker and of

different values of w % pveRTs m .
As a result, less than 2 hours of computation With 89 worker$

©



Different workers may be in different phases and different w

,%m
Worker |

4

4. Output APAD distribution

| Worker



()

130 houses in Denmark, all connected to the same substation
EPPs computed by using methodologies from the literature

o starting point: historical data collected on those houses for one
year (SmartHG FP7 project)

o computed as shifts within given flexibilities so as to
collaboratively respond to price policies

©

©

Very liberal deviation model: up to +40% variations with 10%
probability, up to £20% variations with 20% probability

We want to compute the APD for each month of the year
530130

©

overall number of
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o by using time-slots of 1 day, we have
deviations
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# workers | samples/sec speedup efficiency

1
20
40
60
80

79275.028
162578.98
257791.96
335823.24

1%
13.38 %
27.44 x
43.51x
56.68 x

100%
66.90%
68.60%
72.52%
70.85%

speedup = z—f efficiency =
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We presented the HPC-based tool APD-Analyser

Main purpose: support DSOs in analysing effects of price
policies on aggregated power demand (APD) at substation
level

o especially for highly-fluctuating and individualised price policies

From expected power profiles disturbed by probabilistic
deviations (input) to probability distribution for APD (output)

As a result, APD-Analyser enables safety assessment of price

policies in highly dynamic ADR schemas



o Zuliani, Platzer, Clarke: “Bayesian Statistical Model Checking
with Application to Stateflow/Simulink Verification”, Formal
Methods in System Design vol. 43, 2013

o In the works above, it was necessary to have some simple
language defining the system

o e.g., Promela of SPIN, though they use a different language

o needed to perform the Cartesian product of the property and
the system itself

o and also to actually make a random walk of the system

o actually, such a limitation is not difficult to overcome, but it is
presented in this way

o especially ok for systems already expressed in the language,
but which went out of resources

o Here, we directly use simulators =~
% GNVERSTA B o
o Simulink, but conceptually also Modelica \ 5 / Bttt @ e



o As before, we have to define our probability space; this time is
not easy
o Given a set X, a og-algebraon X is Y C 2X st. Vis closed for

complements, countable unions and countable intersections,
i.e.:
o VY €Y. Y €, with V:{XEX\X% Y} being the
complement of Y
o VICNst Ye):

oVijelYiuY, ey
o Vi,jel.YinY;ey

o Example: Y1 =2X and ), = {@, X} are always o-algebras
o Example: for X = {a, b}, Y = {{a},{b},{a, b}} is not a

U_algebra Slnce {a} m {b} = @ ¢ y >%\\I\IRSH\ ns'A



o If X C R", the Borel set on X, denoted by B(X), is the
smallest o-algebra of X which contains all open sets of X

o recall that a set A C R" is open iff, for all a € A, there exists a
n-dimensional ball (border excluded) centered in a which is
contained in A

o thatis, 3 >0: VxeR". J]a—x|<e=>x€A

o The pair (X, B(X)) is called measureable space

o Thus, given X C R", B(X) retains all open sets already in X
and ensures that intersection, union and complementation are
still in B(X)

o We are interested in this since our systems are defined via
variables on real intervals

o sets of states are subsets of R” ’%m.w\ m
b R e



o A stochastic kernel on (X, B(X)) is a function
K: X xB(X)—[0,1] s.t.:
o for all x € X, the function Kx : B(X) — [0, 1] defined by
Kx(B) = K(x, B) is a probability measure on B
o that is, the three Kolmogorov axioms are true
o note that Kx actually takes subsets...

o for all B € B(X), the function Kg: X — [0,1] is a
measureable function on X

o we are less interested on this point
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Since each state is a point x € X C R, execution traces are
sequences o € X%

o for finite (terminated) runs, we may add a loop on the last
state (stuttering)

We want to define probabilities on traces, thus Q = X%
Usually, we define the probability on (Q,29)

For these types of 2, we are happy with something contained
in 22, namely F as the cylindric o-algebra built on Q

o essentially, such sequences behave “well”



o We suppose to have a stochastic kernel K defined on (Q, F)

o Together with an initial state x € X, this defines a probability
on (9, F)

P(X; € B) =1if x € B and 0 otherwise;

