Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

©

©

©

()

Automated Verification of Cyber-Physical Systems is an
elective course for the Master Degree in Computer Science

Lecturer: Igor Melatti

Where to find these slides and more:

o https://igormelatti.github.io/aut_ver_cps/
20242025/index_eng.html

o also on MS Teams: “"DT0759: Automated Verification of
Cyber-Physical Systems (2024 /25)", code ramh3r4

2 classes every week, 2 hours per class
O/ Bt o

https://igormelatti.github.io/aut_ver_cps/20242025/index_eng.html
https://igormelatti.github.io/aut_ver_cps/20242025/index_eng.html

©

The exam consists in either reviewing a research paper or
working on a project

©

Each student may choose one between the two options

©

Project: perform verification of a given cyber-physical system
also in small teams (max 3 students)

each team may choose one among the ones selected by lecturer
or may propose one (but wait for lecturer approvall)

each team will have to discuss its project with slides

© 0 0 o

©

Paper: read a conference or journal paper and present it with
slides
o each student may choose one among the ones selected by
lecturer
o or may propose one (but wait for lecturer approvalI

o typically a tool paper, thus experiments rep W[‘I‘:”c, .
required Ulll AQUILA

o Input: a system S and (at least) a property ¢

o more precisely, a model of S must be provided
o that is, § must be described in some suitable language

o Output:

S satisfies ¢, i.e., S |E ¢
o the system S is correct w.r.t. the property ¢
o mathematical certification, much better than,
e.g., testing
S does not satisfy ¢, i.e., S £ ¢

o the system S is buggy w.r.t. the property ¢
o a counterexample providing evidence of the

error is also returned
\ B ‘

o Model checking is fully automatic
o a model checker only needs the description of & and the
property ¢
o “press button and go”
o this is not true for other verification tools such as proof
checkers, which require human intervention in the process
o Model checking is correct for both PASS and FAIL
o unless the description of S, or the property , are wrong
o this is not true for other verification techniques such as testing,
which only guarantees the FAIL result
o a buggy system may pass all tests, because the error is in some

corner case
\ DELL'AQUILA :

o Only works for finite-state systems

o typical example: you may verify a system with 3, 4 or 5
processes, but not with n processes, for a generic n

o Requires skilled personnel to write descriptions (and
properties)

o must know both the model checker language and the system

o however, less skilled than a proof checker user

o very few exceptions in which the model is automatically
extracted from the system

o also direct translations from digital circuits to NuSMV are
available

o Very resource demanding

o besides PASS and FAIL, also OutOfMem and OutOfTime are
expected results...

o bounded model checking: PASS is limited t mtimm um ‘
given number of steps 2 ‘ ‘

Two main categories:

visit the graph induced by the description of S
o very good for invariants and LTL model
checking of communication protocols
o on-the-fly generation of the graph: only the
reachable states are stored, the adjacency matrix
is implicitly given by the description of S

o Murphi, SPIN
represent sets of states and transition relations as
OBDDs

o very good for LTL and CTL model checking of
hardware-like systems
o all translated into a boolean formula

o also SAT tools may be used (b%gﬁ'\gmpdm ‘
checking) “

o A Cyber-Physical System (CPS) is a system where a physical
system is controlled and/or monitored by a software
o They are either partially or fully autonomous
o we will mainly deal with fully autonomous CPSs
o Examples are everywhere:

Internet of Things devices
Unmanned Autonomous Vehicles
Drones

Medical Devices

Embedded Systems

© ©6 06 06 o0 o

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Control

Software DA Plant -

microcontroller

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ / DELL'AQUILA
bty /

P
1]
T
o
>
c
o
O
O
o
~
O
o
x
8]
=
m

Buck DC/DC Converter

+ Uy i .
U L
Ty L +vo T C
V, L q
TUp %D ?(_jl rc

+v0)

Continuous time dynamics

i = ai1iL+ai2vo +ai3vp (1)
Vo = ao1ip+ax2vo+ax3vp (2)
g — Vvp=Ruip (3) g — vp=Rgip (7)
— ip>0 (4) g — w<0 (8)
— vy = Roniy (5) i — vy=Regiy (9)
vo = v,—V, (6) ip = ip—1I, (10)

where:
o iy, vp are state variables
o u € {0,1} is the action

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Discrete time dynamics with sampling time T

i' = (1+ Tana)iL + Taravo + Taravp (11)
VO/ = T32,1iL + (1 + Ta272)V0 + T8273VD. (12)
g — vp=Ruip(13) g — vp=Regip (17)
g — ip=0 (14) g — vwp<o0 (18)
U = Vo= Roiy (15) i = ve= R, (19)
vo = vu—Vip (16) ip = QL= (20)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Goal: keep vp in a desired safe interval
o typically, 5—-0.01V <vp <5+ 0.01V

o Notwithstanding the input voltage V; and the resistance R
may vary in some given interval

o typically, R =5+ 25%Q, V; = 15 + 25%V

o Effectively used in laptops: from battery voltage (V;) to
laptop processor voltage (vo)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Inverted Pendulum

UNIVERSITA
DEGLI STUDI
DELLAQUILA

Inverted Pendulum

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Continuous time dynamics

s 8 . 1
9:75|n9—|—mFu

where:
o 0 is the state variable
o u € {0,1} is the action

o m, I, F are system parameters

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Continuous time dynamics

).<1 = X2 (21)
1
Xy = %sin x1 + WFU (22)

Discrete time dynamics with sampling time T

X1 =x1+ Tx (23)
1
Xh = xp + T% sinx; + TWFU (24)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

To deal with cyber-physical systems:
o Probabilistic Model Checking
o rather than “are there errors?”, it is “is the error probability
low enough?”
o which entails “what is the error probability?”
o the system is probabilistic, i.e., a Markov Chain
o Statistical Model Checking
o rather than “are there errors?”, it is “is the error probability
low enough?”
which entails “what is the error probability?"
the system may be a non-probabilistic simulator
the answer is given with some statistical confidence

bridge between testing and verification N
.. R e

© 06 0 o

To deal with cyber-physical systems:
o System Level Formal Verification

o directly use a simulator instead of describing the system within
the model checker

o this will also need some background on systems simulation

o bridge between testing and verification

o Automatic Synthesis of Controllers
o rather than “are there errors in this system?”, it is “generate a

controller so that errors are avoided”
\ Beci sTunt 2

Summing up:
Q start from requirements
Q develop some (partial or final) solution
o you may “complicate” such steps at wish

Q verify that the current solution fulfills the starting
requirements
o you may need to change the requirements (they could be

wrong too, or they may have been changed)
o recall that verification may also be done during the

intermediate developing steps
U/ Bl g

Method number 1: Testing
Q you have the actual system (or a part of it)
Q you feed it with predetermined inputs

Q you check if outputs are the expected ones
o “expected” w.r.t. the requirements

Q if there is one output different from the expected one, then we
have an error

Q you correct it and start over again
o restarting from the “highest” point where you made the

correction

o requirements, design, code

Method number 1 bis: Simulation

o two typical cases:

o prototyping: you do not have the full code, but some simplified
prototype may be built

o feed inputs to the prototype instead of the actual software
o especially useful to test designs (early testing)

o you have the full code, but it is used to control/monitor of
some physical system (cyber-physical systems)

o the simulator is for such physical system: it accepts the same
inputs and provides the same outputs of the physical system

o connect the software to such simulator as it was the real
system

o proceed as in “normal” testing by feeding inputs and
observing outputs

o you might also use a prototype for the (control/monitor)

software and a simulator for the physical § m.for.earl o
testing \& ' o

Cyber-physical systems: why this methodology?
o Must check if they work before connecting to the physical
part
o or, even worse, build it
o at least, the most common/easy errors must be ruled out
o If you have a controller for a plane, you do not directly test it
on an actual plane, a simulator of the plane is used
o only when tests on the simulator are ok you move to test on
the actual plane
o if the simulator says the plane is crashed, it is less severe than
an actual plane crashing
o It is not a matter of safety only: it might also be an
economical problem
o e.g., testing on microprocessors must use some simulator

before, as “writing” on silicon is expensive %> !
. - . . | UNIVERSITA D\S\'A‘ .
o e.g., if you are building a new airplane also bg8ing enits @ g

controller, you must know if there are problend in the design

This might not be easy: testing typically only triggers errors
Then, you might have to reproduce the error in some smaller
scale

Then, you have to understand where the problem is and what
causes it

o requirements? architecture? design? single point in the code?
an intricated flow in the code?

Then, design and implement the actual correction

In this course, we only deal with error triggering

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

An approximate answer
BUG HUNTING: Testing + Simulation

Input sequence
(stimulus)

~..u(3) u(2) u(1) u(0)

N,

System (Model)

Compute output by
Simulation or by running the actual

system when possible

%

Define initial state + parameters

y - Observer

Output sequence

y(0) y(1) y(2) y(3) ...

