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One of the task given to computers from the very start:
monitoring and/or controlling some external system
o where the “system” is anything without computational
capabilities
o 60s: guidance of missiles and Apollo Guidance System
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In the following, we will restrict our attention to control
Thus, an embedded system is mainly composed by two parts:
a controller and a plant

o the plant must accept inputs able to modify its behaviour
o the plant must also expose some output
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Nowadays, embedded systems are everywhere

o may control something very little, like an electrical circuit
(e.g., buck DC/DC converter)

o or something very big, like an automobile o iawlcrﬁ:ﬁ;t m
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o System level verification has the aim to discover errors to
some (embedded) system considered as a whole

o all components are considered together
o we assume they have been separately tested before
o Typically done by testing

o plant is nearly always replaced by a simulator
o often built in Simulink or Modelica
o HILS: Hardware-in-the-loop simulation

o System level formal verification: we want to apply Model
Checking techniques




o In “standard” Model Checking, we are given
o a non-deterministic Kripke Structure (KS)
o an LTL or CTL property to be verified

o We get a PASS/FAIL response

o

possibly with a counterexample

o When we deal with complex embedded systems, having a KS
is difficult

o

moreover: most plants are described by real variables, thus
they have an infinite number of states
approximation may be ok for early verification, but here we

want system level verification
U/ Bl i

with actual software involved



o Thus, we want to apply Model Checking to the closed-loop
system (SUV, System Under Verification) as:

o a black-box controller
o a simulator for the plant

o We are still interested in some property to be verified
o let us suppose we have a safety property for starting
o How to accomplish such a task?

o The idea is: kind of Statistical Model Checking, but
exhaustive

o that is: perform simulations of the whole system (like in HILS)
considering all possible scenarios



o This should be impractible, how can we do this?
o The idea is: if we see the system as a black-box, verification is
about
o (incontrollable) interactions with the external environment
o (incontrollable) “hardware” (i.e., parts of the plant) failures
o (incontrollable) changes in the plant simulation parameters

o Interactions between the plant and the controller are inside
the system

o as a consequence of the variations listed above
o We can see all of this as inputs to our closed-loop system

o A system is not expected to withstand any combination of the
preceding

o e.g., if we put an airplane inside a violent win: shlre we c
expect its controller to safely land it [?,‘,\'\'5{351“ Pl



o Requirement 1: we can write a model for the meaningful
interactions between the system and the environment
o “meaningful”: those we want to verify
o In the following, we will call such interactions as disturbances
o because they are deviations from the current behaviour
o e.g., if we move an inverted pendulum while it is upright and
still, we are disturbing it
o causing its controller to react and return it upright and still
o As in Statistical Model Checking, we consider a bounded
verification
o thus, we are interested in finite sequences of possible

disturbances
o e.g., move the inverted pendulum, then move it again before it

is returned upright she . - m
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o Requirement 2: the simulator for the plant accepts the
following commands
o | d: inject disturbance d

o will modify the plant behaviour
o that is, the following R commands

R t: compute the evolution of the plant within t units of time

©

o this is the main function for all simulators...

S | save the current simulator state with id /
F |/ free the simulator state with id /
L / load (i.e., restore) the simulator state with id /
o simulator states are saved in some permanent memory, e.g.,
files on disk
o 51,S /1, S5, L1, S3, where S; are command sequences, is

equivalent to the command sequences Si, So-(restart) Si,Ss
.. 4 =5
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o Asequence R t1, S/, R tp, L /, R t3 is equivalent to the
following two simulations: R t; + t» and R t; + t3
o in the middle, the system simulation is restarted from time 0
o A sequence | d, R t is equivalent to:
o modify the simulator by changing some plant parameters

o each disturbance corresponds to a modification of a selection
of plant parameters
o “modification”: change the value

o run a simulation for t units of time with the new plant model
o A sequence R t1, | d, R t, is equivalent to:

o modify the simulator so that the d parameters changing
happens after t; units of time

o e.g., in Modelica, this could be done with an if inside the

main whensample, if any e
. . . . ‘ ‘ UNIVERSITA DISIM
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o Asequence R t;, 1d, S/, R t, L/, R t3is equivalent to:
o modify the simulator for d after t; units of time
o perform simulations R t; +t, and R t; + 3
o Asequence R t;, S/, R, 1 di, Rts, L/, 1 db, Rtyis
equivalent to
modify the simulator for d; after t; + t, units of time
modify the simulator for d, after t; units of time
perform simulations R t; + tr +tz and R t; + t3

is this correct????
\  Beci sTunt 2
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o Simulation campaign: any finite sequence of simulator
commands

o finite because we are performing bounded verification

o We assume that we can write some software which takes as
input a simulation campaign and executes it on the simulator
o we call it driver
o either within the simulator or with some external script
o e.g.: in Simulink, we may use Simulink scripts
o e.g.: in Modelica, we have to use something external
o we can write model-independent Simulink and Modelica drivers



o Thus, we need two models:

o disturbance model
o plant model

o Plus the actual software for the controller

o which directly interacts with the plant model
o e.g., using external functions, available both in Modelica an
Simulink

o in the following, we will consider it embedded in the plant
model



o In embedded systems design a simulation model for the plant
is always built
o Thus, the only modeling required is that of the disturbance
model
o we are performing a kind of exhaustive functional testing
o exhaustive w.r.t. the given disturbance model
o We also need to enlarge the existing plant model with a
monitor
o when an error is found, a boolean variable will become one
o equivalent to specify a bounded safety property
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o Let d € N be a positive integer
o total number of disturbances is d + 1
o 0 is a special value for “no disturbance’
o A discrete event sequence is a function u: RZ% — [0,d] NN
s.it., forall t € R0, card({f | 0 < f < t A d() #0}) < 00
o that is: given a time t, u(t) returns the disturbance at time ¢
o thus, we are requiring that it is almost always without

disturbances
o i.e., some disturbance happens only in a finite number of times

o Let Uy = {u | uis a discrete event sequence for d}
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o An event list is a sequence (ug, 70), (U1, 71), . .. s.t., for all
i>0,u€[0,d NN, 7 € R=0
o not only disturbances, but also their durations

o For each event list there is a unique discrete event sequence u
defined as:

o u(0) = ug
o u(t)=upif t= Z,’-ZOI 7; for some h>1
o u(t) = 0 otherwise

o The viceversa also holds (derive the formula by yourself)



o A Discrete Event System (DES) is a tuple
H = (S, so,d, O, flow, jump, output) where:
o Sis a (possibly infinite) set of states; sp € S is the initial state
o Cartesian product of the domains of the state variables
d is the number of disturbances (defines the input space Uy)
O is a (possibly infinite) set of output values
o useful to define the monitor
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output : S — O, i.e., each state defines an output
o flow: S xR0 = S
o dynamics without disturbances: flow(s, t) is the state reached
after t units of time, starting from state s
o w.r.t. hybrid systems, this may also result in location changes!
o flow(s,0) =
jump: S x [0,d] = S

o dynamics with disturbances: jump(s, d) is state reac ed
when disturbance d is applied in state s E;;;[,w'w'fffgu Pl

o jump(s,0) =s

©

©



o The state function of a DES tells us in which state we go
after some simulation time

o starting from sp and considering intervening disturbances in a
discrete even sequence
o our DES are deterministic, thus there is only one such state

o Given a DES H = (S, s, d, O, flow, jump, output), the state
function of H is ¢ : Uy — S s.t.:
o ¢(u,0) = jump(so, u(0))

o i.e., if there is some disturbance at time 0, let us begin from
the resulting state
o otherwise, we begin from sy
o for each t > 0, ¢(u, t) = jump(flow(p(u, t*), t — t*), u(t))
o t" =max{t|t<tAu(t)#0}