P(X,'+1 € B) = K(X,'7 B)
o K defines the outgoing transitions probability

Qo
Qo

o Thus, if we are able to define a K, we have a probability space
for our SMC methodology
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o Giving a precise semantics of Simulink (or Modelica) is
difficult, but the following definition is quite close
o A Discrete Time Hybrid Automaton (DTHA) is defined as
D =(Q,E,n,qo,x0, P, J) where:
o n is the dimension of the state space, which is understood to

be R”
(Q, E) is a directed graph

o Q@ is a set of locations, E is a set of control switches or
modalities

©

©

(g0, x0) is the starting state, (qo,x0) € Q x R”

o d={¢s: Rt xR" > R"| g€ Q}
% T o

©

J={j.:R" 5 R"|ec E}



o The transition relation § of a DTHA D defines when we go
from a state in @ X R"” to another

o not simple as for Kripke structures, where one step is one step:
here, also time passing is important
o 2 underling ideas:
o time only passes within locations, handled by ®
o jumps within locations happen in time 0, defined by E with
conditions given by J
o either the time pass within a location, or a jump between

locations is performed
\ RESHLRTNE! ;

00€QxR"x (RTUE) x @ x R”



©

§eQR@xR"x (RTUE) x Q x R"
(g,x,t,q,x") € 6 =(q,x) =+ (q,x) iff X' = ¢gq(t,x)
o note that g does not change
o (g,x,e,¢,x')€d=(q,x) =e (¢, x) iff
X'=je(x)Ne=(q,q")
o note that time does not pass
A Q xR"— (RTUE) is the simulation function
o decides if, in a given state, a location jump or a time pass has
to be performed

o if time passes, decides how much
o unified notation (g, x) —a(q,x) (9', %)

©

()
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@ J may be non-deterministic

o in a given state (g, x), both some j. and ¢, could be enabled
o even if only ¢, is enabled, many values for t may apply
o A is deterministic; in Simulink:

o if both a discrete and a continuous transition can be taken,
take the discrete one

o if continuous, stay for the maximum time allowed before a
location change

o an ordering on outgoing edge is always available, so the first
one is selected when multiple edges are present



o A traceis a sequence o = (s, tp), - - ., (Si, ti), ... s.t.

o 0 = (90, x0)

oVi>0.5;€¢ QxR" tje Rt

o Vi>0.s —A(s) Si+1

o Vi>0.t = A(S,’) if A(S,') € R*
o Vi>0.t;,=0if A(s;)) € E

o At step o; = (sj, tj), the global time is ZJ"-;(I) t
o For an infinite trace o, )52, tj = 00
o there must be finitely many location switches in finite time
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o For aset X, let D(X) = {f | f is a probability density
function on X}

o

for X = {x1,...,xp}, f(t) = > 1, pid(t — x;), for any choice
of m €[0,1]s.t. 7 pi=1

here ¢ is the Dirac function, i.e. §(0) = 1,Vx # 0. §(x) =0
otherwise, for continuous X, f(t) is s.t. fab f(x)dx € [0, 1] for
any [a,b] € X and [, f(x)dx =1

o A probabilistic transition function 1 for a DTHA D is a
function M: Q@ x R" — D({0,1}) x D(R*) x D(E)

o

*]

since [1 returns 3 values, we will denote its components by

M(s) = (Na(s), Me(s), Na(s))
the following must be true:
V(g,¢') € E,re Q,x e R". g # r — Ny(r, x):(q q)=0
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o Informally, a probabilistic transition function I has the goal of

definining a (possibly non-uniform) “random walk” on a
DTHA

o suppose we are in a state s = (g, x)

o both a location change and a continuous move may be taken?
choose at random with probability M,(s)

o if a location change must take place, choose one at random
with probability My(s)

o if time must pass, decide how much with probability 7.(s)



o Thus, K(( ) B) = Paeck(B,qx) Ma(a,x)(e) + (1 -
pa) fo T )(t)18(q, ¢q(t, x))dt
o Bisa Borel set over Q@ x R"
o pPa= rla(qv X)(O)
o arbitrary choice, could also have been p, = M.(q, x)(1)
o EDE(B,q.x)={(a,9") € E|(d,J(q,9)(X)) € B}
o to be well-defined, we must stay in the same Borel set

o Ig is the indicator function of B, i.e. Iz(g,x) = 1 iff
(g,x) € B, and 0 otherwise

o again, to be well-defined, we must stay in the same Borel set

o It may be shown that K is a stochastic kernel, so probability is

well-defined over infinite traces
j» “ UNIVERSITA DISIM
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o n is the number of variables in a Simulink/Stateflow model
o some of them may be discrete, but R" is for sure a superclass

o @ corresponds to “states” of Stateflow and E are states
transitions

o Simulink only perform deterministic transitions, so probability
density function output by I all consists in just one point
being defined

o Differently from the Grosu & Smolka works, here we cannot

provide a deterministic model and let the methodology turn it
probabilistic

o the user must define something probabilistic
o typically done by introducing probabilistic blocks in the design

o Uniform Random Number block %
\ | BECEAQUIEA 2



o Conditional probability: P(A|B) is the probability of event A,
under the assumption that event B already occured

o by definition, P(A|B) = (%zf;?)

