
Automated Verification of
Cyber-Physical Systems

A.A. 2024/2025
Corso di Laurea Magistrale in Informatica

Basic Notions

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

General Info for This Class

Automated Verification of Cyber-Physical Systems is an
elective course for the Master Degree in Computer Science

Lecturer: Igor Melatti

Where to find these slides and more:

https://igormelatti.github.io/aut_ver_cps/

20242025/index_eng.html

also on MS Teams: “DT0759: Automated Verification of
Cyber-Physical Systems (2024/25)”, code ramh3r4

2 classes every week, 2 hours per class

https://igormelatti.github.io/aut_ver_cps/20242025/index_eng.html
https://igormelatti.github.io/aut_ver_cps/20242025/index_eng.html

Rules for Exams

The exam consists in either reviewing a research paper or
working on a project

Each student may choose one between the two options

Project: perform verification of a given cyber-physical system

also in small teams (max 3 students)
each team may choose one among the ones selected by lecturer
or may propose one (but wait for lecturer approval!)
each team will have to discuss its project with slides

Paper: read a conference or journal paper and present it with
slides

each student may choose one among the ones selected by
lecturer
or may propose one (but wait for lecturer approval!)
typically a tool paper, thus experiments reproduction is
required

Automated Verification (Model Checking) Problem

Input: a system S and (at least) a property φ

more precisely, a model of S must be provided
that is, S must be described in some suitable language

Output:

PASS S satisfies φ, i.e., S |= φ

the system S is correct w.r.t. the property φ
mathematical certification, much better than,
e.g., testing

FAIL S does not satisfy φ, i.e., S ̸|= φ

the system S is buggy w.r.t. the property φ
a counterexample providing evidence of the
error is also returned

Model Checking vs. Other Verification Techniques

Model checking is fully automatic

a model checker only needs the description of S and the
property φ
“press button and go”
this is not true for other verification tools such as proof
checkers, which require human intervention in the process

Model checking is correct for both PASS and FAIL

unless the description of S, or the property φ, are wrong
this is not true for other verification techniques such as testing,
which only guarantees the FAIL result
a buggy system may pass all tests, because the error is in some
corner case

Model Checking Shortcomings

Only works for finite-state systems

typical example: you may verify a system with 3, 4 or 5
processes, but not with n processes, for a generic n

Requires skilled personnel to write descriptions (and
properties)

must know both the model checker language and the system
however, less skilled than a proof checker user
very few exceptions in which the model is automatically
extracted from the system
also direct translations from digital circuits to NuSMV are
available

Very resource demanding

besides PASS and FAIL, also OutOfMem and OutOfTime are
expected results...
bounded model checking: PASS is limited to execution up to a
given number of steps

Model Checking Algorithms

Two main categories:

Explicit visit the graph induced by the description of S
very good for invariants and LTL model
checking of communication protocols
on-the-fly generation of the graph: only the
reachable states are stored, the adjacency matrix
is implicitly given by the description of S
Murphi, SPIN

Symbolic represent sets of states and transition relations as
OBDDs

very good for LTL and CTL model checking of
hardware-like systems
all translated into a boolean formula
also SAT tools may be used (bounded model
checking)

Cyber-Physical Systems

A Cyber-Physical System (CPS) is a system where a physical
system is controlled and/or monitored by a software

They are either partially or fully autonomous

we will mainly deal with fully autonomous CPSs

Examples are everywhere:

Internet of Things devices
Unmanned Autonomous Vehicles
Drones
Medical Devices
Embedded Systems
...

Cyber-Physical Systems with Controllers

AD DA Plant

Control

Software

microcontroller

CPSs with Controllers: Classical Examples

Buck DC/DC Converter

CPSs with Controllers: Classical Examples

Buck DC/DC Converter

CPSs with Controllers: Classical Examples

Continuous time dynamics

˙iL = a1,1iL + a1,2vO + a1,3vD (1)

˙vO = a2,1iL + a2,2vO + a2,3vD (2)

q → vD = RoniD (3)

q → iD ≥ 0 (4)

u → vu = Roniu (5)

vD = vu − Vin (6)

q̄ → vD = Roff iD (7)

q̄ → vD ≤ 0 (8)

ū → vu = Roff iu (9)

iD = iL − iu (10)
where:

iL, vO are state variables

u ∈ {0, 1} is the action

CPSs with Controllers: Classical Examples

Discrete time dynamics with sampling time T

iL
′ = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (11)

vO
′ = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD . (12)

q → vD = RoniD(13)

q → iD ≥ 0 (14)

u → vu = Roniu (15)

vD = vu − Vin (16)

q̄ → vD = Roff iD (17)

q̄ → vD ≤ 0 (18)

ū → vu = Roff iu (19)

iD = iL − iu (20)

CPSs with Controllers: Classical Examples

Goal: keep vO in a desired safe interval

typically, 5− 0.01V ≤ vO ≤ 5 + 0.01V

Notwithstanding the input voltage Vi and the resistance R
may vary in some given interval

typically, R = 5± 25%Ω,Vi = 15± 25%V

Effectively used in laptops: from battery voltage (Vi) to
laptop processor voltage (vO)

CPSs with Controllers: Classical Examples

Inverted Pendulum

CPSs with Controllers: Classical Examples

Inverted Pendulum

CPSs with Controllers: Classical Examples

Continuous time dynamics

θ̈ =
g

l
sin θ +

1

ml2
Fu

where:

θ is the state variable

u ∈ {0, 1} is the action

m, l ,F are system parameters

CPSs with Controllers: Classical Examples

Continuous time dynamics

ẋ1 = x2 (21)

ẋ2 =
g

l
sin x1 +

1

ml2
Fu (22)

Discrete time dynamics with sampling time T

x ′1 = x1 + Tx2 (23)

x ′2 = x2 + T
g

l
sin x1 + T

1

ml2
Fu (24)

In This Course

To deal with cyber-physical systems:

Probabilistic Model Checking

rather than “are there errors?”, it is “is the error probability
low enough?”
which entails “what is the error probability?”
the system is probabilistic, i.e., a Markov Chain

Statistical Model Checking

rather than “are there errors?”, it is “is the error probability
low enough?”
which entails “what is the error probability?”
the system may be a non-probabilistic simulator
the answer is given with some statistical confidence
bridge between testing and verification

In This Course

To deal with cyber-physical systems:

System Level Formal Verification

directly use a simulator instead of describing the system within
the model checker
this will also need some background on systems simulation
bridge between testing and verification

Automatic Synthesis of Controllers

rather than “are there errors in this system?”, it is “generate a
controller so that errors are avoided”

Systems Verification

Summing up:

1 start from requirements

2 develop some (partial or final) solution

you may “complicate” such steps at wish

3 verify that the current solution fulfills the starting
requirements

you may need to change the requirements (they could be
wrong too, or they may have been changed)
recall that verification may also be done during the
intermediate developing steps

How Verification is Performed

Method number 1: Testing

1 you have the actual system (or a part of it)

2 you feed it with predetermined inputs

3 you check if outputs are the expected ones

“expected” w.r.t. the requirements

4 if there is one output different from the expected one, then we
have an error

5 you correct it and start over again

restarting from the “highest” point where you made the
correction
requirements, design, code

How Verification is Performed

Method number 1 bis: Simulation

two typical cases:
prototyping: you do not have the full code, but some simplified
prototype may be built

feed inputs to the prototype instead of the actual software
especially useful to test designs (early testing)

you have the full code, but it is used to control/monitor of
some physical system (cyber-physical systems)

the simulator is for such physical system: it accepts the same
inputs and provides the same outputs of the physical system
connect the software to such simulator as it was the real
system
proceed as in “normal” testing by feeding inputs and
observing outputs
you might also use a prototype for the (control/monitor)
software and a simulator for the physical system for early
testing

How Verification is Performed

Cyber-physical systems: why this methodology?

Must check if they work before connecting to the physical
part

or, even worse, build it
at least, the most common/easy errors must be ruled out

If you have a controller for a plane, you do not directly test it
on an actual plane, a simulator of the plane is used

only when tests on the simulator are ok you move to test on
the actual plane
if the simulator says the plane is crashed, it is less severe than
an actual plane crashing

It is not a matter of safety only: it might also be an
economical problem

e.g., testing on microprocessors must use some simulator
before, as “writing” on silicon is expensive
e.g., if you are building a new airplane also basing on its
controller, you must know if there are problem in the design

How Verification is Performed: Errors Correction

This might not be easy: testing typically only triggers errors

Then, you might have to reproduce the error in some smaller
scale

Then, you have to understand where the problem is and what
causes it

requirements? architecture? design? single point in the code?
an intricated flow in the code?

Then, design and implement the actual correction

In this course, we only deal with error triggering

How Verification is Performed

How Verification is Performed

Both testing and simulation may be performed in refined ways

In fact, the testing plan (the predetermined sequence of
inputs) may be computed using dedicated algorithms so that
coverage is maximized

we will get back soon on this concept

This is the most challenging and important step for such
techniques

Testing and Simulation: Pro and Cons

Pro

(Relatively) easy to implement

easier than the other methods we will consider here

Largely used in industry

in most cases, testing and/or simulation are the only
verification methods used

Cons

They can prove that a system has errors, but cannot prove
that a system does not have errors

Cannot be used to prove generic formal properties

The coverage of the “input space” is low

Errors are frequently detected when it is too late

Testing and Simulation: Cons

They can prove that a system has errors, but cannot prove that a
system does not have errors

If an error is detected, then the system must be corrected,
happy to have discovered it

Otherwise, we cannot conclude anything

That is, we cannot say that the system is error-free

In fact, having not be able to spot errors does not imply that
there are no errors

Testing and Simulation: Cons

Cannot be used to prove generic formal properties

This is a consequence of the previous slide

As an example: in an operating system, is it true that mutual
exclusion is enforced for 2 given processes?