° . — . e .
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o We may view the state function in a more computation-like
way

o Given a DES H = (S, 59, d, O, flow, jump, output), a discrete
event sequence u and a time t:

Q compute the (minimal) event list (uo, 70), (v1,71), - - -, (Un, Th)
corresponding to u

o must be finite by definition of discrete event sequence
Q with s = sy as initialization, for i = 0,..., n:

O let s be jump(s, u;)

O let s be flow(s, ;)

Q output s

‘ UNIVERSITA DIsIM
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o We also need the output function of a DES
H = (S, s0,d, O, flow, jump, output)
o easy when we have the state function
Namely, ¢ : Uy x RZ% — O is defined as
1/’(“? t) - output(qﬁ(u, t))
Monitor: when the safety property becomes false, the output
is false

©

©

o this is the only output we need
o once is false, it must stay false, otherwise we may not realize it

o A monitored DES is a tuple H = (S, sp, d, flow, jump, output)
s.t.

o (S,s,d,{0,1}, flow, jump, output) is a DES

o for all u € Uy, ¥(u, t) is non-increasing W.r;%
L B -
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o The system part is now ok: a Monitored DES encompasses
the closed-loop system and the property monitor
o let us go with the disturbance model
o The “Generate simulation campaign” part is divided in two
parts
o from a model of disturbances, generate all possible sequences
of disturbances (disturbance traces) of length T
o from sequences of disturbances, generate the optimized
simulation campaigns

o Thus, we need some model able to define complex disturbance
traces

o e.g.: in a given trace, d; only occurs at most three times but

never immediately after d5 e
. R i
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One possible way is using a standard Model Checker

Here, we will use CMurphi: each rule corresponds to a
disturbance

o by suitably using rule guards, we may implement any wanted
logic behind disturbance traces
o see attached example

By suitably modifying the CMurphi source code, we may
generate disturbance traces as required

Also a slight modification to the input language is required to

introduce final states
O/ Bt o



o A disturbance generator (DG) is a tuple
= (Z,d,dist,adm, Z;, ZF) where:

Z is a finite set of states

Qo

o Z;,Zr C Z are the subsets of initial and final states

o d € N7 is again the number of disturbances

o adm: Z x [0,d] NN — {0, 1} defines the disturbances
admitted at a given state

o dist : Z x [0,d] "N — Z defines the deterministic transition

relation

o but CMurphi was nondeterministic!
o yes, but here we are adding the disturbance, i.e., the rule
getting fired...

o Easy to show that this is equivalent to a Kripke Structure

‘l\[\lll%”\ DIsiM,
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o Let D= (Z,d,dist,adm, Z;, Z¢) be a DG
o A disturbance path of length h for D is a sequence
Zodo .. ~Zh—1dh—1zh where:
o z9 € Zj,zy € Zr: we start from an initial and end in a final
state
o Vi=0,...,h—1 adm(z,d;)) =1
o Vi=0,...,h—1. diSt(Z,', d,) =Zin
o the DG semantics is preserved
o A disturbance trace is a sequence 6 = dp ... dp_1 s.t. there
exists a disturbance path zdy ... zy_1dp_12, for D
o We define A% = {§ | § is a disturbance trace for D A |6 = h}

| UNIVERSITA DISIM
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o We can now formally define the overall problem we want to
verify
o for standard model checking it was: you have a Kripke
Structure and a property, tell me if the property holds
o with suitably defined semantics for the property holding on a
Kripke Structure

o Here things are slightly more complicated: we also need a
time step T
o not very strange: also simulators use some simulator step to
perform simulations

o 7 allows us to go from disturbance traces to event lists (and
discrete event sequences)

o from 6 = dy,...ds1 to (do,7)...(dp-1,7)

o we denote with u(d) the discrete event seq% 0

lfl é!! A DISIM



o Given an MDES H and a DG D, a System Level Formal
Verification Problem (SLFVP) is a tuple P = (H, D, 7, h)
where

o T€RT, he Nt
o d is the same both in H and in D
o Let % be the output function for H, then the answer to P is
o (FAIL,6) if § € Al is s.t. (u-(8),7h) =0
o PASS if such a § € A% does not exist

| UNIVERSITA DISIM
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o Two main assumptions:

o disturbances cannot happen at any time, but only at multiple
times of
o disturbances traces are of length h

o which implies that the total simulation time is T = h7
o The larger h and smaller 7, the closest we are to reality
o as for h, it is the same of Bounded Model Checking and
Statistical Model Checking
o No physical system can withstand arbitrarily (time) close
disturbances

o any operational scenario can be modelled with the desired
precision by suitably choosing 7 and h



o To simulate a MDES, we rely on existing simulators
o Simulink, Modelica, NGSpice...

o As for the “Generate simulation campaign”, is divided in two
parts

o from a model of disturbances, generate all disturbance traces
of length h

o from sequences of disturbances, generate the optimized
simulation campaigns

o Let us see how this is implemented

‘ UNIVERSITA DIsIM
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function generateByDFS(D, T):
1. S; « &, Sp + @, DistTraces+ &, c + 1
2: Push(Sz, z0), Push(Sp, 1), 00— ¢, c+c+1
3: while StacklsNotEmpty(Sz) do

4z < Top(Sz), d « Top(Sp)

5. if d < d then

6: Top(Sp) + d + 1

7: if adm(z,d) then

8: 5|52\ <—(C77C), cc+1

9: if ’52| < T then

10: Push(Sz, dist(z,d)), Push(Sp, 1)

11: else

12: if z € Zr then DistTraces < DistTracesU §
13 i

. else = = -
14: Pop(Sz), Pop(Sp) % @ =

15: return DistTraces



©

This is for one initial state only, easy to generalize
Standard non-recursive DFS

©

o two stacks, one for states, one for rules
o Main difference 1: no check for already visited states

o we are interested in transitions, so states may and must be
visited multiple times
o the bound T guarantees termination