o Which is the relationship between P(A|B) and P(B|A)?

o The well- known Bayes Theorem states that

P(B|A)P(A)
P(A|B) = HELA)

(BIA)( ) n -

o Here we need a more reflned version of the Bayes Theorem

o First of all, the conditional probability density function of a
Bernoulli random variable X and a random variable U with
values in (0,1) is f(x;j|u) = v (1 — u)t=>

o then, f(x; =1Ju) = v and f(x; =0lu) =1 %\\mlmr\ m



o Our refined version of the Bayes Theorem states that

. f(x1...xn|u)g(u)
Fluba0) = e alvstan

o u is the unknown probability that we have an error in our

system
o Xx; are “observations” of u: we make a simulation and see if it

fails or not
o g is the probability prior distribution of u

o prior as opposed to posterior f(u|x1 ...x,): without having

taken samples
o we will assume it to have a given shape

o since we assume observations to be independent,
f(xa...xplu) =TT, f(xi|u)

o We want to know p as the probability of the posterior

(U‘Xl ) r - “\\[\l]?\”\ @ DIsIM
o We use the posterior Bayes estimator of p % 5 o




o From the Bayes theorem it follows that
t
S Flulxt . xn)du = Fiuqan-xt8)(t1) = Foera,n—x+8)(to)

Where
o ty,th € (0, 1)
o x =Y_7_, x; is the number of successes in the n trials
o o, € RT are given parameters
o Fap(t)= fot ga,g(u)du is a Beta distribution function
o g above is the prior density, here we assume it to be

A 1(1 u)B 1

gas(u) = m
(1—u)tdu
Qo thUS, FA7B( ) W
o F may be easily made explicit, or simply computed using
mathematical tools like MATLAB

o When sampling from a Bernoulli distribution with a Beta prior
of parameters «, 3, it is known that the mea%thasiposm .

 xta BECAGUIA
is p = n+a+p




o BSMC: Bayes-based Statistical Model Checking

o The input is as follows:
o S as the simulator model for the system to be verified
o may be black-box, Simulink, Modelica or proprietary
o must have some probabilistic behaviour, i.e., 2 consecutive
simulations may have different results
@ as the BLTL property to be verified
o Bounded LTL: all U operators must be bounded, i.e., they are
of the form U=', with t > 0
o hence, also F and G must be bounded too
a, B € RT as the parameters for the prior Beta distribution
d € (0,1) as the desired size of the output interval
o c€ (%, 1) as the desired interval coverage coefficient
|
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The output is as follows:
o (to,t1) such that t; —ty =46
o P as the estimate of the probability p that S = ¢
It holds that:
o (to, t1) is a 100c Bayesian interval estimate
°o pe (l'()7 tl)
o usually at half interval, but with some adjustments

©

o Thus, we want ¢ to be small

o implies our output interval is narrow, and the estimate is
accurate

We want ¢ to be high
o implies we are confident on the estimate

o Needless to say, the smaller § and the higher ¢, the higher
computation time required % RS

©



BSMC (ProbModel S, BLTL property ¢,
double «,8,c,0) {
(n,x) = (0, 0);

do {
o0 = simulate (S, time(y));
n=n+1; if (cEe) x = x+1;
p = 2t (to,t) = (P— 3.8+ 35);

if (1 > 1) (to,t1) (1-4,1);

if (o < 0) (to,t1) = (0,9);

Y= F(X+a,n7x+,8)(t1) - F(X+a,n7x+ﬁ)(t0);
} while (v < ¢);

return {(ty, t1),p);
}
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Su=p | ADy | =D | (D) | Dy USt by

t€ QT is atime

©

©

Atomic propositions p are of the form y ~ v, being y a
variable in the model, ~€ {<, >, <, > =} and v € Q
o Some other derived operators:

o of course true, false, OR and other propositional logic
connectors

o future (or eventually): FS'® = true US! ¢

o globally: GS'® = —(true USt —d)

