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Probabilistic model checking 

•  Probabilistic model checking… 
−  is a formal verification technique  

for modelling and analysing systems 
that exhibit probabilistic behaviour 

•  Formal verification… 
−  is the application of rigorous,  

mathematics-based techniques 
to establish the correctness 
of computerised systems 
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Outline 
•  Introducing probabilistic model checking… 

•  Topics for this lecture 
−  the role of automatic verification 
−  what is probabilistic model checking? 
−  why is it important? 
−  where is it applicable? 
−  what does it involve? 

•  About this course 
−  aims and organisation 
−  information and links 
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Conventional software engineering 
•  From requirements to software system 

−  apply design methodologies 
−  code directly in programming language 
−  validation via testing, code walkthroughs 

Validation 
System Informal  

requirements 



Comments

In the previous slide, “validation” is used in a broad sense

More precise meaning: when a software artifact is checked
with its final user
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Formal verification 
•  From requirements to formal specification 

−  formalise specification, derive model 
−  formally verify correctness 

Formal  
specification 
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But my program works! 
•  True, there are many successful large-scale complex 

computer systems… 
−  online banking, electronic commerce 
−  information services, online libraries, business processes 
−  supply chain management 
−  mobile phone networks 

•  Yet many new potential application domains with far 
greater complexity and higher expectations 
−  automotive drive-by-wire 
−  medical sensors: heart rate & blood pressure monitors 
−  intelligent buildings and spaces, environmental sensors 

•  Learning from mistakes costly… 
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Toyota Prius 
•  Toyota Prius 

−  first mass-produced hybrid vehicle 

•  February 2010 
−  software “glitch” found in 

anti-lock braking system 
−  in response to numerous 

complaints/accidents 

•  Eventually fixed via software update 
−  in total 185,000 cars recalled, at huge cost 
−  handling of the incident prompted  

much criticism, bad publicity 

7 DP/Probabilistic Model Checking, Michaelmas 2011 



Original Slides

8 DP/Probabilistic Model Checking, Michaelmas 2011 

Ariane 5 
•  ESA (European Space Agency) Ariane 5 launcher 

−  shown here in maiden flight 
on 4th June 1996 

•  37secs later self-destructs 

−  uncaught exception: numerical  
overflow in a conversion routine  
results in incorrect altitude sent 
by the on-board computer 

•  Expensive, embarrassing… 
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The London Ambulance Service 
•  London Ambulance Service  

computer aided despatch system 
−  Area 600sq miles 
−  Population 6.8million 
−  5000 patients per day 
−  2000-2500 calls per day 
−  1000-1200 999 calls per day 

•  Introduced October 1992 
•  Severe system failure:  

−  position of vehicles incorrectly recorded 
−  multiple vehicles sent to the same location 
−  20-30 people estimated to have died as a result 
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What do these stories have in common? 
•  Programmable computing devices 

−  conventional computers and networks 
−  software embedded in devices  

•  airbag controllers, mobile phones, etc 
•  Programming error direct cause of failure  

•  Software critical 
−  for safety 
−  for business 
−  for performance 

•  High costs incurred: not just financial 

•  Failures avoidable… 



Original Slides

11 DP/Probabilistic Model Checking, Michaelmas 2011 

Why must we verify? 
 “Testing can only show the presence of errors, not their absence.” 

 To rule out errors need to  
consider all possible executions 
often not feasible mechanically! 
−  need formal verification… 

 “In their capacity as a tool,  
computers will be but a ripple  
on the surface of our culture.   
In their capacity as intellectual  
challenge, computers are  
without precedent in the  
cultural history of mankind.” 

Edsger Dijkstra 
1930-2002 



Original Slides

12 DP/Probabilistic Model Checking, Michaelmas 2011 

Automatic verification 
•  Formal verification… 

−  the application of rigorous, mathematics-based techniques 
to establish the correctness of computerised systems 

−  essentially: proving that a program satisfies it specification 
−  many techniques: manual proof, automated theorem proving, 

static analysis, model checking, … 

•  Automatic verification = 
−  mechanical, push-button technology 
−  performed without human intervention 

1070  atoms 10500,000  states 
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Verification via model checking 

Finite-state 
model 

Temporal logic 
specification 

Result 
System 

Counter- 
example 

(error trace) System 
 require- 

ments 

¬EF fail 

Model checker 
e.g. SMV, Spin 
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Model checking in practice 
•  Model checking now routinely applied to real-life systems 

−  not just “verification”… 
−  model checkers used as a debugging tool 
−  at IBM, bugs detected in arbiter that could not be found with 

simulations 
•  Now widely accepted in industrial practice 

−  Microsoft, Intel, Cadence, Bell Labs, IBM,... 
•  Many software tools, both commercial and academic 

−  smv, SPIN, SLAM, FDR2, FormalCheck, RuleBase, ... 
−  software, hardware, protocols, … 

•  Extremely active research area 
−  2008 Turing Award won by Edmund Clarke, Allen Emerson 

and Joseph Sifakis for their work on model checking 
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New challenges for verification 
•  Devices, ever smaller 

−  laptops, phones, sensors… 

•  Networking, wireless, wired & global 
−  wireless & internet everywhere  

•  New design and engineering challenges 
−  adaptive computing,  

ubiquitous/pervasive computing,  
context-aware systems 

−  trade-offs between e.g. performance,  
security, power usage, battery life, … 
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New challenges for verification 
•  Many properties other than correctness are important 
•  Need to guarantee… 

−  safety, reliability, performance, dependability 
−  resource usage, e.g. battery life 
−  security, privacy, trust, anonymity, fairness 
−  and much more… 

•  Quantitative, as well as qualitative requirements: 
−  “how reliable is my car’s Bluetooth network?” 
−  “how efficient is my phone’s power management policy?” 
−  “how secure is my bank’s web-service?” 

•  This course: probabilistic verification 
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Why probability? 
•  Some systems are inherently probabilistic… 

•  Randomisation, e.g. in distributed coordination algorithms 
−  as a symmetry breaker, in gossip routing to reduce flooding 

•  Examples: real-world protocols featuring randomisation 
−  Randomised back-off schemes 

•  IEEE 802.3 CSMA/CD, IEEE 802.11 Wireless LAN 
−  Random choice of waiting time 

•  IEEE 1394 Firewire (root contention), Bluetooth (device discovery) 
−  Random choice over a set of possible addresses 

•  IPv4 Zeroconf dynamic configuration (link-local addressing) 
−  Randomised algorithms for anonymity, contract signing, … 



Comments

There are protocols containing statements like if (rand() <
0.5) do something; else do something else;

using standard model checking techniques, we may only use
non-determinism
thus verifying if there is a path leading to an error (if we are
checking a safety property)
but having a path going to the error may be straightforward
instead, we may want to verify that an error has a low
probability
with probabilistic model checking, probabilities are embedded
in the model
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Why probability? 
•  Some systems are inherently probabilistic… 

•  Randomisation, e.g. in distributed coordination algorithms 
−  as a symmetry breaker, in gossip routing to reduce flooding 

•  Modelling uncertainty and performance 
−  to quantify rate of failures, express Quality of Service 

•  Examples: 
−  computer networks, embedded systems 
−  power management policies 
−  nano-scale circuitry: reliability through defect-tolerance 
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Why probability? 
•  Some systems are inherently probabilistic… 

•  Randomisation, e.g. in distributed coordination algorithms 
−  as a symmetry breaker, in gossip routing to reduce flooding 

•  Modelling uncertainty and performance 
−  to quantify rate of failures, express Quality of Service 

•  For quantitative analysis of software and systems 
−  to quantify resource usage given a policy 

 “the minimum expected battery capacity for a scenario…” 

•  And many others, e.g. biological processes 
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Probabilistic model checking 

Probabilistic model 
e.g. Markov chain 

Probabilistic temporal  
logic specification 
e.g. PCTL, CSL, LTL 

Result 

Quantitative 
results 

System 

Counter- 
example 

System 
 require- 

ments 

P<0.1 [ F fail ] 

0.5 
0.1 

0.4 

Probabilistic 
model checker 

e.g. PRISM 
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Also compare with this slide
Note that counterexamples in probabilistic model checking are
not as important as in standard model checking

Verification via model checking 

Finite-state 
model 

Temporal logic 
specification 

Result 
System 

Counter- 
example 

(error trace) System 
 require- 

ments 

¬EF fail 

Model checker 
e.g. SMV, Spin 
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Here and in the next 5 slides, sketch of a widely used leader
election protocol
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Case study: FireWire protocol 
•  FireWire (IEEE 1394) 

−  high-performance serial bus for networking 
multimedia devices; originally by Apple 

−  "hot-pluggable" - add/remove  
devices at any time 

−  no requirement for a single PC (need acyclic topology) 

•  Root contention protocol 
−  leader election algorithm, when nodes join/leave 
−  symmetric, distributed protocol 
−  uses electronic coin tossing and timing delays 
−  nodes send messages: "be my parent" 
−  root contention: when nodes contend leadership 
−  random choice: "fast"/"slow" delay before retry 
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FireWire example 
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FireWire leader election 

R 
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FireWire root contention 

Root 
contention 
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FireWire root contention 

Root 
contention 

R 
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FireWire analysis 
•  Probabilistic model checking 

−  model constructed and analysed using PRISM 
−  timing delays taken from IEEE standard 
−  model includes: 

•  concurrency: messages between nodes and wires 
•  underspecification of delays (upper/lower bounds) 

−  max. model size: 170 million states 

•  Analysis: 
−  verified that root contention always 

resolved with probability 1 
−  investigated time taken for leader election 
−  and the effect of using biased coin 

•  based on a conjecture by Stoelinga 
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FireWire: Analysis results 

“minimum probability 
of electing leader 

by time T” 



Comments

From the previous to the next 3 slides, results of verifying the
above protocol using PRISM (PRobabilistIc Symbolic Model
checker)

state-of-the-art probabilistic model checker
all figures are obtained by performing many verifications, each
time varying some parameters
T or the bias of a coin used in the protocol itself
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FireWire: Analysis results 

“minimum probability 
of electing leader 

by time T” 

(short wire length) 

Using a biased coin 
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FireWire: Analysis results 

“maximum expected 
time to elect a leader” 

(short wire length) 

Using a biased coin 
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FireWire: Analysis results 

“maximum expected 
time to elect a leader” 

(short wire length) 

Using a biased coin 
is beneficial! 
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Probabilistic model checking 

Probabilistic model 
e.g. Markov chain 

Probabilistic temporal  
logic specification 
e.g. PCTL, CSL, LTL 
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Probabilistic model checking inputs 
•  Models: variants of Markov chains 

−  discrete-time Markov chains (DTMCs) 
•  discrete time, discrete probabilistic behaviours only 

−  continuous-time Markov chains (CTMCs) 
•  continuous time, continuous probabilistic behaviours 

−  Markov decision processes (MDPs) 
•  DTMCs, plus nondeterminism 

•  Specifications 
−  informally: 

•  “probability of delivery within time deadline is …” 
•  “expected time until message delivery is …” 
•  “expected power consumption is …” 

−  formally: 
•  probabilistic temporal logics (PCTL, CSL, LTL, PCTL*, …) 
•  e.g. P<0.05 [ F err/total>0.1 ], P=? [ F≤t reply_count=k ] 



Comments

Standard model checking only accepts a Kripke Structure-like
input for the model

in PRISM, 3 different mathematical models may be used
it is the modeler task to understand which one to use
some logic is for some input only (e.g., CSL is only for CTMCs)



Original Slides

33 DP/Probabilistic Model Checking, Michaelmas 2011 

Probabilistic model checking involves… 
•  Construction of models  

−  from a description in a high-level modelling language 

•  Probabilistic model checking algorithms 
−  graph-theoretical algorithms 

•  e.g. for reachability, identifying strongly connected components 
−  numerical computation 

•  linear equation systems, linear optimisation problems 
•  iterative methods, direct methods 
•  uniformisation, shortest path problems 

−  automata for regular languages 
−  also sampling-based (statistical) for approximate analysis 

•  e.g. hypothesis testing based on simulation runs 
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Probabilistic model checking involves… 
•  Efficient implementation techniques 

−  essential for scalability to real-life systems 
−  symbolic data structures based on binary decision diagrams 
−  algorithms for bisimulation minimisation, symmetry reduction 

•  Tool support 
−  PRISM: free, open-source probabilistic model checker 
−  currently based at Oxford University 
−  supports all probabilistic models discussed here 
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Course aims 
•  Introduce main types of probabilistic models and 

specification notations 
−  theory, syntax, semantics, examples 
−  probability, expectation, costs/rewards 

•  Explain the working of probabilistic model checking 
−  algorithms & (symbolic) implementation 

•  Introduce software tools  
−  probabilistic model checker PRISM 

•  Examples from wide range of application domains 
−  communication & coordination protocols, performance & 

reliability modelling, biological systems, … 

•  Mix of theory and practice 
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Course outline 
•  Discrete-time Markov chains (DTMCs) and their properties  
•  Probabilistic temporal logics: PCTL, LTL, etc.   
•  PCTL model checking for DTMCs 
•  The PRISM model checker 
•  Costs & rewards 
•  Continuous-time Markov chains (CTMCs) 
•  Counterexamples & bisimulation 
•  Markov decision processes (MDPs)  
•  Probabilistic LTL model checking  
•  Implementation and data structures: symbolic techniques  
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Course information 
•  Prerequisites/background 

−  basic computer science/maths background 
−  no probability knowledge assumed  

•  Lectures 
−  20 lectures: Mon 2pm, Wed 3pm, Thur 12pm (wks 1-4) 

•  Classes/practicals (please sign up on-line) 
−  4 problem sheets + 1 hr classes 

(Tue 3pm, Wed 12pm, wks 3, 5, 7, 8) 
−  4 practical exercises, based on PRISM,  

4 scheduled 2 hr practical sessions (Tue 4pm, wks 3, 4, 6, 7), 
+ work outside lab sessions 

•  Assessment 
−  take-home assignment 
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Further information 
•  Course lecture notes are self-contained 

−  www.cs.ox.ac.uk/teaching/materials11-12/probabilistic/  

•  For further reading material… 
−  two online tutorial papers also cover a lot of the material 

•  Stochastic Model Checking 
Marta Kwiatkowska, Gethin Norman and David Parker  

•  Automated Verification Techniques for Probabilistic Systems 
Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker 

−  DTMC/MDP material also based on Chapter 10 of:  

−  PRISM web site: http://www.prismmodelchecker.org/ 

Principles of Model Checking 
Christel Baier and Joost-Pieter Katoen 
MIT Press 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Next lecture(s) 

•  Wed 3pm 
•  Thur 12pm 

•  Discrete-time Markov chains 
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Probabilistic Model Checking 

•  Formal verification and analysis of systems that exhibit 
probabilistic behaviour 
−  e.g. randomised algorithms/protocols 
−  e.g. systems with failures/unreliability 

•  Based on the construction and analysis of precise 
mathematical models 

•  This lecture: discrete-time Markov chains 

2 
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Overview 
•  Probability basics 

•  Discrete-time Markov chains (DTMCs) 
−  definition, properties, examples 

•  Formalising path-based properties of DTMCs 
−  probability space over infinite paths 

•  Probabilistic reachability 
−  definition, computation 

•  Sources/further reading: Section 10.1 of [BK08] 

3 
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Probability basics 
•  First, need an experiment 

−  The sample space  Ω is the set of possible outcomes 
−  An event is a subset of Ω, can form events A ∩ B, A ∪ B, Ω ∖ A 

•  Examples: 
−  toss a coin:     Ω = {H,T},  events: “H”, “T” 
−  toss two coins:    Ω = {(H,H),(H,T),(T,H),(T,T)}, 

        event: “at least one H” 
−  toss a coin ∞–often:  Ω is set of infinite sequences of H/T 

        event: “H in the first 3 throws” 
•  Probability is: 

−  Pr(“H”) = Pr(“T”) = 1/2,   Pr(“at least one H”) = 3/4 
−  Pr(“H in the first 3 throws”) = 1/2 + 1/4 + 1/8 = 7/8 

4 
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Probability example 
•  Modelling a 6-sided die using a fair coin 

−  algorithm due to Knuth/Yao: 
−  start at 0, toss a coin 
−  upper branch when H 
−  lower branch when T 
−  repeat until value chosen 

•  Is this algorithm correct? 
−  e.g. probability of obtaining a 4? 
−  Obtain as disjoint union of events 
−  THH, TTTHH, TTTTTHH, … 
−  Pr(“eventually 4”) 
    = (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6 
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Example… 
•  Other properties? 

−  “what is the probability of termination?” 
•  e.g. efficiency? 

−  “what is the probability of needing 
more than 4 coin tosses?” 

−  “on average, how many  
coin tosses are needed?” 

•  Probabilistic model checking provides a framework for 
these kinds of properties… 
−  modelling languages 
−  property specification languages 
−  model checking algorithms, techniques and tools 
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Comments

“termination”: arrive at one of the rightmost states

“number of coin tosses”: number of transitions to “terminate”
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Discrete-time Markov chains 
•  State-transition systems augmented with probabilities 

•  States 
−  set of states representing possible configurations of the 

system being modelled 
•  Transitions 

−  transitions between states model  
evolution of system’s state;  
occur in discrete time-steps 

•  Probabilities 
−  probabilities of making transitions 

between states are given by  
discrete probability distributions 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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Markov property 

•  If the current state is known, then the future states of the 
system are independent of its past states 

•  i.e. the current state of the model contains all information 
that can influence the future evolution of the system 

•  also known as “memorylessness” 

8 
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Simple DTMC example 
•  Modelling a very simple communication protocol 

−  after one step, process starts trying to send a message 
−  with probability 0.01, channel unready so wait a step 
−  with probability 0.98, send message successfully and stop 
−  with probability 0.01, message sending fails, restart 

s1 s0 

s2 

s3 

0.01 

0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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Discrete-time Markov chains 
•  Formally, a DTMC D is a tuple (S,sinit,P,L) where:  

−  S is a set of states (“state space”) 
−  sinit ∈ S is the initial state 
−  P : S × S → [0,1] is the transition probability matrix 

 where Σs’∈S P(s,s’) = 1 for all s ∈ S  
−  L : S → 2AP is function labelling states with atomic propositions 

(taken from a set AP) 

s1 s0 

s2 

s3 

0.01 
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0.01 
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1 

{fail} 

{succ} 

{try} 
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Simple DTMC example 

s1 s0 

s2 

s3 

0.01 

0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 

D = (S,sinit,P,L) 

S = {s0, s1, s2, s3}  
sinit = s0 

AP = {try, fail, succ} 
L(s0)=∅, 
L(s1)={try}, 
L(s2)={fail}, 
L(s3)={succ} 

11 
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Some more terminology 
•  P is a stochastic matrix, meaning it satisifes: 

−  P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) = 1 for all s ∈ S 

•  A sub-stochastic matrix satisfies: 
−  P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) ≤ 1 for all s ∈ S 

•  An absorbing state is a state s for which: 
−  P(s,s) = 1 and P(s,s’) = 0 for all s≠s’ 
−  the transition from s to itself is sometimes called a self-loop 

•  Note: Since we assume P is stochastic… 
−  every state has at least one outgoing transition 
−  i.e. no deadlocks (in model checking terminology) 

12 
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DTMCs: An alternative definition 
•  Alternative definition… a DTMC is: 

−  a family of random variables { X(k) | k=0,1,2,… } 
−  where X(k) are observations at discrete time-steps 
−  i.e. X(k) is the state of the system at time-step k 
−  which satisfies… 

•  The Markov property (“memorylessness”) 
−  Pr( X(k)=sk | X(k-1)=sk-1, … , X(0)=s0 ) 

 = Pr( X(k)=sk | X(k-1)=sk-1 ) 
−  for a given current state, future states are independent of past 

•  This allows us to adopt the “state-based” view presented so 
far (which is better suited to this context) 

13 
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Other assumptions made here 
•  We consider time-homogenous DTMCs 

−  transition probabilities are independent of time 
−  P(sk-1,sk) = Pr( X(k)=sk | X(k-1)=sk-1 ) 
−  otherwise: time-inhomogenous 

•  We will (mostly) assume that the state space S is finite 
−  in general, S can be any countable set 

•  Initial state sinit ∈ S can be generalised… 
−  to an initial probability distribution sinit : S → [0,1] 

•  Transition probabilities are reals: P(s,s’) ∈ [0,1] 
−  but for algorithmic purposes, are assumed to be rationals 

14 



Comments

A more correct formula is
P(x(n + k) = s | x(k) = s ′) = P(x(n) = s | x(0) = s ′) for all
n, k , s, s ′ in respective domains

The idea is that it is not important how you arrived in state s:
the process “re-starts over” from s, regardless of the past

Using only the memorylessness property (i.e., P(x(k + 1) =
s | x(0) = s0, . . . , x(k) = sk) = P(x(k + 1) = s | x(k) = sk)),
we may still have a non-homogeneous (also called
non-stationary) Markov Chain: the transition relation depends
on s, sk and k



Comments

That is, the memorylessness property only looks at paths of
some fixed size k; for paths of a different size (where some
more or less time has passed...), probabilities may be different
(thus, it is not truly “memoryless”)

Here, we will only consider stationary Markov Chains; thus,
for any path (of any length) leading to s, we only consider the
last step to define the probability

This allows us to define transition probabilities to only depend
on the starting and ending states
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Suitable APs may be used to label also the other “final” states
(only “interesting” labels are being shown)
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DTMC example 2 - Coins and dice 
•  Recall Knuth/Yao’s die algorithm from earlier: 

S = { s0, s1, …, s6, 1, 2, …, 6 } 

  sinit = s0 

  P(s0,s1)=0.5 
  P(s0,s2)=0.5 
  etc. 