©

Main difference 2: the disturbance traces also encompass
labels

o simply a growing integer ¢

©

Will be used by the simulation campaign generator
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o A DES Simulator is a tuple S = (H, L, W, m) where:
H = (S, s,d, O,flow, jump, output) is a DES
L is a set of labels
m € N7T is the maximum number of states the simulator can
store
o W is a set of simulator states s.t., for all w € W,
w = (s,u, M) and:
s € SU L (a DES state or a sink state)
u € Ug (an event list)
M C LxS XUy s.t., for each | € L, there exist at most one
triple (I,s,u) € M
o M| <m
the DES simulator initial state is (s, &, &)

©

©

©

© 0 ©

©
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The dynamics of a DES Simulator is simulator is defined on
the basis of simulation campaign commands

That is, we need to define simg : W x C — W

Where C is the set of the following commands:
load(/) for I € L

store(/) for [ € L

free(/) for l € L

run(t) for t € Nt

inject(d) for d € [0,d] NN

Thus, we define simg by cases

© © 06 0 o
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sims(s, u, M,load(/)) = (s', u’, M), being (I,s',u") e M
simgs (s, u, M, free(l)) = (s, u, M\ {(/,s’,u")})

simg(s, u, M, store(l)) = (s, u, MU {(I,s,u)}) if M| < m
simg(s, u, M,run(t)) = (flow(s, t7),u - (0, t), M)

o simg(s, u, M, inject(d)) = (jump(s, d), u - (d,0), M)

Plus error checking, not considered here

o e.g., trying to free something which was not stored
o e.g., trying to store when memory is already full
o e.g., trying to store without freeing first (if already present)

| UNIVERSITA DISIM
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A simulation campaign is a sequence x = co(ap) . .. ck(ax) of
commands as above
o note that k and h are independent

©

()

A x identifies a sequence wy, ..., wk s.t., for all
i=0,....,k—1, sims(w, ci(a;)) = wiyr1 and w; = (s;, uj, M;)

o by construction, u; leads from sy to s;

This also defines the output sequence
output(sp) . . . output(sk)

©

©

Less strightforward: the event list sequence associated to x

o watch out: a sequence of lists...
o U(x) = uj,...,uj, ux where £ is the number of load

commands in x
o for r=1,...,¢, j is the index of the r-th I%&M W:\nd.“” ‘



Let d € NT and L be countably infinite set of labels. A
labelling is an injective A : ([0,d] N N)* — L
o from finite sequence of integers to labels

The labelling of a disturbance trace 6 = dp...dp_1 is
A(0) = hdo, ..., hh—1dn-1ln
o foralli=0,... h I;=Xd,...,di_1)

Thus, the algorithm for disturbance traces given above returns
labelled disturbance traces

Let us go with the simulation campaign generation

| UNIVERSITA DISIM
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Lab. dist. traces

Abstract sim campaign

to, :i(), :y 1;1 LBT Sim campaign mm(dg, 1)
18 dg_ eé. don. construction optimisation store( 11 )

iy, dg, lg, da,

load(1y)

I
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o A Labels Branching Tree (LBT) is a DAG where nodes are
labels

There is an edge (/, /") iff 35,0’ € Ay, s.t.

5=l do,... dnsln & = Il ... do I

B =0,..c,h—1: diAdAY=0,...,i-1 [ =INd;=d
I= 1,0 =1

that is, if there are two traces which differs by (/, /") for the
first time, /, I’ will be siblings in the LBT

©

© © © o

©

Branching labels represent simulator states whose storing may
save simulation time (by loading them back later)

The LBT generation keeps into account that memory to store
states is limited by m

o thus, the result is optimal only for at most %F\§§ll§;\ore .
O/ Beiaiont B
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function buildLBT{A™)
23 LBT < empty tree of labels;
/* for each | € LBT, LBT]l].lastTrace stores the index of last trace
where it is known to occur */
2 watched < empty array [0..h — 1] of labels;
let Iy be the first label common to all traces in A*:
% set lg as the root of LBT with LBT[ly ] JastTrace +— |A™*|:
27 watched[0] + lj;
8 i+ 0;
29 foreach 6"‘=In,dn,...,1h 1,dp—1,1lp in A* do
30 i++ /* 82 is the i-th trace in AN ¥/
3 for t+ Oto h—1 st l; € LBT do LBT][l;]lastTrace < 1
32 t_Ibt + max t s.t. I € LBT;
13 t w<¢ max t s.t. [; € watched,
4 if t_Ibt # t_w then
/* label l;_w & LBT: add it */

B

b

s t_child + min ¢ > t_w s.t. watched|t_child] € LBT (if any);

36 add [;_w to LBT as child of I; g with LBT[l;_w].lastTrace = i;

37 move l; chid (if any) as to be child of I; w in LBT;

38 foreach t +— t_ w+ 1 t0o h — 1 do watched[t] + I;; RSITA L)
/* watched now contains labels of the last trace */ QUILA @

3 return LBT;,



o Given the LBT L, the output simulation campaign  is
computed by scanning again Aj,

o For § = Iy, do,...,dn_1lp € Ain, let r be the higher (i.e.,
rightmost) index s.t. /, is in some already generated load
command and is in the LBT

o Append to x first load(/;) and then one of the following:

o inject(d), run(t) where:
° ip é there is a subsequence /,c7/,+10...0/,+tc?lA
o d#0
o inject(d), run(t), store(f) where:
° iAn § there is a subsequenc§ /,JI,HO...OI,HQIA
o | needs to be stored, i.e., [ is in the LBT and it will occur
again in another &' € A,

o inject(d), run(t), free(7), store(f) where: 1’/:\ P @ oo
o if memory is already full, for a suitably chi [ — o



Input: A*, a labelled lex-ordered sequence of disturbance traces
Output: y , the computed simulation campaign, initially empty

LBT < buildLBT(A™);
let I be the first label common to all traces in A*:
stored +— empty set of labels; /* inv: storedCLBT and |stored|<h */
append store(lp) to x and add lg to stored;
i+ 0;
foreach 6* = lg,dg, ..., lh_1,dp_1,1 in AN do
i++; /* 8™ is the i-the trace in AN */
t_load + max t s.t. [; € stored,
append load(l;_joad) to X;
10 foreach label | € stored s.t. LBT[I].lastTrace < i do
1 append free(l) to x;
12 remove | from stored;
13 d 4 dy joads steps <— 1;
14 for t+ t_load+ 11t h—1 do
15 toBeStored <— (It € LBT — stored and LBT[lt].lastTrace > i);
16 if toBeStored or di # 0 then
17 append rtm(d: steps) to x. d+ dy steps < 1
18 if toBeStored then
19 append store(l;) to x and add I to stored,

& bEGLISTUD] oininea!
BELAQUILA ¥
21 return y;

L B

20 else steps++;