As for LTL, S = ¢ when, for all executions o of S, o satisfies
¥

o Fora given 0, o |= ¢ iff 0,0 = ¢ s ‘

©



o To define when o,/ |= ¢, a recursive definition over the
recursive syntax of BLTL is provided

o recall that o = (so, o), ..., (si, ti), . ..
o at step o; = (sj, t;), the global time is ZJ’;(I) t
0 o,iEy~viffa(i)(y) ~v
oo, ‘: (ORI iffo‘,i|: ¢1/\O’,i|: b,
0 0,i E=®iff o,i £
9 o, ] ‘: (Dl Ugt ¢2 iff
Jk>i: o klEdAVi<j<kojEdrand NIy <t

o Note this is different from the bounded semantics of LTL used

in Bounded Model Checking 3
"%“ UNIVERSITA DIsIM
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o Crucial steps in BSMC algorithm:

o simulate, i.e., invoking our simulator, whatever it is
o evaluating o = ¢

o Does simulate actually returns o7

o typically, simulators output is a log with lines (¢;, vj1, ..., Vin)

o being vi1,..., Vv, the values at time t; for each of the n
variables used in the simulator model

o usually, state locations may be inferred from vj1,..., vj,

o usually, tj1 = t; + At for a fixed (and small) At >0

o thus, a simple postprocess computation may translate the log
in an execution o = (so, t), .., (i, ti), . ..

o this also allows to compute o(i)(y) for any variable y



o The first 2 inputs of the BSMC algorithm are straightforward
o if | want to verify something, of course | need a model and a
property
o We may understand §, c: they control accuracy and
confidence of the result
o the more accuracy/confidence is required, the longer the
computation

o What about a, 57

o informally, it is a measure of the "weight” we believe passes
and fails should have
o if none is known, it is probably good to choose a uniform Beta

distribution, i.e., a = 3

ceg,a=p=1 e



o It may be proven that BSMC nearly always terminates:
o for all possible valid inputs, BSMC terminates with probability 1
o no, this does not imply that BSMC always terminates (we are in
an infinite space)
o but it is enough for practical applications
o It may be proven that errors on BSMC output are unlikely
o let our null hypothesis be p € (ty, t1)

o both type-l and type-ll errors are bounded by :E’l(l:ﬂig
o recall: type-l is saying that p ¢ (to, t1) when instead
p € (to, t1)
o recall: type-ll is saying that p € (to, t1) when instead
p ¢ (to, 1)

o c is the coverage input as in BSMC

o 7o is the actual (prior) probability that p e’%l R m ‘



o Case study: Fault-Tolerant Fuel Control System
o for details, see
http://wuw.mathworks.com/help/simulink/examples/
modeling-a-fault-tolerant-fuel-control-system.
html
o Gasoline engine (e.g., used in avionics), must provide power
for vehicle operations
o This model focuses on a critical parameter: the air/fuel rate,
which must be kept close to a reference value, i.e., 14.6
o air is pumped away by intake manifold, fuel is pumped in by
injectors



http://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html

o The model uses sensors for some key measurements: EGO
(exhaust gas residual oxygen), engine speed, throttle, pressure

o If all sensors works well, it is rather easy to control the
actuators so that the air/fuel ratio is 14.6

o the actuator is on the fuel rate
o But sensors may fail: the controller is able to detect such
failures and adjust actuators accordingly
o If more than one sensor fail, the engine is shut down

o We need a stochastic system, thus sensor failures are made
probabilistic
o independent Poisson processes with different arrival rates:
P(N(t) = n) = Jik
o The other parts of the system are deterministic_

o there should be the throttle command as inl%sﬁﬁﬁ\i\f,iﬁ)‘{is “” ‘

replaced by a triangular deterministic input
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o BLTL formula to be checked: —F%9G!FuelFlowRate = 0
o it must not happen that, within 100 seconds, the fuel flow rate
becomes zero for 1 second
o referred as (15) in the tables following
o Different experiments varying:
o (d,c) € {0.05,0.01} x {0.99,0.999} (4 possible pairs)
o fault rates for sensors in
{(3,7,8),(10,8,9), (20, 10, 20), (30, 30, 30)}
o The C-H bound is also computed: how many experiments
should be done with the Chernoff-Hoeffding methodology

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA ]



Table 3 Posterior mean/number

of samples for estimating Interval coverage ¢

probability of (15) with uniform 0.99 0.999

prior and § = 0.05, and sample

size required by the 7 Fault rates (378) 0.3569/606 0.3429/972

Chemofl-Hoeflding bound [27] (1089) 0.8785/286 0.8429/590
(20 10 20) 0.9561/112 0.9625/158
(3030 30) 0.9778/43 0.9851/65
C-H bound 922 1382