In order to test such a property you would have to modify the
system itself

so that the output contains something like “propriety violated”
or “’property ok”

But even in this case, we cannot draw a formal statement on
the validity of the property

Again, not finding a violation does not imply there are no
violations

Testing and Simulation: Cons

The coverage of the “input space” is low

A successful testing phase should consider “all what may
happen” to the system in a real-world environment

This would need too much tests or simulations

The n in the figure may easily be 106 and more; outputs must
also be checked

Testing and Simulation: Cons

The coverage of the “input space” is low

This also has another bad consequence

Testing and simulation find the “easy” errors

the most frequent ones
i.e., those that are caused by many (different) input sequences

Instead, corner cases usually go undetected

i.e., errors that are caused by a few (or even single) input
sequences are usually not found

Testing and Simulation: Cons

Errors are frequently detected when it is too late

This is a consequence of the previous point: you need many
tests to get a reasonable coverage and discover possible corner
cases

The later an error is found, the more expensive the correction

Formal Verification

To solve the above underlined problems, we should consider
all inputs

That is, all possible system evolutions

of course, testing and simulation only consider some evolutions:
those “activated” by inputs chosen by the testing plan in use

A possible way to do this is to prove a dedicated theorem,
stating that the system is correct for all inputs

For sorting, this could be done (and it is actually done in
Algorithms textbooks...)

For other cases (e.g., microprocessor design), it would be too
difficult or time consuming

Thus, techniques of formal verification have been developed

Formal Verification Methods

A set of (heterogeneous) techniques which make possible the
impossible

That is, algorithms able to generate and analyze all system
evolutions

so, they provide a mathematical certification of correctness
(not achievable with testing/simulation)
also for generic properties, like mutual exclusion

Actually, the problem of verifying a given system w.r.t. a
given property is undecidable

the property to be verified may be: is this system always
terminating?

So, there will be some (acceptable in many cases) limitations

Is Formal Verification Useful?

There are many techniques available for formal verification

Applying any of these techniques is usually much more
difficult than testing/simulation

both in terms of personnel and notions required

So, why to do this?

Because there are many cases in which testing/simulation
simply are not enough

for both economic and safety reasons

Is Formal Verification Useful?

Safety-critical systems: failures may affect humans

public transport software controllers (if an automatic pilot of
an airplane has a failure...)
trains crossing
ABS for cars
...

For most of such systems, formal verification is mandatory by
law

ESA (European Space Agency)
IEC (International Electrotechnical Commission)

Is Formal Verification Useful?

Mission-critical systems: failures cause huge economic losses

automatic space probes
logistics
communication networks
microprocessors
...

Internal company regulations often make formal verification
mandatory as well

Is Formal Verification Useful?

Also for systems which are neither safety nor mission critical:
there are economic motivations to use formal verification

Using testing/simulations, errors are eventually discovered

The problem is that they may be found late

this is a consequence of the low coverage issue

So late, that often errors are found after the system has been
deployed, i.e., when it is already used by its final users

for, e.g., a word processor, it is annoying, but we are somewhat
used to software updates to fix bugs
this is not always possible or easy

e.g., a legacy software out of support

Is Formal Verification Useful?

Hardware circuits: to “write” a circuit on silicon is the most
expensive part of the developing process

So, finding an error after having written the circuit entails a
huge economic loss

This also holds for other systems, when the developing process
is lengthy

In fact, finding a late error may cause going again through
preceding developing phases

less competitivity on the market
for both being late and for augemented costs

Formal Verification Methodologies: a Classification

There are two macro-categories:

Interactive methods

as the name suggests, not (fully) automatic
human intervention is typically required
in this course, we do not deal with such techniques

Automatic methods

only human intervention is to model the system

There also exist hybridations among the two categories

Interactive Methods

Also called proof checkers, proof assistants or high-order
theorem provers

Tools which helps in building a mathematical proof of
correctness for the given system and property

Pros

virtually no limitation to the type of system and property to be
verified

Cons

highly skilled personnel is needed
both in mathematical logic and in deductive reasoning
needed to “help” tools in building the proof

Interactive Methods

Used for projects with high budgets

For which the automatic methods limitations are not
acceptable

used, e.g., to prove correctness of microprocessor circuits or
OS microkernels

Some tools in this category (see
https://en.wikipedia.org/wiki/Proof_assistant):

HOL
PVS
Coq

https://en.wikipedia.org/wiki/Proof_assistant

Automatic Methods

Commonly dubbed Model Checking

Model Checking software tools are called model checkers

There are some tens model checkers developed; the most
important ones are listed in https://en.wikipedia.org/

wiki/List_of_model_checking_tools

Many are freely downloadable and modifiable for research and
study purposes

Research area with many achievements in over 30 years

https://en.wikipedia.org/wiki/List_of_model_checking_tools
https://en.wikipedia.org/wiki/List_of_model_checking_tools

Verification Tradeoffs

The Model Checking Dream

The Model Checking Dream

Also Keep This in Mind

Actual Model Checking

In order to have this computationally feasible, we need a
strong assumption on the system under verification (SUV)

I.e., it must have a finite number of states

Finite State System (FSS)

In this way, model checkers “simply” have to implement
reachability-related algorithms on graphs

Such finite state assumption, though strong, is applicable to
many interesting systems

that is: many systems are actually FSSs
or they may be approximated as such
or a part of them may be approximated as such

What Is a State?

There are many notions of “state” in computer science

Model checking states are not the ones in UML-like state
diagrams

Model checking states are similar to operational semantics
states

That is: suppose that a system is “described” by n variables

Then, a state is an assignment to all n variables

given D1, . . . ,Dn as our n variables domains, a state is
s ∈ ×n

i=1Di

What Is a State: Example

We have two identical processes accessing a shared resource

in the figure below, i , j denote the two processes
the well-known Peterson algorithm is used

L1 L2 L3 L4L0

turn := 1; !Q[2] or turn = 2

Q[2] and turn = 1

Q[1] := false;

Q[1] := true;

What Is a State: Example

The 5 “states” in the preceding figure are actually modalities

From a model checking point of view, they correspond to
multiple (i.e., sets of) states

To see which are the actual states, let us model this system
with the following variables:

mi , with i = 1, 2: the modality for process i
Qi , with i = 1, 2: Qi is a boolean which holds iff process i
wants to access the shared resource
turn: shared variable

What Is a State: Example

Thus, the resulting model checking states are the following:

What Is a State: Example

There are 25 reachable states

assuming state ⟨L0, L0, f , f , 1⟩ as the starting one

All possible states are 200

there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 × 52 overall assignments

The L0 modality for the first process encloses 6 (reachable)
states

No need of guards on transitions!

What Is a State: Example

There are 25 reachable states

assuming state ⟨L0, L0, f , f , 1⟩ as the starting one

All possible states are 200

there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 × 52 overall assignments

The L0 modality for the first process encloses 6 (reachable)
states

No need of guards on transitions!

What Is a State: Example

There are 25 reachable states

assuming state ⟨L0, L0, f , f , 1⟩ as the starting one

All possible states are 200

there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 × 52 overall assignments

The L0 modality for the first process encloses 6 (reachable)
states
No need of guards on transitions!

From State Diagrams to Model Checking

The UML-like state diagram is often useful to write the model

as we will see, this will depend on the model checker input
language

It is the model checker task to extract the global (reachable)
graph as seen before

And then analyze it

Is Model Checking Important?

ESA, NASA e IEC require most of their project to be model
checked

Important companies have dedicated laboratories for Model
Checking

hardware: Intel, IBM, SUN, NVIDIA
software: IBM, SUN, Microsoft

Many universities have research groups

USA: MIT, CMU, Austin, Stanford...
very close collaboration with companies

The 3 “inventors” of Model Checking received Touring Award
in 2007:

E. A. Emerson, E. M. Clarke, J. Sifakis

Model Checking Usage

Model Checking Usage

3 steps:

0 Choose the model checker M which is most suitable to the
SUV S (and the property φ)

1 Describe S in the input language of M

2 Describe the property φ

3 Invoke the model checker and wait for the answer

OK ⇒ S |= φ
FAIL ⇒ counterexample

correct the error (it may happen that S or φ must be
corrected instead...) and go back to step 3

OutOfMem or OutOfTime

adjust system parameters (or the description of S)

Model Checking Usage

Most used for reactive systems
always executing systems:

monitors: warns if something bad happens
controllers: avoids that something bad happens
services: wait for requests and serve it

more in general, concurrent execution of processes/threads
with shared memory/messages exchange
errors may occur because of interactions/interleaving between
different processes/threads

Not good for standalone (1-process) programs

e.g., sorting an array or perform BFS of a graph
for such systems, testing can be complemented with theorem
proving (or with manual proof derivation)
of course, budget must be taken into account

Model Checking: Pro and Cons

Pro

Same guarantees of proof checking

But requiring less “mathematics” and “computer science”
knowledge

Cons

Computational Complexity

causing “OutOfMem” and “OutOfTime”: State Explosion
Problem

You check a model of the system, not the actual system

though in some cases models can be automatically extracted
from the system

Useful only for multi-process/thread software

State Explosion Problem: Why?

With some semplification, all Model Checking algorithms are
essentially like this:

1 Extract, from the description of the SUV S, the transition
relation of S

2 Compute the reachable states (reachability)
3 Check if φ holds in all reachable states

All steps may be computationally heavy, but let us focus on
the reachability

see mutual exclusion example

If S is described by n (binary) variables, then the number of
reachable states is O(2n)

State Explosion Problem: Why?