W




disturbance traces

1[a0b2c1d0e01g|[LBT LBT LBT LBT LBT
2laobzczhoioiok||@+© @-0~0 |@-0~0 @%
3|a0b2c2r07 3m0n ©
dla0b2c3plglris||watched (frace 2)||watched (trace 3)|watched (trace 4) watched trace 5} watched ace 6}
5la0b2c 3p2v2wox | @RQ@ [0]0]6]016,0] [610]C]

6la0b 3y 0z 001 BOA after trace 2 after trace 3 after trace 4 aftertrace 5 after trace 6

(a)

store(a)

load(a) run(0,1) store(b) run(2.1) store(c) run(1.3) run(1,1)
load(c) run(2.,2) store(i) run{0.2)

load (i) free(i) run(3,2)

load(c) run(3,1) store(p) run(1,1) run(1,2)

load (p) free(p) free(c) run(2,1) run(2,2)

load(b) free(b) free(a) run(3.,3) run(1,2)

(b)
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o As a corollary, if an error is present in the specified
disturbance traces, our method will find it

o Formally, let P = (H,D, T, h) be a SLFVP, S a simulator for
‘H and A% be the set of all labeled disturbance traces of
length h. Let x be the simulation campaign as computed
above.

o Then, the answer to P is FAIL iff the sequence of simulator
states contains (s, u, M) s.t. output(s) =0

o Thus, our approach is sound (no false positives) and complete

(no false negatives)
% By -



For now, suppose k =1

X2 I%LE.
as .rms' i dbslra:ts\m.| S CliED |wnuatesm Simulator | ouwput
ice)

campaign campaign function

PASS | FAIL +
counterexample

model
Scenario

generation &
splitting

9
g
2
s
z
a

Error check

Safety property

‘““ Optimiser Sim driver |
dist. traces. dbslrdi:ts\m |c.uncrete sim S\mulator uutput
Iy fun:

(slice) campaign campaign
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SUV: Fuel Control System from Simulink; variable fuel_air is
never 0 for more than 1s

h time (h:m:s) #traces file size (MB) k time (h:m:s) slice size (MB)
50 448,105 195.725 2 1,742.244
60 805,075 420.743 4 871.122
70 3 1,314,145 799.584 8 435.561
80 0:11:41 2,002,315 1,390.157 16 217.78
90  0:21:34 2,896,585 2,259.642 32 108.89
100 0:28:39 4,023,955 3,484.489 64 54.445
(a) Disturbance trace generation (b) Instance h = 100 splitting
LBT m=1 m = 100,000
k  #traces size time #cmds time #cmds Joopt
2 2,011,977 670,661 |0:3:14 16,040,520 | 3:47:57 8,047,912 | 79.42%
4 1,005.988 335331 [0:2:28 8,012,662 | 1:45:04 4,023,955 | 83.32%
8 502,994 167,666 | 0; 4,001,378 | 0:4 2,011,978 | 86.49%
16 251,497 83,834 [0:0:18 1,997,486 |0:16:24 1,005,991 | 88.97%
32 125748 41,918 | 0:0:07 996,660 502,996 |90.87%
64 62,874 20,959 |0:0:03 496,906 251,497 |92.47%
(c) Simulation campaign optimisation (b = 100, time in h:m:s)
m= 1 m = 100,000 offline online
k| time time speedup k| gener. split. optimis. total | simulation |%offline %online
8 n/a 29, 13:50:12 |> 1.7x 8 ]0:28:39 0:0:15 0:44:27 1:13:21|29, 13:50:12| 0.17% 99.83%
16 n/a 14,6:39:09 |> 3.5x 16]0:28:39 0:0:14 0:16:24 0:45:17] 14, 6:39:09 | 0.22% 99.78%
32[25,23:07:43 6,2 5 3.8X 32/0: 0:0:140; 0:33:43] 6, 5] 034%  99.66% DisiM_
64(12,22:58:16  3,9:19:18 3.8% 64(0:28:39 0:0:13  0:0:51 0:29:43| 3,9:19:18 | 0.31% 99.69% e

(d) Simulation (time in days, h:m:s) (e) Offline vs. online phase (time in days, h:m:s)
‘n/a’ Simulation aborted after 50 days
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If we have multiple processors, we may easily parallelize our
computations
o both with shared (multicore processors) or distributed memory
(clusters)
o also clusters where k nodes have c cores each
o we will consider K = kc as the overall number of cores
available
To start with, the generation of disturbance traces may be
parallelized
o an “orchestrator” may expand till horizon fT, for some
0<f<l
o and then leave the remaining subtree to a “slave” from the
other k — 1 cores

It may be shown that labels are ok o
‘l\l\ll?\ll\ D\S\'/“ .
o However, this is not the main part to be imprgged " =

©

©



o Main advantage is in parallelizing the simulation campaign
execution
o simulation phase dominates the overall verification time

o To this aim, starting from the overall disturbances traces set
A’C’a,D, we must generate k simulation campaigns
o The idea is to perform this is 2 steps:
Q ‘“slice” AP p in k equal parts

cal
Q for each slice, compute the corresponding simulation campaign



Safety property

o

Disturbance mode|

-- machine 1 (c cores)

. Sim.

£ |dist. traces Optimise abstract sim Driver concrete sim|Simulator] output
%‘_ (slice 1) campaign campaign function
2 -
“g, SUV T_E.
= |dist. traces| abstract sim Driver concrete sim|Simulator| output
% (slice c) campaign campaign function
Zn
S
) -- machine K (¢ cores)
3
g SOV |
;’ dist. traces abstract sim Driver concrete sim|Simulator] output
é (slice (k-1)¢c+1) function
g Optimise [Sim. | suv Lr
B ldist. races B abstract sim D rivi [|ocmcrele sim|S Ialogl output

(slice kc) campaign campaign ‘ function

(@)

(b)

(c)

Error check

PASS f FAIL + counterexample
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o Main advantage is in parallelizing the simulation campaign
execution
o simulation phase dominates the overall verification time

o To this aim, starting from the overall disturbances traces set
A’C’a,D, we must generate k simulation campaigns
o The idea is to perform this is 2 steps:
Q “slice” A, in k equal parts
o all slices have the same length, thus this is easy
Q for each slice, compute the corresponding simulation campaign
as before
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First slicing and then optimizing is suboptimal
o optimal would be to detect all maximal prefix of disturbance
traces
o so that they are stored once and then loaded when needed
If two slices with a common prefix end up in different slices,
no way to do this

However, reading all disturbance traces file requires too
computation time

o easily a file of hundreds of GBs, or even TBs

Thus, we are happy with a suboptimal solution
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#itraces seSLFV meSLFV time

H#slices per slice optimiser optimiser saving %
1 4,023,955 20:27:26 0:7:16 99.41%
2 2,011,977 3:47:57 0:9:43 95.74%
4 1,005,988 1:45:4 0:9:0 91.43%
8 502,994 0:44:27 0:5:27 87.74%
16 251,497 0:16:24 0:2:8 86.99%
32 125,748 0:4:50 0:0:57 80.34%
64 62,874 0:0:51 0:0:29 43.14%
128 31,437 0:0:35 0:0:17 51.43%
256 15,718 0:0:10 0:0:8 20.00%
512 7,859 0:0:5 0:0:4 20.00%

Table I: Comparison between scSLFV optimiser of [1] and
our mcSLFV optimiser (time in h:m:s).