Table 4 Posterior mean/number

of samples when estimating Interval coverage ¢

probability of (15) with uniform 0.99 0.999

prior and § = 0.01, and sample

size required by the Fault rates (378) 0.3558/15205 0.3563/24830

Chemoff-Hoeffding bound [27] (1089) 0.8528/8331 0.8534/13569
(20 10 20) 0.9840/1121 0.9779/2583
(30 30 30) 0.9956/227 0.9971/341

C-H bound 23026 34539
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o Jegourel, Sun, Dong: “Sequential Schemes for Frequentist
Estimation of Properties in Statistical Model Checking”, ACM
Transactions on Modeling and Computer Simulation, Vol. 29,
No. 4, Article 25, 2019

o Main result: reduce the amount of samples needed to get the
final answer

o In Bayesian SMC, the probability to estimate must be given
by a prior random variable whose density is based on previous
experiments and knowledge about the system

o This article focuses on “frequentist” estimation approaches to
overcome this problem

o the battle “Bayesian” vs. “frequentist” is frequent in Statﬁ



o A stochastic system S is a set of interacting components in
which the state is determined randomly w.r.t. a global
probability distribution

o this means that there must be something probabilistic, so that
different runs may have different outcome

o could also be a totally deterministic system, but with input
probabilistically picked from an input space

o Let (2, F, u) be the probability space induced by the system:

o Q is the set of finite paths of S
o F is a o-algebra of Q
o p the probability distribution defined over F

o We consider properties ¢ that are violated or satisfied by an
arbitrary execution of the system with probability 1 in finite
time

o SMC may also address the problem of verify e Wwhether a o
property probability exceeds a threshold or n ‘ ‘



o S | P(p) =~ iff P(¢) =~ in the probability space (2, F, i)
o SEIP(p) =7 iff P(p) € [y —&,7 +¢]
o absolute margin of error
o SELP(p) =7 iff P(p) €[(1—¢)y,(L+e)]
o relative margin of error
o SEI;P(p) =90 ift P(P(p) € [fn—e.gn+e]) 2110
o S =5 P(p) =An iff
P(P((P) S [(1 - 6)6’!17 (1 + 5);}\/n]) >1- )
o 4;for i=1,...,nis a sequence of estimates of P(¢) =~

o usually, you run § for i times and then the estimate #; is the
mean on the / values

o two sided bounds .
| ) oavensima bow
.. 4 =2



0z:Q—-{0,1}, z(w) =1iffw = ¢

Qo

If w is extracted from £ with some probability, then we have a
Bernoulli variable Z described by z

o recall that w is a path of S
If the probability of extraction is y, then S = P(¢) = E,[Z]
o by definition, v = E,[Z] = [, z(w)dpu(w)

o i.e., the average value 7 is the integral of function z w.r.t.
distribution 1 over space Q2
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o A (Monte-Carlo) estimator runs S for n times, each time
selecting a path w; € Q with probability u, and then computes
A 1 n ~
Yn =5 Z,’:l Z(Wi) ~ Eu[z]
o path selection may be done offline, online or both
o depending on S accepting inputs at the beginning only, at
execution time only, or both
o Let m= """, z(w;) be the number of successes

° 50, n =7

o Let 02 = (1 — ) be the variance of Z
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o Let I =[¢, u] be a (1 — §)-confidence interval for a
probability v based on n samples
o that is, after n samples, we may say P(y € /) >1—-4
o ¢, u; are two random variables which depend on the number of
successes among n samples
o Let /(m, n) be the evaluation of | given m successes on n
samples, then the coverage of  is defined by
Clv, ) =Py € 1) = noly € I(m, mIP(3I_; z(wi) = m)
o [A]=1if Ais true, otherwise [A] =0
o note that /(m, n) varies when n (and possibly m) grows
o Thus, we want C(v,/,) > 1 — 6, where I, is an interval built
after n samples

o how to build it? .
U/ Bl i



o Let ® be the standard normal distribution function
o Puo(x) =3+ = o7 et dt

o usually written with *>£ instead of x
o Letzs =711 -9)
2

o

2 5 T,
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o Thanks to the central limit theorem, we could use the
following as our /| with 1 — § confidence:

m
——z
n

o N o

NG > /n

o Unfortunately, o = (1 — 7), so, since we do not know ~y, we
do not know o as well

m
5 —
2 n

o Thus, we replace the o of the Bernoulli distribution with the

standard deviation of the n samples: o, = /73(1 — 7)

o Hence, we have

m m
I(m,n)=|— —zsop, — + zs0op
n 2 n 2

Shel om
[+] W|th C(Wy /(m7 n)) Z 1 _ 6 % DELL'AQUILA i



o An alternative interval providing the same (actually, more
strict) guarantee is the Clopper-Pearson interval:

J= B_l(g,m,n—m—l—l),ﬂ_l(l—g,m—i—l,n—m)

o being B(x,a,b) = [y t*71(1 — t)P~ dt
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o A further alternative interval providing the same guarantee is
the Agresti-Coull interval: instead of

m
I(m,n) = |— —zs0p, — + 250,
n 2 n 2
we have
72 22
1(m. n) m+ % m+ 3 n
m,n) = 250, 2 250, 2
’ n+ z2 3tz n+z§ 5tz
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o What about the number of samples? Here are the most
important upper bounds

o Okamoto (1958): for all 0 < € < 1 we have that
P (‘E - ’y’ > 5) < 2e2ne
n

o we want it to be < &, so we simply put § = 2e~2"’

.. . log £
o hence, the minimum number of samples is n = {_ié—‘

o too rough, e.g., for 6 = 0.1, = 0.001 we have n > 106
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o Hoeffding (1963), rivisited: for all 0 < £, < 1 we have that

P (‘E — ’y’ > 5) < 2¢ ()
- <

being
log N e’
f(y) = 7
M) =1 5
o note that v € {0, 1} is not allowed
o note that f(3) is undefined, so we set f(3) =2
o problem: « is unknown, but this can be tackled in practice
o better, but still improvable
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o Massart (1990): for all 0 < v < 1,0 < & < min{y,1 —~} we
have that
P <‘m o 7‘ > 5) < 9= ne*ha(7.€)
n
being
W ifo<y<3

ha(’77 5) fry
9 -
B350 otherwise

o again, v € {0,1} is not allowed
o furthermore, € must be smaller than both the searched

probability and its complement
o problem: ~ is unknown, but this can be tac 1h\.‘.\['9'i;5€:t|c.m e



o Hoeffding (before 1979), rivisited: for all 0 < &,y < 1 we have
that

/762

P (’E —fy‘ > 57) < De 2
n
o Massart (1990): forall 0 <y <1,0<e < 1_77 we have that
LRI P
n

being

9 . 1
2(3«/4—6)(37—37—7&) if0<y< 2

9y .
2(37—2)(3-37+72) O%‘V‘S& ‘

hr(ﬂya 5) =




- Relative Error Hoeffding Bound
— Relative Error Massart bound
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Massart (plain) bounds with absolute error € =
0.01 and confidence parameter § = 0.05.
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Fig. 2. Hoeffding (dot) and Massart (plain)
bounds with relative error e = 0.1 and confidence
parameter § = 0.05.
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SMCO (procedure_for_Z Pz, double ¢, double 4§) {
n=m= 0;

do {
n += 1;
if (Pz())
m += 1;
} while (n<%3);
return %;

3

Ok for absolute error specification; too conservative (i.e., more

samples than necessary)
% Rt -



SMC1 (procedure_for_Z Pz, double &£, double §) {

n=m-= 0;
do {

n += 1;

if (Pz()

m += 1;

] = B mn—m+1),87Y(1-3%, m+1,n-m);

} while (u—1>2¢);

return UT_I ;

3

No guarantee that S =2 5 P(p) = 9!
Approximation may be biased; absolute error specification

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA ]



SMC2 (procedure_for_Z Pz, double &£, double §) {
n=m~= 0;

do {
n += 1;
if (Pz()
m += 1;

S
} while (n< 292
return %;

(=07 -31-DPs
X

Ok for P(P(p) <An+¢)>1-0
The other bound is only conjectured; absolute error specification
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SMC3 (procedure_for_Z Pz, double ¢, double 4§) {
fiz = SRA(Pz,min{},V2},%);
I log(2) \ 4(e—2)(log(2)—log(s
201+ VA(+2v3) (14 ) el

_g
]

return ﬂz = %;
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SRA (procedure_for_Z Pz, double ¢, double §) {

7\-/ - 1+(1+5)4(672)(|0i(22)7|0g(6));
= 1;
S = 0;
while (S ™) {
N =N + 1,
S =5+ P();
}
return ﬂzz%;

3

Ok for any random variable in [0, 1], thus not optimized for

Bernoulli variables o
j» ‘ UNIVERSITA DISIM
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SMC4 (procedure_for_Z Pz, double ¢, double 4§) {

n=m= 0;
do {
n += 1;
if (Pz())
m += 1;
} while (m< 3';35 Iog%) ;
return %;