™~
\\,\p\}}ycks that output sequence 91(/// DisM.

o Both testing and simulation may be performed in refined ways
o In fact, the testing plan (the predetermined sequence of
inputs) may be computed using dedicated algorithms so that
coverage is maximized
o we will get back soon on this concept
o This is the most challenging and important step for such
techniques

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Pro

o (Relatively) easy to implement
o easier than the other methods we will consider here

o Largely used in industry

o in most cases, testing and/or simulation are the only
verification methods used

Cons

o They can prove that a system has errors, but cannot prove
that a system does not have errors

o Cannot be used to prove generic formal properties

o The coverage of the “input space” is low

o Errors are frequently detected when it is too’%mmm
B B —

They can prove that a system has errors, but cannot prove that a
system does not have errors

o If an error is detected, then the system must be corrected,
happy to have discovered it

o Otherwise, we cannot conclude anything
o That is, we cannot say that the system is error-free

o In fact, having not be able to spot errors does not imply that

there are no errors
j» e :‘l\[\lll\!!’\ DISIM
\ % / BECEAQUILA '@ S

Cannot be used to prove generic formal properties

Qo

Qo

This is a consequence of the previous slide

As an example: in an operating system, is it true that mutual
exclusion is enforced for 2 given processes?
In order to test such a property you would have to modify the
system itself

o so that the output contains something like “propriety violated”

or “'property ok”

But even in this case, we cannot draw a formal statement on
the validity of the property

Again, not finding a violation does not imply there are no

violations N
‘¥\ UNIVERSITA DisiM
{ | DEGLISTUDI
\ BELLAQUILA !

The coverage of the “input space” is low

o A successful testing phase should consider “all what may
happen” to the system in a real-world environment

o This would need too much tests or simulations

Input sequences System (Model) Output sequences

. y(3) uy(2) uy(1) uy(0) Compute output by Y0 %) ¥:(2) yi(3) .

——|Simulation or by running the actual

0, (3) uy(2) uy(1) u,(0) ¥i(0) ¥,(1) ¥,(2) y,(3) -«

system when possible

o The n in the figure may easily be 10 and more; outputs must

also be checked o
ffl N ‘

The coverage of the “input space” is low
o This also has another bad consequence

o Testing and simulation find the “easy” errors

o the most frequent ones
o i.e., those that are caused by many (different) input sequences

o Instead, corner cases usually go undetected

o i.e., errors that are caused by a few (or even single) input
sequences are usually not found

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Errors are frequently detected when it is too late

o This is a consequence of the previous point: you need many
tests to get a reasonable coverage and discover possible corner

cases
o The later an error is found, the more expensive the correction
40 7 — Without Automated
testing
35 /\ With Automated testing

30 \

25 \

>0 Source:)
Mercury Interactive,

15 Siebel Siemens

10 \

5

0 Number of times more
T T T r T]

expensive to fix
1X 3-6X 10X 15-40X 30-70X 40- DisiM
1000X. o
Early development Implementation

Errors caught (percent)

o To solve the above underlined problems, we should consider
all inputs
o That is, all possible system evolutions

o of course, testing and simulation only consider some evolutions:
those “activated” by inputs chosen by the testing plan in use

o A possible way to do this is to prove a dedicated theorem,
stating that the system is correct for all inputs

o For sorting, this could be done (and it is actually done in
Algorithms textbooks...)

o For other cases (e.g., microprocessor design), it would be too
difficult or time consuming

o Thus, techniques of formal verification have %\ \[\,,Me\lop

©

A set of (heterogeneous) techniques which make possible the
impossible

©

That is, algorithms able to generate and analyze all system
evolutions
o so, they provide a mathematical certification of correctness
(not achievable with testing/simulation)
o also for generic properties, like mutual exclusion

©

Actually, the problem of verifying a given system w.r.t. a
given property is undecidable

o the property to be verified may be: is this system always
terminating?

So, there will be some (acceptable in many cases) Iimitati

©

| UNIVERSITA

| DEGLI STUDI
DELLAQUILA

©

©

()

©

There are many techniques available for formal verification

Applying any of these techniques is usually much more
difficult than testing/simulation

o both in terms of personnel and notions required
So, why to do this?
Because there are many cases in which testing/simulation
simply are not enough

o for both economic and safety reasons

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Safety-critical systems: failures may affect humans
o public transport software controllers (if an automatic pilot of
an airplane has a failure...)
o trains crossing
o ABS for cars
o ...
o For most of such systems, formal verification is mandatory by
law
o ESA (European Space Agency)
o |EC (International Electrotechnical Commission)

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

o Mission-critical systems: failures cause huge economic losses

o automatic space probes
o logistics

o communication networks
© MiCroprocessors

o

o Internal company regulations often make formal verification
mandatory as well

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Also for systems which are neither safety nor mission critical:
there are economic motivations to use formal verification

©

Using testing/simulations, errors are eventually discovered

©

The problem is that they may be found late
o this is a consequence of the low coverage issue

©

So late, that often errors are found after the system has been
deployed, i.e., when it is already used by its final users
o for, e.g., a word processor, it is annoying, but we are somewhat
used to software updates to fix bugs
o this is not always possible or easy
o e.g., a legacy software out of support

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Hardware circuits: to “write” a circuit on silicon is the most
expensive part of the developing process

So, finding an error after having written the circuit entails a
huge economic loss

This also holds for other systems, when the developing process
is lengthy

In fact, finding a late error may cause going again through
preceding developing phases

o less competitivity on the market
o for both being late and for augemented costs

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

There are two macro-categories:

o [Interactive methods

o as the name suggests, not (fully) automatic
o human intervention is typically required
o in this course, we do not deal with such techniques

o Automatic methods
o only human intervention is to model the system

o There also exist hybridations among the two categories

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

Also called proof checkers, proof assistants or high-order
theorem provers

©

Tools which helps in building a mathematical proof of
correctness for the given system and property
o Pros

o virtually no limitation to the type of system and property to be
verified
o Cons

o highly skilled personnel is needed
o both in mathematical logic and in deductive reasoning
o needed to “help” tools in building the proof

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Used for projects with high budgets
o For which the automatic methods limitations are not

acceptable
o used, e.g., to prove correctness of microprocessor circuits or
OS microkernels

o Some tools in this category (see
https://en.wikipedia.org/wiki/Proof _assistant):

o HOL
o PVS
o Coq

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

https://en.wikipedia.org/wiki/Proof_assistant

Commonly dubbed Model Checking
Model Checking software tools are called model checkers

There are some tens model checkers developed; the most
important ones are listed in https://en.wikipedia.org/
wiki/List_of_model_checking_tools

Many are freely downloadable and modifiable for research and
study purposes

Research area with many achievements in over 30 years

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

https://en.wikipedia.org/wiki/List_of_model_checking_tools
https://en.wikipedia.org/wiki/List_of_model_checking_tools

Perfect verification of
arbitrary properties by
logical proof or
exhaustive testing
(infinite effort)

Theorem proving:
Unbounded effort to
verify general properties

Model Checking:
Decidable but possibly
intractable checking of

simple temporal properties

Typical
testing
technique

Precise analysis of
simple syntactic
properties

Simplified Optimistic

properties inaccuracy 2|
E| universiTa DISIM
7 B =2
Pessimistic 4 ’

inaccuracy

T
(VHDL, Verilog, C, C++) (
Java, MathLab, Simulink, ...) / \\

~— — ~

BAD

Model Checker

(Equivalent to
Exhaustive testing)

v Counlerelemple
Ie. sequence of events
(states) leading to an
undesired state.

-
FAIL ~_|
// .

PASS

Le. no sequence of
events (states) can
possibly lead to an
undesired state.

—

T DISIM
upI pimerio i
QUILA

System Req uirements Verification fest
& Case Studies of Case Studies

Software Integration
& Testing

—
Model Checker

Automated test generation

ﬂ - ‘ High Value Activities
oisit

Less design errors
g v

Actual Needs and .
Constraints User Acceptance (alpha, beta test) Delivered
Package
2
2
E) System < System Test System
Specifications Integration
Analysis /
Review
Subsystem Integration Test
Design/Specs Subsystem
Analysis /
Review |
Unit/Component| Unit/ |
Specs Module Test | components | | |
__ User review of external behavior as it is
determined or becomes visible
° I ”Valida(ion
)
7 i >
Verification

RSITA

DISIM

o In order to have this computationally feasible, we need a
strong assumption on the system under verification (SUV)
o l.e., it must have a finite number of states
o Finite State System (FSS)

o In this way, model checkers “simply” have to implement
reachability-related algorithms on graphs

o Such finite state assumption, though strong, is applicable to
many interesting systems

o that is: many systems are actually FSSs
o or they may be approximated as such
o or a part of them may be approximated as such

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

There are many notions of “state” in computer science

Model checking states are not the ones in UML-like state
diagrams

Model checking states are similar to operational semantics
states

That is: suppose that a system is “described” by n variables

Then, a state is an assignment to all n variables
o given Dy,..., D, as our n variables domains, a state is

n
se x . D;
i=1
\ / DEGLI STUDI ence dettn

o We have two identical processes accessing a shared resource

o in the figure below, /i, denote the two processes
o the well-known Peterson algorithm is used

Q[1] := true; turn :=1; 1Q[2] or turn =2

Q[2] and turn = 1

Q[1] := false;

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o The 5 “states” in the preceding figure are actually modalities

o From a model checking point of view, they correspond to
multiple (i.e., sets of) states

o To see which are the actual states, let us model this system
with the following variables:
o mj, with i = 1,2: the modality for process i
o Q;, with j =1,2: Q; is a boolean which holds iff process i
wants to access the shared resource
o turn: shared variable

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Thus, the resulting model checking states are the following:

it VERSITA DISIM
J DEGLISTUDI Dgiimerind
DELLAQUILA

o There are 25 reachable states
o assuming state (L0, LO, f,f,1) as the starting one
o All possible states are 200

o there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 x 52 overall assignments

o The LO modality for the first process encloses 6 (reachable)
states

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

DISIM

©

©

©

There are 25 reachable states
o assuming state (L0, LO, f,f,1) as the starting one

All possible states are 200
o there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 x 52 overall assignments
The LO modality for the first process encloses 6 (reachable)
states
No need of guards on transitions!