#mach #slices‘ min max avg %% ‘ speedup efficiency
8 64 | 180:3:0 205:19:57 194:17:52 4.979% | 54.63x 85.35%
16 128 | 70:6:4 100:17:53 87:49:56 13.772%|111.56x 87.15%

32 256 |44:0:27 57:57:27 48:34:6 10.323%|192.38x  75.15
64 512 |18:32:36 26:49:4  23:2:19 11.110%|411.83x 80.43%

UNIVERSITA DISIM
J DEGLILSTUD! pwimeriod
DELLAQUILA

Table II: Statistics on the distributed (k = #mach(ines))
multi-core (¢ = 8) execution of simulation campaigns (time
in h:m:s).




| scSLFV | mcSLFV |
#machines|#slices  time |#slices time |time saving %
8 8 711:3:33 | 64  205:49:20 71.05%
16 16 343:24:27| 128 100:47:4 70.65%
32 32 167:6:9 | 256  58:26:29 65.03%
64 64 81:49:3 | 512 27:18:2 66.63%

Table III: Completion time of the parallel simulation (i.e.,
completion time of the longest campaign) with respect to
the approach of [1] (time in h:m:s).
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o Suppose we have the K simulation campaigns and we are
performing the verification phase
o Can we do something better than simply wait for it to finish?

o as an example: in SAT, there are methodologies computing the
coverage achieved so far
o at “anytime” we can get an estimate of such coverage

o Here we are not interested simply in coverage: we want the
Omission Probability (OP)
o i.e., we want an an upper bound to the probability that there is
an error in a yet-to-be-simulated scenario
o to be provided at any time, during the simulation phase



o Main difficulty: optimization comes from lexicographically
ordered A,

o In order to enable some kind of probability on traces, we need
random permutations of A%

o How to obtain this? see in the following
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Input: A*, a labelled lex-ordered sequence of disturbance traces
Output: y , the computed simulation campaign, initially empty

LBT < buildLBT(A™);
let I be the first label common to all traces in A*:
stored +— empty set of labels; /* inv: storedCLBT and |stored|<h */
append store(lp) to x and add lg to stored;
i+ 0;
foreach 6* = lg,dg, ..., lh_1,dp_1,1 in AN do
i++; /* 8™ is the i-the trace in AN */
t_load + max t s.t. [; € stored,
append load(l;_joad) to X;
10 foreach label | € stored s.t. LBT[I].lastTrace < i do
1 append free(l) to x;
12 remove | from stored;
13 d 4 dy joads steps <— 1;
14 for t+ t_load+ 11t h—1 do
15 toBeStored <— (It € LBT — stored and LBT[lt].lastTrace > i);
16 if toBeStored or di # 0 then
17 append rtm(d: steps) to x. d+ dy steps < 1
18 if toBeStored then
19 append store(l;) to x and add I to stored,

& bEGLISTUD] oininea!
BELAQUILA ¥
21 return y;

L B

20 else steps++;

W




Algorithm 1: Optimiser pseudo-code

E N

Input: A*, a file holding a labelled lex-ordered sequence of
disturbance traces
Output: y, the computed simulation campaign

x 4 an empty sequence of commands;
LBT + buildLBT(A™Y);
A;\nd — rsg(A*);
lastTraces +— a map associating to each label [ € LBT the index of
the last trace in L\.f;d where [ occurs;
stored <— empty set of labels ; /* invariant: stored C LBT *#/
lo + first label common to all traces;
append store(lg) to x;
stored < storedU {lp};
foreach 6 in Af]‘m, do
ljoad +— right-most label of 5% in stored.
append load(ljoad) to X
append free(l) to x for each label [ € stored which will never
occur in later traces (according to lastTraces);
append to x commands to simulate §* (from [,,g) and to store any @“” o
intermediate states needed to speed-up simulation of later traces:
return y;



disturbance traces  LBT construction

i[a0b2c1d0edfig] [LBT LBT LBT LBT LBT
2laob2c2noiojor| @0 @e+0O |@-e-0 |0 |-
J - = o8 =
3|la0b2c2hi 3mOn @ ()|
d|ladb2c3plglrds lwatched (trace 2)|watched (trace 3)| watched (trace 4)||watched (trace 5)||watched (trace 6)
slaobzcipavaney|  @EEOLEED |@EE @LEOOE|EEREEE||@RE!
6la0b3y0z0x1B0A after trace 2 after trace 3 after trace 4 aftertrace 5 after trace 6
rand. dist. traces simulation campaign

1[a0b2c2h073m0n store(a)

2la0b2c1d0e0f1g load(a) run(0,1) store(b) run(2,1) store(c) run(2,2) store( i) run(3,2)
3206370201807 | 10ad(€) run(1,3) run(1,1)

ala0b2c302v2w0x load(b) free(b) run(3,3) run(1,2)

7a P load(c) free(c) run(3,1) store(p) run(2,1) run(2,2)
Sla0b2c3plqlrds load(p) free(p) run(1,1) run(1,2)

6laob2c2h0i0 0k load(i) free(i) free(a) run(0,2)

Fig. 5: Simulation campaign optimiser: construction of an
LBT from 6 labelled traces in lex order, random sequence
generation, and generation of the optimised campaign. Labels
are shown as red letters and disturbances as blue numbers.
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o For a finite set A = {do,...,0,—1}, if denote Perm(A) as the
set of all permutations of § € Delta
o i.e., Perm(A) = {(67r(0)a ceey 57&'(n—1)) |7:[0,n—1]NN—
[0,n—1] NN and 7 is injective}
o fora A= (d,...,6,_1) € Perm(A), we write A(i) for §;
o recall that, in our setting, each ¢ is a disturbance sequence
o A Random Sequence Generator (RSG) for A is a probability
space (Q, F,P) s.t.:
Q = Perm(A) is the space of outcomes
F = 2% is the space of events
P : F — [0,1] is the probability measure
in our setting, P is uniform, thus
P({w}) = P(w) = [Perm(A)|~* = (JA[)~*

being |Q| < 0o, VE € F.P(E) =" ¢ P(%M,w\ m

© ©6 0 o

©



o Let (#,D, h,7) be a SLFVP, let A be a set of disturbance
traces and (2, F,P) be an RSG for A.
o Furthermore, let 0 < g < |A| be the current progress with the
verification.
o that is, we already simulated g out of |A| disturbance traces
o Then, the Omission Probability for A at stage g, denoted as
OPy(A, q) is defined as P({w | A(w, q) A B(w, q)})
o Alw,q)=[3g <j < |A]: (w(j), h)] =0
o Bw,q)=[V0<j<q: ¢p(w(i),hr)] =1
o A stands for “after”, B stands for “before”
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Let (H,D, h,7) be a SLFVP, let A be a set of disturbance
traces and (2, F,P) be an RSG for A. Furthermore, let
0 < g < |A] be the current progress with the verification.