  L(s0) = {init} 
  etc. 

s3 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

1 

1 

s4 

s1 

s0 

s2 

s5 

s6 

{init} 

{done, four} 

{done} 

{done} 

{done} 

{done} 

{done} 
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DTMC example 3 - Zeroconf 
•  Zeroconf = “Zero configuration networking” 

−  self-configuration for local, ad-hoc networks 
−  automatic configuration of unique IP for new devices 
−  simple; no DHCP, DNS, … 

•  Basic idea: 
−  65,024 available IP addresses (IANA-specified range) 
−  new node picks address U at random 
−  broadcasts “probe” messages: “Who is using U?” 
−  a node already using U replies to the probe 
−  in this case, protocol is restarted 
−  messages may not get sent (transmission fails, host busy, …) 
−  so: nodes send multiple (n) probes, waiting after each one 

16 
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DTMC for Zeroconf 
−  n=4 probes, m existing nodes in network 
−  probability of message loss: p 
−  probability that new address is in use: q = m/65024 

s1 s0 s2 s3 
q 

1 

1 

{ok} {error} 

{start} s4 

s5 

s6 

s7 

s8 

1 

1-q 

1-p 

1-p 
1-p 1-p 

p p p 

p 

1 
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Comments

In the previous 2 slides, this is what each node entering the
protocol does

s0 → s1 corresponds to: new node picks address U at random,
broadcasts probe message: “Who is using U?” and a node
already using U replies to the probe (the last step happens
with probability q = #addrs used

#all addrs )
s1 → s2 given that the picked address is not good, it may be
the case that the probe address was lost, so send it again with
probability p (this is inside the protocol!)
if the probe got lost but the address is ok, it does not matter
probability p is typically low



Comments

In the previous 2 slides, this is what each node entering the
protocol does

message loss is only considered when answering the probe, not
for the initial probe itself
after error, needs manual restart or perhaps too many devices
are using the network
the “waiting after each one” part is not directly modeled, i.e.,
we are after each wait
protocols already with an IP must only answer to probes, if
they reach one
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Properties of DTMCs 
•  Path-based properties 

−  what is the probability of observing a particular behaviour (or 
class of behaviours)? 

−  e.g. “what is the probability of throwing a 4?” 

•  Transient properties 
−  probability of being in state s after t steps? 

•  Steady-state 
−  long-run probability of being in each state 

•  Expectations 
−  e.g. “what is the average number of coin tosses required?” 

18 



Comments

First two properties of the previous slide are close to what it
may be done in standard model checking

Of course, dropping the probabilistic part

Last two are in probabilistic model checking only
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DTMCs and paths 
•  A path in a DTMC represents an execution (i.e. one possible 

behaviour) of the system being modelled 
•  Formally: 

−  infinite sequence of states s0s1s2s3… 
such that P(si,si+1) > 0 ∀i≥0 

−  infinite unfolding of DTMC 
•  Examples: 

−  never succeeds: (s0s1s2)ω 

−  tries, waits, fails, retries, succeeds: s0s1s1s2s0s1(s3)ω 
•  Notation: 

−  Path(s) = set of all infinite paths starting in state s 
−  also sometimes use finite (length) paths 
−  Pathfin(s) = set of all finite paths starting in state s 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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Paths and probabilities 
•  To reason (quantitatively) about this system 

−  need to define a probability space over paths 

•  Intuitively: 
−  sample space: Path(s) = set of all  

infinite paths from a state s 
−  events: sets of infinite paths from s 
−  basic events: cylinder sets (or “cones”) 
−  cylinder set Cyl(ω), for a finite path ω 

= set of infinite paths with the common finite prefix ω 
−  for example: Cyl(ss1s2) 

s1 s2 s 
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Comments

In the previous slide, if ω is a path of length 0, we have that
all paths starting from s are in the cylinder

in probabilistic model checking, we only consider “basic
events”
thus an event is any subset of paths, but a basic event is a
“well-formed” (measurable) subset of path
well-formedness is defined through the concept of σ-algebra
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Probability spaces 
•  Let Ω be an arbitrary non-empty set 

•  A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω 
closed under complementation and countable union, i.e.: 
−  if A ∈ Σ, the complement Ω ∖ A is in Σ 
−  if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ 
−  the empty set ∅ is in Σ 

•  Elements of Σ are called measurable sets or events 

•  Theorem: For any family F of subsets of Ω, there exists a 
unique smallest σ-algebra on Ω containing F 

21 



Comments

In the previous slide, if a family F does not fulfill the
σ-algebra properties, simply add (the minimal number of)
elements in order to fulfill them

σ-algebra may also be called Borel field (requires countably
infinite unions)
note that “family of subsets of Ω” means a set Σ ⊆ 2Ω

since a subset of Ω is an “event”, Σ is a set of events
of course, the first and the last property imply that Ω ∈ Σ
example: F = 2Ω is a σ-algebra for all Ω
example: F = {∅,Ω} is a σ-algebra for all Ω
example: for Ω = {a, b}, F = {∅, {a}, {a, b}} is not a
σ-algebra since Ω \ {a} = {b} /∈ F
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Probability spaces 

•  Probability space (Ω, Σ, Pr) 

−  Ω is the sample space 

−  Σ is the set of events: σ-algebra on Ω 

−  Pr : Σ → [0,1] is the probability measure: 
 Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai 

22 



Comments

In the previous slide: typically, Σ = 2Ω

however, we could be interested in understanding the
“minimal” Σ ⊆ 2Ω we may use without disrupting probability
definition
thus, we take “good” subsets of Σ ⊆ 2Ω, namely σ-algebras
we will never ask which is probability of a “bad” subset of Ω,
i.e., of an element not in Σ
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Probability space - Simple example 
•  Sample space Ω 

−  Ω = {1,2,3} 

•  Event set Σ 
−  e.g. powerset of Ω 
−  Σ = { ∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} } 
−  (closed under complement/countable union, contains ∅) 

•  Probability measure Pr 
−  e.g. Pr(1) = Pr(2) = Pr(3) = 1/3 
−  Pr({1,2}) = 1/3+1/3 = 2/3, etc. 

23 
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Probability space - Simple example 2 
•  Sample space Ω 

−  Ω = ℕ = { 0,1,2,3,4,… } 

•  Event set Σ 
−  e.g. Σ = { ∅, “odd”, “even”, ℕ } 
−  (closed under complement/countable union, contains ∅) 

•  Probability measure Pr 
−  e.g. Pr(“odd”) = 0.5, Pr(“even”) = 0.5 

24 
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Probability space over paths 
•  Sample space Ω = Path(s) 

set of infinite paths with initial state s 
•  Event set ΣPath(s) 

−  the cylinder set Cyl(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ } 
−  ΣPath(s) is the least σ-algebra on Path(s) containing Cyl(ω) for 

all finite paths ω starting in s 
•  Probability measure Prs 

−  define probability Ps(ω) for finite path ω = ss1…sn as: 
•  Ps(ω) = 1 if ω has length one (i.e. ω = s) 
•  Ps(ω) = P(s,s1) · … · P(sn-1,sn) otherwise 
•  define Prs(Cyl(ω)) = Ps(ω) for all finite paths  ω 

−  Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1] 

•  See [KSK76] for further details 
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Comments

The “experiment” consists in selecting a path in the DTMC

So, each single path is an “outcome” ω ∈ Ω

However, for a given path π, the subset {π} may not be an
event (see example below)

Note that there are |S | probability spaces in a DTMC...

Informally: in probabilistic model checking, we consider sets of
paths (that is, subsets of Path), but not all of them: an event
must consider all and only paths having some common prefix

an event with two paths without a common prefix (not even in
the very first state) is not an event
an event not including a path having some common prefix to
all other paths in the event is not an event



Comments

More formally, w.r.t. σ-algebras, sets in Σ must have the
following property: taken some finite prefix ω, all infinite
paths having ω as a prefix must be in the family

That is, Cyl(ω) ∈ Σ

We can see a cylinder Cyl(ω) as the sub-tree of paths starting
from the last state of ω

Suppose we have only three paths starting from s, i.e.,
Ω = Path(s) = {π1, π2, π3} and that π1, π2 share a common
prefix |ω| > 0

Then Σ = {∅, {π2}, {π1, π3}, {π1, π2, π3}} is a σ-algebra but
does not fulfill the above property because {π1, π2} /∈ Σ

Simply adding {π1, π2} we have
Σ′ = {∅, {π2}, {π1, π3}, {π1, π2, π3}, {π1, π2}} which is not a
σ-algebra



Comments

We have to take the least σ-algebra containing {π1, π2}, i.e.,
Σ∗ = {∅, {π1, π2}, {π3}, {π1, π2, π3}}
We will never ask the probability of, e.g., {π1, π3}: the only
finite path they have in common is s, which is also in common
with π2...

note that all three paths share the common prefix consisting in
the state s alone; thus, {π1, π2, π3} must be in Σ∗, which is
true
{π1} and {π2} are not events, despite being possible
experiment outcomes
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Paths and probabilities - Example 
•  Paths where sending fails immediately 

− ω = s0s1s2 
−  Cyl(ω) = all paths starting s0s1s2… 
−  Ps0(ω) = P(s0,s1) · P(s1,s2) 

   = 1 · 0.01 = 0.01 
−  Prs0(Cyl(ω)) = Ps0(ω) = 0.01 

•  Paths which are eventually successful and with no failures 
−  Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ … 
−  Prs0( Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ … ) 

 = Ps0(s0s1s3) + Ps0(s0s1s1s3) + Ps0(s0s1s1s1s3) + … 
 = 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + … 
 = 0.9898989898…  
 = 98/99 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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Comments

In the previous slide: note that the first point is a “single”
event, despite being an infinite set of paths

Instead, the second point is an infinite union of “single”
events

note that all listed cylinders (set of paths) have null
intersection, thus we may sum their probabilities

Of course, we can compute a probability for both cases

actually, with such definition, we may build efficient algorithms
to compute probabilities
“efficient” in the number of states, so recall that state
explosion always exists...
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Reachability 
•  Key property: probabilistic reachability 

−  probability of a path reaching a state in some target set T ⊆ S 
−  e.g. “probability of the algorithm terminating successfully?” 
−  e.g. “probability that an error occurs during execution?” 

•  Dual of reachability: invariance 
−  probability of remaining within some class of states 
−  Pr(“remain in set of states T”) = 1 - Pr(“reach set S\T”) 
−  e.g. “probability that an error never occurs” 

•  We will also consider other variants of reachability 
−  time-bounded, constrained (“until”), … 
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Comments

In the previous slide: in KSs, reachability and invariance
excludes each other, whilst in DTMCs they can coexist

So, we have probabilities on cylinders, but how do I specify
“interesting” cylinders?

in the sense, for which it would interesting to compute the
probability?

Reachability: set of paths (from cylinders!) leading to
T ⊆ S ...

S is finite, any T is good, no need of σ-algebras here...
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Reachability probabilities 
•  Formally: ProbReach(s, T) = Prs(Reach(s, T)) 

−  where Reach(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i } 

•  Is Reach(s, T) measurable for any T ⊆ S ? Yes… 
−  Reach(s, T) is the union of all basic cylinders 

Cyl(s0s1…sn) where s0s1…sn in Reachfin(s, T)  
−  Reachfin(s, T) contains all finite paths s0s1…sn such that:  

s0=s, s0,…,sn-1 ∉ T, sn ∈ T 
−  set of such finite paths s0s1…sn is countable 

•  Probability 
−  in fact, the above is a disjoint union 
−  so probability obtained by simply summing… 
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Comments

In the previous slide: once reached, I’m done, so I don’t
consider paths going back to T after having already touched
T before (see definition of Reachfin)

if a loop is present before going to T , then we have infinite
paths, but always countable
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Computing reachability probabilities 
•  Compute as (infinite) sum… 

•  Σs0,…,sn ∈ Reachfin(s, T) Prs0(Cyl(s0,…,sn))  

= Σs0,…,sn ∈ Reachfin(s, T) P(s0,…,sn) 

•  Example: 
−  ProbReach(s0, {4})  
= Prs0(Reach(s0, {4})) 
−  Finite path fragments: 
−  s0(s2s6)ns2s54 for n ≥ 0 
−  Ps0(s0s2s54) + Ps0(s0s2s6s2s54) + Ps0(s0s2s6s2s6s2s54) + … 
= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6 
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Computing reachability probabilities 
•  ProbReach(s0, {s6}) : compute as infinite sum? 

−  doesn’t scale… 

s1 s0 s2 s3 
q 

1 

1 

{ok} {error} 

{start} s4 

s5 

s6 

s7 

s8 

1 

1-q 

1-p 

1-p 
1-p 1-p 

p p p 

p 

1 
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Computing reachability probabilities 
•  Alternative: derive a linear equation system 

−  solve for all states simultaneously 
−  i.e. compute vector ProbReach(T) 

•  Let xs denote ProbReach(s, T)  

•  Solve: 

    

€ 

xs =  
1
0

P(s,s' ) ⋅ xs'
s'∈S
∑

if s ∈ T
if T is not reachable from s
otherwise

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
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Example 
•  Compute ProbReach(s0, {4}) 

s3 
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Comments

From the previous slide: let’s perform the computation

xs1 = xs3 = xs4 = x{1} = x{2} = x{3} = x{5} = x{6} = 0

x{4} = 1, xs5 =
1
2x{4} = 1

2

xs2 =
1
2xs5 +

1
2xs6 , xs6 =

1
2xs2 , xs0 =

1
2xs2 , which may be easily

solved
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Unique solutions 
•  Why the need to identify states that cannot reach T? 

•  Consider this simple DTMC: 
−  compute probability of reaching {s0} from s1 

−  linear equation system: xs0 = 1, xs1 = xs1 

−  multiple solutions: (xs0, xs1) = (1,p) for any p ∈ [0,1] 

s1 s0 
1 

1 
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Comments

If the condition “if T is not reachable from s” were omitted in the
left slide, then we would have the non-unique solution of the right
slide

“reachable” here means Reachfin(s,T ) ̸= ∅
to be determined using standard model checking techniques,
essentially considering only edges with a strictly positive
probability

DP/Probabilistic Model Checking, Michaelmas 2011 

Computing reachability probabilities 
•  Alternative: derive a linear equation system 

−  solve for all states simultaneously 
−  i.e. compute vector ProbReach(T) 

•  Let xs denote ProbReach(s, T)  

•  Solve: 

    

€ 

xs =  
1
0

P(s,s' ) ⋅ xs'
s'∈S
∑

if s ∈ T
if T is not reachable from s
otherwise

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
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Unique solutions 
•  Why the need to identify states that cannot reach T? 

•  Consider this simple DTMC: 
−  compute probability of reaching {s0} from s1 

−  linear equation system: xs0 = 1, xs1 = xs1 

−  multiple solutions: (xs0, xs1) = (1,p) for any p ∈ [0,1] 

s1 s0 
1 

1 
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Computing reachability probabilities 
•  Another alternative: least fixed point characterisation 

•  Consider functions of the form: 
−  F : [0,1]S → [0,1]S  

•  And define: 
−  y ≤ y’ iff y(s) ≤ y’(s) for all s 

•  y is a fixed point of F if F(y) = y 

•  A fixed point x of F is the least fixed point of F if x ≤ y for 
any other fixed point y 

vectors of 
probabilities 
for each state 

34 



Comments

In the previous slide, AB is the set of functions f : B → A

so, F takes a function from S to [0, 1] and returns another
function from S to [0, 1]
need not to be distribution probabilities, thus for y ∈ [0, 1]S we
may have

∑
s∈S y(s) ̸= 1

note that, for some y1, y2 ∈ [0, 1]S , both y1 ≤ y2 and y2 ≤ y1
may be false, i.e., this is a partial ordering
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No more need of the reachability clause
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Least fixed point 
•  ProbReach(T) is the least fixed point of the function F: 

•  This yields a simple iterative algorithm to approximate 
ProbReach(T): 

−  x(0) = 0   (i.e. x(0)(s) = 0 for all s) 
−  x(n+1) = F(x(n)) 

−  x(0) ≤ x(1) ≤ x(2) ≤ x(3) ≤ … 
−  ProbReach(T) = limn→∞ x(n) 

  

€ 

F(y)(s)   =   
1

P(s,s' )⋅ y(s' )
s'∈S
∑

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

if s ∈ T
otherwise.

in practice, terminate 
when for example:  

maxs | x(n+1)(s) - x(n)(s)) | < ɛ 

for some user-defined 
tolerance value ɛ 
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The “power method” is the one shown in the previous slide
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Least fixed point 
•  Expressing ProbReach as a least fixed point… 

−  corresponds to solving the linear equation system 
using the power method 

•  other iterative methods exist (see later) 
•  power method is guaranteed to converge 

−  generalises non-probabilistic reachability 

−  can be generalised to: 
•  constrained reachability (see PCTL “until”) 
•  reachability for Markov decision processes 

−  also yields bounded reachability probabilities… 
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We always have to use infinite paths, as this is our Ω

DP/Probabilistic Model Checking, Michaelmas 2011 

Bounded reachability probabilities 
•  Probability of reaching T from s within k steps 

•  Formally: ProbReach≤k(s, T) = Prs(Reach≤k(s, T)) where: 
−  Reach≤k(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i≤k } 

•  ProbReach≤k(T) = x(k+1) from the previous fixed point 
−  which gives us… 

    

€ 

ProbReach≤k(s, T) =  
1
0

P(s,s' )⋅ ProbReach≤k-1(s',  T)
s'∈S
∑

if s ∈ T
if k = 0 & s ∉ T
if k > 0 & s ∉ T

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
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(Bounded) reachability 
•  ProbReach(s0, {1,2,3,4,5,6}) = 1 

•  ProbReach≤k (s0, {1,2,3,4,5,6}) = … 
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Comments

In the plot of the previous slide, probability is always
approaching to 1, without actually being equal to 1

only the first probability, which considers infinite paths, is 1
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Summing up… 

•  Discrete-time Markov chains (DTMCs) 
−  state-transition systems augmented with probabilities 

•  Formalising path-based properties of DTMCs 
−  probability space over infinite paths 

•  Probabilistic reachability 
−  infinite sum 
−  linear equation system 
−  least fixed point characterisation 
−  bounded reachability 
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Next lecture 

•  Thur 12pm 

•  Discrete-time Markov chains… 
−  transient 
−  steady-state 
−  long-run behaviour 

40 
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Next few lectures… 
•  Today: 

−  Discrete-time Markov chains (continued) 

•  Mon 2pm: 
−  Probabilistic temporal logics 

•  Wed 3pm: 
−  PCTL model checking for DTMCs 

•  Thur 12pm: 
−  PRISM 



Original Slides

3 DP/Probabilistic Model Checking, Michaelmas 2011 

Overview 

•  Transient state probabilities 

•  Long-run / steady-state probabilities 

•  Qualitative properties 
−  repeated reachability 
−  persistence 
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Transient state probabilities 

•  What is the probability, having started in state s, of being in 
state s’ at time k? 
−  i.e. after exactly k steps/transitions have occurred 
−  this is the transient state probability: πs,k(s’) 

•  Transient state distribution: πs,k 
−  vector πs,k i.e. πs,k(s’) for all states s’ 

•  Note: this is a discrete probability distribution 
−  so we have πs,k : S → [0,1] 
−  rather than e.g. Prs : ΣPath(s) → [0,1]  where  ΣPath(s) ⊆ 2Path(s) 



Comments

In the previous slide, note that you need two states and a
bound to define the transient state probability

we have |S | transient state distributions for each value of k, by
varying the starting state of the distribution
note that, in transient state distributions, the destination
varies and the source stays constant
of course, being a probability distribution,

∑
s′∈S πs,k(s

′) = 1

It is not a special case of ProbReach≤k because here we have
exactly k steps
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Transient distributions 
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Computing transient probabilities 

•  Transient state probabilities: 
−  πs,k(s’) = Σs’’∈S P(s’’,s’) · πs,k-1(s’’) 
−  (i.e. look at incoming transitions) 

•  Computation of transient state distribution: 
−  πs,0 is the initial probability distribution 
−  e.g. in our case πs,0(s’) = 1 if s’=s and πs,0(s’) = 0 otherwise 
−  πs,k = πs,k-1· P 

•  i.e. successive vector-matrix multiplications 
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Computing transient probabilities 
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Computing transient probabilities 
•  πs,k  =  πs,k-1 · P  =  πs,0 · Pk

 

•  kth matrix power: Pk 
−  P gives one-step transition probabilities 
−  Pk gives probabilities of k-step transition probabilities 
−  i.e. Pk(s,s’) = πs,k(s’) 

•  A possible optimisation: iterative squaring 
−  e.g. P8 = ((P2)2)2 
−  only requires log k multiplications 
−  but potentially inefficient, e.g. if P is large and sparse  

−  in practice, successive vector-matrix multiplications preferred 



Original Slides

9 DP/Probabilistic Model Checking, Michaelmas 2011 

Notion of time in DTMCs 
•  Two possible views on the timing aspects of a system 

modelled as a DTMC: 

•  Discrete time-steps model time accurately 
−  e.g. clock ticks in a model of an embedded device 
−  or like dice example: interested in number of steps (tosses) 

•  Time-abstract 
−  no information assumed about the time transitions take 
−  e.g. simple Zeroconf model 

•  In the latter case, transient probabilities are not very useful 
•  In both cases, often beneficial to study long-run behaviour 
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Long-run behaviour 

•  Consider the limit: πs = limk→∞ πs,k 
−  where πs,k is the transient state distribution at time k  

having starting in state s 
−  this limit, where it exists, is called the limiting distribution 

•  Intuitive idea 
−  the percentage of time, in the long run, spent in each state 
−  e.g. reliability: “in the long-run, what percentage of time is the 

system in an operational state” 



Comments

In the previous slide, recall that πs is a vector where, at
position s ′, we have limk→∞ πs,k(s

′)

i.e., the probability that, in the long run, you go from s to s ′

the starting distribution (k = 0) is 1 for s ′ = s and 0 otherwise
we have |S | long-run distributions
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Limiting distribution 
•  Example: 
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Long-run behaviour 
•  Questions: 

−  when does this limit exist? 
−  does it depend on the initial state/distribution? 