Such complexity cannot be avoided in the most general case

Theoretically speaking, (LTL) Model Checking is P-SPACE
complete

CTL Model Checking is in P, but as we will see this does not
make things better

There are several model checking algorithms, depending on
the “type” of S

each checker has its “preferred” SUVs

Model Checking Algorithms

There are 3 categories:

Explicit

each reachable state is separately stored
very good for communication protocols

Implicit (symbolic)

dedicated data structures are used to represent sets of states
very good for digital hardware

SAT-based

many problems may be theoretically rewritten as SAT, but in
model checking this works pretty well also in practice
software model checking

Proof checker ibridations

not completely automatic, but better than proof checkers

Model Checking Algorithms

There are 3 categories:

Explicit

each reachable state is separately stored
very good for communication protocols

Implicit (symbolic)

dedicated data structures are used to represent sets of states
very good for digital hardware

SAT-based

many problems may be theoretically rewritten as SAT, but in
model checking this works pretty well also in practice
software model checking

Proof checker ibridations

not completely automatic, but better than proof checkers

Model Checking Algorithms

There are 3 categories:

Explicit

each reachable state is separately stored
very good for communication protocols

Implicit (symbolic)

dedicated data structures are used to represent sets of states
very good for digital hardware

SAT-based

many problems may be theoretically rewritten as SAT, but in
model checking this works pretty well also in practice
software model checking

Proof checker ibridations

not completely automatic, but better than proof checkers

Model Checking Algorithms

There are 3 categories:

Explicit

each reachable state is separately stored
very good for communication protocols

Implicit (symbolic)

dedicated data structures are used to represent sets of states
very good for digital hardware

SAT-based

many problems may be theoretically rewritten as SAT, but in
model checking this works pretty well also in practice
software model checking

Proof checker ibridations

not completely automatic, but better than proof checkers

Model Checking Algorithms

There are 3 categories:

Explicit

each reachable state is separately stored
very good for communication protocols

Implicit (symbolic)

dedicated data structures are used to represent sets of states
very good for digital hardware

SAT-based

many problems may be theoretically rewritten as SAT, but in
model checking this works pretty well also in practice
software model checking

Proof checker ibridations

not completely automatic, but better than proof checkers

Murphi

Murphi or Murφ, the simplest among “model checkers”

as all model checkers we will see in this course, Murphi may be
freely downloaded with the source code, thus it may also be
modified
links for download of all model checkers we will see are on the
course web-page: https://igormelatti.github.io/sw_
test_val/20242025/index.html

https://igormelatti.github.io/sw_test_val/20242025/index.html
https://igormelatti.github.io/sw_test_val/20242025/index.html

Murphi

Formally, as all model checkers, Murphi needs the following
input:

1 a description of the system S you want to verify (i.e., the
“model” you want to “check”)

as we will see, this is essentially a Kriepke structure

2 a property φ you want the system S to satisfy

The output will be either OK or FAIL

if FAIL, it is possible to tell Murphi to print a counterexample

Murphi

In Murphi, both the description of S and of φ must be written
in a single text file, following a precise syntax

in other model checkers we will see (e.g., SPIN), this syntax
has a name; but this is not the case for Murphi
thus, we will refer to it simply as Murphi input language
as we will see, in many points Murphi input language is similar
to some imperative programming languages, especially Pascal
(for statements) and C (for expressions)

Murphi

Murphi checks that all reachable states of S satisfy all
invariants

a state s ∈ S is reachable if there exists a path in the
transition graph from an initial state to s
that is: starting from an initial state, there exists a chain of
rules, each applied to the state obtained from the preceding
one, leading to s
this is a safety property

Murphi

Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

Murphi

Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

UML-like state diagram: this is the first process; the second
may be obtained exchanging 1’s with 2’s and viceversa

L1 L2 L3 L4L0

turn := 1; !Q[2] or turn = 2

Q[2] and turn = 1

Q[1] := false;

Q[1] := true;

Murphi

Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

two identical processes
each applies Peterson protocol to access to the critical section
L3
the first issuing the request enters L3
Q is a global variable, defined as an array of two integers

each process i may modify Q[i] and read Q[(i + 1) mod 2]

turn is another global variable, which may be both read and
modified by both processes

Murphi

Murphi description for Peterson protocol: let’s start with the
variables

of course turn and Q, but also two variables P for the modality
(“states” in the UML-like state diagram)
see 01.2 peterson.no rulesets.no parametric.m

to this aim, we define constants and types
the N constant (number of processes) is here fictious: only 2
processes, not more
this version of Peterson protocol only works for 2 processes

thus, the state space is
S = label t2 × {true, false}2 × {1, 2}

Variables for Murphi Model Describing Peterson Protocol

turn v ∈ {1..N}

v ∈ {L0, L1, L2, L3, L4}

v ∈ {true, false} v ∈ {true, false}

P

Q

v ∈ {L0, L1, L2, L3, L4}

Murphi

Hence, |S | = 52 × 22 × 2 = 200 (there are 200 possible states)

as a matter of comparison, the “state” L0 in the UML-like
state diagram actually contains 51 × 22 × 2 = 40 states...

However, as we will see, reachable states are about 10 times
less

2 initial states: turn may be initialized with any value in its
domain

Note that 01.2 peterson.no rulesets.no parametric.m

we have rules repeated 2 times in a nearly equal fashion

This can be done in this very simple model, but in general
descriptions must be parametric

Murphi

If we want to check Peterson with 3 processes, currently we
would have to add rules in the desciprion

very similar to the ones already present, only changing the
index to 3

Instead, it must be possible to only change the value of N
from 2 to 3

To write parametric descriptions in Murphi, rules are grouped
with rulesets

an index will allow to describe the behavior of the generic
process i
see 02.2 peterson.with rulesets.no parametric.m, but
invariant is still for two processes only

Murphi

Finally, in 03.2 peterson.with rulesets.parametric.m
also the invariant is parametric in N

Exists x:T E (x) End is equivalent to ∨x∈TE (x)
Forall x:T E (x) End is equivalent to ∧x∈TE (x)
all types T = {x1, . . . , x|T |} are finite, thus it is a finite formula

Kripke Structures

Let AP be a set of “atomic propositions”

in the sense of first-order logic: each atomic proposition is
either true or false
tipically identified with lower case letters p, q, . . .

A Kripke Structure (KS) over AP is a 4-tuple ⟨S , I ,R, L⟩
S is a finite set, its elements are called states
I ⊆ S is a set of initial states
R ⊆ S × S is a transition relation
L : S → 2AP is a labeling function

Labeled Transition Systems

A Labeled Transition System (LTS) is a 4-tuple ⟨S , I ,Λ, δ⟩
S is a finite set of states as before
I ⊆ S is a set of initial states as before (not always included)
Λ is a finite set of labels
δ ⊆ S × Λ× S is a labeled transition relation

Peterson’s Mutual Exclusion as a Kripke Structure

S = {(p1, p2, q1, q2, t) | p1, p2 ∈ {L0,L1,L2,L3,L4}, q1, q2 ∈
{0, 1}, t ∈ {1, 2}} = {L0,L1,L2,L3,L4}2 × {0, 1}2 × {1, 2}
I = {L0}2 × {0}2 × {1, 2}
R: see next slide

AP = {(P1 = v) | v ∈ {L0,L1,L2,L3,L4}} ∪ {(P2 = v) | v ∈
{L0,L1,L2,L3,L4}} ∪ {(Q1 = v) | v ∈ {0, 1}} ∪ {(Q2 =
v) | v ∈ {0, 1}} ∪ {(turn = v) | v ∈ {1, 2}}

e.g.: L((L0,L0, 0, 0, 1)) = {(P1 = L0), (P2 = L0), (Q1 =
0), (Q2 = 0), (turn = 1)}

Peterson’s Mutual Exclusion as a Kripke Structure

E.g.: ((L0,L0, 0, 0, 1), (L1,L0, 1, 0, 1)) ∈ R, whilst
((L0,L0, 0, 0, 1), (L2,L0, 0, 0, 1)) /∈ R

Transitions in R corresponds to arrows in the figure above

Kripke Structure vs Labeled Transition Systems

KSs have atomic propositions on states, LTSs have labels on
transitions

In model checking, atomic propositions are mandatory

to specify the formula to be verified, as we will see
a first example was the invariant in Murphi

Instead, it is not required to have a label on transitions

Murphi allows to do so, but it is optional
may be easily added automatically, if needed

Labels are typically needed when:

we deal with macrostates, as in UML state diagrams
when we are describing a complex system by specifying its
sub-components, so labels are used for synchronization

Total Transition Relation

In many cases, the transition relation R is required to be total

∀s ∈ S .∃s ′ ∈ S : (s, s ′) ∈ R

this of course allows also s = s ′ (self loop)

In the Peterson’s example, the relation is actually total

Murphi allows also non-total relations, by using option -ndl

note however that not giving option -ndl is stronger:
∀s ∈ S .∃s ′ ∈ S : s ̸= s ′ ∧ (s, s ′) ∈ R
otherwise, if s is s.t. ∀s ′. s = s ′ ∨ (s, s ′) /∈ R, Murphi calls s a
deadlock state
that is, you cannot go anywhere, except possibly self looping
on s

By deleting any rule, we will obtain a non-total transition
relation

Non-Determinism

The transition relation is, as the name suggests, a relation

Thus, starting from a given state, it is possible to go to many
different states

in a deterministic system,
∀s1, s2, s3 ∈ S . (s1, s2) ∈ R ∧ (s1, s3) ∈ R → s2 = s3
this does not hold for KSs

This means that, starting from state s1, the system may
non-deterministically go either to s2 or to s3

or many other states

Motivations for non-determinism: modeling choices!

underspecified subsystems
unpredictable interleaving
interactions with an uncontrollable environment
...