Then, OPy(A,q) <1-— ﬁ
o at the end of the verification, g = |A]...

©

©

The previous definitions and this theorem are generalizable to
k slices of A
o That is,
OPy(Ao, .., Ak—1,q0; - - -, Gk—1) < 1 —miny<ici A5
o being the k parallel verifications independent, all g; may be
different

o taking the minimum means considering the werst case
% Rl e



We pay the OP computation in terms of performance degradation

#slices #traces | dSLFV | rSLFV #mach. #slices|  min max avg | speedup efficiency |approach
per slice | optimiser | optimiser 16 128 70:6: 10 3 87:49:56 | 111.56x  87.15% | dSLFV
4. 023»955' 0: 216:42:13 348:51:47 308:46:18 39.17x 30.60% 1SLFV

2,011,977| 0: |4+209.13% +247.83% +251.55% |+64.89% +56.55% |overhead

1

2 :9:43
4 1,005,988 0:9:0
8 502,994 | 0:5:27
16

32 256 | 440:27  57:5727  48:346 | 19238x  75.15% | dSLFV
251,497 | 63:53:54  136:18:14  108:14:19 | 100.03x  39.08% | rSLFV

32 125748 | 0:0:57 | +45.20% +135.18% +122.86% |+48.00% +36.07%|overhead

64 62874 | 0:0:29

128 31437 | 0:0:17 | 64 512 | 18:32:36 2 2 411.83x  8043% | dSLFV

256 15718 | 0:0:8 22:9:19 2 3 26:43:31 458.01x 89.46% rSLFV

512 7859 | 0:0:4 ‘

| +19.48% +9.60% +16.00% |—11.21% —9.03% |overhead

(a) Computation of simulation campaigns (time in h:m:s) (b) Parallel execution of simulation campaigns by dSLFV and rSLFV (time in h:m:s)

1 . 1

15 T 19s
o — confpleton time. 0 asFv -~
o8l 08 1-coverage - - - - 1 estmation/error 1 a0 08 il “
[ 06 300
s
o4l 4 oa k=128 20
02| kes12 J o2f : 100 o4
has12' B
o | o LI 1) > o 02 L
0 02 04 06 0 50 100 150 200 250 300 350 1128 256 512
time (hours) K K
(c) OP against coverage (d) OP & cov. against time (e) Completion time () Speedup (g) Efficiency
Fig. 6: Experimental results
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o Main drawbacks for the method seen so far:
o need of a huge file holding all disturbance traces
o to be doubled with slicing
o CMurphi may be not easily used by testing engineers
o preprocessing is computationally heavy

o Let us see how we can overcome such points
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o System contract: assumptions for inputs, guarantees for
outputs
o if the SUV is fed with inputs satisfying the assumptions...
o ...then it must provide outputs satisfying the guarantees

o Monitors for assumptions
o takes an input sequence, and rejects it if violates assumptions
o assumptions are typically time-unbounded, but a monitor must
be an algorithm with finite memory
o on the other hand, Uy is finite
o that is, we have a finite set of disturbances
o for continuous disturbances, a discretization is required
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o We have a finite set V.= {vy,...,v,}
o each v; is an input variable
o may have different domains: values (assignments) for v; are
uel,
o for V - V, U\/ = Xve\/Uv
o forueUy and V' C, w=uy €Uy iss.t. u, = w, for
v € V' and w, =L otherwise

o At time t, an assignment is provided for all v € V (input time
functions)



o A monitor is a Finite State Machine (FSM)
M = (V, X, xo, f) where:
o V is the set of input variables as above
o Uy is the monitor input space
o X is a finite set of monitor states, xy € X being the initial one
o f: X x Uy — X is the monitor transition function
o possibly partial: if it does not result in an infinite path, it is
violating the assumptions
o A traceis an infinite sequence (ug, u1,...) s.t.

o each u; is an assignment to variables in V (i.e., u; € Uy)
o there is an infinite path xguoxquy ... in M

o Traces(M) is the set of all (infinite) traces
o Traces|;(M) is the set of all prefixes of length h € N of some

trace in Traces(M) %\ purvessm @ -
\ DELLAQUILA e



o Systems (and their contracts) may be discrete-time or
continuous-time

o in the former case, we have T = N, in the latter, T =R
o Provided that we choose a time-step 7 € T, a monitor may
be used for both
o typically, for discrete-time systems, 7 >> 1, whilst for
continuous-time systems 7 << 1
o In fact, a trace ug, u1, ... of a monitor M may be translated
in an input time function u(t) = v, 1|
o For our purposes, monitors may also be black-box: it is
sufficient we may repeatedly invoke f

‘l\l\IRSH\
| DEGLI STUDI
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o Note that monitors behave like supervisory controllers li



o Suppose we have two monitors M1, My with possibly
overlapping input variables. The conjoint monitor
M = Mj 1 My is a monitor s.t.
o V=WVuUuW
o X = X1 X X2, X0 = (X0’17X0’2)
o f=Hfxfst f((x,x),u) = (A(x,ulv), (x, uly)) if
both components are defined
o the formula holds Vx; € X1,x2 € Xz, u € Uy,uy,
o Note that, for each (ug, u1,...) € Traces(M), we have that
(uolvy, uilvy, - . .) € Traces(M7) and
(uolvys U] vy, - - ) € Traces(Mp)
o This allows to define monitors basing on sub-monitors

(compositional modeling)
o e.g., assumptions may be implemented conjoining monitors on

separate subsets of variables... M\mw\ o
o ... and then monitors for additional constrai ‘r‘w‘\)v" der o

variables subsets
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o Let us go towards the verification phase: as all black-box
approaches, it will be with a finite horizon

o We have monitors which considers disturbance traces of
infinite length
o For verification purposes, we need to extract prefixes with a
given length h
o the verification may be carried out either exhaustively or by
statistical model checking
o thus, extraction must be possible also in a random way
o As usual, a uniform time step for actual verification is added
afterwards

o We want to perform this “online”, without storing all traces in
a file

o essentially, monitors are a way to compactlyﬁﬁ(ﬁﬁ;&é\t‘j\“U‘l m

disturbance traces



o It is sufficient to provide two functions:
o nb_traces : N - N
o given h, overall number of disturbance traces of length h
accepted by the monitor
o trace : N x N — U},
o given h and an index 1 < i < h, the i-th disturbance trace of
length h accepted by the monitor
o lexicographic order: for a random enumeration, simply extract
at random

o We will show an implementation with time:

o O(|Uy| - |X|?) for initialization
o O(1) for each subsequent nb_traces call
Qo

O(hlogUy) for each subsequent trace call
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o The monitor defined by testing engineers may contain finite
paths

o corresponding to non-legal disturbance sequences
o note that a finite path of length h+ 1 is not to be considered
when performing verification with horizon h...
o This is ok for modeling purposes, but we want to get rid of
this for the computation
o Thus, we define a new monitor which discards finite paths

o retaining infinite ones
o and not introducing other (spurious) paths, of course
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o Let M = (V, X, xp,f) be a monitor. The safe state function
& : X — {0,1} is defined as the greatest fixed point of