•  Need to consider underlying graph 
−  (V,E) where V are vertices and E ⊆ VxV are edges 
−  V = S and E = { (s,s’) s.t. P(s,s’) > 0 } 
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Graph terminology 
•  A state s’ is reachable from s if there is a finite path 

starting in s and ending in s’ 
•  A subset T of S is strongly connected if, for each pair of 

states s and s’ in T, s’ is reachable from s passing only 
through states in T 

•  A strongly connected component (SCC) is a maximally 
strongly connected set of states (i.e. no superset of it is 
also strongly connected) 

•  A bottom strongly connected component (BSCC) is an SCC 
T from which no state outside T is reachable from T 

•  Alternative terminology: “s communicates with s’”, 
“communicating class”, “closed communicating class” 
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Example - (B)SCCs 
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Graph terminology 
•  Markov chain is irreducible if all its states belong to a 

single BSCC; otherwise reducible 

•  A state s is periodic, with period d, if 
−  the greatest common divisor of the set { n | fs

(n)>0} equals d 
−  where fs

(n) is the probability of, when starting in state s, 
returning to state s in exactly n steps 

•  A Markov chain is aperiodic if its period is 1 

1 

s0 s1 

1 



Comments

In the previous slide, a state is aperiodic if d = 1, a Markov
Chain is aperiodic if all its states are aperiodic

if a state as a self loop, then it is aperiodic
or if, e.g., has a cycle of length 3 and one of length 4
the example in this slide has period 2 for both states, and it is
easy to see that the limiting distribution does not exist
the other example in slide 92 is not irreducible, thus the
limiting distribution depends on the starting distribution
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Steady-state probabilities 
•  For a finite, irreducible, aperiodic DTMC… 

−  limiting distribution always exists 
−  and is independent of initial state/distribution 

•  These are known as steady-state probabilities 
−  (or equilibrium probabilities) 
−  effect of initial distribution has disappeared, denoted π  

•  These probabilities can be computed as the unique solution 
of the linear equation system: 
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Steady-state - Balance equations 

•  Known as balance equations 

•  That is: 

−  π(s’) = Σs∈S  π(s) · P(s,s’) 

−  Σs∈S π(s) = 1 
normalisation 

balance the 
probability of 
leaving and 

entering a state s’ 
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Steady-state - Example 
•  Let x = π 
•  Solve: x·P = x,  Σsx(s) = 1 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 

x2+x3 = x0 
x0+0.01x1 = x1 
0.01x1 = x2 
0.98x1 = x3 

x0+x1+x2+x3 = 1 

… 

x0+(100/99)x0+x0 = 1 
x0 = 99/298 

… 

x ≈ [ 0.332215, 0.335570, 
           0.003356, 0.328859 ] 
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Steady-state - Example 
•  Let x = π 
•  Solve: x·P = x,  Σsx(s) = 1 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 

x ≈ [ 0.332215, 0.335570, 
           0.003356, 0.328859 ] 

Long-run percentage of time 
spent in the state “try” 
≈ 33.6% 

Long-run percentage of time 
spent in “fail”/”succ” 
≈ 0.003356 + 0.328859 
≈ 33.2% 
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Periodic DTMCs 
•  For (finite, irreducible) periodic DTMCs, this limit: 

•  does not exist, but this limit does: 

•  Steady-state probabilities for these DTMCs can be 
computed by solving the same set of linear equations: 

(and where both limits exist, 
e.g. for aperiodic DTMCs, 
these 2 limits coincide) 
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Comments

In the previous slide, the period of the small example is 2

new limit: we are considering the average of the distributions
resulting after 1, . . . , n steps; we then take the limit of such
averages
the computation is the same, but the interpretation is slightly
different
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Steady-state - General case 
•  General case: reducible DTMC 

−  compute vector πs 
−  (note: distribution depends on initial state s) 

•  Compute BSCCs for DTMC; then two cases to consider: 
•  (1) s is in a BSCC T 

−  compute steady-state probabilities x in sub-DTMC for T 
−  πs(s’) = x(s’)  if s’ in T 
−  πs(s’) = 0  if s’ not in T 

•  (2) s is not in any BSCC 
−  compute steady-state probabilities xT for sub-DTMC of each 

BSCC T and combine with reachability probabilities to BSCCs 
−  πs(s’) = ProbReach(s, T) · xT(s’)  if s’ is in BSCC T 
−  πs(s’) = 0  if s’ is not in a BSCC 
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Steady-state - Example 2 
•  πs depends on initial state s 
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Comments

Let us comment some values from the previous slide

in the long run, any SCC which is not BSCC will be left, thus
πt(s0) = πt(s1) = 0 for all t
of course, this is a consequence of the algorithm in slide 101
πs0(s2) =

1
2 (
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Qualitative properties 
•  Quantitative properties: 

−  “what is the probability of event A?” 

•  Qualititative properties: 
−  “the probability of event A is 1”   (“almost surely A”) 
−  or: “the probability of event A is > 0”    (“possibly A”) 

•  For finite DTMCs, qualititative properties do not depend on 
the transition probabilities - only need underlying graph 
−  e.g. to determine “is target set T reached with probability 1?” 

(see DTMC model checking lecture) 
−  computing BSCCs of a DTMCs yields information about 

long-run qualitative properties… 
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Fundamental property 
•  Fundamental property of (finite) DTMCs… 

•  With probability 1,  
a BSCC will be reached  
and all of its states 
visited infinitely often 

•  Formally: 
−  Prs0 ( s0s1s2… | ∃ i≥0, ∃ BSCC T such that 

                       ∀ j≥i sj ∈ T and  
                       ∀ s∈T sk = s for infinitely many k )  =  1 
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Comments

In the previous slide, note that all BSCCs are reached with
probability 1, as in the long run such probabilities do not sum
up

so reaching a selected BSCC has probability 1...
.. and also reached any of the three BSCCs has probability 1!
in the computation of π this does not happen only because we
have the normalization factor
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Zeroconf example 
•  2 BSCCs: {s6}, {s8} 
•  Probability of trying to acquire a new address infinitely 

often is 0 

s1 s0 s2 s3 
q 

1 

1 

{ok} {error} 

{start} s4 

s5 

s6 

s7 

s8 
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1-q 

1-p 
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1-p 1-p 

p p p 

p 
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Comments

In the previous slide, note that both ok and error have
probability 1

1
2 with normalization
all other states (including the retry state s0 mentioned in the
slide) have probability 0
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Aside: Infinite Markov chains 
•  Infinite-state random walk 

•  Value of probability p does affect qualitative properties 

−  ProbReach(s, {s0}) = 1 if p ≤ 0.5 

−  ProbReach(s, {s0}) < 1 if p > 0.5 

s1 s0 1-p 
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• • • 

1-p 
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Repeated reachability 
•  Repeated reachability: 

−  “always eventually…”, “infinitely often…” 
•  Prs0 ( s0s1s2… | ∀ i≥0 ∃ j≥i sj ∈ B ) 

−  where B ⊆ S is a set of states 

•  e.g. “what is the probability that the protocol successfully 
sends a message infinitely often?” 

•  Is this measurable? Yes… 
−  set of satisfying paths is:  

−  where Cm is the union of all cylinder sets Cyl(s0s1…sm) for 
finite paths s0s1…sm such that sm ∈ B 



Original Slides

28 DP/Probabilistic Model Checking, Michaelmas 2011 

Qualitative repeated reachability 
•  Prs0 ( s0s1s2… | ∀ i≥0 ∃ j≥i sj ∈ B ) = 1 

Prs0 ( “always eventually B” ) = 1 

 if and only if  

•  T ∩ B ≠ ∅ for each BSCC T that is reachable from s0 
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Example: 

B = { s3, s4, s5 } 
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Persistence 
•  Persistence properties: 

−  “eventually forever…” 
•  Prs0 ( s0s1s2… | ∃ i≥0 ∀ j≥i sj ∈ B ) 

−  where B ⊆ S is a set of states 

•  e.g. “what is the probability of the leader election algorithm 
reaching, and staying in, a stable state?” 

•  e.g. “what is the probability that an irrecoverable error 
occurs?” 

•  Is this measurable? Yes…   FG B = ¬ GF (S\B) 
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Qualitative persistence 
•  Prs0 ( s0s1s2… | ∃ i≥0 ∀ j≥i sj ∈ B ) = 1 

Prs0 ( “eventually forever B” ) = 1  

 if and only if  

•  T ⊆ B for each BSCC T that is reachable from s0 
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Example: 

B = { s2, s3, s4, s5 } 
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Summing up… 
•  Transient state probabilities 

−  successive vector-matrix multiplications 

•  Long-run/steady-state probabilities 
−  requires graph analysis 
−  irreducible case: solve linear equation system 
−  reducible case: steady-state for sub-DTMCs + reachability 

•  Qualitative properties 
−  repeated reachability 
−  persistence 
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Overview 
•  Temporal logic 

•  Non-probabilistic temporal logic 
−  CTL 

•  Probabilistic temporal logic 
−  PCTL = CTL + probabilities 

•  Qualitative vs. quantitative 

•  Linear-time properties 
−  LTL, PCTL* 
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Temporal logic 
•  Temporal logic 

−  formal language for specifying and reasoning about how the 
behaviour of a system changes over time 

−  extends propositional logic with modal/temporal operators 
−  one important use: representation of system properties to be 

checked by a model checker 
•  Logics used in this course are probabilistic extensions of 

temporal logics devised for non-probabilistic systems 
−  So we revert briefly to (labelled) state-transition diagrams 
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s1 s0 
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State-transition systems 

•  Labelled state-transition system (LTS) (or Kripke structure) 
−  is a tuple (S,sinit,→,L) where:  
−  S is a set of states (“state space”) 
−  sinit ∈ S is the initial state 
− → ⊆ S x S is the transition relation 
−  L : S → 2AP is function labelling 

states with atomic propositions 
(taken from a set AP) 

•  DTMC (S,sinit,P,L) has underlying LTS (S,sinit,→,L)  
−  where → = { (s,s’) s.t. P(s,s’) > 0 } 

s1 s0 

s2 

s3 

1 

{fail} 

{succ} 

{try} 
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Paths - some notation 
•  Path ω = s0s1s2… such that (si,si+1) ∈ → for i ≥ 0 

−  we write si → si+1 as shorthand for (si,si+1) ∈ →  

•  ω(i) is the (i+1)th state of ω, i.e. si 

•  ω[…i] denotes the (finite) prefix ending in the (i+1)th state 
−  i.e. ω[…i] = s0s1…si 

•  ω[i…] denotes the suffix starting from the (i+1)th state 
−  i.e. ω[i…] = sisi+1si+2… 

•  As for DTMCs, Path(s) = set of all infinite paths from s 
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CTL 
•  CTL - Computation Tree Logic 
•  Syntax split into state and path formulae 

−  specify properties of states/paths, respectively 
−  a CTL formula is a state formula 

•  State formulae: 
−  φ  ::=  true | a | φ ∧ φ | ¬φ | A ψ | E ψ 
−  where a ∈ AP and ψ is a path formula  

•  Path formulae 
−  ψ  ::=  X φ | F φ | G φ | φ U φ 
−  where φ is a state formula 

Some of these 
operators (e.g. 

A, F, G) are 
derivable… 

X = “next” 
F = “future” 
G = “globally” 
U = “until” 
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CTL semantics 
•  Intuitive semantics: 

−  of quantifiers (A/E) and temporal operators (F/G/U) 

EF red EG red E [ yellow U red ] 

AF red AG red A [ yellow U red ] 
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CTL semantics 
•  Semantics of state formulae: 

−  s ⊨ φ  denotes  “s satisfies φ” or “φ is true in s” 

•  For a state s of an LTS (S,sinit,→,L):  

−  s ⊨ true    always 
−  s ⊨ a    ⇔  a ∈ L(s) 
−  s ⊨ φ1 ∧ φ2   ⇔  s ⊨ φ1  and  s ⊨ φ2 

−  s ⊨ ¬φ    ⇔  s ⊭ φ 
−  s ⊨ A ψ    ⇔  ω ⊨ ψ for all ω ∈ Path(s) 
−  s ⊨ E ψ    ⇔  ω ⊨ ψ for some ω ∈ Path(s) 
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CTL semantics 
•  Semantics of path formulae: 

− ω ⊨ ψ denotes  “ω satisfies ψ” or “ψ is true along ω” 

•  For a path ω of an LTS (S,sinit,→,L): 

− ω ⊨ X φ   ⇔  ω(1) ⊨ φ 
− ω ⊨ F φ   ⇔  ∃k≥0 s.t. ω(k) ⊨ φ 
− ω ⊨ G φ   ⇔  ∀i≥0 ω(i) ⊨ φ 
− ω ⊨ φ1 U φ2  ⇔  ∃k≥0 s.t. ω(k) ⊨ φ2 and ∀i<k ω(i) ⊨ φ1 
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CTL examples 
•  Some examples of satisfying paths: 

− ω0 ⊨ X succ 

− ω1 ⊨ ¬fail U succ 

•  Example CTL formulas: 
−  s1 ⊨ try ∧ ¬fail 
−  s1 ⊨ E [ X succ ] and s1, s3 ⊨  A [ X succ ] 
−  s0 ⊨ E [¬fail U succ] but s0 ⊭ A [¬fail U succ] 

s1 s0 

s2 

s3 

{fail} 

{succ} 

{try} 

s1 s3 s3 s3 

{succ} {succ} {succ} {try} 
ω0: 

s1 s1 s3 s3 

{try} {succ} {succ} 

s0 

{try} 

ω1: 
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CTL examples 
•  AG (¬(crit1∧crit2)) 

−  mutual exclusion 

•  AG EF initial 
−  for every computation, it is always possible to return to the 

initial state 

•  AG (request → AF response) 
−  every request will eventually be granted 

•  AG AF crit1 ∧ AG AF crit2 
−  each process has access to the critical section infinitely often 
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CTL equivalences 
•  Basic logical equivalences: 

−  false ≡ ¬true        (false) 
−  φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)     (disjunction) 
−  φ1 → φ2 ≡ ¬φ1 ∨ φ2       (implication) 

•  Path quantifiers: 
−  A ψ ≡ ¬E(¬ψ) 
−  E ψ ≡ ¬A(¬ψ) 

•  Temporal operators: 
−  F φ ≡ true U φ 
−  G φ ≡ ¬F(¬φ) 

For example: 
AG φ ≡ ¬EF(¬ φ) 
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CTL - Alternative notation 
•  Some commonly used notation… 

•  Temporal operators: 
−  F φ  ≡  ◊ φ  (“diamond”) 
−  G φ  ≡  □ φ  (“box”) 
−  X φ  ≡  ○ φ 

•  Path quantifiers: 
−  A ψ  ≡ ∀ ψ 
−  E ψ  ≡ ∃ ψ 

•  Brackets: none/round/square 
−  AF ψ 
−  A ( ψ1 U ψ2 ) 
−  A [ ψ1 U ψ2 ] 
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PCTL 
•  Temporal logic for describing properties of DTMCs 

−  PCTL = Probabilistic Computation Tree Logic [HJ94] 
−  essentially the same as the logic pCTL of [ASB+95] 

•  Extension of (non-probabilistic) temporal logic CTL 
−  key addition is probabilistic operator P 
−  quantitative extension of CTL’s A and E operators 

•  Example 
−  send → P≥0.95 [ F≤10 deliver ] 
−  “if a message is sent, then the probability of it being delivered 

within 10 steps is at least 0.95” 



Original Slides

15 DP/Probabilistic Model Checking, Michaelmas 2011 

PCTL syntax 
•  PCTL syntax: 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ]   (state formulae) 

−  ψ  ::=  X φ    |    φ U≤k φ     |   φ U φ   (path formulae) 

−  where a is an atomic proposition, p ∈ [0,1] is a probability 
bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ 

•  A PCTL formula is always a state formula 
−  path formulae only occur inside the P operator 

“until” 

 ψ is true with 
probability ~p 

“bounded 
until” “next” 
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CTL 
•  CTL - Computation Tree Logic 
•  Syntax split into state and path formulae 

−  specify properties of states/paths, respectively 
−  a CTL formula is a state formula 

•  State formulae: 
−  φ  ::=  true | a | φ ∧ φ | ¬φ | A ψ | E ψ 
−  where a ∈ AP and ψ is a path formula  

•  Path formulae 
−  ψ  ::=  X φ | F φ | G φ | φ U φ 
−  where φ is a state formula 

Some of these 
operators (e.g. 

A, F, G) are 
derivable… 

X = “next” 
F = “future” 
G = “globally” 
U = “until” 



Comments

Compare PCTL and CTL from previous 2 slides

state formulas with E and A have disappeared, replaced by the
quantitative operator P, which allows intermediate results
between “at least one” and “for all”
the path formulas are actually the same, with the addition of
the bounded until
as explained in the next slide, there would be no problem in
adding it to CTL too
of course, k ≥ 1, and Φ1U≤0Φ2 ≡ Φ2 (see slide 127)
F and G, though absent, are expressible using U as shown 5
slides ago (“CTL Equivalences”)
the bounded until also allows bounded F and G (will be back
on this in 5 slides)
PCTL only outputs boolean values: either C |= Φ or C ̸|= Φ

probabilities are always compared with some given threshold
we will see how we can also ask for sub-formulas probabilities
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PCTL semantics for DTMCs 
•  Semantics for non-probabilistic operators same as for CTL: 

−  s ⊨ φ  denotes  “s satisfies φ” or “φ is true in s” 
− ω ⊨ ψ denotes  “ω satisfies ψ” or “ψ is true along ω” 

•  For a state s of a DTMC (S,sinit,P,L): 
−  s ⊨ true    always 
−  s ⊨ a    ⇔  a ∈ L(s) 
−  s ⊨ φ1 ∧ φ2   ⇔  s ⊨ φ1  and  s ⊨ φ2 

−  s ⊨ ¬φ    ⇔  s ⊭ φ 
•  For a path ω of a DTMC (S,sinit,P,L):  

− ω ⊨ X φ   ⇔  ω(1) ⊨ φ 
− ω ⊨ φ1 U≤k φ2  ⇔  ∃i≤k such that ω(i) ⊨ φ2  

                                 and ∀j<i, ω(j) ⊨ φ1 
− ω ⊨ φ1 U φ2  ⇔  ∃k≥0 s.t. ω(k) ⊨ φ2 and ∀i<k ω(i) ⊨ φ1 

U≤k not in CTL 
(but could easily 

be added) 
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PCTL semantics for DTMCs 
•  Semantics of the probabilistic operator P 

−  informal definition:  s ⊨ P~p [ ψ ] means that “the probability, 
from state s, that ψ is true for an outgoing path satisfies ~p” 

−  example:  s ⊨ P<0.25 [ X fail ] ⇔ “the probability of atomic 
proposition fail being true in the next state of outgoing paths 
from s is less than 0.25” 

−  formally:  s ⊨ P~p [ψ]  ⇔  Prob(s, ψ) ~ p 
−  where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ } 

s 

¬ψ 

ψ Prob(s, ψ) ~ p ? 



Comments

In the previous slide, Prob(s, ψ) to be defined as in slide 85:
disjoint sum of cylinders probabilities

that is, collect all infinite paths starting from s and satisfying
ψ, consider all their common distinct finite prefixes and sum
the probabilities of such prefixes
note that such prefixes always exist, as we have a finite
number of states

It may be proved that, given the PCTL syntax and semantics,
Prob(s, ψ) is always a disjoint sum of cylinders (see slide 171)
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PCTL equivalences for DTMCs 

•  Basic logical equivalences: 
−  false ≡ ¬true        (false) 
−  φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)     (disjunction) 
−  φ1 → φ2 ≡ ¬φ1 ∨ φ2       (implication) 

•  Negation and probabilities 
−  e.g. ¬P>p [ φ1 U φ2 ] ≡ P≤p [ φ1 U φ2 ]  
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Reachability and invariance 
•  Derived temporal operators, like CTL… 

•  Probabilistic reachability: P~p [ F φ ] 
−  the probability of reaching a state satisfying φ 
−  F φ ≡ true U φ 
−  “φ is eventually true” 
−  bounded version: F≤k φ ≡ true U≤k φ 

•  Probabilistic invariance: P~p [ G φ ] 
−  the probability of φ always remaining true 
−  G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ) 
−  “φ is always true” 
−  bounded version: G≤k φ ≡ ¬(F≤k ¬φ) 

strictly speaking, 
G φ cannot be 

derived from the 
PCTL syntax in 
this way since 

there is no 
negation of path 

formulae 
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Derivation of P~p [ G φ ]  
•  In fact, we can derive P~p [ G φ ] directly in PCTL… 

−  s ⊨ P>p [ G φ ]  ⇔  Prob(s, G φ) > p 
      ⇔  Prob(s, ¬(F ¬φ)) > p 
      ⇔  1 - Prob(s, F ¬φ) > p 
      ⇔  Prob(s, F ¬φ) < 1 - p 
      ⇔  s ⊨ P<1-p [ F ¬φ ] 

•  Other equivalences: 
−  P≥p [ G φ ]  ≡  P≤1-p [ F ¬φ ] 
−  P<p [ G φ ]  ≡  P>1-p [ F ¬φ ] 
−  P>p [ G≤k φ ]  ≡  P<1-p [ F≤k ¬φ ] 
−  etc. 