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

o The UML-like state diagram is often useful to write the model

o as we will see, this will depend on the model checker input
language

o It is the model checker task to extract the global (reachable)
graph as seen before

o And then analyze it

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o ESA, NASA e IEC require most of their project to be model
checked

o Important companies have dedicated laboratories for Model
Checking
o hardware: Intel, IBM, SUN, NVIDIA
o software: IBM, SUN, Microsoft
o Many universities have research groups
o USA: MIT, CMU, Austin, Stanford...
o very close collaboration with companies
o The 3 “inventors” of Model Checking received Touring Award
in 2007:

o E. A. Emerson, E. M. Clarke, J. Sifakis e ! .
% e, @ ‘
\ DELL'AQUILA o

T
(VHDL, Verilog, C, C++) (
Java, MathLab, Simulink, ...) / \\

~— — ~

BAD

Model Checker

(Equivalent to
Exhaustive testing)

v Counlerelemple
Ie. sequence of events
(states) leading to an
undesired state.

-
FAIL ~_|
// .

PASS

Le. no sequence of
events (states) can
possibly lead to an
undesired state.

—

T DISIM
upI pimerio i
QUILA

3 steps:
Q Choose the model checker M which is most suitable to the
SUV S (and the property ¢)
Q Describe S in the input language of M
Q Describe the property ¢
Q Invoke the model checker and wait for the answer

o OK= S ': ©
o FAIL = counterexample

o correct the error (it may happen that S or ¢ must be
corrected instead...) and go back to step 3

o OutOfMem or OutOfTime

o adjust system parameters (or the description.of S)
. R i

o Most used for reactive systems
o always executing systems:
o monitors: warns if something bad happens
o controllers: avoids that something bad happens
o services: wait for requests and serve it
o more in general, concurrent execution of processes/threads
with shared memory/messages exchange
o errors may occur because of interactions/interleaving between
different processes/threads

o Not good for standalone (1-process) programs

o e.g., sorting an array or perform BFS of a graph
o for such systems, testing can be complemented with theorem
proving (or with manual proof derivation)

o of course, budget must be taken into accou%mmm m
B/ B! g

Pro
o Same guarantees of proof checking
o But requiring less “mathematics” and “computer science”
knowledge
Cons
o Computational Complexity

o causing “"OutOfMem” and "OutOfTime": State Explosion
Problem

o You check a model of the system, not the actual system

o though in some cases models can be automatically extracted
from the system

o Useful only for multi-process/thread softwar%mw\ .

o With some semplification, all Model Checking algorithms are
essentially like this:

Q Extract, from the description of the SUV S, the transition
relation of S

Q Compute the reachable states (reachability)

©Q Check if ¢ holds in all reachable states

o All steps may be computationally heavy, but let us focus on
the reachability

o see mutual exclusion example

o If S is described by n (binary) variables, then the number of

reachable states is O(2")
j» NE “l\l\lk\!! A DISIM
OB/ bic it e

o Such complexity cannot be avoided in the most general case
o Theoretically speaking, (LTL) Model Checking is P-SPACE
complete
o CTL Model Checking is in P, but as we will see this does not
make things better
o There are several model checking algorithms, depending on
the “type"” of S
o each checker has its “preferred” SUVs

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

There are 3 categories:

o Explicit
o Implicit (symbolic)

o SAT-based

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

There are 3 categories:
o Explicit
o each reachable state is separately stored
o very good for communication protocols

o Implicit (symbolic)

o SAT-based

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

There are 3 categories:
o Explicit
o each reachable state is separately stored
o very good for communication protocols

o Implicit (symbolic)
o dedicated data structures are used to represent sets of states
o very good for digital hardware

o SAT-based

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

There are 3 categories:
o Explicit
o each reachable state is separately stored
o very good for communication protocols
o Implicit (symbolic)
o dedicated data structures are used to represent sets of states
o very good for digital hardware

o SAT-based

o many problems may be theoretically rewritten as SAT, but in
model checking this works pretty well also in practice

o software model checking
B) B 2

There are 3 categories:
o Explicit
o each reachable state is separately stored
o very good for communication protocols
o Implicit (symbolic)
o dedicated data structures are used to represent sets of states
o very good for digital hardware

o SAT-based

o many problems may be theoretically rewritten as SAT, but in
model checking this works pretty well also in practice
o software model checking

o Proof checker ibridations

o not completely automatic, but better than %’gﬂjﬁquers[,s-ﬂ ‘

o Murphi or Murp, the simplest among “model checkers”

o as all model checkers we will see in this course, Murphi may be
freely downloaded with the source code, thus it may also be
modified

o links for download of all model checkers we will see are on the
course web-page: https://igormelatti.github.io/sw_
test_val/20242025/index.html

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

https://igormelatti.github.io/sw_test_val/20242025/index.html
https://igormelatti.github.io/sw_test_val/20242025/index.html

o Formally, as all model checkers, Murphi needs the following
input:
Q a description of the system S you want to verify (i.e., the
“model” you want to “check”)

o as we will see, this is essentially a Kriepke structure
Q a property ¢ you want the system S to satisfy

o The output will be either OK or FAIL
o if FAIL, it is possible to tell Murphi to print a counterexample

o In Murphi, both the description of S and of ¢ must be written

ina

Qo

single text file, following a precise syntax

in other model checkers we will see (e.g., SPIN), this syntax
has a name; but this is not the case for Murphi

o thus, we will refer to it simply as Murphi input language
o as we will see, in many points Murphi input language is similar

to some imperative programming languages, especially Pascal
(for statements) and C (for expressions)

o Murphi checks that all reachable states of S satisfy all
invariants

o a state s € S is reachable if there exists a path in the
transition graph from an initial state to s

o that is: starting from an initial state, there exists a chain of
rules, each applied to the state obtained from the preceding
one, leading to s

o this is a safety property

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

boolean flag [2];
int turn;
void P0() Peterson’s Algorithm

while (true) {
flag [0] true;
turn = 1;
while (flag [1] && turn == 1) /* do nothing */;
/* critical section */;
flag [0] = false;
/* remainder */;

}

void P1()

while (true) {
flag [1] = true;
turn = 0;
while (flag [0] && turn == 0) /* do nothing */;
/* critical section */;
flag (1] = false;
/* remainder */

}
void main()
flag (0] = false;

flag [1] = false;
parbegin (PO, P1); | b
DI

NIVERSITA DISIM

o Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

o UML-like state diagram: this is the first process; the second
may be obtained exchanging 1's with 2's and viceversa
Q[1] := true;

turn :=1; !Q[2] or turn =2

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Q[2] and turn = 1

QI[1] := false;

o Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

o two identical processes

o each applies Peterson protocol to access to the critical section
L3

o the first issuing the request enters L3
o Q is a global variable, defined as an array of two integers
o each process i may modify QL[i1 and read Q[(i + 1) mod 2]
o turn is another global variable, which may be both read and
modified by both processes

o Murphi description for Peterson protocol: let's start with the
variables

o of course turn and Q, but also two variables P for the modality
(“states” in the UML-like state diagram)

o see 01.2_peterson.no_rulesets.no_parametric.m

o to this aim, we define constants and types

o the N constant (number of processes) is here fictious: only 2
processes, not more

o this version of Peterson protocol only works for 2 processes

o thus, the state space is
S = label t2 x {true, false}? x {1,2}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

P v e {L0,L1,12, 13,14} v e {L0,L1,12, 13,14}

Q v € {true, false} v € {true, false}

turn v € {1..N}

o Hence, |S| = 52 x 22 x 2 = 200 (there are 200 possible states)

o as a matter of comparison, the “state” LO in the UML-like
state diagram actually contains 5% x 22 x 2 = 40 states...

o However, as we will see, reachable states are about 10 times
less

o 2 initial states: turn may be initialized with any value in its
domain

o Note that 01.2_peterson.no_rulesets.no_parametric.m
we have rules repeated 2 times in a nearly equal fashion

o This can be done in this very simple model, but in general

descriptions must be parametric -
j» “ UNIVERSITA DISIM
A B g

o If we want to check Peterson with 3 processes, currently we
would have to add rules in the desciprion
o very similar to the ones already present, only changing the
index to 3

o Instead, it must be possible to only change the value of N
from 2 to 3

o To write parametric descriptions in Murphi, rules are grouped
with rulesets

o an index will allow to describe the behavior of the generic
process |
o see 02.2_peterson.with rulesets.no_parametric.m, but

invariant is still for two processes only
\ / DEGLI STUDI ienze delln
\ B ;

o Finally, in 03.2_peterson.with_rulesets.parametric.m
also the invariant is parametric in N

o Exists x:T E(x) End is equivalent to Vyc7E(X)
o Forall x:T E(x) End is equivalent to AxeTE(x)
o all types T = {xi,...,x 7} are finite, thus it is a finite formula