Sr(x) = [Fu, X' X' = f(x,u) A dr(xX)]

o easier if seen backwards: first, all states such that
Vu. f(x,u) =L are s.t. O¢(x)=0
o deadlock states
o then, for all other states x, which only goes in x’ s.t.

®¢(x") = 0, we have ®¢(x) = 0 as well
o thatis, if Vu. ®¢(f(x,u)) =0, then ®¢(x) =0
o for all other states x, ®r(x) =1

o A state x € X is safe for M iff ®¢(x) holds % l

o all paths starting from x are of infinite length" ) 2o



o Let M = (V, X, xp,f) be a monitor. The Scenario Generator
(SG) of M is a monitor Gen(M) = (V, X, xo, fgen) S.t.
foen(Xx, u) = f(xy) if ®e(f(x,u)) =1 and fyen(x,u) =L
otherwise

o i.e., we remove transitions towards non-safe states

o by theorems on fixed points, a SG always exists and it is unique

o may not contain any transition...

o using controller theory parlance, the scenario generator is the
most liberal supervisory controller for M

o Given M, Gen(M) can be computed in time O(|Uy/| - |X|?)



o Monitors may be accessed as black-box code, provided that
they:
o provide functions to get and set the current internal state
o as some possibly non-interpretable bytes sequence

o start from some initial internal state

o provide a function which, given the current internal state,
returns the list of admissible actions

o provide a function which, given the current internal state and
an admissible action, changes its internal state

o provide a function which, given an action, provide a possibly
non-interpretable encoding for such action

o As an example, this is easy to do with Python
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o Let M = (V,X,xp,f) be a monitor and
Gen(M) = (V, X, xo, fgen) be its SG. Then:
o each finite path in Gen(M) may be extensible to an infinite
path

o otherwise phrased: the last state of the path always has at
least one successor state
o non-blocking property

o traces(M) = traces(GenM))

o recall that “traces” mean an infinite sequence...

o Such properties follow directly from the definition
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o Let M1, M5 be two monitors. Then:
o Gen(M;) = Gen(Gen(M))
o blocking paths only need to be removed once
o if Vl N V2 =, then
Gen(M; <1 My) = Gen(M;y) 1 Gen(Ms)
o i.e., if M1, My are independent monitors
o if there is some common variable, then Mj could restrict
something which is allowed in My, thus...

] Gen(./\/ll > M2) = Gen(Gen(./\/ll) > Gen(./\/lz))

o general case

o Such properties allow incremental combination of monitors
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o The following is needed to compute nb_traces and trace

o Let M = (V, X, xp,f) be a monitor and
Gen(M) = (V, X, xo, fyen) be its SG. Then:
o ext: X xN—=Niss.t.
ext(x,0) =1 for all x € X
ext(x, k) = > e, ext(feen(x, u), k — 1) for all x € X, k € N*
of course, ext(L, k) =0 for all k € N
ext(x, k) = #all distinct paths of length k starting from x
0 £: XxUyxN—=Nisst., forall xe X,ue Uy, k €N,
f(X, u, k) = Zﬁ<u eXt(fgeﬂ(Xv LAI)? k)
o of course, some ordering is required in each U,, so we can
take the lexicographic one for Uy
o &(x,u, k) = #distinct paths of length k starting from x with

some action preceding u .
O Bt i
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1 global

2 Gen(M) = (V, X, xg, feen);

3 hmax € NU {undef}, initially undef;

4 ext, amap of the form X x N — N, initially empty;
5 E a map of the form X x Uy x N — N, init. empty;

/ Invariant: ext tHa . h) :f'.‘-' Slr.u, h) lL fined .".,-"',-"' h < ,l"la'

6 function nb_traces(h)
Input: h € N
7 if hy,, = undef or h > h,,,, then
8  incrementally compute ext and £ up to h;
9 Ny < I
10 return ext(xg, h);

DISIM
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11 function trace(i, h)
Input:i € N, h € N
Output: (ug, w1, Uz, ... up—1), i-th trace of len. h
12 if ¢ > nb_traces(h) then error index out of bounds;
13 x+x09,k <+ h, m<+ g
14 for j from O toh —1do
15wy < maxq{u | &(x,u,k—1) <m};
16 m—m—E(r,u;,k—1);
17 T 4 feen(T,uy);
18 k+ k—1;
19 return (ug, U1, U2, ... Up_1);
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o The above algorithms are correct, that is the following holds
o Let M = (V, X, xp,f) be a monitor and
Gen(M) = (V, X, xo, fgen) be its SG. Then:
o for all h € N, nb_traces(h) = card(traces(Gen(M))|s)

o for all h € N,i € [0,nb_traces(h) — 1] NN, trace(/, h) returns
the i-th element of traces(Gen(M))|x

o lexicographic order
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o Let M1y, M5 be two independent monitors. Then, for all
h e N:
o nb_traces ysam, (h) = nb_traces, (h)nb_traces, (h)
o for all i € [0,nb_tracespqpar, () — 1] NN,
trace apysam, (i, h) = tracep, (sel(i, 1), h)-trace, (sel(/, 2), h),
where:
° Sel(i’ 1) = \‘nb,tracést(h)J
o sel(,2) = i mod nb_traces i, (h)
o operator - is the pairing of two traces:
(Uo,h ) Uh—l,l) . (Uo,z, ceey Uh—1,2) =
((wo,1, to0,2), -+, (Un—1,1, Un—1,2))
o This means that we may compute nb_traces s, (h) and
tracea;am, (h) without computing My 1 Mo

o only the (typically much smaller) M, M, are required
(separately) l%J e ‘



o Fuel control system (FCS): classical example from Simulink
distribution
o also used in papers for Statistical Model Checking

o Controller for a fault tolerant gasoline engine
o goal: keep the air-fuel ratio close to 14.6
o that is, a stoichiometric ratio representing a good compromise
between power, fuel economy and emissions
o air-fuel ratio is between the air mass flow rate pumped from
the intake manifold and the fuel mass flow rate injected at the
valves

o Experiment scenario: a full set of disturbance traces to be

verified
\ DELL'AQUILA :
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For FCS, we are interested in its 4 sensors:

o throttle angle, speed, residual oxygen in exhaust gas (EGO)
and manifold absolute pressure (MAP)