Comments

Explanation fro the last 2 slides:

in LTL, Gϕ ≡ ¬(Fϕ)
in CTL, the same formula cannot be applied, as negations of
path formulas are not allowed
however, since A¬Ψ ≡ ¬EΨ (the first formula is in CTL∗, the
second in CTL), we may define G on F and ultimately on U
an analogous trick may be done in PCTL, by negating the
comparison: P<p[Gϕ] ≡ P≥p[F¬ϕ] and similar...
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PCTL examples 
•  P<0.05 [ F err/total>0.1 ] 

−  “with probability at most 0.05, more than 10% of the NAND 
gate outputs are erroneous?” 

•  P≥0.8 [ F≤k reply_count=n ] 
−  “the probability that the sender has received n 

acknowledgements within k clock-ticks is at least 0.8” 
•  P<0.4 [ ¬failA U failB ] 

−  “the probability that component B fails before component A is 
less than 0.4” 

•  ¬oper → P≥1 [ F ( P>0.99 [ G≤100 oper ] ) ] 
−  “if the system is not operational, it almost surely reaches a 

state from which it has a greater than 0.99 chance of staying 
operational for 100 time units” 



Comments

For the last formula of the previous slide, oper is evaluated on
the first state only

however, PRISM allows a probability distribution as the initial
state...
note also that the last property has nested probability
operators, as a CTL formula may have nested state formulas
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PCTL and measurability 
•  All the sets of paths expressed by PCTL are measurable 

−  i.e. are elements of the σ-algebra ΣPath(s) 
−  see for example [Var85] (for a stronger result in fact) 

•  Recall: probability space (Path(s), ΣPath(s), Prs) 
−  ΣPath(s) contains cylinder sets C(ω) for all finite paths ω starting 

in s and is closed under complementation, countable union 

•  Next (X φ) 
−  cylinder sets constructed from paths of length one 

•  Bounded until (φ1 U≤k φ2) 
−  (finite number of) cylinder sets from paths of length at most k 

•  Until (φ1 U φ2) 
−  countable union of paths satisfying φ1 U≤k φ2 for all k≥0 
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Qualitative vs. quantitative properties 
•  P operator of PCTL can be seen as a quantitative analogue 

of the CTL operators A (for all) and E (there exists) 

•  Qualitative PCTL properties 
−  P~p [ ψ ] where p is either 0 or 1 

•  Quantitative PCTL properties 
−  P~p [ ψ ] where p is in the range (0,1) 

•  P>0 [ F φ ] is identical to EF φ 
−  there exists a finite path to a φ-state 

•  P≥1 [ F φ ] is (similar to but) weaker than AF φ 
−  a φ-state is reached “almost surely” 
−  see next slide… 
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Example: Qualitative/quantitative 
•  Toss a coin repeatedly until “tails” is thrown 

•  Is “tails” always eventually thrown? 
−  CTL:  AF “tails” 
−  Result:  false 
−  Counterexample: s0s1s0s1s0s1… 

•  Does the probability of eventually  
throwing “tails” equal one? 
−  PCTL:  P≥1 [ F “tails” ] 
−  Result:  true 
−  Infinite path s0s1s0s1s0s1… has zero probability 

s0 

s1 

s2 

0.5 

0.5 

1 

1 

{heads} 

{tails} 



Comments

In the previous slide:

P((s0s1)ω) = limk→∞ Π
k
2

i=0
1
2 = limk→∞

1
2k

= 0
actually, it is not even an event! it does not belong to any
cylinder, thus it is not in the σ-algebra
in fact, any prefix of (s0s1)

ω with odd length (i.e., ending in
s0) may go on with s2
thus, singling out (s0s1)

ω only (i.e., considering the singleton
event {(s0s1)ω}) is impossible in this example
thus, it is correct that the final probability of reaching tails is
1...
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Quantitative properties 
•  Consider a PCTL formula P~p [ ψ ] 

−  if the probability is unknown, how to choose the bound p? 
•  When the outermost operator of a PTCL formula is P 

−  PRISM allows formulae of the form P=? [ ψ ] 
−  “what is the probability that path formula ψ is true?” 

•  Model checking is no harder: compute the values anyway 
•  Useful to spot patterns, trends 
•  Example 

−  P=? [ F err/total>0.1 ] 
−  “what is the probability  

that 10% of the NAND 
gate outputs are erroneous?” 
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Limitations of PCTL 
•  PCTL, although useful in practice, has limited expressivity 

−  essentially: probability of reaching states in X, passing only 
through states in Y (and within k time-steps) 

•  More expressive logics can be used, for example: 
−  LTL [Pnu77], the non-probabilistic linear-time temporal logic 
−  PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL 

•  To introduce these logics, we return briefly again to  
non-probabilistic logics and models… 
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Branching vs. Linear time 
•  In CTL, temporal operators always appear inside A or E 

−  in LTL, temporal operators can be combined 

•  LTL but not CTL: 
−  F [ req ∧ X ack ] 
−  “eventually a request occurs, followed immediately by an 

acknowledgement” 

•  CTL but not LTL: 
−  AG EF initial 
−  “for every computation, it is always possible to return to the 

initial state” 
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LTL 
•  LTL syntax 

−  path formulae only 

−  ψ ::=  true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
−  where a ∈ AP is an atomic proposition 

•  LTL semantics (for a path ω) 
− ω ⊨ true    always 
− ω ⊨ a    ⇔  a ∈ L(ω(0)) 
− ω ⊨ ψ1 ∧ ψ2  ⇔  ω ⊨ ψ1  and ω ⊨ ψ2 

− ω ⊨ ¬ψ    ⇔  ω ⊭ ψ 
− ω ⊨ X ψ   ⇔  ω[1…] ⊨ ψ 
− ω ⊨ ψ1 U ψ2  ⇔  ∃k≥0 s.t. ω[k…] ⊨ ψ2 and  

      ∀i<k ω[i…] ⊨ ψ1 
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LTL 
•  LTL semantics 

−  implicit universal quantification over paths 
−  i.e. for an LTS M = (S,sinit,→,L)  and LTL formula ψ 
−  s ⊨ ψ iff ω ⊨ ψ for all paths ω ∈ Path(s) 
−  M ⊨ ψ iff sinit ⊨ ψ 

•  e.g: 
−  A F [ req ∧ X ack ] 
−  “it is always the case that, eventually, a request occurs, 

followed immediately by an acknowledgement” 

•  Derived operators like CTL, for example: 
−  F ψ ≡ true U ψ 
−  G ψ ≡ ¬F(¬ψ) 



Original Slides

30 DP/Probabilistic Model Checking, Michaelmas 2011 

LTL + probabilities 
•  Same idea as PCTL: probabilities of sets of path formulae 

−  for a state s of a DTMC and an LTL formula ψ: 
−  Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ } 
−  all such path sets are measurable (see later) 

•  Examples (from DTMC lectures)… 
•  Repeated reachability: “always eventually…” 

−  Prob(s, GF send) 
−  e.g. “what is the probability that the protocol successfully 

sends a message infinitely often?” 
•  Persistence properties: “eventually forever…” 

−  Prob(s, FG stable) 
−  e.g. “what is the probability of the leader election algorithm 

reaching, and staying in, a stable state?” 
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PCTL* 
•  PCTL* subsumes both (probabilistic) LTL and PCTL 

•  State formulae: 
−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] 
−  where a ∈ AP and ψ is a path formula 

•  Path formulae: 
−  ψ  ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
−  where φ is a state formula 

•  A PCTL* formula is a state formula φ 
−  e.g. P>0.1 [ GF crit1 ] ∧ P>0.1 [ GF crit2 ] 
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PCTL syntax 
•  PCTL syntax: 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ]   (state formulae) 

−  ψ  ::=  X φ    |    φ U≤k φ     |   φ U φ   (path formulae) 

−  where a is an atomic proposition, p ∈ [0,1] is a probability 
bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ 

•  A PCTL formula is always a state formula 
−  path formulae only occur inside the P operator 

“until” 

 ψ is true with 
probability ~p 

“bounded 
until” “next” 



Comments

Comparison of the last 2 slides:

state formulas are the same
path formulas also allow state formulas, as well as (direct)
logical combinations of path formulas
note that such logical combinations are NOT redundant, i.e.,
they cannot be derived from the path formulas
the given example is not in PCTL because of GF
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Summing up… 
•  Temporal logic: 

−  formal language for specifying and reasoning about how the 
behaviour of a system changes over time 

non-probabilistic 
(e.g. LTSs) 

probabilistic 
(e.g. DTMCs) 

CTL 

LTL 

PCTL 

LTL + prob. 

PCTL* 

Φ 

ψ 

Φ 

Prob(s, ψ) 

Φ 
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Probabilistic model 
e.g. Markov chain 

Probabilistic temporal  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e.g. PCTL, CSL, LTL 

Result 

Quantitative 
results 

System 

Counter- 
example 

System 
 require- 

ments 

P<0.1 [ F fail ] 

0.5 
0.1 

0.4 
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e.g. PRISM 
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Overview 

•  PCTL model checking for DTMCs 

•  Computation of probabilities for PCTL formulae 
−  next 
−  bounded until 
−  (unbounded) until 

•  Solving large linear equation systems 
−  direct vs. iterative methods 
−  iterative solution methods 
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PCTL 
•  PCTL syntax: 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ]   (state formulae) 

−  ψ  ::=  X φ    |    φ U≤k φ     |   φ U φ   (path formulae) 

−  where a is an atomic proposition, p ∈ [0,1] is a probability 
bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ 

•  Remaining operators can be derived (false, ∨, →, F, G, …) 
−  hence will not be discussed here 

“until” 

 ψ is true with 
probability ~p 

“bounded 
until” “next” 
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PCTL model checking for DTMCs 
•  Algorithm for PCTL model checking [CY88,HJ94,CY95] 

−  inputs:  DTMC D=(S,sinit,P,L),  PCTL formula φ 
−  output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ 

•  What does it mean for a DTMC D to satisfy a formula φ? 
−  often, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ) 
−  sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S 

•  Sometimes, focus on quantitative results 
−  e.g. compute result of P=? [ F error ] 
−  e.g. compute result of P=? [ F≤k error ] for 0≤k≤100 



Comments

Previous slide: let us assume it is not a problem to have full
graphs in memory

as we will see, PRISM uses OBDDs (for sets of states) and a
special extension of theirs known as MTBDD for functions
S → [0, 1]
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PCTL model checking for DTMCs 
•  Basic algorithm proceeds by induction on parse tree of φ 

−  example: φ = (¬fail ∧ try) → P>0.95 [ ¬fail U succ ] 

•  For the non-probabilistic operators: 
−  Sat(true) = S 
−  Sat(a) = { s ∈ S | a ∈ L(s) } 
−  Sat(¬φ) = S \ Sat(φ) 
−  Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2) 

•  For the P~p [ ψ ] operator:  
−  need to compute the  

probabilities Prob(s, ψ) 
for all states s ∈ S 

−  Sat(P~p [ ψ ]) = { s ∈ S | Prob(s, ψ) ~ p } 

∧ 

¬ 

→ 

P>0.95 [ · U · ] 

¬ 

fail fail 

succ try 
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Probability computation 
•  Three temporal operators to consider: 

•  Next: P~p[ X φ ] 

•  Bounded until: P~p[ φ1 U≤k φ2 ] 
−  adaptation of bounded reachability for DTMCs 

•  Until: P~p[ φ1 U φ2 ] 
−  adaptation of reachability for DTMCs 
−  graph-based “precomputation” algorithms 
−  techniques for solving large linear equation systems 
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PCTL next for DTMCs 
•  Computation of probabilities for PCTL next operator 

−  Sat(P~p[ X φ ]) = { s ∈ S | Prob(s, X φ) ~ p } 
−  need to compute Prob(s, X φ) for all s ∈ S 

•  Sum outgoing probabilities for  
transitions to φ-states 
−  Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’) 

•  Compute vector Prob(X φ) of 
probabilities for all states s 
−  Prob(X φ) = P · φ 
−  where φ is a 0-1 vector over S with φ(s) = 1 iff s ⊨ φ 
−  computation requires a single matrix-vector multiplication 

s 

φ 



Comments

In the previous slide, it is assumed that Sat(Φ) has already
been computed

formulas has a finite size, so atomic propositions (or logical
combinations of atomic propositions) have to be used
somewhere
for atomic propositions and their simple logical combinations,
computing Sat is easy
we follow the formula syntax tree, starting from the leaves
note that the vector Φ is not a probability distribution
e.g., for an atomic proposition, it may be true in multiple states
thus, also the result of the multiplication may not be a
probability distribution (see next slide)



Original Slides

9 DP/Probabilistic Model Checking, Michaelmas 2011 

PCTL next - Example 
•  Model check: P≥0.9 [ X (¬try ∨ succ) ] 

−  Sat (¬try ∨ succ)  = (S \ Sat(try)) ∪ Sat(succ)  
= ({s0,s1,s2,s3} ∖ {s1}) ∪ {s3} = {s0,s2,s3} 

−  Prob(X (¬try ∨ succ)) = P · (¬try ∨ succ) = … 

•  Results: 
−  Prob(X (¬try ∨ succ)) = [0, 0.99, 1, 1] 
−  Sat(P≥0.9 [ X (¬try ∨ succ) ]) = {s1, s2, s3} 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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PCTL bounded until for DTMCs 
•  Computation of probabilities for PCTL U≤k operator 

−  Sat(P~p[ φ1 U≤k φ2 ]) = { s ∈ S | Prob(s, φ1 U≤k φ2) ~ p } 
−  need to compute Prob(s, φ1 U≤k φ2) for all s ∈ S 

•  First identify (some) states where probability is trivially 1/0 
−  Syes = Sat(φ2) 
−  Sno = S \ (Sat(φ1) ∪ Sat(φ2)) 

Sat(φ2) 

Sat(φ1) 
S 
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PCTL bounded until for DTMCs 
•  Let: 

−  Syes = Sat(φ2) 
−  Sno = S \ (Sat(φ1) ∪ Sat(φ2)) 

•  And let: 
−  S? = S \ (Syes ∪ Sno) 

•  Compute solution of recursive equations: 

Sat(φ2) 

Sat(φ1) S 
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PCTL bounded until for DTMCs 
•  Simultaneous computation of vector Prob(φ1 U≤k φ2) 

−  i.e. probabilities Prob(s, φ1 U≤k φ2) for all s ∈ S 

•  Iteratively define in terms of matrices and vectors 
−  define matrix P’ as follows: P’(s,s’) = P(s,s’) if s ∈ S?,  

P’(s,s’) = 1 if s ∈ Syes and s=s’,  P’(s,s’) = 0 otherwise 
−  Prob(φ1 U≤0 φ2) = φ2 
−  Prob(φ1 U≤k φ2) = P’ · Prob(φ1 U≤k-1 φ2) 
−  requires k matrix-vector multiplications 

•  Note that we could express this in terms of matrix powers 
−  Prob(φ1 U≤k φ2) = (P’)k · φ2 and compute (P’)k in log2k steps 
−  but this is actually inefficient: (P’)k is much less sparse than P’ 
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PCTL bounded until - Example 
•  Model check: P>0.98 [ F≤2 succ ] ≡ P>0.98 [ true U≤2 succ ] 

−  Sat (true) = S = {s0,s1,s2,s3},  Sat(succ) = {s3} 
−  Syes = {s3},  Sno = ∅,  S? = {s0,s1,s2},  P’ = P 
−  Prob(true U≤0 succ) = succ = [0, 0, 0, 1] 

−  Sat(P>0.98 [ F≤2 succ ]) = {s1, s3} 
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PCTL until for DTMCs 
•  Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S 
•  First, identify all states where the probability is 1 or 0 

−  Syes = Sat(P≥1 [ φ1 U φ2 ]) 
−  Sno = Sat(P≤0 [ φ1 U φ2 ]) 

•  Then solve linear equation system for remaining states 

•  Running example: 

P>0.8 [¬a U b ] 0.4 0.1 

0.6 

1 0.3 

0.7 0.1 
0.3 

0.5 0.9 
1 

{a} 

{b} 

0.1 

s0 

s1 s3 

s2 s4 

s5 
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Precomputation 
•  We refer to the first phase (identifying sets Syes and Sno) as 

“precomputation” 
−  two algorithms: Prob0 (for Sno) and Prob1 (for Syes) 
−  algorithms work on underlying graph (probabilities irrelevant) 

•  Important for several reasons 
−  ensures unique solution to linear equation system 

•  only need Prob0 for uniqueness, Prob1 is optional 
−  reduces the set of states for which probabilities must be 

computed numerically 
−  gives exact results for the states in Syes and Sno (no round-off) 
−  for model checking of qualitative properties (P~p[·] where p is 

0 or 1), no further computation required 
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Sno = Sat(P≤0 [¬a U b ]) 

0.4 0.1 

0.6 

1 0.3 

0.7 0.1 
0.3 

0.5 0.9 
0.1 

Sat(P>0 [¬a U b ]) Sat(b) 

Precomputation - Prob0 
•  Prob0 algorithm to compute Sno = Sat(P≤0 [ φ1 U φ2 ]) : 

−  first compute Sat(P>0 [ φ1 U φ2 ]) ≡ Sat(E[ φ1 U φ2 ]) 
−  i.e. find all states which can, with non-zero probability, reach 

a φ2-state without leaving φ1-states 
−  i.e. find all states from which there is a finite path through φ1-

states to a φ2-state: simple graph-based computation 
−  subtract the resulting set from S 

Example: 
P>0.8 [¬a U b ] 

1 

a 

b s0 

s1 s3 

s2 s4 

s5 
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Prob0 algorithm 

•  Note: can be formulated as a least fixed point computation 
−  also well suited to computation with binary decision diagrams 
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Syes = 
Sat(P≥1 [¬a U b ]) 

Sat(P<1 [¬a U b ]) Sno = Sat(P≤0 [¬a U b ]) 

Precomputation - Prob1 
•  Prob1 algorithm to compute Syes = Sat(P≥1 [ φ1 U φ2 ]) : 

−  first compute Sat(P<1 [ φ1 U φ2 ]), reusing Sno 

−  this is equivalent to the set of states which have a non-zero 
probability of reaching Sno, passing only through φ1-states 

−  again, this is a simple graph-based computation 
−  subtract the resulting set from S 

Example: 
P>0.8 [¬a U b ] 

1 

a 

b 
0.4 0.1 

0.6 

1 0.3 

0.7 0.1 
0.3 

0.9 
0.1 

0.5 
s0 

s1 s3 

s2 s4 

s5 
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PCTL until - linear equations 
•  Example: P>0.8 [¬a U b ] 
•  Let xi = Prob(si, ¬a U b)  

x1 = x3 = 0 
x4 = x5 = 1 
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 =  8/9 

x0 = 0.1x1+0.9x2  =  0.8 
Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1] 
Sat(P>0.8 [ ¬a U b ]) = { s2,s4,s5 } 

Sno = 
Sat(P≤0 [¬a U b ]) 

a 

b 
0.4 0.1 

0.6 

1 0.3 

0.7 0.1 
0.3 

0.9 
1 

Syes = 
Sat(P≥1 [¬a U b ]) 

0.1 
0.5 

s0 

s1 s3 

s2 s4 

s5 
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Prob1 algorithm 
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PCTL until - linear equations 
•  Probabilities Prob(s, φ1 U φ2) can now be obtained as the 

unique solution of the following set of linear equations 
−  essentially the same as for probabilistic reachability 

•  Can also be reduced to a system in |S?| unknowns instead 
of |S| where S? = S \ (Syes ∪ Sno) 

  

€ 

Prob(s, φ1 U φ2)  =   
1
0

P(s,s' )⋅ Prob(s',  φ1 U φ2)
s'∈S
∑

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

if s ∈ Syes

if s ∈ Sno

otherwise
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Computing reachability probabilities 
•  Alternative: derive a linear equation system 

−  solve for all states simultaneously 
−  i.e. compute vector ProbReach(T) 

•  Let xs denote ProbReach(s, T)  

•  Solve: 

    

€ 

xs =  
1
0

P(s,s' ) ⋅ xs'
s'∈S
∑

if s ∈ T
if T is not reachable from s
otherwise

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

31 
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PCTL until - linear equations 
•  Example: P>0.8 [¬a U b ] 
•  Let xi = Prob(si, ¬a U b)  

x1 = x3 = 0 
x4 = x5 = 1 
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 =  8/9 

x0 = 0.1x1+0.9x2  =  0.8 
Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1] 
Sat(P>0.8 [ ¬a U b ]) = { s2,s4,s5 } 

Sno = 
Sat(P≤0 [¬a U b ]) 

a 

b 
0.4 0.1 

0.6 

1 0.3 

0.7 0.1 
0.3 

0.9 
1 

Syes = 
Sat(P≥1 [¬a U b ]) 

0.1 
0.5 

s0 

s1 s3 

s2 s4 

s5 
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PCTL Until – Example 2 
•  Example: P>0.5 [ G¬b ] 
•  Prob(si, G¬b)  

= 1 - Prob(si, ¬(G¬b))  
= 1 - Prob(si, F b)  

•  Let xi = Prob(si, F b)  

x3 = 0 and x4 = x5 = 1 
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 =  8/9 

x1 = 0.6x3+0.4x0 = 0.4x0 
x0 = 0.1x1+0.9x2  = 5/6 and x1= 1/3 
Prob(G¬b) = 1-x = [1/6, 2/3, 1/9, 1, 0, 0 ] 
Sat(P>0.5 [ G¬b ]) = { s1,s3 } 