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Let AP be a set of “atomic propositions”

o in the sense of first-order logic: each atomic proposition is
either true or false
o tipically identified with lower case letters p,q,. ..

o A Kripke Structure (KS) over AP is a 4-tuple (S, I, R, L)

S is a finite set, its elements are called states
| C S is a set of initial states

R C S x S is a transition relation

L:S — 24P is a labeling function

© © 0 o

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o A Labeled Transition System (LTS) is a 4-tuple (S, I, A\, d)

S is a finite set of states as before

| C S'is a set of initial states as before (not always included)
A is a finite set of labels

6 C S x A\ xS isa labeled transition relation

© © 0 o

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o S = {(p17p27 qi, g2, t) ‘ P1, P2 S {LO)L17L27L3>L4}, q1, g2 c
{0,1},t € {1,2}} = {L0,L1,1L2,L3,L4}2 x {0,1}? x {1,2}

o I ={L0}2 x {0} x {1,2}

o R: see next slide

© AP = {(P1=v) | v € {LO.LLL2 L3, LA} U{(P = v) | v €
{LO,L1, 12,13, L4}} U{(Q1 = v) | v € {0,1}} U{(@;
V) v e {01} U {(turn = v) | v € {1,2}}
o eg. L((L0,L0,0,0,1)) = {(P; = L0), (P2 = L0),(Q; =

0), (Q2 = 0), (turn = 1)}
% puversiy o

(LIL

E.g.: ((L0,L0,0,0,1),(L1,L0,1,0,1)) € R, whilst
((L0,L0,0,0,1), (2,L0,0,0,1)) ¢ R

Transitions in R corresponds to arrows in the figure above

UNIVERSITA DISIM
| DEGLI STUDI Oganinerie ol wgegrer
DELLAQUILA]

o KSs have atomic propositions on states, LTSs have labels on
transitions
o In model checking, atomic propositions are mandatory
o to specify the formula to be verified, as we will see
o a first example was the invariant in Murphi
o Instead, it is not required to have a label on transitions

o Murphi allows to do so, but it is optional
o may be easily added automatically, if needed
o Labels are typically needed when:
o we deal with macrostates, as in UML state diagrams
o when we are describing a complex system by specifying

sub-components, so labels are used for synchronization
R ‘\

NIVERSITA DISIM
EGLI STUDI e
ELLAQUILA]

its

t
\ | D
\ DI

o In many cases, the transition relation R is required to be total
oVseS3s'eS:(s,s)eR

o this of course allows also s = s’ (self loop)
o In the Peterson’s example, the relation is actually total

o Murphi allows also non-total relations, by using option -ndl

o note however that not giving option -ndl is stronger:
VseS3s'eS:s#s AN(s,s')eR

o otherwise, if siss.t. Vs'. s ="V (s,s’) ¢ R, Murphi calls s a
deadlock state

o that is, you cannot go anywhere, except possibly self looping
ons

o By deleting any rule, we will obtain a non-total transition

relation s |
| | UNIVERSITA DISIM

©

The transition relation is, as the name suggests, a relation

©

Thus, starting from a given state, it is possible to go to many
different states

o in a deterministic system,

Vsi, 5,5 € S. (51752) ERA (51,53) ER— =353

o this does not hold for KSs
This means that, starting from state s;, the system may
non-deterministically go either to s, or to s3

o or many other states

©

©

Motivations for non-determinism: modeling choices!
o underspecified subsystems
o unpredictable interleaving
o interactions with an uncontrollable environmepnt

‘l\l\l]?\”\ DIsIM
Qo ... \ | DEGLI STUDI
\ DELL'AQUILA 2

o Given a KS § = (5,1, R, L), we can define:
o the predecessor function Preg : S — 2°
o defined as Pres(s) = {s' € S| (s/,s) € R}
o we will write simply Pre(s) when S is understood
o the successor function Post : § — 2°
o defined as Post(s) = {s' € S| (s,s’) € R}
o Note that, if S is deterministic, Vs € S. |Post(s)| <1

o Note that, if S is total, Vs € S. |Post(s)| > 1

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o A path (or execution) on a KS § = (5,1, R, L) is a sequence

T = 59515> . .. such that:
o Vi>0.s; €5 (itis composed by states)
o Vi >0.(s;,si+1) € R (it only uses valid transitions)

o We will denote i-th state of a path as (i) = s;
o Note that paths in LTSs also have actions: m = spagsiaz . . .

s.t. (S,', aj, Si+1 € 5)
% P -

o The length of a path m is the number of states in 7
o paths can be either finite 7 = sgs1 ... s, in which case

7| =n+1
o or infinite T = spsy ..., in which case |7| = co

o We will denote the prefix of a path uptojas7|; =sp...s;
o a prefix of a path is always a finite path

o A path 7 is maximal iff one of the following holds
o || =00
o || = n+1 and |Post(n(n))] =0

o thatis, Vs € S. (n(n),s) ¢ R
o i.e., the last state of the path has no successors

o often called terminal state

o If R is total, maximal paths are always infinite
o for many model checking algorithms, this is‘%iﬁdm m ‘

o The set of paths of § starting from s € S is denoted by
Path(S,s) = {n | m is a path in S A 7(0) = s}
o The set of paths of § is denoted by
Path(S) = Use/Path(S, s)
o that is, they must start from an initial state
o A state s € S is reachable iff
dr € Path(S), k < |rn|: w(k)=s
o i.e., there exists a path from an initial state leading to s
through valid transitions

o The set of reachable states is defined by
Reach(S) = {#(i) | 7 € Path(S),i < |r|}

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Verification of invariants: nothing bad happens
o The property is a formula ¢ : S — {0,1}
o built using boolean combinations of atomic propositions in
p € AP
o i.e., the syntax is

O=(P) [PAD|DOVI| D |p

o The KS S satisfies ¢ iff ¢ holds on all reachable states
o Vs € Reach(S). ¢(s) =1
o Note that it may happen that ¢(s) = 0 for some s € S: never

mind, if s ¢ Reach(S)
B/ Biih e

©

©

©

©

Theoretically, extract KS S and property ¢ from M as
described above

o for a given invariant / in M, ¢(s) =¢(/,s) forall s € S
Then, KS S satisfies ¢ iff ¢ holds on all reachable states
o Vs € Reach(S). ¢(s) =1
Thus, consider KS as a graph and perform a visit
o states are nodes, transitions are edges
If a state e s.t. p(e) =0 is found, then we have an error

Otherwise, all is ok

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

o From a practical point of view, many optimization may be
done, but let us stick to the previous scheme

o The worst case time complexity for a DFS or a BFS is
O(|V| + |E|) (and same for space complexity)

o For KSs, this means O(|S| + |R|), thus it is linear in the size
of the KS

o Is this good? NO! Because of the state space explosion
problem

o Assuming that B bits are needed to encode each state

o ie, B= 27:1 b;, being b; the number of bits to encode
domain D;

o We have that |S| = O(2B) %

The “practical” input dimension is B, rather than |S| or |R|
Typically, for a system with N components, we have O(N)
variables, thus O(B) encoding bits

It is very common to verify a system with N components, and
then (if N is ok) also for N 4+ 1 components

o verifying a system with a generic number N of components is a
proof checker task...

This entails an exponential increase in the size of |S]
Thus we need “clever” versions of BFS/DFS

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Assumes that all graph nodes are in RAM

o For KSs, graph nodes are states, and we know there are too
many

o state space explosion

o You also need a full representation of the graph, thus also
edges must be in RAM

o using adjacency matrices or lists does not change much
o for real-world systems, you may easily need TB of RAM

o Even if you have all the needed RAM, there is a huge
preprocessing time needed to build the graph from the Murphi
specification

o Then, also BFS itself may take a long time .
AR/ Bl rd

o We need a definition inbetween the model and the KS: NFSS
(Nondeterministic Finite State System)
o N = (S, 1, Post), plus the invariant ¢

o S is the set of states, | C S the set of initial states
o Post : S — 25 is the successor function as defined before

o given a state s, it returns T sit. t€ T — (s,t) € R
o no labeling, we already have ¢

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o KSs and NFSSs differ on having Post instead of R
o Post may easily be defined from the Murphi specification
o Such definition is implicit, as programming code, thus
avoiding to store adjacency matrices or lists
o t € Post(s) iff there is a rule T; € T s.t. T; guard is true in s
and T; body changes s to t
o see above for using 1 and ¢

o Essentially, if the current state is s, it is sufficient to inspect all
(flattened) rules in the Murphi specification M

o for all guards which are enabled in s, execute the body so as
to obtain t, and add t to next(s)

o This is done “on the fly", only for those states s which must

be explored e

void Make_a_run(NFSS A, invariant ¢)
{
let N =(S,/,Post);
s_curr = pick_a_state(/);
if (l¢(s_curr))
return with error message;
while (1) { /* loop forever */

s_next = pick_a_state (Post(s_curr));
if ('¢(s_next))

return with error message;
s_curr = s_next;

}
}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

void Make_a_run(NFSS N,
{

invariant ¢)
let N =(S,[,Post);
s_curr = pick_a_state(/);
if (l¢(s_curr))
return with error message;
while (1) { /* loop forever */
if (Post(s_curr)=9)
return with deadlock message;

s_next = pick_a_state (Post(s_curr));
if ('y(s_next))

return with error message;
s_curr = s_next;