}
Surprising (what if the mean is close to 0777), but it works;

relative error specification



SMC(procedure_for_Z Pz, double ¢, double 6,

double ¢') {

assert (8 < 6);

n=m=O;€=M=P2g52‘ﬂ;

do {
n += 1;
if (Pz()) m += 1;
[y = [BHE mn—m+1),87' 1%, m+1,n—m);
if Qellu) ¢ = M;
else if (u<i) ¢ = [m'ogﬁ—‘;

else ¢ = [mlogﬁ—‘;

¢ = min{{, M};
} while (n<¥); _
return %
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SMC(procedure_for_Z Pz, double ¢, double 6,

double ¢, double ~,;,) {

assert (§' <6);
- - 0. - - log 2 .

n=m=20; £ =M-= [h’(%m@)ez—‘,

do {
n += 1;
if (Pz()) m += 1;
[y = [BHE mn—m+1),87 1%, m+1,n—m);
if (ymin=>D £ = M;
else ¢ = [W'Ogﬁ—‘;
¢ = min{{, M};

} while (n<¥);

m .

return 7; e
} %‘ UNIVERSITA DISIM
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o There are either one or two additional parameters
o a ¢’ is present for both relative and absolute error algorithms
@ a Ymin is present for the relative error algorithm only

o Actually, vYmin is not a problem

o we must guarantee that ypmin < v
o either there is not an error (OK!),
the IEEE-754 precision
o Thus we focus on the parameter ¢’ < d: given a §, which
value should we choose?
o impossible to a-priori optimise ¢’: it also depends on the
unknown =y
o empirically, better to set it closer to 0 than to

or Ymin May be set, e.g., to
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Table 1. Sampling Size Gains over Standard PRISM Benchmarks

Probability y APMC (¢, 5) | (AE) Gain | Dagum (¢,d) | (RE) Gain
tandem 0.155132 (0.01,0.001) 1.7 (0.05,0.001) 5.18
polling 0.540786 (0.001, 0.01) 1 (0.01,0.01) 3.65
cluster || 5.160834 x 10°* | (107%,0.05) 399 (0.2,0.05) 9

Gain is the ratio between the number of samples required by the most standard approaches (APMC in the
absolute error case and Dagum et al. in the relative error case) and our algorithms. Gains > 1 imply that our
algorithms require less samples.
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On a toy example
Table 3. Descriptive Statistics, Coverage, and Sample Size Average of the Absolute
Error Algorithms with ¢ = 0.01 and § = 0.05

Y 0.005 0.01 0.02 0.05 0.1 0.3 0.5
Coverage (simple) 1 0.965 | 0.94 096 | 0965 | 0.975 0.945
¥ min (simple) 0 0 0.007 | 0.036 | 0.087 0.288 0.484
¥ max (simple) 0.013 | 0.021 0.029 | 0.062 | 0.113 0.316 0.513
N (simple) 518 729 1,107 | 2,172 | 3,777 8,278 9,703
Coverage (Chen) 1 0.98 1 0.995 1 0.995 0.995
¥ min (Chen) 0 0 0.011 0.04 0.091 0.292 0.492
¥ max (Chen) 0.01 0.017 | 0.028 | 0.059 | 0.107 031 0.511
N (Chen) 810 | 1,171 | 1,900 | 3,946 | 7,035 | 15,684 | 18,444
Coverage (new, 8" = 0.025) 1 0.99 | 0995 | 0.995 | 0.995 1 1
7 min (new) 0 0 0.01 0.039 | 0.089 0.291 0.491
¥ max (new) 0.011 | 0.019 | 0.027 | 0.059 | 0.106 0.309 0.51
N (new) 831 | 1,229 | 2,064 | 4,474 | 8,161 | 18,434 | 18, 445
Coverage (new, 8’ = 0.001) 1 1 0.995 | 0.995 | 0.99 0.99 1
¥ min (new) 0 0.003 0.01 0.04 0.089 0.29 0.488
¥ max (new) 0.009 | 0.015 | 0.028 | 0.058 | 0.114 0.311 0.508
N (new) 971 | 1,318 | 2,031 | 4,095 | 7,192 | 15,826 | 18, 445
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On a toy example
Table 4. Sample Size Average of the Relative Error Algorithms, Given € and &