Sno = Sat(P≤0 [ F b ]) 

Syes = 
Sat(P≥1 [ F b ]) 

a 

b 
0.4 0.1 

0.6 

1 0.3 

0.7 0.1 
0.3 

0.9 
1 0.1 

0.5 
s0 

s1 s3 

s2 s4 

s5 
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Linear equation systems 
•  Solution of large (sparse) linear equation systems 

−  size of system (number of variables) typically O(|S|) 
−  state space S gets very large in practice 

•  Two main classes of solution methods: 
−  direct methods - compute exact solutions in fixed number of 

steps, e.g. Gaussian elimination, L/U decomposition 
−  iterative methods, e.g. Power, Jacobi, Gauss-Seidel, … 
−  the latter are preferred in practice due to scalability 

•  General form: A·x = b 
−  indexed over integers, 
−  i.e. assume S = { 0,1,…,|S|-1 } 
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Iterative solution methods 
•  Start with an initial estimate for the vector x, say x(0) 

•  Compute successive (increasingly accurate) approximations 
−  approximation (solution vector) at kth iteration denoted x(k) 

−  computation of x(k) uses values of x(k-1) 

•  Terminate when solution vector has converged sufficiently 
•  Several possibilities for convergence criteria, e.g.: 

−  maximum absolute difference 

−  maximum relative difference 
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Jacobi method 
•  Based on fact that: 

•  can be rearranged as: 

•  yielding this update scheme: 

For probabilistic 
model checking, 
A(i,i) is always 

non-zero 



Comments

In the previous slide, Ai ,i ̸= 0 comes from the definition in
slide 164

there always is the i-th variable, corresponding to
Prob(s, ϕ1Uϕ2)
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Gauss-Seidel 
•  The update scheme for Jacobi: 

•  can be improved by using the most up-to-date values of 
x(j) that are available 

•  This is the Gauss-Seidel method: 
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Over-relaxation 
•  Over-relaxation: 

−  compute new values with existing schemes (e.g. Jacobi) 
−  but use weighted average with previous vector 

•  Example: Jacobi + over-relaxation 

•  where ω ∈ (0,2) is a parameter to the algorithm 
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Comparison 
•  Gauss-Seidel typically outperforms Jacobi 

−  i.e. faster convergence 
−  also: only need to store a single solution vector  

•  Both Gauss-Seidel and Jacobi usually outperform the Power 
method (see least fixed point method from Lecture 2)  

•  However Power method has guaranteed convergence 
−  Jacobi and Gauss-Seidel do not 

•  Over-relaxation methods may converge faster 
−  for well chosen values of ω 
−  need to rely on heuristics for this selection 
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Model checking complexity 
•  Model checking of DTMC (S,sinit,P,L) against PCTL formula Φ 

complexity is linear in |Φ| and polynomial in |S| 

•  Size |Φ| of Φ is defined as number of logical connectives 
and temporal operators plus sizes of temporal operators 
−  model checking is performed for each operator  

•  Worst-case operator is P~p [ Φ1 U Φ2 ] 
−  main task: solution of linear equation system of size |S| 
−  can be solved with Gaussian elimination: cubic in |S| 
−  and also precomputation algorithms (max |S| steps) 

•  Strictly speaking, U≤k could be worse than U for large k 
−  but in practice k is usually small 
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Summing up… 
•  Model checking a PCTL formula φ on a DTMC 

−  i.e. determine set Sat(φ) 
−  recursive: bottom-up traversal of parse tree of φ 

•  Atomic propositions and logical connectives: trivial 

•  Key part: computing probabilities for P~p [ … ] formulae 
−  X Φ : one matrix-vector multiplications 
−  Φ1 U≤k Φ2 : k matrix-vector multiplications 
−  Φ1 U Φ2 : graph-based precomputation algorithms + solution 

of linear equation system in at most |S| variables 

•  Iterative methods for solving large linear equation systems 
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Practicals 

•  4 practical exercises 
•  4 scheduled 2 hour practical sessions: 

−  Tuesday 4-6pm, room 379, weeks 3, 4, 6 and 7 
−  demonstrator: Aistis Simaitis 

•  Note: 
−  you will also be expected to complete some of the practical 

work outside these hours 
−  final assignment will include practical (PRISM) exercises 

http://www.prismmodelchecker.org/courses/pmc1112/ 
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Overview 
•  Tool support for probabilistic model checking 

−  motivation, existing tools 

•  The PRISM model checker 
−  functionality, features 
−  modelling language 
−  property specification 

•  Running example 
−  leader election protocol 

•  PRISM tool demo 
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Motivation 
•  Complexity of PCTL model checking 

−  generally polynomial in model size (number of states) 

•  State space explosion problem 
−  models for realistic case studies are typically huge 

•  Clearly (efficient) tool support is required 

•  Benefits: 
−  fully automated process 
−  high-level languages/formalisms for building models 
−  visualisation of quantitative results 
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Probabilistic model checkers 
•  PRISM (this lecture): DTMCs, MDPs, CTMCs, PTAs + rewards 
•  Markov chain model checkers 

−  MRMC: DTMCs, CTMCs + reward extensions 
−  PEPA toolset: CTMCs + CSL 

•  Markov decision process (MDP) tools 
−  LiQuor: LTL verification for MDPs (Probmela language) 
−  RAPTURE: prototype for abstraction/refinement of MDPs 
−  ProbDiVinE: parallel/distributed LTL model checking of MDPs 

•  Simulation-based probabilistic model checking: 
−  APMC, Ymer (both based on PRISM language), VESTA 

•  And more 
−  APNN-Toolbox, SMART, CADP, Möbius, PASS, PARAM, … 
−  see: http://www.prismmodelchecker.org/other-tools.php 
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The PRISM tool 
•  PRISM: Probabilistic symbolic model checker 

−  developed at Birmingham/Oxford University, since 1999 
−  free, open source (GPL) 
−  versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs 

•  Modelling of: 
−  DTMCs, CTMCs, MDPs  +  costs/rewards 
−  probabilistic timed automata (PTAs) (not covered here) 

•  Model checking of: 
−  PCTL, CSL, LTL, PCTL*  +  extensions  +  costs/rewards 
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PRISM functionality 
•  High-level modelling language 
•  Wide range of model analysis methods 

−  efficient symbolic implementation techniques 
−  also: approximate verification using simulation + sampling 

•  Graphical user interface 
−  model/property editor 
−  discrete-event simulator - model traces for debugging, etc. 
−  easy automation of verification experiments 
−  graphical visualisation of results 

•  Command-line version 
−  same underlying verification engines 
−  useful for scripting, batch jobs 
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Probabilistic model checking 
•  Overview of the probabilistic model checking process 

−  two distinct phases: model construction, model checking 

Model 
construction 

High-level 
model 

Model 

Result Model 
checking 

Property 
PRISM 

language 
description 

PCTL/CSL/LTL/… 
formula 

DTMC, MDP 
or CTMC 
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Model construction 

PRISM 
language 

description graph-based 
algorithm 

Translation 
from 

high-level 
language 

Reachability: 
building set 
of reachable 

states 

Model construction 

Model High-level 
model 

matrix 
manipulation 

DTMC, MDP 
or CTMC 
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Modelling languages/formalisms 
•  Many high-level modelling languages, formalisms available 

•  For example: 
−  probabilistic/stochastic process algebras 
−  stochastic Petri nets 
−  stochastic activity networks 

•  Custom languages for tools, e.g.: 
−  PRISM modelling language 
−  Probmela (probabilistic variant of Promela, the input language 

for the model checker SPIN) - used in LiQuor 
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PRISM modelling language 
•  Simple, textual, state-based language 

−  modelling of DTMCs, CTMCs, MDPs, … 
−  based on Reactive Modules [AH99] 

•  Basic components… 
•  Modules: 

−  components of system being modelled 
−  composed in parallel 

•  Variables 
−  finite (integer ranges or Booleans) 
−  local or global 
−  all variables public: anyone can read, only owner can modify 
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PRISM modelling language 
•  Guarded commands 

−  describe behaviour of each module 
−  i.e. the changes in state that can occur 
−  labelled with probabilities (or, for CTMCs, rates) 
−  (optional) action labels 

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4); 

action guard probability update probability update 



Comments

Note that there are some limitations in the modelling
language

probabilities must be constant; if something as a function of
some value is needed, we have to break it down in multiple
states
essentially as NuSMV, but with probabilities: only main
arithmetic and logical operations are allowed to define next
states
build the DTMC corresponding to a generic input model
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PRISM modelling language 
•  Parallel composition 

−  model multiple components that can execute independently 
−  for DTMC models, mostly assume components operate 

synchronously, i.e. move in lock-step 
•  Synchronisation 

−  simultaneous transitions in more than one module 
−  guarded commands with matching action-labels 
−  probability of combined transition is product of individual 

probabilities for each component 
•  More complex parallel compositions can be defined 

−  using process-algebraic operators 
−  other types of parallel composition, action hiding/renaming 



Comments

In the previous slide, only one module may move at a time

there is an implicit scheduler which decides which module may
move
NuSMV checks all possible scheduler choices (i.e., it is
non-deterministic); in PRISM, instead, if there are n modules,
each moves with probability 1

n
then, inside each module, 1

n will be further multiplied by the
explicitly given probabilities
if two or more modules have the same synchronization label
(the identifier inside the square brackets []), and of course the
guard is true for all such modules, then they move together
with probability 1

n−m+1 , being m the number of modules with
that synchronization label



Comments

In the previous slide, only one module may move at a time

all modules may read all other modules variables, but may
modify only their own
if inside one module there are two overlapping guards (i.e.,
which may be true at the same time), a warning is issued
if such guards are labeled by different labels, the warning
disappears
the corresponding DTMC is as follows: if n transitions are
triggered, then each has probability 1

n (to be multiplied by the
probability of the module itself, as above)
if there are m guards with the same label (in m modules), then
it is necessary that all such guards are true in the same state,
in order to trigger the corresponding transition
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Simple example 

module M1 
    x : [0..3] init 0; 
    [a] x=0 -> (x’=1); 
    [b] x=1 -> 0.5:(x’=2) + 0.5:(x’=3); 
endmodule 

module M2 
    y : [0..3] init 0; 
    [a] y=0 -> (y’=1); 
    [b] y=1 -> 0.4:(y’=2) + 0.6:(y’=3); 
endmodule 
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Example: Leader election 
•  Randomised leader election protocol 

−  due to Itai & Rodeh (1990) 
•  Set-up: N nodes, connected in a ring 

−  communication is synchronous (lock-step) 
•  Aim: elect a leader 

−  i.e. one uniquely designated node 
−  by passing messages around the ring 

•  Protocol operates in rounds. In each round: 
−  each node choose a (uniformly) random id ∈ {0,…,k-1} 
−  (k is a parameter of the protocol) 
−  all nodes pass their id around the ring 
−  if there is (maximum) unique id, node with this id is the leader 
−  if not, try again with a new round 



Comments

In the previous slide, “lock-step” means that, at the same
time, 2 reads from 1, 3 from 2 etc (as when an army marchs)

in the actual protocol this is performed over N “phases”: in
the first 1 reads from 2, in the second 2 reads from 3, ..., in
the N-th N reads from 1
in the PRISM model, it is actually lock-step as above, but N
rounds are however waited to be closer to reality
in order to guarantee that only the (maximum) unique ID
survives, all other (equal) IDs are set to 0



Comments

dtmc

const N = 3;

const K = 2;

module counter

c : [1..N-1];

[read] c<N-1 -> (c’=c+1);

[read] c=N-1 -> (c’=c);

[done] u1|u2|u3 -> (c’=c); //WRONG!!!

[retry] !(u1|u2|u3) -> (c’=1);

[loop] s1=3 -> (c’=c);

endmodule



Comments

module process1

s1 : [0..3];

u1 : bool;

v1 : [0..K-1];

p1 : [0..K-1];

[pick] s1=0 ->

1/K : (s1’=1) & (p1’=0) & (v1’=0) & (u1’=true)

+ 1/K : (s1’=1) & (p1’=1) & (v1’=1) & (u1’=true);

[read] s1=1 & u1 & c<N-1 -> (u1’=(p1!=v2)) & (v1’=v2);

[read] s1=1 & !u1 & c<N-1 -> (u1’=false)

& (v1’=v2) & (p1’=0);



Comments

[read] s1=1 & u1 & c=N-1 -> (s1’=2) & (u1’=(p1!=v2))

& (v1’=0) & (p1’=0);

[read] s1=1 & !u1 & c=N-1 -> (s1’=2) & (u1’=false)

& (v1’=0);

[done] s1=2 -> (s1’=3) & (u1’=false) & (v1’=0)

& (p1’=0);

[retry] s1=2 -> (s1’=0) & (u1’=false) & (v1’=0)

& (p1’=0);

[loop] s1=3 -> (s1’=3);

endmodule

module process2 = process1 [ s1=s2,p1=p2,v1=v2,u1=u2,

v2=v3 ] endmodule



Original Slides

16 DP/Probabilistic Model Checking, Michaelmas 2011 

PRISM code 
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PRISM property specifications 
•  Based on (probabilistic extensions of) temporal logic 

−  incorporates PCTL, CSL, LTL, PCTL* 
−  also includes: quantitative extensions, costs/rewards 

•  Leader election properties 
−  P≥1 [ F elected ] 

•  with probability 1, a leader is eventually elected 
−  P>0.8 [ F≤k elected ] 

•  with probability greater than 0.8, a leader is elected within k steps 

•  Usually focus on quantitative properties: 
−  P=? [ F≤k elected ] 

•  what is the probability that a leader is elected within k steps? 
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PRISM property specifications 
•  Best/worst-case scenarios  

−  combining “quantitative” and “exhaustive” aspects 

•  e.g. computing values for a range of states… 

•  P=? [ F≤t elected {tokens≤k}{min} ] -  
−  “minimum probability of the leader election algorithm 

completing within t steps from any state where there are at 
most k tokens” 

•  R=? [ F end {“init”}{max} ] -  
−  “maximum expected run-time over all possible initial 

configurations” 
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PRISM property specifications 
•  Experiments: 

−  ranges of model/property parameters 
−  e.g. P=? [ F≤T error ] for N=1..5, T=1..100 

 where N is some model parameter and T a time bound 
−  identify patterns, trends, anomalies in quantitative results 
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PRISM… 
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More info on PRISM 
•  PRISM website: http://www.prismmodelchecker.org/  

−  tool download: binaries, source code (GPL) 
−  on-line example repository (50+ case studies) 
−  on-line documentation: 

•  PRISM manual 
•  PRISM tutorial 

−  support: help forum, bug tracking, feature requests    
−  related publications, talks, tutorials, links 

•  Course practicals info at:  

−  http://www.prismmodelchecker.org/courses/pmc1112/ 
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Overview 
•  Specifying costs and rewards 

−  DTMCs 
−  PRISM language 

•  Properties: expected reward values 
−  instantaneous 
−  cumulative 
−  reachability 
−  temporal logic extensions 

•  Model checking 
−  computing reward values 

•  Case study 
−  randomised contract signing 
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Costs and rewards 
•  We augment DTMCs with rewards (or, conversely, costs) 

−  real-valued quantities assigned to states and/or transitions 
−  these can have a wide range of possible interpretations 

•  Some examples: 
−  elapsed time, power consumption, size of message queue, 

number of messages successfully delivered, net profit, … 

•  Costs? or rewards? 
−  mathematically, no distinction between rewards and costs 
−  when interpreted, we assume that it is desirable to minimise 

costs and to maximise rewards  
−  we will consistently use the terminology “rewards” regardless 
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Reward-based properties 
•  Properties of DTMCs augmented with rewards 

−  allow a wide range of quantitative measures of the system 
−  basic notion used here: expected value of rewards 
−  formal property specifications will be in an extension of PCTL 

•  More precisely, we use two distinct classes of property… 

•  Instantaneous properties 
−  e.g. the expected value of the reward at some time point 

•  Cumulative properties 
−  e.g. the expected cumulated reward over some period 



Comments

In the previous slide, note that:

the expected value may be compared with some threshold, as
for probability-based properties

the expected value may be computed for some subset of states

defined in two different points:

first, define how the reward is computed (model file)
then define how to use the reward in a formula (formula file)

difference between instantaneous and cumulative is made in
the formula

difference between state and/or transition is made when the
reward is defined
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DTMC reward structures 
•  For a DTMC (S,sinit,P,L), a reward structure is a pair (ρ,ι) 

−  ρ : S → ℝ≥0 is the state reward function (vector) 
−  ι : S × S → ℝ≥0 is the transition reward function (matrix)  

•  Example (for use with instantaneous properties) 
−  “size of message queue”: ρ maps each state to the number of 

jobs in the queue in that state, ι is not used 
•  Examples (for use with cumulative properties) 

−  “time-steps”: ρ returns 1 for all states and ι is zero  
 (equivalently, ρ is zero and ι returns 1 for all transitions) 

−  “number of messages lost”: ρ is zero and ι maps transitions 
 corresponding to a message loss to 1 

−  “power consumption”: ρ is defined as the per-time-step 
 energy consumption in each state and ι as the energy cost of 
 each transition 
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Rewards in the PRISM language 

(instantaneous, state rewards) (cumulative, state rewards) 

(cumulative, state/trans. rewards) 
(up = num. operational components, 

wake = action label) 

(cumulative, transition rewards) 
(q = queue size, q_max = max. 

queue size, receive = action label) 

   rewards “total_queue_size” 
      true : queue1+queue2; 
   endrewards 

   rewards “time” 
      true : 1; 
   endrewards 

   rewards “power” 
      sleep=true : 0.25; 
      sleep=false : 1.2 * up; 
      [wake] true : 3.2; 
   endrewards 

   rewards "dropped" 
      [receive] q=q_max : 1; 
   endrewards 



Comments

In the previous slide, note that

instantaneous is only for state rewards
transition rewards are those with a synchronization label
difference between instantaneous vs cumulative is determined
by the property: at step k or up to step k

of course, for state rewards only
transition rewards are always cumulative
instantaneous transition is always 0
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Expected reward properties 
•  Expected (“average”) values of rewards… 

•  Instantaneous 
−  “the expected value of the state reward at time-step k” 
−  e.g. “the expected queue size after exactly 90 seconds” 

•  Cumulative (time-bounded) 
−  “the expected reward cumulated up to time-step k” 
−  e.g. “the expected power consumption over one hour” 

•  Reachability (also cumulative) 
−  “the expected reward cumulated before reaching states T⊆S” 
−  e.g. “the expected time for the algorithm to terminate” 



Comments

In the previous slide: what PRISM allows to you to compute

given a path chosen at random, which is the expected value for
the defined reward
if we look at all paths and make a (weighted) average, the
value we get is the expected value
that is: for all paths π, the value of the reward in π multiplied
by the probability of π
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Expectation 
•  Probability space (Ω, Σ, Pr) 

−  probability measure Pr : Σ → [0,1] 

•  Random variable X 
−  a measurable function X : Ω → Δ 
−  usually real-valued, i.e.: X : Ω → ℝ 

•  Expected (“average”) value of the random variable: Exp(X) 

  

€ 

Exp(X) = X(ω)dPr
ω∈Ω
∫

  

€ 

Exp(X) = X(ω)⋅ Pr(ω)
ω∈Ω

∑ discrete case 



Comments

In the previous slide: in a nutshell, rewards allows the modeler
to define a random variable

random variables are defined on experiment outcomes, not on
events

i.e., not on subsets of experiment outcomes

in the discrete case, there is always an event which coincide
with some singleton experiment outcome



Comments

A random variable is a function X : Ω → R
It describes some experiment on Ω, by associating to each
single outcome ω ∈ Ω a real value

Example, if I roll a die and I am payed 10n if the outcome is
n ≤ 3, and I have to pay 3n otherwise, I am defining a
random variable X : {1, . . . , 6} → [−18, 30]

Examples in PRISM all define a random variable on Ω = Path:
given a path, I can measure each of such rewards definitions

Typical operation on random variables: expected value E[X ]
as defined in this slide

Other typical operation: asking probabilities for exact values
or intervals

E.g.: in the die roll example above, which is the probability I
win at least 10 EUR, i.e., P(X ≥ 10)?
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Reachability + rewards 
•  Expected reward cumulated before reaching states T⊆S 
•  Define a random variable: 

−  XReach(T) : Path(s) → ℝ≥0 
−  where for an infinite path ω= s0s1s2… 

−  where kT = min{ j | sj ∈ T } 
•  Then define: 

−  ExpReach(s, T) = Exp(s, XReach(T)) 
−  denoting: expectation of the random variable XReach(T)  

with respect to the probability measure Prs, i.e.: 



Comments

In the previous slide: how the random variable resulting from
a reward definition is computed

if T is not specified, we may assume that T = ∅
note that, if there exist a(n infinite) path with non-zero
probability (e.g., looping in it last state with probability 1)
which do not touch T , then the result is ∞
for instantaneous, only consider kτ
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Computing the rewards 
•  Determine states for which ProbReach(s, T) = 1 

•  Solve linear equation system: 

−  ExpReach(s, T) =  

    

€ 

 
∞

0
ρ(s) + P(s,s' )⋅ ι(s,s' ) + ExpReach(s',  T)( )

s'∈S
∑

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

if ProbReach(s, T) <  1
if s ∈ T
otherwise
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Example 
•  Let ρ =  [ 0, 1, 0, 0 ] and ι(s,s’) = 0 for all s,s’ ∈ S 
•  Compute ExpReach(s0, {s3}) 

−  (“expected number of times pass through s1 to get to s3”) 
•  First check: 

−  ProbReach({s3}) = { 1, 1, 1, 1 } 
•  Then solve linear equation system: 