}
}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

void Make_a_run(NFSS A, invariant ¢)
{

let N =(S,[,Post);
s_curr = pick_a_state(/);
if (l¢(s_curr))
return with error message;
while (1) { /* loop forever */
if (Post(s_curr)=@ V Post(s_curr)={s_curr})
return with deadlock message;
s_next = pick_a_state (Post(s_curr));
if ('y(s_next))
return with error message;
s_curr = s_next;
} &
) o

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

©

©

©

Similar to testing
If an error is found, the system is bugged

o or the model is not faithful
o actually, Murphi simulation is used to understand if the model
itself contains errors

If an error is not found, we cannot conclude anything

The error state may lurk somewhere, out of reach for the
random choice in pick_a_state

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

BFSIG. 5)
I for ogni vertice u € V]G] - {5]

2 do color{u] & WHITE
3 dftt] &= e
4 afu] +— niL
5 color{s] « Gray
6 dis]«0
T mix] e~
8 Q5]
9 whileQ=z@
10 do u & head[Q]
11 for ogni v & Adj{u]
12 do if color{v] = wHITE
13 then color[v] « crav
14 ‘ d[v] e dllwe] + 1
I35 Avl—u
16 - Expuere(@. v)
17 Degueve(() e
| | UNIVERSITA Disim
18 calorit] & nLack % BEGHLSTLPL e,

FIFO_Queue Q;
HashTable T;

bool BFS(NFSS N, AP ¢)

{

let N =(S,/,Post);
foreach s in [{
if (le(s))
return false;

}

foreach s in |/
Enqueue(Q, s);

foreach s in |/
HashInsert (T, s);

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

while (Q # 0) {
s = Dequeue(Q);
foreach s_next in Post(s) {
if ('p(s_next))
return false;
if (s_next is not in T) {
Enqueue (Q, s_next);
HashInsert (T, s_next);
Yy /% <f x/ } /* foreach */ } /* while */

return true;

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

©

Edges are never stored in memory
o states are “created” when expanding the current state
o rules are used to modify the current state so as to obtain the
new one
o at the start, you have an empty state which is modified by
startstates
(Reachable) states are stored in memory only at the end of
the visit

o inside hashtable T

©

©

This is called on-the-fly verification

o States are marked as visited by putting them inside an
hashtable

o rather than coloring them as gray or black

o which needs the graph to be already in mer%} T m

z

o State space explosion hits in the FIFO queue Q and in the
hashtable T

o and of course in running time...
o However, Q is not really a problem

o it is accessed sequentially
o always in the front for extraction, always in the rear for
insertion

o can be efficiently stored using disk, much more capable of
RAM

o T is the real problem

o random access, not suitable for a file
o what to do?

o before answering, let's have a look at Murphi«code
. R i

o As for all explicit model checker, a Murphi verification has the
following steps:
Q compile Murphi source code and write a Murphi model
model.m
Q invoke Murphi compiler on model.m: this generates a file
model.cpp
o mu options model.m
o see mu -h for available options
Q invoke C++ compiler on model.cpp: this generates an
executable file
o g++ -Ipath_to_include model.cpp -o model
o path_to_include is the include directory inside Murphi
distribution
Q invoke the executable file

o ./model options <iz
o see ./model -h for available options \ J BECEASUILY e

o Invariants represent a huge share of properties to be verified
on a system
o For many systems, one may be happy with invariants only
o “nothing bad happens”, that's all folks
o However, it is not always sufficient: a non-running system of
course satisfies invariants
o no starting states, thus no reachable states...

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Safety properties: something bad must never happen

o example: in the Peterson's protocol, it must not happen that
both processes are accessing the resource (L3 in the Murphi
model)

o Invariants are a special case of safety properties
o there are some safety properties which are not invariants
o however, they can be expressed with invariants by adding
variables to the Kripke Structure
o in the following, we will consider “invariants” and "safety
properties” as synonyms

o Liveness properties: something good will eventually happen

o example: in the Peterson's protocol, both processes will
eventually access the resource

o not at the same tlmel A " “l\[\lll%”\ DISIM
o cannot be expressed with invariants G/ sttt e

©

Notation: let S be a KS and ¢ be a formula in any logic
S | ¢ is true iff @ is true in S

o what this means depends on the logic, as we will see

©

©

For most properties ¢, if S [~ ¢ then there exists a path
7 € Path(S) which is a counterexample

o by overloading the symbol =, 7 (£ ¢

©

For safety properties, |7| < oo
o & arrives to an unsafe state and that’s it

©

For liveness properties, |7| = 0o
o since S is finite, this implies that 7 contains a loop (/asso) in

its final part
\ B ‘

Equivalent definition for a safety formula: given a finite
counterexample, every extension still contains the error

There is one formula which is both safety and liveness: the
true invariant

o it cannot have a counterexample...
There are formulas which are neither safety nor liveness

o their counterexample is not a path
For typically used formulas, they are either safety or liveness
properties

If we identify a property by the set of its models (¢ = {0 | 0 = ¢})

safety and liveness property
9AP\w
(277)

\ .-~ liveness properties

safety properties

~ - --~ neither liveness
nor safety properties

Ty | osm
\ Jg/ BiRITAGUIR =

invariants

©

Model Checking logics are based on the concept of execution
of a Kripke structure &

o thus, on 7w € Path
Often, paths are directly viewed as a sequence of atomic
propositions, rather than states

o from 7 =s1,%,... to AP(7) = L(s1), L(s2), - - .
Focusing on executions allows to model time

o time in the sense that we have something coming before of
something else (in a path...)

©

©

o Trade-off between

o logics expressiveness: interesting properties can be written
o logics efficiency: there is an efficient model checking algorithm

to compute if S |= ¢ %
.. 4 o

o We will focus on the two leading Model Checking logics: LTL
and CTL

o with some hints on CTL*

o LTL (Linear-time Temporal Logic) established by Pnueli in
1977

o CTL (Computation Tree Logic) established by Clarke and
Emerson in 1981
o used for IEEE standards:

o PSL (Property Specification Language, IEEE Standard 1850)
o SVA (SystemVerilog Assertions, IEEE Standard 1800).

o We will see syntax and semantics of both logics

o syntax: how a valid formula is written
o semantics: what a valid formula “means”

o that is, when § = ¢ holds <iz
: Sk *M st @
\ | BECEAGUILA oSt o

¢ZZ:p|¢1/\¢2‘ﬁ¢‘(¢)’X¢”¢1U¢2

o Other derived operators:

o

© © o

o

of course true, false, OR and other propositional logic
connectors

future (or eventually): F® = true U ¢

globally: G® = —(true U =¢) = =F—®

release: ®; R &5 = —(—P; U —d,)

weak until: ;3 W &, = ($; U $,) vV Gd,

o Other notations:

[+]

o

o

next: X¢ = (O
Go =0¢
Fo =0

o We are dropping past operators, thus this isj‘»% uittire :

©

©

©

Goal: formally defining when S |= ¢, being S a KS and ¢ an
LTL formula

o we say that S satisfies ¢, or ¢ holds in S

This is true when, for all paths 7 of S, 7 satisfies ¢
o i.e, Vr € Path(S). 7 = ¢
o symbol = is overloaded...
Fora given 7, m = @ iff 1,0 = ¢
Finally, to define when 7,/ |= ¢, a recursive definition over the
recursive syntax of LTL is provided

o 7€ Path(S),i € N

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

m, i = piff p e L(n(i))

i EPI NG Iff i =P AT, i = Py

i =P iff i fE D

m i EXOiffr,i+1E=®

TG Uy iff 3k > i: m k= GaAVi < j < kom,j = &

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o It is easy to prove that:

V7 € Path(S),i € N. 7, i = true

T iEGOfY>imjEd

T iEFOIffIj>im o

TiEGI RO iffVA>imkEdVIi<j<k:mjEd
o e, Vk>imklfEd,—3i<j<k:mjEd
o ie,Vk>iVi<j<k mjEd —»mklEDd

TiEO W iff (V>imjE=d)Vv(@k>i: mkE

Py AVi<j< k.omjl=d)

o For many formulas, it is silently required that paths are infinite

o That's why transition relations in KSs must be total

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

© 06 0 o

©

© ©6 0 ©

For p € AP, we will also consider p to be any set in
{(Pc2AP | pec P}
o that is, p is any subset of atomic propositions containing p

o e.g., p may be any of {p},{p, qg, {p,r,s}...
o furthermore, p=—-p e {P 24P | p¢ P}

o e.g., p may be any of {q},{q,r}, {r,s}...
o finally, L denotes any subset of atomic propositions

If 7 = Gp, then ™ = p¥

o of course, this includes, e.g., m = {p, g}{p, r}{pHp, gH{p}- ..
om,3EGp: m=L11p¥

If 7 |=Fp, thenm=1%p L

If | =pUgq, thenm={p,g}*q L¥

If 7 = p W gq, then either 7 = {p, §}*q L“ or m = p¥
If 7 = p R g, then either 7 = {p, q}* or

m=1{pat"{p,q} L*
o g must be kept holding till when a p appeak d‘ “reléas @ i

g...

o Given an LTL formula ¢, ¢ is a safety formula iff
VS. (3m € Path(S) : mlE) = 3k wl fE @
o Given an LTL formula ¢, ¢ is a liveness formula iff
VS. (3m € Path(S) : 7 £) — 7] = 0
o Al LTL formulas are either safety, liveness, or the AND of a
safety and a liveness
o being defined on paths, the counterexample is always a path
o Safety properties are those involving only G, X, true and
atomic propositions
o Liveness are all those involving an F or a U
o but beware of negations...

| UNIVERSITA

o Some formulas are both safety and liveness, like true, G true
and so on % prma, *

)
=

S E Fp since p holds in the
first state

For full: let 7 € Path(S)

m,0 = Fp with j =0

/Sz\] recall: 71'7/'): Fo iff
A injEd
- m,i | piff p € L(n(i))

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

N

¢/§T\J S [~ Fa since sp is not reach-
able from sp
counterexample: s =
S055S0ss5 . . .