Y 0.9 0.7 0.5 0.3 0.1 0.05 0.01 0.001
N Dagum, (e, §) = (0.1, 0.01) 1,871 4,402 | 9,056 | 19,703 | 74,064 [ 152,757 | 803,57 8,124,356
N Dagum, (e, 8) = (0.1, 0.05) 1,360 | 3,160 | 6,412 | 14,253 | 52,432 | 111,703 || 570,763 | 5,787,456
N Dagum, (¢, §) = (0.05, 0.05) 3.162| 8,912 | 19,244 | 43,276 | 163,084 [ 346,269 || 1,800,585 | 18,208,080
N Dagum, (e, §) = (0.05, 0.01) 4,394 | 12,337 | 26,677 | 60,263 | 226,889 [ 479,164 || 2,467,430 | 25,300,472
N W., (e, §) = (0.1, 0.01) 1,942 | 2,498 | 3,501 | 5,836 | 17,479 | 35,006 175,092 | 1,746,713
N W., (e, 8) = (0.1, 0.05) 1,353 | 1,738 | 2,439 | 4,048 | 12,207 | 24,362 122,029 | 1,218,77
N W, (e, §) = (0.05, 0.05) 5,163 | 6,634 | 9,299 | 15,453 | 46,496 | 92,950 || 465,144 | 4,650,289
N W., (e, §) = (0.05, 0.01) 7.410| 9.540 | 13,347 | 22,235 | 66,756 [ 133,581 || 665,530 | 6,677.525

N New, (e, 8, §") = (0.1, 0.01, 0.005) 202 623 1,373 | 3,043 | 11,365 | 23,812 122,426 | 1,236,491
N New, (e, 8, §) = (0.1, 0.05, 0.025) 137 441 991 2,204 | 8,208 | 17,356 88,838 895,496

N New, (€, 8, 87) = (0.05, 0.05, 0.025) || 476 | 1,631 | 3,737 | 8,473 | 32,175 | 67,850 || 348,706 | 3,515,688
N New, (€, 8, 8") = (0.05, 0.01, 0.005) || 669 | 2,266 | 5,151 | 11,675 | 44,346 | 93,236 || 482,998 | 4,871,059
N New, (e, 8, §") = (0.1, 0.01, 0.001) 204 583 1,273 | 2,822 | 10,484 | 21,930 112,880 | 1,135,687
N New, (e, 8, §") = (0.1, 0.05, 0.001) 156 431 905 1,970 | 7,333 | 15,310 67,511 789,934

N New, (e, 8, 8") = (0.05, 0.05, 0.001) || 471 | 1,489 | 3,296 | 7,422 | 27,951 | 58,724 301,258 | 3,043,438
N New, (€, &, 8") = (0.05, 0.01, 0.001) || 648 | 2,119 | 4,701 | 10,686 | 40,303 | 84,880 || 438,929 | 4,438,120
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o It may be shown that OAA is “optimal” w.r.t. the number of
samples

o That is, any other stopping rule (e, ) approximation may be
faster by at most a multiplicative constant
o OAA: 3C: P(T < C% max{o?,eu}t) >1-4
o where p, o are the mean and the variance of the samples
o any other stopping rule:
3C": P(T > 285080 max{o?,en}) > 1 -6
o recall that an (e, d) approximation is s.t.
Plla—ul <elp)=1-46
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o Adapted from Mnih, Szepesvéri, Audibert: “Empirical
Bernstein Stopping”, Proc. of ICML 2008
o Slightly more general setting: we want to compute a set IC of
KPls
o Key Performance Indicator for some cyber-physical system
o e.g.: average response time, throughput, ...
o OAA is the same with || = 1, and with the only KPI
accepting values in (0, 1]
o We need two parameters for the algorithm: 5, p

o typical values g =p=1.1
o m=1,2, i.e., there are two alternative versions
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o we pick m=2



1 function Estimate(e,d,3,p, m,K,S)
2 |R,L,U,tk <+ 0,0,00,1,0;

3 |y « run(S);

4 |foreach i € K do Xy; + y;;

5 |while 3i € K (1+¢)L; < (1 —¢)U; do
6 t+t+1;

7 | |y < run(S);

8 | |foreach i € K do

9 Xii < i3

10 R; + max; Xy — min; Xy;;

11 | |if ¢ > [B*] then

12 k+—k+1;

13
14 ifmzlvkzlthendk(—ﬁ:
S(p—1
15 else dj «+ p(lf@ﬁ)ﬂ’

16 z <+ alog ﬁ

17 | |foreach i € K do
_ 1t )
18 Xii 52,1 Xjis

19

20 Ci ¢ Ttin/ sz + 3R

21 L; + max{L;, | Xs| — ci}; g ‘

Y e w UNIVERSITA Disim
22 Us < min{Us, |Xei| +cu}s { | BReiSn: S
23 |foreach i € K do r; + %sgn(X“)((l +e)L; + (1 —e)Uy); &

24 |return r;




o Just one phase; as for number of samples:

o 3C: P(T < C(log % +log B )max{ £, £} >1-0
o Also works for negative-valued samples (and for variables with

mean 0)
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