−  (letting xi = ExpReach(si, {s3})): 
−  x0 = 0 + 1·(0 + x1) 
−  x1 = 1 + 0.01·(0+x2)+0.01·(0+x1)+0.98 ·(0+x3) 
−  x2 = 0 + 1·(0 + x0) 
−  x3 = 0 
−  Solution: ExpReach({s3}) = [ 100/98, 100/98, 100/98, 0 ] 

•  So: ExpReach(s0, {s3}) = 100/98 ≈ 1.020408 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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Specifying reward properties 
•  PRISM extends PCTL to include expected reward properties 

−  add an R operator, which is similar to the existing P operator 

−  φ  ::=  …  |  P~p [ ψ ]  |  R~r [ I=k ]  |  R~r [ C≤k ]  |  R~r [ F φ ] 

−  where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ 

•  R~r [ · ] means “the expected value of · satisfies ~r” 

“reachability” 

 expected 
reward is ~r 

“cumulative” “instantaneous” 
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Random variables for reward formulae 
•  Definition of random variables for the R operator: 

−  for an infinite path ω= s0s1s2… 

−  where kφ = min{ j | sj ⊨ φ } 

XFφ 
same as 

XReach(Sat(φ)) 
from earlier 
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Reward formula semantics 
•  Formal semantics of the three reward operators: 

•  For a state s in the DTMC:  

−  s ⊨ R~r [ I=k ]  ⇔  Exp(s, XI=k) ~ r 
−  s ⊨ R~r [ C≤k ]  ⇔  Exp(s, XC≤k) ~ r 
−  s ⊨ R~r [ F Φ ]  ⇔  Exp(s, XFΦ) ~ r 

where: Exp(s, X) denotes the expectation of the random variable  
X : Path(s) → ℝ≥0 with respect to the probability measure Prs 

•  We can also define R=? […] properties, as for the P operator 
−  e.g. R=? [ F Φ ] returns the value Exp(s, XFΦ) 

Exp(s, XFΦ) 
same as 

ExpReach(s, Sat(Φ)) 
from earlier 
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Model checking reward operators 
•  Like for model checking P~p […], to check R~r […] 

−  compute reward values for all states, compare with bound r 

•  Instantaneous: R~r [ I=k ] - compute Exp(XI=k)  
−  solution of recursive equations 
−  essentially: k matrix-vector multiplications 

•  Cumulative: R~r [ C≤t ] - compute Exp(XC≤k)  
−  solution of recursive equations 
−  essentially: k matrix-vector multiplications 

•  Reachability: R~r [ F φ ] - compute Exp(XFΦ) 
−  graph analysis + linear equation system 
−  (see computation of ExpReach(s, T) earlier) 

Model checking 
R operator 

same complexity 
as for P operator 
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Model checking R~r [ I=k ] 
•  Expected instantaneous reward at step k 

−  can be defined in terms of transient probabilities for step k 

•  Exp(s, XI=k) = Σs’∈S πs,k(s’) · ρ(s’) 

•  Exp(XI=k) = Pk · ρ 

•  Yielding recursive definition: 
−  Exp(XI=0) = ρ 
−  Exp(XI=k) = P · Exp(XI=(k-1) ) 
−  i.e. k matrix-vector multiplications 
−  note: “backwards” computation (like bounded until prob.s)  

rather than “forwards” computation (like transient prob.s) 
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Example 
•  Let ρ =  [ 0, 1, 0, 0 ] and ι(s,s’) = 0 for all s,s’ ∈ S 
•  Compute Exp(s0, XI=2) 

−  (“probability of being in state s1”) 
−  Exp(XI=0) = [ 0, 1, 0, 0 ] 
−  Exp(XI=1) = P · Exp(XI=0)  

−  Exp(XI=2) = P · Exp(XI=1)  

•  Result: Exp(s0, XI=2) = 0.01 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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Model checking R~r [ C≤k ] 
•  Expected reward cumulated up to time-step k 

•  Again, a recursive definition: 

•  And in matrix/vector notation: 

−  where ∙ denotes Schur (pointwise) matrix multiplication 
−  and 1 is a vector of all 1s 
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Case study: Contract signing 
•  Two parties want to agree on a contract 

−  each will sign if the other will sign, but do not trust each other 
−  there may be a trusted third party (judge) 
−  but it should only be used if something goes wrong 

•  In real life: contract signing with pen and paper 
−  sit down and write signatures simultaneously 

•  On the Internet… 
−  how to exchange commitments on an asynchronous network?  
−  “partial secret exchange protocol” [EGL85] 
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Contract signing – EGL protocol 
•  Partial secret exchange protocol for 2 parties (A and B) 

•  A (B) holds 2N secrets a1,…,a2N (b1,…,b2N)  
−  a secret is a binary string of length L 
−  secrets partitioned into pairs: e.g. { (ai, aN+i) | i=1,…,N } 
−  A (B) committed if B (A) knows one of A’s (B’s) pairs 

•  Uses “1-out-of-2 oblivious transfer protocol” OT(S,R,x,y) 
−  Sender S sends x and y to receiver R 
−  R receives x with probability ½ otherwise receives y 
−  S does not know which one R receives 
−  if S cheats then R can detect this with probability ½ 
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EGL protocol - Step 1 

1…L 

1…N 

N+1…2N 

1…L 

1…N 

N+1…2N 

OT(A,B,ai,aN+i) 

Party A Party B 

OT(B,A,bi,bN+i) 

(repeat for i=1…N)  
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EGL protocol - Step 2 

1…L 

1…N 

N+1…2N 

1…L 

1…N 

N+1…2N 

Party A Party B 
 A sends bit i  
of aj to B for 

j=1…2N 

 Then B does 
the same  

for bj 

(repeat for i=1…L)  
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Contract signing - Results 
•  Modelled in PRISM as a DTMC (no concurrency) [NS06] 

•  Highlights a weakness in the protocol 
−  party B can act maliciously by quitting the protocol early 
−  this behaviour not considered in the original analysis 

•  PRISM analysis shows 
−  if B stops participating in the protocol as soon as he/she has 

obtained one of A pairs, then, with probability 1, at this point: 
•  B possesses a pair of A’s secrets 
•  A does not have complete knowledge of any pair of B’s secrets 

−  protocol is not fair under this attack:  
−  B has a distinct advantage over A 
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Contract signing - Results 
•  The protocol is unfair because in step 2:  

−  A sends a bit for each of its secret before B does 

•  Can we make this protocol fair by changing the message 
sequence scheme?  

•  Since the protocol is asynchronous the best we can hope 
for is: 
−  B (or A) has this advantage with probability ½ 

•  We consider 3 possible alternative message sequence 
schemes (EGL2, EGL3, EGL4) 
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    (step 1) 
    … 
    (step 2) 
    for ( i=1,…,L ) 
        for ( j=1,…,N )  A transmits bit i of secret aj to B 
        for ( j=1,…,N )  B transmits bit i of secret bj to A 
        for ( j=N+1,…,2N )  A transmits bit i of secret aj to B 
        for ( j=N+1,…,2N )  B transmits bit i of secret bj to A 

Contract signing - EGL2 
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Modified step 2 for EGL2 

1…L 

1…N 

N+1…2N 

1…L 

1…N 

N+1…2N 

Party A Party B 
 A sends bit i  
of aj to B for 

j=1…N 

 Then B does 
the same  

for bj 

(after j=1…N, send j=N+1…2N) 
(then repeat for i=1…L)  
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    (step 1) 
    … 
    (step 2) 
    for ( i=1,…,L )  for ( j=1,…,N ) 
        A transmits bit i of secret aj to B 
        B transmits bit i of secret bj to A 
    for ( i=1,…,L )  for ( j=N+1,…,2N ) 
        A transmits bit i of secret aj to B 
        B transmits bit i of secret bj to A 

Contract signing - EGL3 
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Modified step 2 for EGL3 

1…L 

1…N 

N+1…2N 

1…L 

1…N 

N+1…2N 

Party A Party B 
 A sends bit i  
of aj to B for 

 Then B does 
the same  

for bj 

(repeat for j=1…N and for i=1…L) 
(then send j=N+1…2N for i=1…L) 
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    (step 1) 
    … 
    (step 2) 
    for ( i=1,…,L )  
        A transmits bit i of secret a1 to B 
        for ( j=1,…,N )  B transmits bit i of secret bj to A 
        for ( j=2,…,N )  A transmits bit i of secret aj to B 
    for ( i=1,…,L ) 
        A transmits bit i of secret aN+1 to B 
        for ( j=N+1,…,2N )  B transmits bit i of secret bj to A 
        for ( j=N+2,…,2N )  A transmits bit i of secret aj to B 

Contract signing - EGL4 
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Modified step 2 for EGL4 

1…L 

1…N 

N+1…2N 

1…L 

1…N 

N+1…2N 

Party A Party B  A sends bit i  
of a1 to B 

 Then A sends 
bit i of aj to B  

for j=2…N 

(repeat for i=1…L) 
(then send j=N+1…2N in same fashion) 

 Then B sends 
bit i of bj to B  

for j=1…N 
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Contract signing - Results 
•  The chance that the protocol is unfair 

−  probability that one party gains knowledge first  
−  P=? [ F knowB ∧ ¬knowA ] and P=? [ F knowA ∧ ¬knowB ] 
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Contract signing - Results 
•  The influence that each party has on the fairness 

−  once a party knows a pair, the expected number of messages 
from this party required before the other party knows a pair 

R=? [ F knowA ] 

Reward structure: 

Assign 1 to transitions 
corresponding to messages 
being sent from B to A 
after B knows a pair  

(and 0 to all other transitions) 
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Contract signing - Results 
•  The duration of unfairness of the protocol  

−  once a party knows a pair, the expected total number of 
messages that need to be sent before the other knows a pair 

R=? [ F knowA ] 

Reward structure: 

Assign 1 to transitions 
corresponding to any message 
being sent between A and B 
after B knows a pair  

(and 0 to all other transitions) 
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Contract signing - Results 
•  Results show EGL4 is the ‘fairest’ protocol 

•  Except for “duration of fairness” measure 
−  expected messages that need to be sent for a party to know a 

pair once the other party knows a pair 
−  this value is larger for B than for A 
−  and, in fact, as n increases, this measure: 

•  increases for B 
•  decreases for A 

•  Solution: 
−  if a party sends a sequence of bits in a row (without the other 

party sending messages in between), require that the party 
send these bits as as a single message 
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Contract signing - Results 
•  The duration of unfairness of the protocol  

−  (with the solution on the previous slide applied to all variants) 
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Summing up… 
•  Costs and rewards 

−  real-valued assigned to states/transitions of a DTMC 
•  Properties 

−  expected instantaneous/cumulative reward values 
−  PRISM property specifications: adds R operator to PCTL 

•  Model checking 
−  instantaneous: matrix-vector multiplications 
−  cumulative: matrix-vector multiplications 
−  reachability: graph analysis + linear equation systems 

•  Case study 
−  randomised contract signing 
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Time in DTMCs 
•  Time in a DTMC proceeds in discrete steps 

•  Two possible interpretations: 
−  accurate model of (discrete) time units 

•  e.g. clock ticks in model of an embedded device 
−  time-abstract 

•  no information assumed about the time transitions take 

•  Continuous-time Markov chains (CTMCs) 
−  dense model of time 
−  transitions can occur at any (real-valued) time instant 
−  modelled using exponential distributions 
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Overview 

•  Exponential distribution and its properties 

•  Continuous-time Markov chains (CTMCs) 
−  definition, examples 
−  race condition 
−  embedded DTMC 
−  generator matrix 

•  Paths and probabilities 
−  probabilistic reachability 
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Continuous probability distributions 
•  Defined by: 

−  cumulative distribution function  

−  where f is the probability density function 
−  Pr(X=t) = 0 for all t 

•  Example: uniform distribution: U(a,b) 



Comments

In the previous slide:

f (t) is not a probability! If b− a < 1, f (t) > 1 for t ∈ [a, b]...

it may seem confusing, but “probability density function”
(PDF) ̸= probability

it becomes a probability when multiplied by an interval length
(also infinitesimal): f (x)dx is the probability that the value of
X is inside [x , x + dx ]

the “cumulative distribution function” (CDF) F (t), instead, is
a probability

integrals go from some lower bound; in the general case, it is
−∞ but may be overriden by special cases

the X is of course a random variable with values on times, we
will define it more precisely in the next slide
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Exponential distribution  
•  A continuous random variable X is exponential with 

parameter λ>0 if the density function is given by: 

−  we write: X ~ Exponential(λ) 
•  Cumulative distribution function (for t≥0): 

•  Other properties: 
−  negation:  
−  mean (expectation):  
−  variance: Var(X) = 1/λ2 

  

€ 

F(t) = Pr(X ≤ t) = λ
0

t
∫ ⋅ e−λ⋅xdx = [−e−λ⋅x]0t = 1− e−λ⋅t

  

€ 

f(t)  =   
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

λ⋅ e−λ⋅t

0
if t > 0
otherwise 

  

€ 

Pr(X > t) =  e-λ⋅t

  

€ 

E[X] =  x⋅ λ⋅ e-λ⋅x
0

∞

∫ dx =  1
λ

 λ = “rate” 



Comments

In the previous slide:

if the PDF f is f (x) = λe−λx then we have this special
continuous random variable called exponential

despite looking “ugly”, many computations are simplified,
e.g., we easily derive a closed form for F (t)

formula for expected value when an f (x) is available:
E[X ] =

∫∞
−∞ xf (x)dx

in the case of the exponential distribution:∫∞
0 xλe−λx = [−xe−λx − 1

λe
−λx ]|∞0 = 1

λ

probability of the event happening before time 0: 0

after time 0: 1 (recall that λ > 0!)
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Exponential distribution - Examples 

•  The more λ increases, the faster the c.d.f. approaches 1 

Cumulative distribution function  Probability density function  
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Exponential distribution 
•  Adequate for modelling many real-life phenomena 

−  failures 
•  e.g. time before machine component fails 

−  inter-arrival times 
•  e.g. time before next call arrives to a call centre 

−  biological systems 
•  e.g. times for reactions between proteins to occur 

•  Maximal entropy (“uncertainty”) if just the mean is known 
−  i.e. best approximation when only mean is known 

•  Can approximate general distributions arbitrarily closely 
−  phase-type distributions 



Comments

To clarify examples in the previous slide:

in all these cases, we have a random variable X with CDF
F (t) = P(X ≤ t) = 1− e−λt (or equivalently
P(X > t) = e−λt), and λ is known by some (typically
statistical) measures

t is time (as discussed in the examples in these slides), and λ
is the corresponding “rate” or “frequency”

“time before machine component fails”: X =time of machine
component failure

thus, X is random variable where Ω may be the outcomes of
the experiment “turn on the machine and use it for T seconds
in some random way, recording all activities at any time”, and
it returns the time at which the first failure happens



Comments

for example, if we know that λ = 1, then the probability that
the component fails after time t = 1 is e−1 ≈ 36.8%;
conversely, it fails before t = 1 with probability 63.2%

you obtain e−1 when t = 1
λ ...

for example, if we know that λ = 2, then the probability that
the component fails after time t = 1 is e−2 ≈ 13.5%;
conversely, it fails before t = 1 with probability 86.4%

in the same assumptions as the previous point, probability of a
failure after t = 3 is e−6 ≈ 2× 10−3; conversely, it fails before
t = 3 with probability 99.8%

not surprising: λ is the “rate”, meaning the number of failures
(in this case) for every time unit



Comments

thus, saying λ = 2 means there are “typically” 2 failures at
each time unit; so, within 3 time units, we should be almost
sure that at least one failure has happened...

of course, “time unit” depends on the problem and on how λ
has been estimated; it could be 10 years, in the case of a
computer component (so t = 3 means 30 years)

easy to see why the expected value is 1
λ : if the rate is 2, it

should happen twice in a time unit, thus we should see the
failure in 1

2 time units...

so, generally speaking: we know that something happens with
some regularity (i.e., λ times every time unit), so which is the
probability of the event happening before time t?
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Exponential distribution – Property 1 
•  The exponential distribution has the memoryless property: 

−  Pr( X>t1+t2 I X>t1 ) = Pr( X>t2 ) 

•  Pr ( X>t1+t2 I X>t1 ) = Pr( X>t1+t2 ∧ X>t1 ) / Pr( X>t1 ) 
                                = Pr( X>t1+t2 ) / Pr( X>t1 ) 

                                  = e-λ·(t1+t2) / e-λ·t1 
                                  = (e-λ·t1· e-λ·t2) / e-λ·t1 
                                  = e-λ·t2  
                                  = Pr( X>t2 ) 
•  The exponential distribution is the only continuous 

distribution which is memoryless 
−  discrete-time equivalent is the geometric distribution 
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There are two possible failures with rates λ1, λ2, we want to know
when at least one of the two happens

9 DP/Probabilistic Model Checking, Michaelmas 2011 

Exponential distribution – Property 2 
•  The minimum of two independent exponential distributions 

is an exponential distribution (parameter is sum) 
−  X1 ~ Exponential(λ1),  X2 ~ Exponential(λ2) 
−  Y = min(X1,X2) 

−  Y ~ Exponential(λ1+λ2) 
•  Generalises to minimum of n distributions 
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Similar to previous slide
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Exponential distribution – Property 3 
•  Consider two independent exponential distributions 

−  X1 ~ Exponential(λ1),  X2 ~ Exponential(λ2) 
−  what is the probability that X1<X2 ? 

−  probability that X1<X2 is λ1/(λ1+λ2) 
•  Generalises to n distributions 
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Continuous-time Markov chains 
•  Continuous-time Markov chains (CTMCs) 

−  labelled transition systems augmented with rates 
−  discrete states 
−  continuous time-steps 
−  delays exponentially distributed 

•  Suited to modelling: 
−  reliability models 
−  control systems 
−  queueing networks 
−  biological pathways 
−  chemical reactions 
−  ... 
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Continuous-time Markov chains 
•  Formally, a CTMC C is a tuple (S,sinit,R,L) where:  

−  S is a finite set of states (“state space”) 
−  sinit ∈ S is the initial state 
−  R : S × S → ℝ≥0 is the transition rate matrix 
−  L : S → 2AP is a labelling with atomic propositions 

•  Transition rate matrix assigns rates to each pair of states 
−  used as a parameter to the exponential distribution 
−  transition between s and s’ when R(s,s’)>0 
−  probability triggered before t time units: 1 – e-R(s,s’)·t 
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Could be rates the inputs arrive to a CPS controller
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Simple CTMC example 
•  Modelling a queue of jobs 

−  initially the queue is empty 
−  jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3) 
−  jobs are served with rate 3 (i.e. mean service time is 1/3) 
−  maximum size of the queue is 3 
−  state space: S = {si}i=0..3 where si indicates i jobs in queue 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 



Comments

In the previous slide: no probabilities, only rates with the clarified
meaning

this “generates” a probability once also a time t is considered

that is: from s0, before time t there is a probability 1− e−
3
2
t

to go to state s1, and e−
3
2
t to stay in s0

thus, the “event” we want to model here is the firing of the
transition

note that there are not self loops, as there always is a
probability of staying within a given state

there may be states without outgoing transitions: see next
slide

this implies that only one rate may be considered from each
state: what should we do from s1 ?
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Race conditions 
•  What happens when there exists multiple s’ with R(s,s’)>0? 

−  race condition: first transition triggered determines next state 
−  two questions: 
−  1. How long is spent in s before a transition occurs? 
−  2. Which transition is eventually taken? 

•  1. Time spent in a state before a transition 
−  minimum of exponential distributions  
−  exponential with parameter given by summation: 

−  probability of leaving a state s within [0,t] is 1-e-E(s)·t 

−  E(s) is the exit rate of state s 
−  s is called absorbing if E(s)=0 (no outgoing transitions) 

14 DP/Probabilistic Model Checking, Michaelmas 2011 



Comments

In the previous slides: this solves the more-than-one transition
from one state

of course, the probability of staying in a state decreases as the
rate (summation) increases (1− (1− e−λt) = e−λt is
decreasing in λ)...

note that, for an absorbing state s, probability of staying in s
is 1 for any t

thus, we have now two types of probability: one of going from
one state to another, and one of waiting some time before
going

this fact will be reflected in the definition of paths (will be
back soon on this)



Original Slides

Race conditions… 
•  2. Which transition is taken from state s? 