Some Useful Notation

Given a KS S = ⟨S , I ,R, L⟩, we can define:

the predecessor function PreS : S → 2S

defined as PreS(s) = {s ′ ∈ S | (s ′, s) ∈ R}
we will write simply Pre(s) when S is understood

the successor function Post : S → 2S

defined as Post(s) = {s ′ ∈ S | (s, s ′) ∈ R}

Note that, if S is deterministic, ∀s ∈ S . |Post(s)| ≤ 1

Note that, if S is total, ∀s ∈ S . |Post(s)| ≥ 1

Paths in KSs

A path (or execution) on a KS S = ⟨S , I ,R, L⟩ is a sequence
π = s0s1s2 . . . such that:

∀i ≥ 0. si ∈ S (it is composed by states)
∀i ≥ 0. (si , si+1) ∈ R (it only uses valid transitions)

We will denote i-th state of a path as π(i) = si

Note that paths in LTSs also have actions: π = s0a0s1a1 . . .
s.t. (si , ai , si+1 ∈ δ)

Paths in KSs

The length of a path π is the number of states in π

paths can be either finite π = s0s1 . . . sn, in which case
|π| = n + 1
or infinite π = s0s1 . . ., in which case |π| = ∞

We will denote the prefix of a path up to i as π|i = s0 . . . si
a prefix of a path is always a finite path

A path π is maximal iff one of the following holds

|π| = ∞
|π| = n + 1 and |Post(π(n))| = 0

that is, ∀s ∈ S . (π(n), s) /∈ R
i.e., the last state of the path has no successors
often called terminal state

If R is total, maximal paths are always infinite

for many model checking algorithms, this is required

Reachability

The set of paths of S starting from s ∈ S is denoted by
Path(S, s) = {π | π is a path in S ∧ π(0) = s}
The set of paths of S is denoted by
Path(S) = ∪s∈IPath(S, s)

that is, they must start from an initial state

A state s ∈ S is reachable iff
∃π ∈ Path(S), k < |π| : π(k) = s

i.e., there exists a path from an initial state leading to s
through valid transitions

The set of reachable states is defined by
Reach(S) = {π(i) | π ∈ Path(S), i < |π|}

Safety Property Verification

Verification of invariants: nothing bad happens

The property is a formula φ : S → {0, 1}
built using boolean combinations of atomic propositions in
p ∈ AP
i.e., the syntax is

Φ ::= (Φ) | Φ ∧ Φ | Φ ∨ Φ | ¬Φ | p

The KS S satisfies φ iff φ holds on all reachable states

∀s ∈ Reach(S). φ(s) = 1

Note that it may happen that φ(s) = 0 for some s ∈ S : never
mind, if s /∈ Reach(S)

How to Verify a Murphi Description M

Theoretically, extract KS S and property φ from M as
described above

for a given invariant I in M, φ(s) = ζ(I , s) for all s ∈ S

Then, KS S satisfies φ iff φ holds on all reachable states

∀s ∈ Reach(S). φ(s) = 1

Thus, consider KS as a graph and perform a visit

states are nodes, transitions are edges

If a state e s.t. φ(e) = 0 is found, then we have an error

Otherwise, all is ok

How to Verify a Murphi Description M

From a practical point of view, many optimization may be
done, but let us stick to the previous scheme

The worst case time complexity for a DFS or a BFS is
O(|V |+ |E |) (and same for space complexity)

For KSs, this means O(|S |+ |R|), thus it is linear in the size
of the KS

Is this good? NO! Because of the state space explosion
problem

Assuming that B bits are needed to encode each state

i.e., B =
∑n

i=1 bi , being bi the number of bits to encode
domain Di

We have that |S | = O(2B)

State Space Explosion

The “practical” input dimension is B, rather than |S | or |R|
Typically, for a system with N components, we have O(N)
variables, thus O(B) encoding bits

It is very common to verify a system with N components, and
then (if N is ok) also for N + 1 components

verifying a system with a generic number N of components is a
proof checker task...

This entails an exponential increase in the size of |S |
Thus we need “clever” versions of BFS/DFS

Standard BFS: No Good for Model Checking

Assumes that all graph nodes are in RAM

For KSs, graph nodes are states, and we know there are too
many

state space explosion

You also need a full representation of the graph, thus also
edges must be in RAM

using adjacency matrices or lists does not change much
for real-world systems, you may easily need TB of RAM

Even if you have all the needed RAM, there is a huge
preprocessing time needed to build the graph from the Murphi
specification

Then, also BFS itself may take a long time

Murphi BFS

We need a definition inbetween the model and the KS: NFSS
(Nondeterministic Finite State System)

N = ⟨S , I ,Post⟩, plus the invariant φ

S is the set of states, I ⊆ S the set of initial states
Post : S → 2S is the successor function as defined before

given a state s, it returns T s.t. t ∈ T → (s, t) ∈ R

no labeling, we already have φ

Murphi BFS

KSs and NFSSs differ on having Post instead of R

Post may easily be defined from the Murphi specification

Such definition is implicit, as programming code, thus
avoiding to store adjacency matrices or lists

t ∈ Post(s) iff there is a rule Ti ∈ T s.t. Ti guard is true in s
and Ti body changes s to t

see above for using η and ζ

Essentially, if the current state is s, it is sufficient to inspect all
(flattened) rules in the Murphi specification M

for all guards which are enabled in s, execute the body so as
to obtain t, and add t to next(s)

This is done “on the fly”, only for those states s which must
be explored

Simple Simulation

void Make_a_run(NFSS N , invariant φ)
{

let N = ⟨S , I ,Post⟩;
s_curr = pick_a_state(I);
i f (!φ(s_curr))
return with error message;

while (1) { /* loop forever */

s_next = pick_a_state(Post(s_curr));
i f (!φ(s_next))
return with error message;

s_curr = s_next;

}

}

Simple Simulation with Deadlock

void Make_a_run(NFSS N , invariant φ)
{

let N = ⟨S , I ,Post⟩;
s_curr = pick_a_state(I);
i f (!φ(s_curr))
return with error message;

while (1) { /* loop forever */

i f (Post(s_curr) = ∅)

return with deadlock message;

s_next = pick_a_state(Post(s_curr));
i f (!φ(s_next))
return with error message;

s_curr = s_next;

}

}

Murphi Simulation

void Make_a_run(NFSS N , invariant φ)
{

let N = ⟨S , I ,Post⟩;
s_curr = pick_a_state(I);
i f (!φ(s_curr))
return with error message;

while (1) { /* loop forever */

i f (Post(s_curr) = ∅ ∨ Post(s_curr) = {s_curr})
return with deadlock message;

s_next = pick_a_state(Post(s_curr));
i f (!φ(s_next))
return with error message;

s_curr = s_next;

}

}

Murphi Simulation

Similar to testing

If an error is found, the system is bugged

or the model is not faithful
actually, Murphi simulation is used to understand if the model
itself contains errors

If an error is not found, we cannot conclude anything

The error state may lurk somewhere, out of reach for the
random choice in pick a state

Standard BFS (Cormen-Leiserson-Rivest)

Murphi BFS

FIFO Queue Q;

HashTable T;

bool BFS(NFSS N , AP φ)
{

let N = (S , I , Post);
foreach s in I {

i f (!φ(s))
return f a l s e ;

}

foreach s in I
Enqueue(Q, s);

foreach s in I
Hash In s e r t (T, s);

Murphi BFS

while (Q ̸= ∅) {

s = Dequeue(Q);
foreach s_next in Post(s) {

i f (!φ(s_next))
return f a l s e ;

i f (s_next i s not in T) {

Enqueue(Q, s_next);

Hash In s e r t (T, s_next);

} /* if */ } /* foreach */ } /* while */

return true;
}

Murphi BFS

Edges are never stored in memory

states are “created” when expanding the current state
rules are used to modify the current state so as to obtain the
new one
at the start, you have an empty state which is modified by
startstates

(Reachable) states are stored in memory only at the end of
the visit

inside hashtable T

This is called on-the-fly verification

States are marked as visited by putting them inside an
hashtable

rather than coloring them as gray or black
which needs the graph to be already in memory

State Space Explosion

State space explosion hits in the FIFO queue Q and in the
hashtable T

and of course in running time...

However, Q is not really a problem

it is accessed sequentially
always in the front for extraction, always in the rear for
insertion
can be efficiently stored using disk, much more capable of
RAM

T is the real problem

random access, not suitable for a file
what to do?
before answering, let’s have a look at Murphi code

Murphi Usage

As for all explicit model checker, a Murphi verification has the
following steps:

0 compile Murphi source code and write a Murphi model
model.m

1 invoke Murphi compiler on model.m: this generates a file
model.cpp

mu options model.m

see mu -h for available options

2 invoke C++ compiler on model.cpp: this generates an
executable file

g++ -Ipath to include model.cpp -o model

path to include is the include directory inside Murphi
distribution

3 invoke the executable file

./model options

see ./model -h for available options

Beyond Invariants

Invariants represent a huge share of properties to be verified
on a system

For many systems, one may be happy with invariants only

“nothing bad happens”, that’s all folks

However, it is not always sufficient: a non-running system of
course satisfies invariants

no starting states, thus no reachable states...

Safety vs. Liveness

Safety properties: something bad must never happen

example: in the Peterson’s protocol, it must not happen that
both processes are accessing the resource (L3 in the Murphi
model)

Invariants are a special case of safety properties

there are some safety properties which are not invariants
however, they can be expressed with invariants by adding
variables to the Kripke Structure
in the following, we will consider “invariants” and ”safety
properties” as synonyms

Liveness properties: something good will eventually happen

example: in the Peterson’s protocol, both processes will
eventually access the resource
not at the same time!
cannot be expressed with invariants

Safety vs. Liveness

Notation: let S be a KS and φ be a formula in any logic

S |= φ is true iff φ is true in S
what this means depends on the logic, as we will see

For most properties φ, if S ̸|= φ then there exists a path
π ∈ Path(S) which is a counterexample

by overloading the symbol |=, π ̸|= φ

For safety properties, |π| <∞
S arrives to an unsafe state and that’s it

For liveness properties, |π| = ∞
since S is finite, this implies that π contains a loop (lasso) in
its final part

Safety vs. Liveness

Equivalent definition for a safety formula: given a finite
counterexample, every extension still contains the error

There is one formula which is both safety and liveness: the
true invariant

it cannot have a counterexample...