For full: 7,0 £ Fa as, for all

jﬂ
»
Y
—
V
o
QL
R
=
3
S

Counterexample is infinite,
thus this is a liveness property
6\] Any finite prefix of 7 is not a

N counterexamples- '
% N @ -
\ DELL'AQUILA Sy

o

a

2)
J

S = Gp since there are many
counterexamples, here is one:
T = 50555055 - - -

For full: 7,0 = Gp with j =1

/s‘\] recall: mi = G iff
YT jE®
p.r m, i = piff p e L(w(i))

N

a rﬂsﬁ\] Safety property, actually
7|2 is enough

Every path hagipe 7/> as73y,..
prefix is a coungerexample S

2)
J

S E G-a since s is not
reachable from s

For full: let @ € Path(S)
7,0 = G—a as the only state
s with a € L(s) is s, which is
3\] not reachable from s

N

N
Pt f recall. 7 € Path(S) im-
plies 7(0) € I, thus w(0) = sp
a r/Sﬁ\] here

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S E p U g since p € L(sp),
next(sp) = {si,s5} and g €
L(Sl) NqgE L(S5)

)
=

(72
HT

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S = p U r, a counterexample
is ™ = sps1(s25354)

Again this is a liveness formula,
even if m|; would have been
enough

s ™\ In fact, you have to rule out

" {p,7}...

)
=

N

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

2)
J

N

S = —(p U r), a counterexam-
ple is m = (sos5)

In fact, (s0s5),0 =p U r

Thus it may happen that S [~
® and S = ()

/s ™\ Instead, it is impossible that

_/ S and S ()

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

2)
J

S = q, since sp is the only ini-

tial state and g ¢ L(so) (all

paths in Path(S) must start

from sp)

S |= p, since p € L(sp)

3\] S EXq, since ge L(s1)) Nqg e

L(S5)

p.t f S = XXgq, since all states but
S5, S¢ are reachable in exactly 2

a (8§) steps

N
/
\

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S - FGp, a counterexample is
T = s051(525351)
Again this is a liveness formula

)
=

f%

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

)

(72

S = GFp

All lassos are spss or sps35s

In both such lassos, there are
states in which p holds

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S = GFpV FGp
Consequence of the two previ-
ous slides

)
=

(72
HT

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

(72

S = G(p U q), a counterexam-
ple is m = sps1(525351)

(p U g) must hold at any
reachable state

Ok in sp, s1, Sp, but not in s3

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

o Recall the Peterson's protocol: checking mutual exclusion is
G(—(p A q)), being p=P[1] =L3,q =P[2] =L3
o all invariants are of the form GP, where P does not contain
modal operators X, U or F
o Checking that both processes access to the critical section
infinitely often is GF P[1] = L3 A GF P[2] = L3
o liveness property: no process is infinitely banned to access the
critical section
o Even better: G (P[1] = L2 — F P[1] = L3)
o the same for the other process
o since it is simmetric, this is actually enough

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Definition of equivalence between LTL properties:
pr1=pr ff VS.8Epi&SE @
o equivalent: Vo...
o ldempotency:
o FFp=Fp
o GGp=Gp
o pU(pUqg)=(pUq)Ug=pUgq
o Absorption:
o GFGp =FGp
o FGFp = GFp
o Expansion (used by LTL Model Checking algorithms!):

o pUqg=qV(pAX(pUq)
o Fp=pV XFp .

o Gp=pAXGp ¥\ N -

®=p| P ADy | D | (d) | EXD | EGP | Ed; U b,

o Other derived operators (besides true, false, OR, etc):

o EF® = Etrue U ¢
o cannot be defined using E-G—®, as this is not a CTL formula
o actually, it is a CTL* formula (see later)
o in fact, you cannot place a negation between E and the

subformula
o AF® = -EG—-9, AGP = -EF-¢d, AXd = -EX-D
o APy U dy = (mE-D; U (=1 A =P1)) A “EG—D,

o ®;AUG, = Ad;Ud,, d,EUS, = Ed,Ud,
>% DRGSR ”” :

O u=true|p| P1 APy | P | (D) | XD | D; U Dy

o Essentially, all temporal operators are preceded by either E or
A

o with some care for U

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Goal: formally defining when S |= ¢, being S a KS and ¢ a
CTL formula
o This is true when, for all initial states s € / of S, s E ¢

o thus, CTL is made of state formulas
o LTL has path formulas

o To define when s |= ¢, a recursive definition over the recursive
syntax of CTL is provided
o no need of an additional integer as for LTL syntax

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

©

©

©

©

©

©

©

Vs € S. s = true

s Epiff pe L(s)
SEPIADiffsE P AsE Dy

sE P iff s = d

s = EX® iff 37 € Path(S,s). n(1) = ¢

s = EG® iff 37 € Path(S,s). V). n(j) = ¢

S): E‘Dl U ¢2 iff
dr € Path(S,s)3k : w(k) = P2 AVj < k. w(j) =1

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

o It is easy to prove that:

s E AG9 iff Vi € Path(S,s). Vj. 7(j) E ¢
s E AF® iff Vi € Path(S,s). 3j. n(j) E ¢
analogously for AU, AR, AW

just replace V with 3 for EF, ER, EW

o Analogously to LTL, for many CTL formulas it is silently
required that paths are infinite

© © 0 o

o So again transition relations in KSs must be total

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

()

©

©

©

©

Some CTL formulas may be neither safety nor liveness

o being defined on states, the counterexample may be an entire
computation tree

Safety properties are those involving only AG, AX, true and
atomic propositions

Some formulas are both safety and liveness, like true,
AG true and so on

Liveness are formulas like AF, AFAG, AU

EF or EG are neither liveness nor safety

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

S = AFp since p holds in the
first state

For full: sy = Fp since p €
L(sp), thus, for all paths start-
ing in sp, p holds in the first

e /2
"f
)
(73]
—+
[9)
—+
o
(2]
(@]
o
0
o
o
(V3]
(]
<
(0]
>
—+
c
L
<

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S = EFp for the same reason
as above

If it holds for all paths, then it
holds for one path

AF® — EF®

/53\] The same holds for the other
__/ temporal operators G, U etc

2)
J

N

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S [~ EFa since sg is not reach-
able

Note that the counterexample
cannot be a single path

Since it would not enough to
. disprove existence

The full reachable graph must
be provided

One could also show the tree of

2)
J

f%

a /S\, all paths

v Neither safety I|veness '
‘l‘\[\‘l‘ll‘\ll;\‘ [\SM . .

2)
J

S E A(p U q) since p € L(sp),
next(sp) = {si,s5} and g €
L(Sl) NqgE L(S5)

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S [~ A(p U r), a counterexam-
ple is m = sps1(525351)

)
=

(72
HT

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

)
m
—~~
T
c
=~
~
[}
=}
¢
x
[}
3
o
[0}
&

(72
HT

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S [~ —E(p U r), a counterex-
ample is ™ = (spss)

In fact, S £ @ iff S E —(P)
whenever |/| =1

In fact, the implicit for all is on
/53\] initial states only, whilst it is on
__/ all paths for LTL...

2)
J

N

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S [~ AFAGp, a counterexam-
ple is m = sps1(525351)
This is a liveness formula

)
=

f%

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

2)
J

S [~ EFEGp, a counterexam-
ple is again a computation tree
All lassos are spss or spS354

In both such lassos, there are
states in which p does not hold

f%

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S = AFEGp, a counterexam-
ple is again a computation tree
Since S ~ EFEGp...

2)
J

(72
HT

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

S = EFAGp, a counterexam-
ple is again a computation tree
Since S ~ EFEGp...