−  the choice is independent of the time at which it occurs 
−  e.g. if X1 ~ Exponential(λ1),  X2 ~ Exponential(λ2) 
−  then the probability that X1<X2 is λ1/(λ1+λ2) 
−  more generally, the probability is given by… 

•  The embedded DTMC: emb(C)=(S,sinit,Pemb(C),L) 
−  state space, initial state and labelling as the CTMC 
−  for any s,s’∈S 

•  Probability that next state from s is s’ given by Pemb(C)(s,s’) 
    15 DP/Probabilistic Model Checking, Michaelmas 2011 



Comments

In the previous slide: of course, if just one rate is available from a
given state s to some s ′, then R(s, s ′) = E (s)...

to decide time of transition: minimum between two λs

that is: we have some rates, we want to know the probability
of when at least one of those events will happen
theory says that this is equivalent to a single event with the
sum of the rates
that why we have E

to decide where to go: probability of λ1 < λ2
of course, higher rates implies an higher probability to be
selected, but not certainty!
again, selecting the event with λ1 is equivalent to a single
event with rate λ1

λ1+λ2

the same for λ2
that’s why we have Pemb



Original Slides

From s0, at any time t there is a probability 1− e−
3
2
t to go to

state s1, and e−
3
2
t to stay in s0

suppose the time period here is 1 second
probability of still being in s0 within 1 second: e−

3
2 ≈ 22.3%

probability of being in s1 (i.e., of having received one job)

before 1 second: 1− e−
3
2 ≈ 77.7%

From s3 it is analogous, just one transition
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From s1, at any time t there is a probability 1− e−(3+ 3
2
)t to

take any of the two transitions, and e−(3+ 3
2
)t to be still there

Further multiply for 3
3+ 3

2

and
3
2

3+ 3
2

for the actual destination

from s1, probability of being in either s0 or s2 (i.e., of having
either received one job or having served one) before 1 second:
≈ 98.9%
from s1, probability of being in s0 before 1 second:
(1− e−(3+ 3

2 )t)( 3
3+ 3

2

) ≈ 65.9%

in s2: (1− e−(3+ 3
2 )t)(

3
2

3+ 3
2

) ≈ 33%
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Two interpretations of a CTMC 
•  Consider a (non-absorbing) state s ∈ S with multiple 

outgoing transitions, i.e. multiple s’ ∈ S with R(s,s’)>0 

•  1. Race condition 
−  each transition triggered after exponentially distributed delay 

•  i.e. probability triggered before t time units: 1 – e-R(s,s’)·t 
−  first transition triggered determines the next state 

•  2. Separate delay/transition 
−  remain in s for delay exponentially distributed with rate E(s) 

•  i.e. probability of taking an outgoing transition from s within [0,t] 
is given by 1-e-E(s)·t 

−  probability that next state is s’ is given by Pemb(C)(s,s’) 
•  i.e. R(s,s’)/E(s) = R(s,s’) / Σs’∈S R(s,s’) 

16 DP/Probabilistic Model Checking, Michaelmas 2011 
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More on CTMCs… 
•  Infinitesimal generator matrix Q 

    

•  Alternative definition: a CTMC is: 
−  a family of random variables { X(t) | t ∈ ℝ≥0 } 
−  X(t) are observations made at time instant t 
−  i.e. X(t) is the state of the system at time instant t 
−  which satisfies… 

•  Memoryless (Markov property) 
Pr(X(tk)=sk | X(tk-1)=sk-1, …,X(t0)=s0) = Pr(X(tk)=sk | X(tk-1)=sk-1) 



Comments

so R = Q, excluding the diagonal, where R is 0 whilst Q has
the information on the probability to stay in s

that is, probability of still being in s at time t is eQ(s,s)t

we can also see that Pemb(s, s ′) = Q(s,s′)
−Q(s,s) if Q(s, s) ̸= 0 and

Pemb(s, s ′) = 1 otherwise

rows in Pemb sum to 1, rows in Q sum to 0

random variables with values in S rather than R; expected
value will have a different definition...

here, events in Ω(t) are “make a random walk on the CTMC
for at least t time units”, where “random walk” must obey
the rules seen till now

for DTMCs, the family of random variables was infinite but
countable, here it is uncountable

memorylessness: tk are any selected (ordered) time instants
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Simple CTMC example… 
C = ( S, sinit, R, L ) 
S = {s0, s1, s2, s3}  
sinit = s0 

AP = {empty, full} 
L(s0)={empty}, L(s1)=L(s2)=∅ and L(s3)={full} 

    

€ 

R =

0 3/2 0 0
3 0 3/2 0
0 3 0 3/2
0 0 3 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 

    

€ 

Pemb(C) =

0 1 0 0
2/3 0 1/3 0
0 2/3 0 1/3
0 0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥     

€ 

Q =

−3/2 3/2 0 0
3 −9/2 3/2 0
0 3 −9/2 3/2
0 0 3 −3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

infinitesimal 
generator matrix 

transition 
rate matrix 

embedded 
DTMC 
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Example 2 
•  3 machines, each can fail independently 

−  delay modelled as exponential distributions 
−  failure rate λ, i.e. mean-time to failure (MTTF) = 1/ λ 

•  One repair unit 
−  repairs a single machine at rate µ (also exponential) 

•  State space: 
−  S = {si}i=0..3 where si indicates i machines operational 

s2 s3 

3λ 

1 

{inactive} {high} 

s1 s0 

2λ λ 

µ µ µ 

{low} {high} 



Comments

In the previous slide: MTTF and rate, if rate of failure is 2 every
day, then MTTF is 12 hours (half a day)...

iλ in state i : if we have i machines, each failing once every
year, then we have i failures in one year...

λ, µ, ki must be instantiated to some value before going on with
verification (also in the following slide)
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Example 3 
•  Chemical reaction system: two species A and B 
•  Two reactions: 

−  reversible reaction under which 
species A and B bind to form AB  
(forwards rate = |A|·|B|·k1,  
backwards rate = |AB|·k2)  

−  degradation of A (rate |A|·k3) 
−  |X| denotes number of 

molecules of species X 
•  CTMC with state space 

−  (|A|,|B|,|AB|) 
−  initially (2,2,0) 

2,2,0 

4k1 

1,1,1 0,0,2 

1,2,0 0,1,1 

k1 

2k2 k2 

0,2,0 

2k3 

k3 

k3 2k1 

k2 

A 
k3 A + B AB 

k1 

k2 
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Paths of a CTMC 
•  An infinite path ω is a sequence s0t0s1t1s2t2… such that  

−  R(si,si+1) > 0 and ti ∈ ℝ>0  for all i ∈ ℕ 
−  ti denotes the amount of time spent in si 

•  or a sequence s0t0s1t1s2t2…tk-1sk such that  
−  R(si,si+1) > 0 and ti ∈ ℝ>0  for all i<k 
−  sk is absorbing (i.e. R(s,s’) = 0 for all s’ ∈  S) 
−  i.e. remain in state sk indefinitely 

•  Path(s) denotes all infinite paths starting in state s 
•  Further notation: 

−  time(ω,j) = amount of time spent in the jth state, i.e. tj 
− ω@t = state occupied at time t: 
−  see e.g. [BHHK03, KNP07a] for precise definitions 



Comments

In the previous slide:

note that a seemingly finite path is instead infinite (but
ending in an absorbing state is required)

paths in DTMCs only have states, here we have times too

no restriction on times, apart from being strictly positive

for times growing, probability decreases exponentially, but it is
still possible...

recall that it is the time spent in a state, thus not taking any
transition

ω@t = si s.t.
∑i

j=0 tj ≥ t and i is the minimum
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Recall: Probability spaces 
•  A σ-algebra (or σ-field) on Ω is a set Σ of subsets of Ω 

closed under complementation and countable union, i.e.: 
−  if A ∈ Σ, the complement Ω ∖ A is in Σ 
−  if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ 
−  the empty set ∅ is in Σ 

•  Elements of Σ are called measurable sets or events 
•  Theorem: For any set F of subsets of Ω, there exists a 

unique smallest σ-algebra on Ω containing F 
•  Probability space (Ω, Σ, Pr) 

−  Ω is the sample space 
−  Σ is the set of events: σ-algebra on Ω 
−  Pr : Σ → [0,1] is the probability measure: 

 Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai 
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Probability space 
•  Sample space: Path(s) (set of all paths from a state s) 
•  Events: sets of infinite paths 
•  Basic events: cylinders 

−  cylinders = sets of paths with common finite prefix 
−  include time intervals in cylinders 

•  Finite prefix is a sequence s0,I0,s1,I1,…,In-1,sn 
−  s0,s1,s2,…,sn sequence of states where R(si,si+1)>0 for i<n 
−  I0,I1,I2,…,In-1 sequence of of non-empty intervals of ℝ≥0 

•  Cylinder Cyl(s0,I0,s1,I1,…,In-1,sn) is the set of infinite paths: 
− ω(i)=si for all i ≤ n and time(ω,i) ∈ Ii for all i < n 



Comments

In the previous slide:

for DTMCs, cylinders are simply finite prefixes of some path

here we also have times, which may be different for the same
(sub)sequence of states

in order to have cylinders which define sets of infinite paths,
we have to somehow abstract on times: that’s why we have
time ranges on them
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Probability space 
•  Define probability measure over cylinders inductively 

•  Prs(Cyl(s))=1 

•  Prs(Cyl(s,I,s1,I1,…,In-1,sn,I’,s’)) equals: 

  

€ 

Prs(Cyl(s,I,s1,I1,...,In−1,sn)) ⋅ Pemb(C) (sn,s' ) ⋅ e−E(sn )⋅inf I' − e−E(sn )⋅sup I'( )

probability of transition 
from sn to s’ (defined 

using embedded DTMC) 
probability time spent in state sn 

is within the interval I’ 



Comments

In the previous slide: written explicitly,
Ps(Cyl(s0(a0, b0]s1 . . . (an, bn]sn+1)) =
Πn
i=0P

emb(C)(si , si+1)(e
−E(si )ai − e−E(si )bi )

recall that E (s) =
∑

s′ ̸=s R(s, s
′)

Pemb(C) is to “disambiguate” race conditions; if only one rate
is defined from a state s, then Pemb(C)(s, s ′) = 1 for a single
s ′...
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For s0[0, 4)s1 the result is 99.7%
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Probability space - Example 
•  Probability of leaving the initial state s0 and moving to state 

s1 within the first 2 time units of operation 

•  Cylinder Cyl(s0,(0,2],s1) 

•  Prs0(Cyl(s0,(0,2],s1))  

= Prs0(Cyl(s0)) · Pemb(C)(s0,s1) · (e-E(s0)·0 - e-E(s0)·2) 
 = 1 · Pemb(C)(s0,s1) · (e-E(s0)·0 - e-E(s0)·2) 
 = 1 · 1 · (e-3/2·0 – e-3/2·2) 
 = 1– e-3 

 ≈ 0.95021 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Probability space 
•  Probability space (Path(s), ΣPath(s), Prs)      (see [BHHK03]) 

•  Sample space Ω = Path(s) 
−  i.e. all infinite paths 

•  Event set ΣPath(s) 
−  least σ-algebra on Path(s) containing all cylinders sets 

Cyl(s0,I0,…,In-1,sn) where: 
•  s0,…,sn ranges over all state sequences with R(si,si+1)>0 for all i 
•  I0,…,In-1 ranges over all sequences of non-empty intervals in ℝ≥0  

(where intervals are bounded by rationals) 
•  Probability measure Prs 

−  Prs extends uniquely from probability defined over cylinders 
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Probabilistic reachability 
•  Probabilistic reachability 

−  the probability of reaching a target set T⊆S 
−  measurability: 

•  union of all basic cylinders Cyl(s0,(0,∞),s1,(0,∞),…,(0,∞),sn)  
where sn ∈ T 

•  set of such state sequences s0s1…sn is countable 

•  Time-bounded probabilistic reachability 
−  the probability of reaching a target set T⊆S within t time units 
−  measurability: 

•  union of all basic cylinders Cyl(s0,I0,s1,I1,…,In-1,sn)  
where sn ∈ T and sup(I0)+…+sup(In-1) ≤ t 

•  set of such state sequences s0s1…sn is countable 
•  set of rational-bounded intervals is countable 
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Summing up… 
•  Exponential distribution 

−  suitable for modelling failures, waiting times, reactions, … 
−  nice mathematical properties 

•  Continuous-time Markov chains 
−  transition delays modelled as exponential distributions 
−  race condition 
−  embedded DTMC 
−  generator matrix 

•  Probability space over paths 
−  (untimed and timed) probabilistic reachability 
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Overview 

•  Transient probabilities 
−  uniformisation 

•  Steady-state probabilities 
 
•  CSL: Continuous Stochastic Logic 

−  syntax 
−  semantics 
−  examples 
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Recall 
•  Continuous-time Markov chain: C = (S,sinit,R,L)  

−  R : S × S → ℝ≥0 is the transition rate matrix 
−  rates interpreted as parameters of exponential distributions 

•  Embedded DTMC: emb(C)=(S,sinit,Pemb(C),L) 

•  Infinitesimal generator matrix 

otherwise
s's and 0E(s) if

0(s)E if

0
1
)/E(s)s'(s,

    )s'(s,emb(C) ==
>

⎪⎩

⎪
⎨
⎧

=
R

P

otherwise
'ss

)'s,s(
)'s,s(    )'s,s(

'ss

≠

⎩
⎨
⎧
−= ∑ ≠

R
RQ
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Transient and steady-state behaviour 
•  Transient behaviour 

−  state of the model at a particular time instant 
−  πC

s,t(s’) is probability of, having started in state s, being in 
state s’ at time t (in CTMC C) 

−  πC
s,t

 (s’) = Prs{ ω ∈ PathC(s) | ω@t=s’ } 

•  Steady-state behaviour 
−  state of the model in the long-run 
−  πC

s(s’) is probability of, having started in state s, being in 
state s’ in the long run 

−  πC
s(s’) = limt→∞ πC

s,t(s’) 
−  intuitively: long-run percentage of time spent in each state 



Comments

In the previous slide:

PathC is to emphasize that is about CTMC C

easier to define steady state probabilities than with DTMCs

there always exists the limit distribution
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Computing transient probabilities 
•  Consider a simple example 

−  and compare to the case for DTMCs 

•  What is the probability of being in state s0 at time t? 

•  DTMC/CTMC: 

1 

s0 s1 

1 



Original Slides

6 DP/Probabilistic Model Checking, Michaelmas 2011 

Computing transient probabilities 
•  Πt - matrix of transient probabilities  

−  Πt(s,s’)=πs,t(s’) 

•  Πt solution of the differential equation: Πt’ = Πt · Q 
−  where Q is the infinitesimal generator matrix 

•  Can be expressed as a matrix exponential and therefore 
evaluated as a power series 

−  computation potentially unstable  
−  probabilities instead computed using uniformisation 

! i/)t(  e  0i
it

t ∑
∞

=

⋅ ⋅== QΠ Q



Comments

In the previous slide: eQt denotes the matrix where in position
(s, s ′) we have etQ(s,s′)

analogously for Q i (and Q
q in the next slide)

remember that in Πt , t is a time, not a state

unstable: the limit exists, but computation may diverge
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Uniformisation 
•  We build the uniformised DTMC unif(C) of CTMC C 
•  If C =(S,sinit,R,L), then unif(C) = (S,sinit,Punif(C),L) 

−  set of states, initial state and labelling the same as C 
−  Punif(C) = I + Q/q 
−  I is the |S|×|S| identity matrix 
−  q ≥ max { E(s) | s ∈ S } is the uniformisation rate 

•  Each time step (epoch) of uniformised DTMC corresponds 
to one exponentially distributed delay with rate q 
−  if E(s)=q transitions the same as embedded DTMC (residence 

time has the same distribution as one epoch) 
−  if E(s)<q add self loop with probability 1-E(s)/q (residence 

time longer than 1/q so one epoch may not be ‘long enough’) 
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Uniformisation - Example 
•  CTMC C: 

•  Uniformised DTMC unif(C) 
−  let uniformisation rate q = maxs { E(s) } = 3 
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Uniformisation 
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parameter q·t 

•  Using the uniformised DTMC the transient probabilities can 
be expressed by: 

Punif(C) is stochastic (all entries in 
[0,1] & rows sum to 1); 

therefore computations with P are 
more numerically stable than Q 



Comments

In the previous slide: in the Poisson probability, we usually have
λ = qt

actually, “probability mass function”, as the Poisson process is
discrete

λ in exponential distribution and in the Poisson probability are
different, though related

that is: suppose that we have some event which may happen
multiple times within a given (fixed) interval of time

knowing that the “typical” number of times is λ, which is the
probability that we observe k events?

of course, it should be high for k close to λ, and low otherwise



Comments

In the previous slide: in the Poisson probability, we usually have
λ = qt

e.g., if there are 2 failures every day, which is probability of
having two failures in one day? it is P(X = 2) = 22e−2

2! ≈ 27%

having 3 failures is P(X = 3) = 23e−2

3! ≈ 18%, 1 failure is the
same of 2, 0 failures is 13.5%; with 7 failures or above, the
probability is below 1%

rates are usually shown as r instead of λ, thus λ = rt if t is
the period length

so: exponential distribution is about how much (continuous)
time for the first occurrence, Poisson is about how many
occurrences we have in a given time
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Uniformisation 

•  (Punif(C))i is probability of jumping between each pair of 
states in i steps 

•  γq·t,i is the ith Poisson probability with parameter q·t 
−  the probability of i steps occurring in time t, given each has 

delay exponentially distributed with rate q 

•  Can truncate the (infinite) summation using the techniques 
of Fox and Glynn [FG88], which allow efficient computation 
of the Poisson probabilities 

( )   γ0i
i )C(unif

i,tqt ∑
∞

= ⋅ ⋅= PΠ
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Uniformisation 
•  Computing πs,t for a fixed state s and time t 

−  can be computed efficiently using matrix-vector operations 
−  pre-multiply the matrix Πt by the initial distribution 
−  in this case: πs,0(s’) equals 1 if s=s’ and 0 otherwise 

−  compute iteratively to avoid the computation of matrix powers  
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Uniformisation - Example 
•  CTMC C, uniformised DTMC for q=3 

•  Initial distribution: πs0,0 = [ 1, 0 ] 
•  Transient probabilities for time t = 1: 
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Original Slides

13 DP/Probabilistic Model Checking, Michaelmas 2011 

Steady-state probabilities 
•  Limit πC

s(s’) = limt→∞ πC
s,t(s’) 

−  exists for all finite CTMCs 
−  (see next slide) 

•  As for DTMCs, need to consider the underlying graph 
structure of the Markov chain: 
−  reachability (between pairs) of states 
−  bottom strongly connected components (BSCCs) 
−  one special case to consider: absorbing states are BSCCs 
−  note: can do this equivalently on embedded DTMC 

•  CTMC is irreducible if all its states belong to a single BSCC; 
otherwise reducible 
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Periodicity 
•  Unlike for DTMCs, do not need to consider periodicity 

•  e.g. probability of being in state s0 at time t? 

•  DTMC/CTMC: 

1 

s0 s1 

1 
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Irreducible CTMCs 
•  For an irreducible CTMC: 

−  the steady-state probabilities are independent of the starting 
state: denote the steady state probabilities by πC(s’) 

•  These probabilities can be computed as 
−  the unique solution of the linear equation system: 

 where Q is the infinitesimal generator matrix of C 
 

•  Solved by standard means: 
−  direct methods, such as Gaussian elimination 
−  iterative methods, such as Jacobi and Gauss-Seidel 

 

1)s(π   and   0π Ss
CC ==⋅ ∑∈

Q



Original Slides

16 DP/Probabilistic Model Checking, Michaelmas 2011 

Balance equations 

1)s(π   and   0π Ss
CC ==⋅ ∑∈

Q

For all s ∈ S: 
πC(s) · (-Σs’≠s R(s,s’)) + Σs’≠s πC(s’) · R(s’,s)  =  

0 
⇔ 

πC(s) · Σs’≠s R(s,s’) =  Σs’≠s πC(s’) · R(s’,s) 

balance the rate of 
leaving and entering 

a state 
normalisation 
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Steady-state - Example 
•  Solve: π·Q=0 and ∑ π(s)=1 
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Reducible CTMCs 
•  For a reducible CTMC: 

−  the steady-state probabilities πC(s’) depend on start state s 

•  Find all BSCCs of CTMC, denoted bscc(C)  
 

•  Compute: 
−  steady-state probabilities πT of sub-CTMC for each BSCC T 
−  probability ProbReachemb(C)(s, T) of reaching each T from s 

•  Then: 

otherwise
bscc(C)T some for Ts' if

0
)'s(π)T ,s(ProbReach)'s(π

Temb(C)C
s

∈∈

⎩
⎨
⎧ ⋅=
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CSL 
•  Temporal logic for describing properties of CTMCs 

−  CSL = Continuous Stochastic Logic [ASSB00,BHHK03] 
−  extension of (non-probabilistic) temporal logic CTL 

•  Key additions:  
−  probabilistic operator P (like PCTL) 
−  steady state operator S 

•  Example: down → P>0.75 [ ¬fail U [1,2.5] up ]  
−  when a shutdown occurs, the probability of a system recovery 

being completed between 1 and 2.5 hours without further 
failure is greater than 0.75 

•  Example: S<0.1[ insufficient_routers ]  
−  in the long run, the chance that an inadequate number of 

routers are operational is less than 0.1 



Original Slides

CSL also have an operator for steady probability (may be also be
expressed with rewards)

20 DP/Probabilistic Model Checking, Michaelmas 2011 

CSL syntax 
•  CSL syntax: 
 

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] | S~p [φ]  (state formulae) 

−  ψ  ::= X φ    |    φ UI φ       (path formulae) 

−  where a is an atomic proposition, I interval of ℝ≥0 and p ∈ 
[0,1], ~ ∈ {<,>,≤,≥} 

•  A CSL formula is always a state formula 
−  path formulae only occur inside the P operator 

 ψ is true with 
probability ~p 

“time bounded 
until” “next” 

 in the “long 
run” φ is true 

with 
probability ~p 
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CSL semantics for CTMCs 
•  CSL formulae interpreted over states of a CTMC 

−  s ⊨ φ  denotes φ is “true in state s” or “satisfied in state s” 
•  Semantics of state formulae: 

−  for a state s of the CTMC (S,sinit,R,L): 

−  s ⊨ a    ⇔  a ∈ L(s) 
−  s ⊨ φ1 ∧ φ2   ⇔  s ⊨ φ1 and s ⊨ φ2 

−  s ⊨ ¬φ    ⇔  s ⊨ φ is false 
−  s ⊨ P~p [ψ]   ⇔  Prob(s, ψ) ~ p 
−  s ⊨ S~p [φ]   ⇔  ∑s’ ⊨ φ πs(s’) ~ p 