There are formulas which are neither safety nor liveness

their counterexample is not a path

For typically used formulas, they are either safety or liveness
properties

Safety vs. Liveness: Mathematical Definition

If we identify a property by the set of its models (φ = {σ | σ |= φ})

Model Checking Logics: Preliminaries

Model Checking logics are based on the concept of execution
of a Kripke structure S

thus, on π ∈ Path

Often, paths are directly viewed as a sequence of atomic
propositions, rather than states

from π = s1, s2, . . . to AP(π) = L(s1), L(s2), . . .

Focusing on executions allows to model time

time in the sense that we have something coming before of
something else (in a path...)

Trade-off between

logics expressiveness: interesting properties can be written
logics efficiency: there is an efficient model checking algorithm
to compute if S |= φ

Model Checking Logics: Preliminaries

We will focus on the two leading Model Checking logics: LTL
and CTL

with some hints on CTL*
LTL (Linear-time Temporal Logic) established by Pnueli in
1977
CTL (Computation Tree Logic) established by Clarke and
Emerson in 1981
used for IEEE standards:

PSL (Property Specification Language, IEEE Standard 1850)
SVA (SystemVerilog Assertions, IEEE Standard 1800).

We will see syntax and semantics of both logics

syntax: how a valid formula is written
semantics: what a valid formula “means”
that is, when S |= φ holds

LTL Syntax

Φ ::= p | Φ1 ∧ Φ2 | ¬Φ | (Φ) | XΦ | Φ1 U Φ2

Other derived operators:

of course true, false, OR and other propositional logic
connectors
future (or eventually): FΦ = true U Φ
globally: GΦ = ¬(true U ¬Φ) = ¬F¬Φ
release: Φ1 R Φ2 = ¬(¬Φ1 U ¬Φ2)
weak until: Φ1 W Φ2 = (Φ1 U Φ2) ∨ GΦ1

Other notations:

next: XΦ = ⃝Φ
GΦ = □Φ
FΦ = ♢Φ

We are dropping past operators, thus this is pure future LTL

LTL Semantics

Goal: formally defining when S |= φ, being S a KS and φ an
LTL formula

we say that S satisfies φ, or φ holds in S
This is true when, for all paths π of S, π satisfies φ

i.e., ∀π ∈ Path(S). π |= φ
symbol |= is overloaded...

For a given π, π |= φ iff π, 0 |= φ

Finally, to define when π, i |= φ, a recursive definition over the
recursive syntax of LTL is provided

π ∈ Path(S), i ∈ N

LTL Semantics for π, i |= φ

π, i |= p iff p ∈ L(π(i))

π, i |= Φ1 ∧ Φ2 iff π, i |= Φ1 ∧ π, i |= Φ2

π, i |= ¬Φ iff π, i ̸|= Φ

π, i |= XΦ iff π, i + 1 |= Φ

π, i |= Φ1 U Φ2 iff ∃k ≥ i : π, k |= Φ2 ∧∀i ≤ j < k . π, j |= Φ1

LTL Semantics for Added Operators

It is easy to prove that:

∀π ∈ Path(S), i ∈ N. π, i |= true
π, i |= GΦ iff ∀j ≥ i . π, j |= Φ
π, i |= FΦ iff ∃j ≥ i . π, j |= Φ
π, i |= Φ1 R Φ2 iff ∀k ≥ i . π, k |= Φ2 ∨ ∃i ≤ j < k : π, j |= Φ1

i.e., ∀k ≥ i . π, k ̸|= Φ2 → ∃i ≤ j < k : π, j |= Φ1

i.e., ∀k ≥ i . ∀i ≤ j < k. π, j ̸|= Φ1 → π, k |= Φ2

π, i |= Φ1 W Φ2 iff (∀j ≥ i . π, j |= Φ1) ∨ (∃k ≥ i : π, k |=
Φ2 ∧ ∀i ≤ j < k . π, j |= Φ1)

For many formulas, it is silently required that paths are infinite

That’s why transition relations in KSs must be total

LTL Semantics: Typical Paths for Common Formulas

For p ∈ AP, we will also consider p to be any set in
{P ∈ 2AP | p ∈ P}

that is, p is any subset of atomic propositions containing p
e.g., p may be any of {p}, {p, q}, {p, r , s}...
furthermore, p̄ = ¬p ∈ {P ∈ 2AP | p /∈ P}

e.g., p̄ may be any of {q}, {q, r}, {r , s}...
finally, ⊥ denotes any subset of atomic propositions

If π |= Gp, then π = pω

of course, this includes, e.g., π = {p, q}{p, r}{p}{p, q}{p} . . .
π, 3 |= Gp: π =⊥⊥⊥ pω

If π |= Fp, then π =⊥∗ p ⊥ω

If π |= p U q, then π = {p, q̄}∗q ⊥ω

If π |= p W q, then either π = {p, q̄}∗q ⊥ω or π = pω

If π |= p R q, then either π = {p̄, q}ω or
π = {p̄, q}∗{p, q} ⊥ω

q must be kept holding till when a p appears and “releases”
q...

Safety and Liveness Properties in LTL

Given an LTL formula φ, φ is a safety formula iff
∀S. (∃π ∈ Path(S) : π ̸|= φ) → ∃k : π|k ̸|= φ

Given an LTL formula φ, φ is a liveness formula iff
∀S. (∃π ∈ Path(S) : π ̸|= φ) → |π| = ∞
All LTL formulas are either safety, liveness, or the AND of a
safety and a liveness

being defined on paths, the counterexample is always a path

Safety properties are those involving only G, X, true and
atomic propositions

Liveness are all those involving an F or a U
but beware of negations...

Some formulas are both safety and liveness, like true, G true
and so on

LTL Examples

S |= Fp since p holds in the
first state
For full: let π ∈ Path(S)
π, 0 |= Fp with j = 0

recall: π, i |= FΦ iff
∃j ≥ i . π, j |= Φ
π, i |= p iff p ∈ L(π(i))

LTL Examples

S ̸|= Fa since s6 is not reach-
able from s0
counterexample: π =
s0s5s0s5 . . .
For full: π, 0 ̸|= Fa as, for all
j ≥ 0, a /∈ L(π(j))

Counterexample is infinite,
thus this is a liveness property
Any finite prefix of π is not a
counterexample

LTL Examples

S ̸|= Gp since there are many
counterexamples, here is one:
π = s0s5s0s5 . . .
For full: π, 0 ̸|= Gp with j = 1

recall: π, i |= GΦ iff
∀j ≥ i . π, j |= Φ
π, i |= p iff p ∈ L(π(i))

Safety property, actually
π|2 is enough
Every path having π|2 as a
prefix is a counterexample

LTL Examples

S |= G¬a since s6 is not
reachable from s0
For full: let π ∈ Path(S)
π, 0 |= G¬a as the only state
s with a ∈ L(s) is s6, which is
not reachable from s0

recall: π ∈ Path(S) im-
plies π(0) ∈ I , thus π(0) = s0
here

LTL Examples

S |= p U q since p ∈ L(s0),
next(s0) = {s1, s5} and q ∈
L(s1) ∧ q ∈ L(s5)

LTL Examples

S ̸|= p U r , a counterexample
is π = s0s1(s2s3s4)
Again this is a liveness formula,
even if π|1 would have been
enough
In fact, you have to rule out
{p, r̄}ω...

LTL Examples

S ̸|= ¬(p U r), a counterexam-
ple is π = (s0s5)
In fact, (s0s5), 0 |= p U r
Thus it may happen that S ̸|=
Φ and S ̸|= ¬(Φ)
Instead, it is impossible that
S |= Φ and S |= ¬(Φ)

LTL Examples

S ̸|= q, since s0 is the only ini-
tial state and q /∈ L(s0) (all
paths in Path(S) must start
from s0)
S |= p, since p ∈ L(s0)
S |= Xq, since q ∈ L(s1) ∧ q ∈
L(s5)
S ̸|= XXq, since all states but
s5, s6 are reachable in exactly 2
steps

LTL Examples

S ̸|= FGp, a counterexample is
π = s0s1(s2s3s4)
Again this is a liveness formula

LTL Examples

S |= GFp
All lassos are s0s5 or s2s3s4
In both such lassos, there are
states in which p holds

LTL Examples

S |= GFp ∨ FGp
Consequence of the two previ-
ous slides

LTL Examples

S ̸|= G(p U q), a counterexam-
ple is π = s0s1(s2s3s4)
(p U q) must hold at any
reachable state
Ok in s0, s1, s2, but not in s3

LTL Non-Toy Examples

Recall the Peterson’s protocol: checking mutual exclusion is
G(¬(p ∧ q)), being p = P[1] = L3, q = P[2] = L3

all invariants are of the form GP, where P does not contain
modal operators X, U or F

Checking that both processes access to the critical section
infinitely often is GF P[1] = L3 ∧ GF P[2] = L3

liveness property: no process is infinitely banned to access the
critical section

Even better: G (P[1] = L2 → F P[1] = L3)

the same for the other process
since it is simmetric, this is actually enough

Equivalence Between LTL Properties

Definition of equivalence between LTL properties:
φ1 ≡ φ2 iff ∀S. S |= φ1 ⇔ S |= φ2

equivalent: ∀σ...
Idempotency:

FFp ≡ Fp
GGp ≡ Gp
p U (p U q) ≡ (p U q) U q ≡ p U q

Absorption:

GFGp ≡ FGp
FGFp ≡ GFp

Expansion (used by LTL Model Checking algorithms!):

p U q ≡ q ∨ (p ∧ X(p U q))
Fp ≡ p ∨ XFp
Gp ≡ p ∧ XGp

CTL Syntax

Φ ::= p | Φ1 ∧ Φ2 | ¬Φ | (Φ) | EXΦ | EGΦ | EΦ1 U Φ2

Other derived operators (besides true, false, OR, etc):
EFΦ = Etrue U Φ

cannot be defined using E¬G¬Φ, as this is not a CTL formula
actually, it is a CTL* formula (see later)
in fact, you cannot place a negation between E and the
subformula