2)
J

(72
HT

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

o Recall the Peterson’s protocol: checking mutual exclusion is
AG(—(p A q)), being p=P[1] =13,g =P[2] =L3
o equivalent to LTL Gp

o It is always possible to restart:
AGEF P[1] = LO A AGEF P[2] = LO

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Recall that p1 =y iff VS.SE o1& SE ¢

Qo

also holds (w.l.g.) when ¢y is LTL and ¢, is CTL

o Of course, some CTL formulas cannot be expressed in LTL

[+]

o

it is enough to put an E, since LTL always universally

quantifies paths
so, there is not an LTL ¢ s.t. ¢ = EGp

o no, F—p is not the same, why?

o So, one might think: LTL is contained in CTL

o

© © 0 o

in the sense, for each LTL formula, there is a CTL equivalent
formula

simply replace each temporal operator O with AQ, that’s it
let 7 be a translator doing this

for any LTL formula ¢, ¢ = T(p)

actually, Gp = T(Gp) = AGp % puivEsiTA m .

o Theorem. Let ¢ be an LTL formula. Then, either i) ¢ = T(¢)
or ii) there does not exist a CTL formula ¢ s.t. ¢ =
o idea of proof: replacing with E is of course not correct, and
temporal operators on paths are the same

o Corollary. There exists an LTL formula ¢ s.t., for all CTL

formulas ¢, ¢ Z 9
o Proof of corollary:
o by the theorem above and the definitions, we need to find

Q an LTL formula ¢
Q aKSs

o where S = ¢ and S £ T ()

o viceversa is not possible

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

()

©

For example, as for the LTL formula, we may take ¢ = FGp
o note instead that GFp = AGAFp

For example, as for the KS S, we may take

@)

s0 s1 s2

We have that S = FGp, but S [~ AFAGp
Thus, CTL requires “more” than the corresponding LTL

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

()

S = AFAGp means that

—(Vm € Path(S). 3j : Vp € Path(S, (). Vk. p € p(k))

= Ir € Path(S). Vj : Jp € Path(S,n(j)). Ik. p & p(k)
Inour S, m = s§’: in fact, at any point of 7, you may branch
and go through —p instead...

S = FGp means that Vo € Path(S). 3j : Vk > j. p € w(k)
Thus, there is not a CTL formula equivalent to FGp

Furthermore, there is not an LTL formula eq ‘gmt\":go . o
AFAGp

©

©

©

CTL* introduced in 1986 (Emerson, Halpern) to include both
CTL and LTL

No restrictions on path quantifiers to be 1-1 with temporal
operators, as in CTL

State formulas: @ ::=true | p| 1 APy | =P | AV | EV
Path formulas: W = ® [W1 AW [W | WUV, | FV | GV

| UNIVERSITA
{ | DEGLI STUDI
\ DELL'AQUILA

DISIM

o The intersection between CTL and LTL is both syntactic and
“semantic”

o Some formulas are both CTL and LTL in syntax: all those
involving only boolean combinations of atomic propositions

o “Semantic” intersection: some LTL formulas may be
expressed in CTL and vice versa, using different syntax

o AGAFp and GFp

° AGp and Gp she o -
o etc \ ; | BECEAGUILA o

o Murphi stands for nothing, though it is probable that it
reminds Murphi's Laws

o "if something may fail, it will fail", i.e., EFp — AFp
o SPIN stands for Simple Promela INterpreter
o Promela is the SPIN input language

o Murphi input language does not have a proper name
o Promela stands for PROcess MEta LAnguage

o as we will see, it is actually based on Operating Systems-like
processes

o Also see slides at
https://spinroot.com/spin/Doc/SpinTutorial.pdf

o some as reused here e
U/ Bl i

https://spinroot.com/spin/Doc/SpinTutorial.pdf

o We recall that Murphi input language is based on:
o global variables with finite types
o base types are integer subranges and enumerations
o higher types are arrays and structures
o function and procedures
o guarded rules and starting states (dynamics)
o may call functions and procedures, in an atomic way

o Pascal-like syntax: := for assignments, = for equality checks...
o invariants

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Promela instead has:

o global variables with finite types
o base types are integer types of the C language
o enumerations are very limited
o arrays and records
o channels!

o processes behaviour (dynamics)
o possibly with arguments and local variables

o properties to be checked:

o assertions

o deadlocks

o ‘“neverclaim” describing a BA

o a separate tool may translate an LTL formula in the

corresponding BA e
| | uxiversiTA Dism
\ / DEGLI STUDI ienze delln
\ % IR .@ ;

boolean flag [2];
int turn;
veid PO() Peterson’s Algorithm
while (true) {
flag [0] = true;
turn = 1;
while (flag [1] && turn == 1) /* do nothing */;
/* critical section */;
flag [0] = false;
/* remainder */;

void P1()

while (true) {
flag [1] = true;
turn = 0;
while (flag [0] && turn == 0) /* do nothing */;
/* critical section */;
flag [1] = false;
/* remainder */
}
void main()
{
flag [0] = false;

flag [1] = false;
parbegin (PO, P1);

DISIM

bool turn, flag([2];
byte ncrit;

active [2] proctype user ()
{

assert(_pid == 0 || _pid == 1)
again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid]l == 0 || turn == 1 - _pid);
ncrit++;

assert (ncrit == 1); /* critical section */
ncrit--;

flag[_pid] = 0;

goto again e
| | onrversir oo
} BB Bl e

#define p 0
#define v 1
chan sema = [0] of { bit }; /* rendez-vous */

proctype dijkstra()
{ byte count = 1; /* local wariable */
do
(count == 1) -> semal!p; count = 0
/* send 0 and blocks, unless some other
proc ts already blocked in reception */
(count == 0) -> sema?v; count = 1
/* receive 1, same as above */
od

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

proctype user ()

{ do
sema?p;
/* critical section */
semalv;
/* mon-critical section */
od
}
init

{ run dijkstra();
run user (); run user(); run user ()

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

}

Almost equal to Murphi one

void Make_a_run(NFSS N)
{
let N =(S,{sp},Post);

s_curr = Sy;

if (some assertion fail in s_curr))
return with error message;
while (1) { /* loop forever */
if (Post(s_curr)=9)
return with deadlock message;
s_next = pick_a_state (Post(s_curr));
if (some assertion fail in s_curr))
return with error message;
s_curr = s_next;

}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Able to answer to the following questions:
o is there a deadlock (invalid end state)?
o are there reachable assertions which fail (safety)?
o is a given LTL formula (safety or liveness) ok in the current
system?
o is a given neverclaim (safety or liveness) ok in the current
system?
o It is possible to specify some side behaviours:
o is sending to a full channel blocking, or the message is dropped
without blocking?
o It may report unreachable code
o Promela statements in the model which are never executed

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Similar to Murphi:

Q the SPIN compiler (SrcXXX/spin -a) is invoked on
model .prm and outputs 5 files:

o pan.c, pan.h, pan.m, pan.b, pan.t (unless there are errors...)
Q the 5 files given above are compiled with a C compiler

o it is sufficient to compile pan.c, which includes all other files
o in this way, an executable file model is obtained

O just execute model
o option --help gives an overview of all possible options

o The former is ok for assertion or deadlock checks

o If you also have an LTL formula
Q the SPIN compiler (SrcXXX/spin -F) is invoked on
model.1ltl and outputs a neverclaim on the standard output
o model.ltl must be a text file with only 1 line
file extensions does not matter
syntax for the formula: Gis [], Fis <>, U isU
atomic propositions must be identifiers

© 0 o

O append the neverclaim to the promela file

Q define the identifiers used as atomic proposition by #defines
in the promela file

@ go on as before

o If you use the graphical GUI, it is much easier: such steps are

automatically performed W)=
.. 4 =

HashTable Visited = @;

DFS(graph G =(V,E), node v)

{
Visited := Visited U v;
foreach v eV t.c. (v,v)eE {
if (v ¢ Visited)
DFS(G, v');
}
¥

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

DFS(graph G = (V,E))

{
s := init;
push(s, 1);
while (stack # @) {
(s, 1) := top(Q);

increment i on the top of the stack;
if (s ¢ Visited) {
Visited := Visited U s;
let S'={s"|(s,s') € E};
if (S >= i) {
s := i-th element in S§’;
push(s, 1);
}
else pop();

} Y I @
\ | BECEAGUIL oSt o
else pop(); 2 o

T}

DFS (graph G = (V,E))

{
§ := init; i := 1; depth := 0;
push(s, 1);
Down:
if (s € Visited)
goto Up;
Visited := Visited U s;

let §'={s'|(s,s') € E};
if (IS >= 1) {
s := i-th element in §’;
increment i1 on the top of the stack;
push(s, 1);
depth := depth + 1;

goto Down; o
|) uxaversrra —
} \ f BEcHSIE! o

Up:
(s, i) := pop();
depth := depth - 1;
if (depth > 0)
goto Down;

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o POR does not try to use less memory to save the same states:
it tries to save less states
o while retaining correctness, of course

o some states are “useless” and need not to be explored (and
saved)

o also saves in computation time, of course

o Similar to Murphi symmetry for the goal, but different in use
and algorithm

o use: Murphi modeler must specify which parts of the model
are symmetric
o in SPIN, POR is directly applied without the modeler being

aware of it
\ BEGLISTUR! ;

o though it is possible to disable it

o We saw the theoretical algorithm for CTL model checking
o we said it was not effective, as it required S and R to be in
RAM
Actually, there are methodologies which are able to fit S and
R in RAM, also for industrial-sized models

©

©

The “father” of the model checkers using such technologies is
SMV

o Symbolic Model Verifier

o it has then been refactored as NuSMV

This set of techniques is referred to as symbolic model
checking

©

o Murphi and SPIN style is dubbed explicit model checking

| UNIVERSITA DISIM
| DEGLI STUDI unes s
DELLAQUILA

o In order to understand how symbolic model checking works,
we need some preliminaries
o ROBDDs
o needed to actually fit S and R in RAM
o p-calculus

o together with fixpoint computation
o extension of A-calculus
o needed to efficiently implement CTL and LTL model checking

using ROBDDs
R) oavensima bow
\ | BECEAGUIA i

o Reduced Ordered (Complemented Edges) Binary Decision
Diagrams
o sometimes called simply OBDDs, and even BDDs
o here we stick to the precise notation, by also outlining the
differences
o Let us start with the basis: BDD

o A BDD is a data structure representing a boolean function
o of course, OBDDs and ROBDDs are data structures as well

o we will define them in the following
SV 7= - oo
. R i

(+)
i |
0 1
A

o _E_,__-_.dﬂ\ =

| ¢ = S/
7 |

A

0 1

=

Represented function: f(a, b, c,d) = ab + acd + abcd

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

pO!