All of them may fail

o fortunately, they are typically repaired (i.e., restarted) within a
few seconds

FCS is expected to withstand one failure at a time

o by compensating with internal commands

From the verification point of view, we want to exercise the
system with multiple (non-contemporary) failures and repairs
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o Base assumptions, which are valid for all experiment
scenarios:

o each of the four sensor may fail at any time

o each sensor, once failed, is repaired within a given time: 3-5
(throttle), 5-7 (speed), 10-15 (EGO), 13-17 (MAP)

o but for each time, only one sensor may be in “failed” state

o e.g., if in a disturbance trace throttle fails at step 1 and is
repaired at time 4, there cannot be any other failure in [1, 4]

o If we have separate monitors for each sensor, many non-valid
traces can be generated
o to be discarded when computing the SG of the conjoint
monitor also considering the above assumptions

o However, here it is easier to implement all such constraints
within one monitor

o Experiment scenarios are obtained by addinglk m‘r'\mpre“”
monitors (i.e., constraints) from the followingtable



constraint | description
monitor

1 Each sensor will fail every 15-20 t.u.

) Whenever a fault on the throttle sensor occurs, a fault on
the speed sensor will occur within 9-11 t.u.

3 Whenever a fault on the throttle sensor occurs, a fault on
the speed sensor will occur within 13-15 t.u.

4 Whenever a fault on the throttle sensor occurs, a fault on
the speed sensor will occur within 18 or 19 t.u.

5 Whenever a fault on the EGO sensor occurs, a fault on
the MAP sensor will occur within 16 or 17 t.u.

6 Whenever a fault on the EGO sensor occurs, a fault on

the MAP sensor will occur within 20 or 21 t.u.

UNIVERSITA DISIM
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o Buck DC/DC Converter: another classical example used in
litarature

o also used in papers for controllers generation

o Mixed-mode analog circuit converting the DC input voltage
V; to a desired DC output voltage V,
o e.g., used inside laptop battery
o to do this, it is equipped with a microcontroller activating a
switch u

o to react to changes in the input voltage and other parameters
(e.g., the load R)



o We are interested in the following two parameters: V; and R

o disturbances act by modifying the parameter value

o in an bounded way: it may be modified so as to take values in
a n-steps discretized interval [m, M], i.e.,
{m+is|i=0,...,n—1As=M=0}

o we have n =12 for V; and n =6 for R

o for both V; and R, [m, M] is the corresponding nominal range:
[70,130]V for V; and [70,130]Q for R

o Base assumptions: the changes as above and

o no changes for the first 2 steps
o once a change is made, do not modify further for the following

6 steps for V; and 5 steps for R
U/ Bl g



o Differently from FCS, buck actually has two independent
monitors

o one for V; and one for R

o As discussed before, they can be computed separately and
then conjoined in the “easy” way

o Experiment scenarios are obtained by adding one or more
monitors (i.e., constraints) from the following table
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constraint
monitor

description

SO U W=

Vi changes at least every 6 t.u.

Vi changes at least every 7 t.u.

R changes at least every 5 t.u.

R changes at least every 6 t.u.

Vi and R do not change simultaneously

Whenever V; changes, R will change after 8 or 9 t.u.
Whenever V; changes, R will change after 2 t.u.
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o Apollo: other classical example from Simulink distribution

o Phase-plane controller for the autopilot of the LEM (Lunar
Excursion Module) in the Apollo 11 mission

o goal: given a request to change attitude, actuate jets so as to
achieve it

o 3 sensors and 16 jets

o sensors detect the attitude of the module: yaw, roll and pitch
o jets to change the attitude
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We disturb both the sensors and the jets
Sensors are disturbed in 6 possible ways

o for our purposes, a number from 1 to 6
o such number is then translated at verification time in a one of
6 predefined continuous-time signal noise

©

©

Jets may become unavailable for 2 or 3 time units
o control will have to compensate...

o External request of change attitude may be any in any of the
3 directions
o only 3 values: {—1,0,1}
o no requests undoing the immediately preceding one

©

Experiment scenarios are obtained by adding one or more

monitors (i.e., constraints) from the followin%)lg,m\
iy R e



constraint | description
monitor

1 Only jets number 15 and 16 may be temporarily unavail-
able

Whenever a jet is actuated for 2 consecutive t.u., it will
certainly become unavailable within 3 or 4 t.u.

At most 1 jet is unavailable at any time

Rotation requests regard at most 1 axis each

Rotation requests regard at most 2 axes each

Noise signal changes for at most 1 sensor at any time
Noise signal for each sensor remains stable for at least 5

and at most 10 t.u. and changes by +1 position in the
given order

OV Ul = W N

~1




SUV  SGnb. M |Gen(M)
assumptions constraint = size of input| time [s]
monitor monitors space
FCs 1 Arcs - 6 0.1
2 Agcs 1 6 799
3 Arcs L3 6 492
4 Akcs 1,2 6 461
5 Arcs 1,4 6 6.34
6 Arcs 1,4,5 6 592
7 Arcs 1,4,6 6 6.55
BDC 1 A; - 5 0.19
2 AR - 5 0.17
3 A; pa Ar - 25 0.36
4 A; 1 5 0.12
5 A; 2 5 0.17
6 Ar 3 5 0.11
7 AR 4 5 0.16
8 A; >a Ar 5 25 37.34
9 Ai < Ar 2,4,5 25 29.68
10 Ai < Ar 2,4,56 25 1.94
11 A; 1 Ar 1,357 25 216
ALMA 1 Ay - 1769472 0.44
2 Ay 1 108 0.44
3 Ay 1,2 108 448.88
4 Ay 1,23 108 247.27
5 Ay 1,234 108 55.19
6 Ay 1,235 108 188.3
7 As - 27 294 DISIM
8 As 6 27 133 i
9 As 6,7 27 7822
10 Aanvia - 1,2,3,4,6,7 2916 837.39




o For each case study, we show, as a function of some
meaningful values of the verification horizon h:

Qo

the number returned by nb_traces(h), i.e., the overall number
of traces fulfilling the given monitors

trace extraction time: computation time, in seconds, to
compute trace(i, h)

o 1000 values for i are chosen in a uniformly random way in
[0, nb_traces(h) — 1]
o the average value for the computation time is then shown

o this allows to amortize computation of ext, &
#traces with all constraints
#traces with base assumptions

o having tiny values shows SGs selects important experiments
scenario
o errors, if any, are discovered first

Selectivity of SGs: #traces with Gen(M)

#traces with M o
o at the denominator, we consider possibly % ing {ie., @ e

non-valid) traces

selectivity of monitors:
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