AFΦ = ¬EG¬Φ, AGΦ = ¬EF¬Φ, AXΦ = ¬EX¬Φ
AΦ1 U Φ2 = (¬E¬Φ2 U (¬Φ1 ∧ ¬Φ1)) ∧ ¬EG¬Φ2

Φ1AUΦ2 = AΦ1UΦ2, Φ1EUΦ2 = EΦ1UΦ2

Comparison with LTL Syntax

Φ ::= true | p | Φ1 ∧ Φ2 | ¬Φ | (Φ) | XΦ | Φ1 U Φ2

Essentially, all temporal operators are preceded by either E or
A

with some care for U

CTL Semantics

Goal: formally defining when S |= φ, being S a KS and φ a
CTL formula

This is true when, for all initial states s ∈ I of S, s |= φ

thus, CTL is made of state formulas
LTL has path formulas

To define when s |= φ, a recursive definition over the recursive
syntax of CTL is provided

no need of an additional integer as for LTL syntax

CTL Semantics for s |= φ

∀s ∈ S . s |= true

s |= p iff p ∈ L(s)

s |= Φ1 ∧ Φ2 iff s |= Φ1 ∧ s |= Φ2

s |= ¬Φ iff s ̸|= Φ

s |= EXΦ iff ∃π ∈ Path(S, s). π(1) |= Φ

s |= EGΦ iff ∃π ∈ Path(S, s). ∀j . π(j) |= Φ

s |= EΦ1 U Φ2 iff
∃π ∈ Path(S, s)∃k : π(k) |= Φ2 ∧ ∀j < k. π(j) |= Φ1

CTL Semantics for Added Operators

It is easy to prove that:

s |= AGΦ iff ∀π ∈ Path(S, s). ∀j . π(j) |= Φ
s |= AFΦ iff ∀π ∈ Path(S, s). ∃j . π(j) |= Φ
analogously for AU, AR, AW
just replace ∀ with ∃ for EF, ER, EW

Analogously to LTL, for many CTL formulas it is silently
required that paths are infinite

So again transition relations in KSs must be total

Safety and Liveness Properties in CTL

Some CTL formulas may be neither safety nor liveness

being defined on states, the counterexample may be an entire
computation tree

Safety properties are those involving only AG, AX, true and
atomic propositions

Some formulas are both safety and liveness, like true,
AG true and so on

Liveness are formulas like AF, AFAG, AU

EF or EG are neither liveness nor safety

CTL Examples

S |= AFp since p holds in the
first state
For full: s0 |= Fp since p ∈
L(s0), thus, for all paths start-
ing in s0, p holds in the first
state, so it holds eventually

CTL Examples

S |= EFp for the same reason
as above
If it holds for all paths, then it
holds for one path
AFΦ → EFΦ
The same holds for the other
temporal operators G,U etc

CTL Examples

S ̸|= EFa since s6 is not reach-
able
Note that the counterexample
cannot be a single path
Since it would not enough to
disprove existence
The full reachable graph must
be provided
One could also show the tree of
all paths
Neither safety nor liveness

CTL Examples

S |= A(p U q) since p ∈ L(s0),
next(s0) = {s1, s5} and q ∈
L(s1) ∧ q ∈ L(s5)

CTL Examples

S ̸|= A(p U r), a counterexam-
ple is π = s0s1(s2s3s4)

CTL Examples

S |= E(p U r), an example is
π = (s0s5)

CTL Examples

S ̸|= ¬E(p U r), a counterex-
ample is π = (s0s5)
In fact, S ̸|= Φ iff S |= ¬(Φ)
whenever |I | = 1
In fact, the implicit for all is on
initial states only, whilst it is on
all paths for LTL...

CTL Examples

S ̸|= AFAGp, a counterexam-
ple is π = s0s1(s2s3s4)
This is a liveness formula

CTL Examples

S ̸|= EFEGp, a counterexam-
ple is again a computation tree
All lassos are s0s5 or s2s3s4
In both such lassos, there are
states in which p does not hold

CTL Examples

S ̸|= AFEGp, a counterexam-
ple is again a computation tree
Since S ̸|= EFEGp...

CTL Examples

S ̸|= EFAGp, a counterexam-
ple is again a computation tree
Since S ̸|= EFEGp...

CTL Non-Toy Examples

Recall the Peterson’s protocol: checking mutual exclusion is
AG(¬(p ∧ q)), being p = P[1] = L3, q = P[2] = L3

equivalent to LTL Gp

It is always possible to restart:
AGEF P[1] = L0 ∧ AGEF P[2] = L0

CTL vs. LTL: a Comparison

Recall that φ1 ≡ φ2 iff ∀S. S |= φ1 ⇔ S |= φ2

also holds (w.l.g.) when φ1 is LTL and φ2 is CTL

Of course, some CTL formulas cannot be expressed in LTL

it is enough to put an E, since LTL always universally
quantifies paths
so, there is not an LTL φ s.t. φ ≡ EGp

no, F¬p is not the same, why?

So, one might think: LTL is contained in CTL

in the sense, for each LTL formula, there is a CTL equivalent
formula
simply replace each temporal operator O with AO, that’s it
let T be a translator doing this
for any LTL formula φ, φ ≡ T (φ)
actually, Gp ≡ T (Gp) = AGp

CTL vs. LTL: a Comparison

Theorem. Let φ be an LTL formula. Then, either i) φ ≡ T (φ)
or ii) there does not exist a CTL formula ψ s.t. φ ≡ ψ

idea of proof: replacing with E is of course not correct, and
temporal operators on paths are the same

Corollary. There exists an LTL formula φ s.t., for all CTL
formulas ψ, φ ̸≡ ψ

Proof of corollary:
by the theorem above and the definitions, we need to find

1 an LTL formula φ
2 a KS S

where S |= φ and S ̸|= T (φ)

viceversa is not possible

CTL vs. LTL: a Comparison

For example, as for the LTL formula, we may take φ = FGp
note instead that GFp ≡ AGAFp

For example, as for the KS S, we may take

We have that S |= FGp, but S ̸|= AFAGp

Thus, CTL requires “more” than the corresponding LTL

CTL vs. LTL: a Comparison

S ̸|= AFAGp means that
¬(∀π ∈ Path(S). ∃j : ∀ρ ∈ Path(S, π(j)). ∀k . p ∈ ρ(k))
= ∃π ∈ Path(S). ∀j : ∃ρ ∈ Path(S, π(j)). ∃k . p ̸∈ ρ(k)

In our S, π = sω0 : in fact, at any point of π, you may branch
and go through ¬p instead...

S |= FGp means that ∀π ∈ Path(S). ∃j : ∀k ≥ j . p ∈ π(k)

Thus, there is not a CTL formula equivalent to FGp

Furthermore, there is not an LTL formula equivalent to
AFAGp

CTL, LTL and CTL*

CTL* introduced in 1986 (Emerson, Halpern) to include both
CTL and LTL

No restrictions on path quantifiers to be 1-1 with temporal
operators, as in CTL

State formulas: Φ ::= true | p | Φ1 ∧ Φ2 | ¬Φ | AΨ | EΨ
Path formulas: Ψ ::= Φ | Ψ1 ∧Ψ2 | ¬Ψ | Ψ1UΨ2 | FΨ | GΨ

CTL, LTL and CTL*

The intersection between CTL and LTL is both syntactic and
“semantic”

Some formulas are both CTL and LTL in syntax: all those
involving only boolean combinations of atomic propositions

“Semantic” intersection: some LTL formulas may be
expressed in CTL and vice versa, using different syntax

AGAFp and GFp
AGp and Gp
etc

Acronyms

Murphi stands for nothing, though it is probable that it
reminds Murphi’s Laws

“if something may fail, it will fail”, i.e., EFp → AFp

SPIN stands for Simple Promela INterpreter

Promela is the SPIN input language

Murphi input language does not have a proper name

Promela stands for PROcess MEta LAnguage

as we will see, it is actually based on Operating Systems-like
processes

Also see slides at
https://spinroot.com/spin/Doc/SpinTutorial.pdf

some as reused here

https://spinroot.com/spin/Doc/SpinTutorial.pdf

Structure of a Promela Model

We recall that Murphi input language is based on:
global variables with finite types

base types are integer subranges and enumerations
higher types are arrays and structures

function and procedures
guarded rules and starting states (dynamics)

may call functions and procedures, in an atomic way
Pascal-like syntax: := for assignments, = for equality checks...

invariants

Structure of a Promela Model

Promela instead has:
global variables with finite types

base types are integer types of the C language
enumerations are very limited
arrays and records
channels!

processes behaviour (dynamics)

possibly with arguments and local variables

properties to be checked:

assertions
deadlocks
“neverclaim” describing a BA
a separate tool may translate an LTL formula in the
corresponding BA

Peterson Protocol in Operating Systems

Peterson Protocol in Promela

bool turn , flag [2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit ++;

assert(ncrit == 1); /* critical section */

ncrit --;

flag[_pid] = 0;

goto again

}

Dijkstra Protocol in Promela

#define p 0

#define v 1

chan sema = [0] of { bit }; /* rendez -vous */

proctype dijkstra ()

{ byte count = 1; /* local variable */

do
:: (count == 1) -> sema!p; count = 0

/* send 0 and blocks , unless some other

proc is already blocked in reception */

:: (count == 0) -> sema?v; count = 1

/* receive 1, same as above */

od

}

Dijkstra Protocol in Promela

proctype user()

{ do
:: sema?p;

/* critical section */

sema!v;

/* non -critical section */

od

}

init

{ run dijkstra ();

run user(); run user(); run user()

}

SPIN Simulation

Almost equal to Murphi one

void Make_a_run(NFSS N)

{

let N = ⟨S , {s0},Post⟩;
s_curr = s0;
i f (some assertion fail in s_curr))

return with error message;

while (1) { /* loop forever */

i f (Post(s_curr) = ∅)

return with deadlock message;

s_next = pick_a_state(Post(s_curr));
i f (some assertion fail in s_curr))

return with error message;

s_curr = s_next;

}

}

SPIN Verification

Able to answer to the following questions:

is there a deadlock (invalid end state)?
are there reachable assertions which fail (safety)?
is a given LTL formula (safety or liveness) ok in the current
system?
is a given neverclaim (safety or liveness) ok in the current
system?