=

- ,/:
&&fﬂ |

_V,é/ ﬂ
0 1

Supposing that V =V, a possible ordering is:
ord(a) = 1,ord(b) = 2, 0ord(c) = 3,ord(d) =
If b were connected to d instead of ¢, also:

ord(a) = 1,ord(b) = 3,0rd(c) = 2, ord(d) = 4 ¥_ |

EOT =0

- p—— b) a
& i
1 b
Ek‘/(']X .
0 I ‘
Represented function:
f(a,b,c,d) = ab+ acd + abcd straight: then, dashed: else,

dotted: %Iementee
‘l‘\[\‘l‘ll‘\H\‘ D\S\'/“ . .
DELL'AQUILA @ o

Taken from examples/smv-dist/short.smv

MODULE main
VAR
request : {Tr, Fa}; -- same as saying boolean
-- (stand for True and False)
state : {ready, busy};
ASSIGN
init(state)
next(state)

ready;

case
state = ready & (request = Tr): busy;
TRUE : {ready,busy};

esac;

SPEC

AG((request = Tr) -> AF state = busy) % e

rd, Tr™ rd, Fa :>

Cbs, T

bs, Fa :>
| UNIVERSITA DISIM
\ / DEGLI STUDI parimento d i
\ DELL'AQUILA 2

Straight lines are then-edges
Dashed lines are else-edges
Dotted lines are complemented-else-edges

Init

state.0

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

Straight lines are then-edges
Dashed lines are else-edges

Dotted lines are complemented-else-edges Trans
request.0 “false” edge corresponds to Tr

request.0

state.0

next(state.0)

The one for soloready is the same

Reachables

TRUE

DIsIM

MODULE main
VAR
ml : 0..15; -- m1.0 is MSB!
m2 : 0..15;
m3 : 0..30;
ASSIGN
next(m3) := ml + m2;

SPEC
AG(m3 <= 30);

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

MODULE main
VAR
ml : 0..15;
m2 : 0..15;
m3 : 0..30;
ASSIGN
next (m3) := case
ml*m2 <= 30: ml*m2;
TRUE: m3;
esac;

SPEC

AG(m3 <= 30); %
A/ B e

This is a set with 16 - 16 - 31 = 7936 elements
Just one node to represent it...

Init

TRUE

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

next(m3.4)

w13

next(m3.3)

m12

m2.2

next(m3.2)

mi1

m2.1

noxt(m3.1)

mL.0

m2.0

next(m3.0)

DISIM

| UNIVERSITA DISIM
\ | DEGLISTUDI pinero d e
DELL'AQUILA]

o Number of variables is 13 for both models
o 4 each for m1 and m2, plus 5 for m3
o Number of BDD nodes:

o adder: 47
o multiplier: 538

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o No magic: SAT could be solved using OBDDs

o just represent the instance with an OBDD and check if it is
different from 0
o very roughly speaking: if it were possible to solve it
“efficiently” in this way, P=NP...
o Thus, there are boolean functions for which OBDDs
representation is exponential, regardless of variable ordering
o one example is the multiplier seen above
o It is not possible to say if OBDDs will be a good way to
represent a problem, before trying it
o for the adder, it is much more efficient

o Furthermore, finding a variable order in order to minimize the
OBDD representation for a given function is an NP-complete
problem b ZE

DELL'AQUILA

©

This also holds for Model Checking in general

©

Not possible to say a-priori if a system will fit in the available
resources when using a model checker

o RAM and computation time

©

Also, it is not possible to decide which model checker is better
o explicit (Murphi-or-SPIN like) or symbolic (NuSMV like)?
o However, we are going to see some guidelines

o as for OBDDs: a good ordering is to interleave present and
future variables
o variable ordering: if OBDDs grow, the model checker can try a

different variable ordering
U/ Bl i

0BDD 1fp(MuFormula T) /* uZ.T(Z) */

{

Q = Mx.0;
Q = T(Q);
/% T clearly says where Q must be replaced */
/* e.g.: if pZ. Ax.f(x)VZ(x), then
Q =X f(x)VQ(x) */
while (Q# Q) {

Q = Q;
Q' = T(Q);
}
return Q; /* or Q, they are the same... */

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

0BDD gfp(NuFormula T) /* vZ.T(Z) */
{
Q = M. 1;
Q = T(Q);
while (Q# Q') {
Q= Q5
QI = T(Q);
}

return Q;

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o The idea is to compute the set of reachable states, and check
if for all of them p holds
o Reach = uZ. Ax. [I(x) V3y : (Z(y) A R(y,x))]
o of course, we get an OBDD on x as a result
o recall that x (and y) is a vector of all boolean variables
o Vx € 5. Reach(x) — p(x)

o computationally easier: check that Reach(x) A —p(x) =0
o otherwise, we have a reachable state for which p does not

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

bool checkCTL(KS S, CTL ¢) {

let S=(S,I,R,L);

B = LblSt(p);

return Ax. /[(x) A—=B(x) = Ax. 0;
}
0BDD LblSt(CTL ¢) { /* also S=(S,,R L) */
if (Ip€ AP.p=p) return Ax. p(x);

else if (p=-¢) return Ax. -LblSt (¢)(x);
else if (p=a¢1Ap2)

return Ax.LblSt (¢1) (x)ALb1St (#2)(x);

else if (p=EX¢)

return Ax.3Jy: R(x,y)ALblSt () (y);

else if (¢ =EG¢)

return gfp (vZ. Ax. Lb1St (@) (x)A(Jy : R(x,y) ANZ(y))) ;
else if (p=¢; EU ¢y)

return 1fp(uZ. Ax. Lb1St (¢r) (x)V % o— m |
(Lb1St (b)) (x)A By : R(x, y)AZ(y))); & " ‘

o Explicit and symbolic model checking are good, but many
systems cannot be checked by neither

o RAM and/or execution time are over soon

o Symbolic model checking directly makes use of boolean
formulas through OBDDs
o What about using CNF, so that SAT solvers can be
employed?
o modern SAT solvers are pretty good in many practical

instances
o notwithstanding the SAT problem is of course still

NP-complete
O/ Beiaiont i

o One big problem: computing quantization, AND, OR and
negation of a CNF is not straightforward

o especially because instances from Model Checking are HUGE
o also checking equivalence of two CNF is not trivial, as CNF is
not canonical

o However, if we set a limit k to the length of paths
(counterexamples), then most of this is not needed any more
o copy R for k times, with small adjustments

o This is actually bug hunting: if the result is PASS, then there
is not an error within k steps

o but there could be one at k +1...
o however, this is better than simple testing, as errors within k

steps can be ruled out e
\ RESHLRTNE! ;

In Bounded Model Checking (BMC) we are given a KS
S =(S,I,R,L), an LTL formula ¢, and k € N (also called
horizon)

©

o Let us consider the LTL property ¢ = Gp, being p € AP

o We want to find counterexamples (if any) of length exactly k

o If x=xi,...,x, with n = [log, |S|], let us consider
20,k
o S [« Gp iff the following CNF is unsatisfiable:
k—1 o
1(xXO) A\ R, xUHDY A =p(xK))
i=0

o otherwise, a satisfying assignment is a coun%amp‘f@ .

o Note that each x(7) encloses n boolean variables, thus we have
n(k + 1) boolean variables in our SAT instance

o the longest our horizon, the biggest our SAT instance
o Note that / and R must be in CNF, which is not difficult
o NuSMV does this pretty well

o It is straightforward to modify the previous formula to detect
counterexamples of length at most k

o However, it is usually preferred to perform BMC with
increasing values for k

o practically, till when the SAT solver goes out of computational
resources
o some approaches exist to estimate the d/ameter of a KS...

‘\\I\IRSH A DIsiM,
BEGLISTUDI et
DEL

o Till now, we had to write a model of the system under
verification (SUV)

o There are some cases in which we can use the actual SUV,
with little or no instrumentation
o it is possible to translate a digital circuit to a NuSMV
specification in a completely automated way (not difficult to
imagine how...)
o here, we want to deal with a rather surprising application of
BMC: model checking a C program!
o CBMC is a model checker performing BMC of C programs
with little or no instrumentation
o thus, the input for CBMC is a C program (possibly with some
added statements)
o an integer k may be required too

o again, output is PASS or FAIL (with a coun%ﬂamp‘lu) m ‘

o We now give the main ideas of how it works

Command Line

Front End
C Parser | Type Checking |—{ GOTQ Conversion |—> Static Analw-s &
Instrumentation
]
+
. . Counterexample
Symbolic Execution —{ CNF Conversion |— SAT Solver — unAn;ZI:sis P

DISIM