It is possible to specify some side behaviours:

is sending to a full channel blocking, or the message is dropped
without blocking?

It may report unreachable code

Promela statements in the model which are never executed

SPIN Verification

Similar to Murphi:
1 the SPIN compiler (SrcXXX/spin -a) is invoked on

model.prm and outputs 5 files:

pan.c, pan.h, pan.m, pan.b, pan.t (unless there are errors...)

2 the 5 files given above are compiled with a C compiler

it is sufficient to compile pan.c, which includes all other files
in this way, an executable file model is obtained

3 just execute model

option --help gives an overview of all possible options

SPIN Verification of LTL Formulas

The former is ok for assertion or deadlock checks

If you also have an LTL formula
1 the SPIN compiler (SrcXXX/spin -F) is invoked on

model.ltl and outputs a neverclaim on the standard output

model.ltl must be a text file with only 1 line
file extensions does not matter
syntax for the formula: G is [], F is <>, U is U
atomic propositions must be identifiers

2 append the neverclaim to the promela file
3 define the identifiers used as atomic proposition by #defines

in the promela file
4 go on as before

If you use the graphical GUI, it is much easier: such steps are
automatically performed

Standard Recursive DFS

HashTable Visited = ∅;

DFS(graph G = (V ,E), node v)
{

Visited := Visited ∪ v ;
foreach v ′ ∈ V t.c. (v , v ′) ∈ E {

i f (v ′ /∈ Visited)

DFS(G , v ′);

}

}

Iterative DFS Easy Version

DFS(graph G = (V ,E))
{

s := init;

push(s, 1);
while (stack ̸= ∅) {

(s, i) := top();

increment i on the top of the stack;

i f (s /∈ Visited) {

Visited := Visited ∪ s;
let S ′ = {s ′ | (s, s ′) ∈ E};
i f (|S ′| >= i) {

s := i-th element in S ′;

push(s, 1);
}

e l se pop();

}

e l se pop();

} }

Iterative DFS

DFS(graph G = (V ,E))
{

s := init; i := 1; depth := 0;

push(s, 1);
Down:

i f (s ∈ Visited)

goto Up;

Visited := Visited ∪ s;
let S ′ = {s ′ | (s, s ′) ∈ E};
i f (|S ′| >= i) {

s := i-th element in S ′;

increment i on the top of the stack;

push(s, 1);
depth := depth + 1;

goto Down;

}

Iterative DFS

Up:

(s, i) := pop();

depth := depth - 1;

i f (depth > 0)

goto Down;

}

Partial Order Reduction

POR does not try to use less memory to save the same states:
it tries to save less states

while retaining correctness, of course
some states are “useless” and need not to be explored (and
saved)
also saves in computation time, of course

Similar to Murphi symmetry for the goal, but different in use
and algorithm

use: Murphi modeler must specify which parts of the model
are symmetric
in SPIN, POR is directly applied without the modeler being
aware of it
though it is possible to disable it

CTL (and LTL) Model Checking

We saw the theoretical algorithm for CTL model checking

we said it was not effective, as it required S and R to be in
RAM

Actually, there are methodologies which are able to fit S and
R in RAM, also for industrial-sized models

The “father” of the model checkers using such technologies is
SMV

Symbolic Model Verifier
it has then been refactored as NuSMV

This set of techniques is referred to as symbolic model
checking

Murphi and SPIN style is dubbed explicit model checking

CTL (and LTL) Model Checking

In order to understand how symbolic model checking works,
we need some preliminaries

ROBDDs

needed to actually fit S and R in RAM

µ-calculus

together with fixpoint computation
extension of λ-calculus
needed to efficiently implement CTL and LTL model checking
using ROBDDs

ROBDD

Reduced Ordered (Complemented Edges) Binary Decision
Diagrams

sometimes called simply OBDDs, and even BDDs
here we stick to the precise notation, by also outlining the
differences

Let us start with the basis: BDD

A BDD is a data structure representing a boolean function

of course, OBDDs and ROBDDs are data structures as well
we will define them in the following

Binary Decision Diagrams

Represented function: f (a, b, c , d) = ab + ācd + ab̄cd

OBDDs

Supposing that V = V, a possible ordering is:
ord(a) = 1, ord(b) = 2, ord(c) = 3, ord(d) = 4
If b were connected to d instead of c , also:
ord(a) = 1, ord(b) = 3, ord(c) = 2, ord(d) = 4

COBDDs

Represented function:
f (a, b, c , d) = ab + ācd + ab̄cd

 a

 b

 c

 d

 f

0x2f

0x2e

0x2d

1

0x2c

straight: then, dashed: else,
dotted: complemented else

NuSMV Input Language

Taken from examples/smv-dist/short.smv

MODULE main

VAR

request : {Tr, Fa}; -- same as saying boolean

-- (stand for True and False)

state : {ready, busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready & (request = Tr): busy;

TRUE : {ready,busy};

esac;

SPEC

AG((request = Tr) -> AF state = busy)

Automata for short.smv: I and R

bs, Tr

rd, Tr

bs, Fa

rd, Fa

OBDDs for short.smv: I

Straight lines are then-edges
Dashed lines are else-edges
Dotted lines are complemented-else-edges

 state.0

 Init

0x6

1

OBDDs for short.smv: R

Straight lines are then-edges
Dashed lines are else-edges
Dotted lines are complemented-else-edges
request.0 “false” edge corresponds to Tr

 request.0

 state.0

 next(state.0)

 Trans

0x22

0x21

1

0x20

OBDDs for short.smv: Reach

The one for soloready is the same

 Reachables

TRUE

OBDDs Pros and Cons

MODULE main

VAR

m1 : 0..15; -- m1.0 is MSB!

m2 : 0..15;

m3 : 0..30;

ASSIGN

next(m3) := m1 + m2;

SPEC

AG(m3 <= 30);

OBDDs Pros and Cons

MODULE main

VAR

m1 : 0..15;

m2 : 0..15;

m3 : 0..30;

ASSIGN

next(m3) := case

m1*m2 <= 30: m1*m2;

TRUE: m3;

esac;

SPEC

AG(m3 <= 30);

OBDDs for Adder and Multiplier: I

This is a set with 16 · 16 · 31 = 7936 elements
Just one node to represent it...

 Init

TRUE

OBDDs for Adder: R

 next(m3.4)

 m1.3

 m2.3

 next(m3.3)

 m1.2

 m2.2

 next(m3.2)

 m1.1

 m2.1

 next(m3.1)

 m1.0

 m2.0

 next(m3.0)

 Trans

0x61

0x600x57

0x5b 0x5f0x55 0x56

0x54

1

0x5a 0x5e

0x530x4a 0x5d0x59

0x4e0x58 0x52 0x5c0x490x48

0x47 0x4d 0x51

0x460x3d 0x500x4c

0x410x4b 0x45 0x4f0x3c 0x3b

0x440x3a 0x40

0x3f 0x390x36 0x43

0x34 0x370x3e 0x420x38

0x35

OBDDs for Multiplier: R

 m3.4

 next(m3.4)

 m1.3

 m2.3

 m3.3

 next(m3.3)

 m1.2

 m2.2

 m3.2

 next(m3.2)

 m1.1

 m2.1

 m3.1

 next(m3.1)

 m1.0

 m2.0

 m3.0

 next(m3.0)

 Trans

0x7cf

0x7ce 0x71b

0x71e 0x7cd 0x71a 0x6b8

0x7190x6db0x71d

1

0x764 0x7cc 0x6b70x695

0x718 0x6fd

0x6b60x6a8

0x6da

0x7250x763 0x6940x67f0x7cb 0x79e

0x71c 0x79f0x7ca 0x693 0x68c 0x6b5 0x6b00x67e0x644 0x6a10x6a70x724 0x7230x7620x745 0x79d 0x781

0x692 0x68b0x6b4 0x6af0x7170x7610x6c9 0x6a00x722 0x6ec 0x6fc 0x6a60x79c0x6d9 0x744 0x649 0x67d0x643 0x6290x7c9 0x780

0x7160x7090x7c8 0x7b3 0x6eb0x6fb 0x6a20x7210x6d2 0x6d8 0x79b 0x68f

0x691

0x646 0x6480x7600x755 0x737 0x743 0x6b3 0x68a

0x627

0x6a50x77f 0x6ae0x67c 0x65f 0x6330x642 0x6280x5f90x6c2 0x6c8 0x6990x69f

0x7150x70f0x6d1

0x79a 0x790

0x6ea 0x6e4

0x7bd 0x7c7

0x702 0x708

0x75f 0x6a40x65e0x754 0x6b2

0x6c1 0x6c70x6d7

0x6ad0x68e0x736

0x632

0x6180x6630x742

0x641

0x77e 0x773

0x6450x6f40x6fa

0x6980x69e0x67b 0x5ce0x5f80x720 0x689 0x6840x6590x7b2 0x7a8

0x6470x77d0x776 0x662 0x6970x7b40x7bc 0x68d 0x688 0x65d0x65c0x7a90x7b1 0x6070x617 0x5c60x5cd 0x626 0x6200x6b1 0x6ac0x7a70x7a6 0x7990x7930x739 0x741 0x7be0x7c6 0x6510x6580x7320x735 0x7530x748 0x6900x784 0x78f0x71f 0x772 0x770 0x6860x67a0x66f 0x5e60x5f7 0x6830x661 0x69d 0x69b 0x6aa0x6a30x75e0x758

0x6e60x6e9 0x6850x6870x707 0x6250x63a 0x6790x7b0 0x5cc0x6c6 0x738 0x6a90x6ab0x6bf 0x6c0 0x7140x6d3 0x75d 0x5e0 0x5e50x7570x6d6 0x6f30x7830x6c3 0x740 0x5f6 0x5eb0x70e 0x640 0x6ee0x78e0x65b 0x600 0x6060x701 0x771 0x6e20x616 0x60b0x69c0x66e0x731 0x6600x7bb 0x6820x6f9 0x6f6 0x6960x69a0x5c50x798 0x76f 0x6e30x6d0 0x6cb 0x77c0x7a50x7c5 0x62e 0x6310x752 0x61f0x734 0x6500x775 0x7920x747 0x657

0x5c4

0x5c3

0x6360x6390x63c 0x5ff 0x5fa0x6bb0x6be 0x6f20x5cb0x76e0x774 0x6240x7a4 0x72a

0x5ca

0x782 0x6150x7000x673 0x746 0x6560x5ef0x5f5 0x63f0x6e50x70d0x70a 0x6f8 0x6ed0x6c5 0x6f50x733 0x62c0x66d 0x756 0x680 0x61e 0x5e8 0x5ea0x65a0x64e0x730 0x6080x60a0x710 0x713 0x5d7 0x5df 0x6810x5e40x703 0x7060x62d 0x6e10x621 0x6050x74c0x751 0x78d0x797 0x61b0x7b5 0x7ba0x6cd0x6cf 0x6ca 0x791 0x6780x77b 0x6e80x7af 0x7aa 0x64f 0x6680x6d5 0x75c 0x6300x73a 0x73f0x7bf 0x7c4

0x5fe0x5de0x6670x64d 0x6550x672

0x635

0x623 0x5d6 0x5bd

0x6d4 0x70c 0x6f00x62b0x6cc

0x5ee

0x63b

0x5d90x7680x7a3

0x62f

0x5c8 0x60f0x614 0x61a0x74b

0x6ba 0x6f1

0x7c3 0x788

0x712 0x638 0x63e0x6bd

0x729 0x6770x66c

0x5e3 0x6f7

0x76d

0x604

0x78c0x7ae 0x72f 0x61d0x5f4

0x5e70x6c4

0x750 0x75b

0x5e90x6de0x6ff 0x6e0

0x73e

0x609

0x796

0x705

0x77a

0x6ce 0x6e7

0x7b9

0x789 0x78b 0x6190x5ed0x7b8 0x7b6 0x6650x6660x622 0x5dd 0x60d 0x60e 0x5d10x5d50x5f10x5f3 0x7ab0x7ad 0x7670x766 0x5bc0x5c70x7a00x7a2 0x75a 0x7590x72e 0x72c 0x5fd0x7c2 0x7c0 0x5db0x5ec 0x653 0x6540x76a 0x76c 0x5bf0x5c20x5c9 0x61c0x676 0x675 0x5b60x5d80x727 0x7280x64c 0x64a 0x66a0x66b 0x6120x6130x7490x74a 0x7940x7950x73c0x73d 0x7850x787 0x7780x7790x6710x6700x74f 0x74d

0x6ef0x769 0x7770x711

0x5b8

0x5be0x5fb0x5d0

0x5c0

0x5dc 0x6fe0x6bc 0x72d 0x6030x6110x6dd 0x6df0x74e 0x5da0x6b90x72b 0x5f20x637

0x5cf

0x73b 0x5c10x62a

0x5bb

0x63d 0x634 0x60c0x704 0x7b7 0x6690x6520x5fc 0x5d20x70b0x5e2 0x765 0x5f0 0x5b70x5d4 0x78a0x7a1 0x76b0x7c1 0x7860x64b 0x664 0x6740x726 0x7ac

0x5d3 0x6020x6010x610 0x6dc

0x5ba

0x5e1

OBDDs Pros and Cons

Number of variables is 13 for both models

4 each for m1 and m2, plus 5 for m3

Number of BDD nodes:

adder: 47
multiplier: 538

OBDDs Pros and Cons

No magic: SAT could be solved using OBDDs

just represent the instance with an OBDD and check if it is
different from 0
very roughly speaking: if it were possible to solve it
“efficiently” in this way, P=NP...

Thus, there are boolean functions for which OBDDs
representation is exponential, regardless of variable ordering

one example is the multiplier seen above

It is not possible to say if OBDDs will be a good way to
represent a problem, before trying it

for the adder, it is much more efficient

Furthermore, finding a variable order in order to minimize the
OBDD representation for a given function is an NP-complete
problem

OBDDs Pros and Cons

This also holds for Model Checking in general

Not possible to say a-priori if a system will fit in the available
resources when using a model checker

RAM and computation time

Also, it is not possible to decide which model checker is better

explicit (Murphi-or-SPIN like) or symbolic (NuSMV like)?

However, we are going to see some guidelines

as for OBDDs: a good ordering is to interleave present and
future variables
variable ordering: if OBDDs grow, the model checker can try a
different variable ordering

Computation of Least (Minimum) Fixpoint

OBDD lfp(MuFormula T) /* µZ .T (Z) */

{

Q = λx . 0;
Q ′ = T (Q);
/* T clearly says where Q must be replaced */

/* e.g.: if µZ . λx . f (x) ∨ Z (x), then

Q ′ = λx . f (x) ∨ Q(x) */

while (Q ̸= Q ′) {

Q = Q ′;

Q ′ = T (Q);
}

return Q; /* or Q ′, they are the same ... */

}

Computation of Greatest (Maximum) Fixpoint

OBDD gfp(NuFormula T) /* νZ .T (Z) */

{

Q = λx . 1;
Q ′ = T (Q);
while (Q ̸= Q ′) {

Q = Q ′;

Q ′ = T (Q);
}

return Q;

}

Symbolic Model Checking of AGp

The idea is to compute the set of reachable states, and check
if for all of them p holds

Reach = µZ . λx . [I (x) ∨ ∃y : (Z (y) ∧ R(y , x))]

of course, we get an OBDD on x as a result
recall that x (and y) is a vector of all boolean variables

∀x ∈ S . Reach(x) → p(x)

computationally easier: check that Reach(x) ∧ ¬p(x) = 0
otherwise, we have a reachable state for which p does not
hold...

CTL Model Checking

bool checkCTL(KS S, CTL φ) {

let S = ⟨S , I ,R, L⟩;
B = LblSt(φ);
return λx . I (x) ∧ ¬B(x) = λx . 0;

}

OBDD LblSt(CTL φ) { /* also S = ⟨S , I ,R, L⟩ */

i f (∃p ∈ AP. φ = p) return λx . p(x);
e l se i f (φ = ¬ϕ) return λx . ¬LblSt(ϕ)(x);
e l se i f (φ = ϕ1 ∧ ϕ2)

return λx .LblSt(ϕ1)(x)∧LblSt(ϕ2)(x);
e l se i f (φ = EXϕ)
return λx . ∃y : R(x , y)∧LblSt(ϕ)(y);

e l se i f (φ = EGϕ)
return gfp(νZ . λx . LblSt(ϕ)(x) ∧ (∃y : R(x , y) ∧ Z (y)));

e l se i f (φ = ϕ1 EU ϕ2)

return lfp(µZ . λx . LblSt(ϕ2)(x)∨
(LblSt(ϕ1)(x) ∧ (∃y : R(x , y) ∧ Z (y))));

}

Towards Bounded Model Checking

Explicit and symbolic model checking are good, but many
systems cannot be checked by neither

RAM and/or execution time are over soon

Symbolic model checking directly makes use of boolean
formulas through OBDDs

What about using CNF, so that SAT solvers can be
employed?

modern SAT solvers are pretty good in many practical
instances
notwithstanding the SAT problem is of course still
NP-complete

Towards Bounded Model Checking

One big problem: computing quantization, AND, OR and
negation of a CNF is not straightforward

especially because instances from Model Checking are HUGE
also checking equivalence of two CNF is not trivial, as CNF is
not canonical

However, if we set a limit k to the length of paths
(counterexamples), then most of this is not needed any more

copy R for k times, with small adjustments

This is actually bug hunting: if the result is PASS, then there
is not an error within k steps

but there could be one at k + 1...
however, this is better than simple testing, as errors within k
steps can be ruled out

Bounded Model Checking of Safety Properties

In Bounded Model Checking (BMC) we are given a KS
S = ⟨S , I ,R, L⟩, an LTL formula φ, and k ∈ N (also called
horizon)

Let us consider the LTL property φ = Gp, being p ∈ AP

We want to find counterexamples (if any) of length exactly k

If x = x1, . . . , xn with n = ⌈log2 |S |⌉, let us consider
x (0), . . . , x (k)

S |=k Gp iff the following CNF is unsatisfiable:

I (x (0)) ∧
k−1∧
i=0

R(x (i), x (i+1)) ∧ ¬p(x (k))

otherwise, a satisfying assignment is a counterexample

Bounded Model Checking of Safety Properties

Note that each x (i) encloses n boolean variables, thus we have
n(k + 1) boolean variables in our SAT instance

the longest our horizon, the biggest our SAT instance

Note that I and R must be in CNF, which is not difficult

NuSMV does this pretty well

It is straightforward to modify the previous formula to detect
counterexamples of length at most k

However, it is usually preferred to perform BMC with
increasing values for k

practically, till when the SAT solver goes out of computational
resources
some approaches exist to estimate the diameter of a KS...

Bounded Model Checking of Programs

Till now, we had to write a model of the system under
verification (SUV)

There are some cases in which we can use the actual SUV,
with little or no instrumentation

it is possible to translate a digital circuit to a NuSMV
specification in a completely automated way (not difficult to
imagine how...)
here, we want to deal with a rather surprising application of
BMC: model checking a C program!

CBMC is a model checker performing BMC of C programs
with little or no instrumentation

thus, the input for CBMC is a C program (possibly with some
added statements)
an integer k may be required too
again, output is PASS or FAIL (with a counterexample)

We now give the main ideas of how it works

CBMC