Probability of, starting in state s, being 
in state s’ in the long run 

Probability of, 
starting in state s, 
satisfying the path 

formula ψ 



Original Slides

22 DP/Probabilistic Model Checking, Michaelmas 2011 

CSL semantics for CTMCs 
•  Prob(s, ψ) is the probability, starting in state s, of satisfying 

the path formula ψ 
−  Prob(s, ψ) = Prs {ω ∈ Paths | ω ⊨ ψ } 

•  Semantics of path formulae: 
−  for a path ω of the CTMC: 
− ω ⊨ X φ   ⇔   ω(1) is defined and ω(1) ⊨ φ 
− ω ⊨ φ1 UI φ2  ⇔  ∃t ∈ I. ( ω@t ⊨ φ2 ∧ ∀t’<t. ω@t’ ⊨ φ1) 

there exists a time instant in the interval I where φ2 
is true and φ1 is true at all preceding time instants 

if ω(0) is absorbing 
ω(1) not defined 
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More on CSL 
•  Basic logical derivations: 

−  false,  φ1 ∨ φ2,  φ1 → φ2 

•  Normal (unbounded) until is a special case 
−  φ1 U φ2 ≡ φ1 U[0,∞) φ2 

•  Derived path formulae: 
−  F φ ≡ true U φ,  FI φ ≡ true UI φ 
−  G φ ≡ ¬(F ¬φ),  GI φ ≡ ¬(FI ¬φ) 

•  Negate probabilities: … 
−  e.g. ¬P>p [ ψ ] ≡ P≤p [ ψ ],  ¬S≥p [ φ ] ≡ S>p [ φ ] 

•  Quantitative properties 
−  of the form P=? [ ψ ] and S=? [ φ ] 
−  where P/S is the outermost operator 
−  experiments, patterns, trends, … 
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CSL example - Workstation cluster 
•  Case study: Cluster of workstations [HHK00] 

−  two sub-clusters (N workstations in each cluster) 
−  star topology with a central switch 
−  components can break down, single repair unit 

−  minimum QoS: at least ¾ of the workstations operational and 
connected via switches 

−  premium QoS: all workstations operational and connected via 
switches 

backbone 

left 
switch 

right 
switch 

left  
sub-cluster 

right  
sub-cluster 
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CSL example - Workstation cluster 
•  S=? [ minimum ] 

−  the probability in the long run of having minimum QoS 

•  P=? [ F[t,t] minimum ] 
−  the (transient) probability at time instant t of minimum QoS 

•  P<0.05 [ F[0,10] ¬minimum ]  
−  the probability that the QoS drops below minimum within 10 

hours is less than 0.05 

•  ¬minimum → P<0.1 [ F[0,2] ¬minimum ]  
−  when facing insufficient QoS, the chance of facing the same 

problem after 2 hours is less than 0.1 



Original Slides

26 DP/Probabilistic Model Checking, Michaelmas 2011 

CSL example - Workstation cluster 
•  minimum → P>0.8 [ minimum U[0,t] premium ]  

−  the probability of going from minimum to premium QoS 
within t hours without violating minimum QoS is at least 0.8 

•  P=? [ ¬minimum U[t,∞) minimum ] 
−  the chance it takes more than t time units to recover from 

insufficient QoS 

•  ¬r_switch_up → P<0.1 [¬r_switch_up U ¬l_switch_up ] 
−  if the right switch has failed, the probability of the left switch 

failing before it is repaired is less than 0.1 

•  P=? [ F[2,∞) S>0.9[ minimum ] ] 
−  the probability of it taking more than 2 hours to get to a state 

from which the long-run probability of minimum QoS is >0.9 
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Summing up… 
•  Transient probabilities (time instant t) 

−  computation with uniformisation: efficient iterative method 

•  Steady-state (long-run) probabilities 
−  like DTMCs 
−  requires graph analysis 
−  irreducible case: solve linear equation system 
−  reducible case: steady-state for sub-CTMCs + reachability 
 

•  CSL: Continuous Stochastic Logic 
−  extension of PCTL for properties of CTMCs 
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Overview 

•  CSL model checking 
−  basic algorithm 
−  untimed properties 
−  time-bounded until 
−  the S (steady-state) operator 

•  Rewards 
−  reward structures for CTMCs 
−  properties: extension of CSL 
−  model checking 
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CSL: Continuous Stochastic Logic 
•  CSL syntax: 

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] | S~p [φ]  (state formulae) 

−  ψ  ::= X φ    |    φ UI φ       (path formulae) 

−  where a is an atomic proposition, I an interval of ℝ≥0,  
p ∈ [0,1] and ~ ∈ {<,>,≤,≥} 

 ψ is true with 
probability ~p 

“time bounded 
until” 

“next” 
 in the “long 
run” φ is true 

with 
probability ~p 



Original Slides

4 DP/Probabilistic Model Checking, Michaelmas 2011 

CSL model checking for CTMCs 
•  Algorithm for CSL model checking [BHHK03] 

−  inputs: CTMC C=(S,sinit,R,L), CSL formula φ 
−  output: Sat(φ) = { s∈S | s ⊨ φ }, the set of states satisfying φ 

•  Often, also consider quantitative results 
−  e.g. compute result of P=? [ F[0,t] minimum ] for 0≤t≤100 

•  Basic algorithm similar to PCTL for DTMCs 
−  proceeds by induction on parse tree of φ 

•  For the non-probabilistic  operators: 
−  Sat(true) = S 
−  Sat(a) = { s ∈ S | a ∈ L(s) } 
−  Sat(¬φ) = S \ Sat(φ) 
−  Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2) 
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CSL model checking for CTMCs 
•  Main task: computing probabilities for P~p [·] and S~p [·] 

−  φ ::= true | a | φ ∧ φ | ¬φ |  

                    P~p [ X φ ] | P~p [ φ U φ ] | P~p [ φ UI φ ] | S~p [ φ ] 

−  where φ1 U φ2 ≡ φ1 U[0,∞) φ2 

time 
bounded 

until 
untimed steady- 

state 



Original Slides

6 DP/Probabilistic Model Checking, Michaelmas 2011 

Untimed properties 
•  Untimed properties can be verified on the embedded DTMC 

−  properties of the form: P~p [ X φ ] or P~p [ φ1 U φ2 ] 
−  use algorithms for checking PCTL against DTMCs 

•  Certain qualitative time-bounded until formulae can also 
be verified on the embedded DTMC 
−  for any (non-empty) interval I 

    
 s ⊨ P~0 [ φ1 UI φ2 ] if and only if s ⊨ P~0 [φ1 U[0,∞) φ2 ] 
    

−  can use precomputation algorithm Prob0 
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Model checking - Time-bounded until 
•  Compute Prob(s, φ1 UI φ2) for all states where I is an 

arbitrary interval of the non-negative real numbers 
•  Note: 

−  Prob(s, φ1 UI φ2) = Prob(s, φ1 Ucl(I) φ2)  
 where cl(I) denotes the closure of the interval I 

−  Prob(s, φ1 U[0,∞) φ2) = Probemb(C)(s, φ1 U φ2) 
 where emb(C) is the embedded DTMC 

•  Therefore, 3 remaining cases to consider: 
−  I = [0,t] for some t∈ℝ≥0, I = [t,t’] for some t≤t’∈ℝ≥0  

and I = [t,∞) for some t∈ℝ≥0 

•  Two methods: 1. Integral equations; 2. Uniformisation 
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Time-bounded until (integral equations) 
•  Computing the probabilities reduces to determining the 

least solution of the following set of integral equations 
−  (note similarity to bounded until for DTMCs) 

•  Prob(s, φ1 U[0,t] φ2) equals  
−  1 if s ∈ Sat(φ2),  
−  0 if s ∈ Sat(¬φ1 ∧¬φ2)  
−  and otherwise equals 

•  One possibility: solve these integrals numerically 
−  e.g. trapezoidal, Simpson and Romberg integration 
−  expensive, possible problems with numerical stability 

probability of 
moving from s 
to s’ at time x 

probability, in state 
s’, of satisfying 
until before t-x 

time units elapse 

  

€ 

Pemb(C)(s,s' )⋅ E(s)⋅ e−E(s)⋅x( )
s'∈S
∑ ⋅ Prob(s',φ1 U[0,t−x] φ2) dx

0

t
∫
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Time-bounded until (uniformisation) 
•  Reduction to transient analysis… 

•  Make all φ2 states absorbing 
−  from such a state φ1 U[0,x] φ2  

holds with probability 1 

•  Make all ¬φ1 ∧¬φ2 states absorbing 
−  from such a state φ1 U[0,x] φ2  

holds with probability 0 

•  Formally: Construct CTMC C[φ2][¬φ1 ∧¬φ2] 
−  where for CTMC C=(S,sinit,R,L), let C[θ]=(S,sinit,R[θ],L) where 

 R[θ](s,s’)=R(s,s’) if s ∉ Sat(θ) and 0 otherwise 

Sat(φ2) 

Sat(φ1) S 
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Time-bounded until (uniformisation) 
•  Problem then reduces to calculating transient probabilities 

of the CTMC C[φ2][¬φ1 ∧¬φ2]: 

transient probability: starting in state s, the 
probability of being in state s’ at time t 
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Time-bounded until (uniformisation) 
•  Can now adapt uniformisation to computing the vector of 

probabilities Prob(φ1 U[0,t] φ2) 
−  recall Πt is matrix of transient probabilities Πt(s,s’)=πs,t(s’)  
−  computed via uniformisation: 

•  Combining with:  
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Time-bounded until (uniformisation) 
•  Have shown that we can calculate the probabilities as: 

•  Infinite summation can be truncated using the techniques 
of Fox and Glynn [FG88] 

•  Can compute iteratively to avoid matrix powers: 

    

€ 

 Punif(C)( )
 i+1
⋅ φ2 = Punif(C) ⋅   Punif(C)( )

 i
⋅ φ2 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

    

€ 

Prob(φ1 U[0,t] φ2) =  γq⋅t,i ⋅  Punif(C[φ2 ][ ¬φ1∧¬φ2 ])( )
 i
⋅ φ2 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=0

∞

∑
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Time-bounded until - Example 
•  P>0.65 [ F[0,7.5] full ]  ≡  P>0.65 [ true U[0,7.5] full ]  

−  “probability of the queue becoming full within 7.5 time units” 
•  State s3 satisfies full and no states satisfy ¬true 

−  in C[full][¬true ∧¬ full] only state s3 made absorbing 

matrix of unif(C[full][¬true ∧¬full]) 
with uniformisation rate maxs∈SE(s)

=4.5 

s3 made absorbing 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Time-bounded until - Example 
•  Computing the summation of matrix-vector multiplications 

−  yields Prob( F[0,7.5] full ) ≈ [ 0.6482, 0.6823, 0.7811, 1 ] 

•  P>0.65[ F[0,7.5] full ] satisfied in states s1, s2 and s3 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Time-bounded until - P~p [φ1 U[t,t’] φ2] 
•  In this case the computation can be split into two parts: 
•  1. Probability of remaining in φ1 states until time t 

−  can be computed as transient probabilities on the CTMC 
where are states satisfying ¬φ1 have been made absorbing 

•  2. Probability of reaching a φ2 state, while remaining in 
states satisfying φ1, within the time interval [0,t’-t] 
−  i.e. computing Prob(φ1 U[0,t’-t] φ2) 

probability 
φ1 U[0,t’-t] φ2 
holds in s’ 

Probability of reaching state 
s’ at time t and satisfying 
φ1 up until this point 

sum over states 
satisfying φ1 
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Time-bounded until - P~p [φ1 U[t,t’] φ2] 
•  Let Probφ1(s, φ1U[0,t’-t]φ2) = Prob(s, φ1U[0,t’-t]φ2) if s∈Sat(φ1) 

and 0 otherwise 
•  From the previous slide we have: 

−  summation can be truncated using Fox and Glynn [FG88] 
−  can compute iteratively (only scalar and matrix-vector 

operations) 
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Time-bounded until - P~p [φ1 U[t,∞) φ2] 
•  Similar to the case for φ1 U[t,t’] φ2 except second part is now 

unbounded, and hence the embedded DTMC can be used 
•  1. Probability of remaining in φ1 states until time t 
•  2. Probability of reaching a φ2 state, while remaining in 

states satisfying φ1  
−  i.e. computing Prob(φ1 U[0,∞) φ2) 

  

€ 

Prob(s,φ1 U[t,∞] φ2) = πs,t
C[ ¬φ1]

(s' )⋅ Probemb(C)(s',φ1 U φ2)
s'∈Sat(φ1)

∑

probability 
φ1 U[0,∞) φ2 
holds in s’ 

Probability of reaching 
state s’ at time t and 

satisfying φ1 up until this 
point 

sum over states 
satisfying φ1 
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Time-bounded until - P~p [φ1 U[t,∞) φ2] 
•  Letting Probφ1(s, φ1U[0,∞)φ2) = Prob(s, φ1U[0,∞)φ2) if s∈Sat

(φ1) and 0 otherwise, we have: 

−  summation can be truncated using Fox and Glynn [FG88] 
−  can compute iteratively (only scalar and matrix-vector 

operations 
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Model Checking - S~p [ φ ] 
•  A state s satisfies the formula S~p[φ] if ∑s’ ⊨ φ πC

s(s’) ~ p 
−  πC

s(s’) is probability, having started in state s, of being in 
state s’ in the long run 

•  Thus reduces to computing and then summing steady-
state probabilities for the CTMC 

•  If CTMC is irreducible: 
−  solution of one linear equation system 

•  If CTMC is reducible: 
−  determine set of BSCCs for the CTMC 
−  solve two linear equation systems for each BSCC T 
−  one to obtain the vector ProbReachemb(C)(T) 
−  the other to compute the steady state probabilities πT for T 
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S~p [ φ ] - Example 
•  S<0.1[ full ] 
•  CTMC is irreducible (comprises a single BSCC) 

−  steady state probabilities independent of starting state 
−  can be computed by solving π·Q=0 and ∑ π(s)=1 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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S~p [ φ ] - Example 

−  solution: π = [ 8/15, 4/15, 2/15, 1/15 ] 
−  ∑s’ ⊨ Sat(full) π (s’) = 1/15 < 0.1 
−  so all states satisfy S<0.1[ full ] 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Rewards (or costs) 
•  Like DTMCs, we can augment CTMCs with rewards 

−  real-valued quantities assigned to states and/or transitions 
−  can be interpreted in two ways: instantaneous/cumulative 
−  properties considered here: expected value of rewards 
−  formal property specifications in an extension of CSL 

•  For a CTMC (S,sinit,R,L), a reward structure is a pair (ρ,ι) 
−  ρ : S →ℝ≥0 is a vector of state rewards 
−  ι : S × S →ℝ≥0 is a matrix of transition rewards 

•  For cumulative reward-based properties of CTMCs 
−  state rewards interpreted as rate at which reward gained 
−  if the CTMC remains in state s for t∈ℝ>0 time units, a reward 

of t·ρ(s) is acquired 
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Reward structures - Examples 

•  Example: “size of message queue” 
−  ρ(si)=i and ι(si,sj)=0 ∀i,j 

•  Example: “time for which queue is not full” 
−  ρ(si)=1 for i<3, ρ(s3)=0 and ι(si,sj)=0 ∀i,j 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
instantaneous 

cumulative 
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Reward structures - Examples 

•  Example: “number of requests served” 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
cumulative 
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CSL and rewards 
•  PRISM extends CSL to incorporate reward-based properties 

−  adds R operator like the one added to PCTL 

−  φ  ::=  …  |  R~r [ I=t ]  |  R~r [ C≤t ] |  R~r [ F φ ] |  R~r [ S ] 

−  where r,t ∈ ℝ≥0, ~ ∈ {<,>,≤,≥} 

•  R~r [ · ] means “the expected value of · satisfies ~r” 

“reachability” 

 expected reward is ~r 

“cumulative” “instantaneous” “steady-state” 
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Types of reward formulae 
•  Instantaneous: R~r [ I=t ] 

−  the expected value of the reward at time-instant t is ~r 
−  “the expected queue size after 6.7 seconds is at most 2” 

•  Cumulative: R~r [ C≤t ] 
−  the expected reward cumulated up to time-instant t is ~r 
−  “the expected requests served within the first 4.5 seconds of 

operation is less than 10” 
•  Reachability: R~r [ F φ ] 

−  the expected reward cumulated before reaching φ is ~r 
−  “the expected requests served before the queue becomes full” 

•  Steady-state R~r [ S ] 
−  the long-run average expected reward is ~r 
−  “expected long-run queue size is at least 1.2” 
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Reward properties in PRISM 
•  Quantitative form: 

−  e.g. R=? [ C≤t ] 
−  what is the expected reward cumulated up to time-instant t? 

•  Add labels to R operator to distinguish between multiple 
reward structures defined on the same CTMC 
−  e.g. R{num_req}=? [ C≤4.5 ] 
−  “the expected number of requests served within the first 4.5 

seconds of operation” 
−  e.g. R{pow}=? [ C≤4.5 ] 
−  “the expected power consumption within the first 4.5 seconds 

of operation” 
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Reward formula semantics 
•  Formal semantics of the four reward operators: 

−  s ⊨ R~r [ I=t ]   ⇔   Exp(s, XI=t) ~ r 
−  s ⊨ R~r [ C≤t ]   ⇔    Exp(s, XC≤t) ~ r 
−  s ⊨ R~r [ F Φ ]   ⇔    Exp(s, XFΦ) ~ r 
−  s ⊨ R~r [ S ]    ⇔    limt→∞( 1/t · Exp(s, XC≤t) ) ~ r 

•  where: 
−  Exp(s, X) denotes the expectation of the random variable 

 X : Path(s) → ℝ≥0 with respect to the probability measure Prs 
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Reward formula semantics 
•  Definition of random variables: 

−  path ω= s0t0s1t1s2… 

−  where jt=min{ j | ∑i≤j ti ≥ t } and kφ = min{ i | si ⊨ φ }   

state of ω at time t 

time spent in state si 

time spent in 
state sjt before 

t time units 
have elapsed 
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Model checking reward formulae 
•  Instantaneous: R~r [ I=t ] 

−  reduces to transient analysis (state of the CTMC at time t) 
−  use uniformisation 

•  Cumulative: R~r [ C≤t ] 
−  extends approach for time-bounded until 
−  based on uniformisation 

•  Reachability: R~r [ F φ ]  
−  can be computed on the embedded DTMC 
−  reduces to solving a system of linear equations 

•  Steady-state: R~r [ S ] 
−  similar to steady state formulae S~r [ φ ]  
−  graph based analysis (compute BSCCs) 
−  solve systems of linear equations (compute steady state 

probabilities of each BSCC) 
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CSL model checking complexity 
•  For model checking of a CTMC complexity: 

−  linear in |Φ| and polynomial in |S|  
−  linear in q·tmax  (tmax is maximum finite bound in intervals) 

•  P~p[Φ1 U[0,∞) Φ2], S~p[Φ], R~r [F Φ] and R~r [S] 
−  require solution of linear equation system of size |S| 
−  can be solved with Gaussian elimination: cubic in |S| 
−  precomputation algorithms (max |S| steps) 

•  P~p[Φ1 UI Φ2], R~r [C≤t] and R~r [I=t]  
−  at most two iterative sequences of matrix-vector products 
−  operation is quadratic in the size of the matrix, i.e. |S| 
−  total number of iterations bounded by Fox and Glynn 
−  the bound is linear in the size of q·t (q uniformisation rate) 
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Summing up… 
•  Model checking a CSL formula φ on a CTMC 

−  recursive: bottom-up traversal of parse tree of φ 
•  Main work: computing probabilities for P and S operators 

−  untimed (X Φ, Φ1 U Φ2): perform on embedded DTMC 
−  time-bounded until: use uniformisation-based methods, 

rather than more expensive solution of integral equations 
−  other forms of time-bounded until, i.e. [t1,t2] and [t,∞),  

reduce to two sequential computations like for [0,t] 
−  S operator: summation of steady-state probabilities 

•  Rewards - similar to DTMCs 
−  except for continuous-time accumulation of state rewards 
−  extension of CSL with R operator 
−  model checking of R comparable with that of P 
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Overview 

•  Counterexamples 
−  non-probabilistic model checking 
−  counterexamples for PCTL + DTMCs 
−  computing smallest counterexamples 

•  Bisimulation 
−  bisimulation equivalences: DTMCs, CTMCs 
−  preservation of logics: PCTL, CSL 
−  bisimulation minimisation 



Original Slides

3 DP/Probabilistic Model Checking, Michaelmas 2011 

Non probabilistic counterexamples 
•  Counterexamples (for non-probabilistic model checking) 

−  generated when model checking a (universal) property fails 
−  trace through model illustrating why property does not hold 
−  major advantage of the model checking approach 
−  bug finding vs. verification 

•  Example: 
−  CTL property AG ¬err 
−  (or equivalently, ¬EF err) 
−  (“an error state is never reached”) 
−  counterexample is a finite trace  

to a state satisfying err 
−  alternatively, this is a witness 

to the satisfaction of formula EF err 

{err} 
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Counterexamples for DTMCs? 
•  PCTL example: P<0.01 [ F err ] 

−  “the probability of reaching an error state is less than 0.01” 
−  what is a counterexample for s ⊭ P<0.01 [ F err ] ? 
−  not necessarily illustrated by a single trace to an err state 
−  in fact, “counterexample” is a set of paths satisfying F err 

whose combined measure is greater than or equal to 0.01  
•  Alternative approach to “debugging” seen so far: 

−  probabilistic model checker provides actual probabilities 
−  e.g. queries of the form P=? [ F err ] 
−  anomalous behaviour identified by examining trends 
−  e.g. P=? [ F≤T err ] for T=0,…,100 

•  This lecture: DTMC counterexamples in style of [HK07] 
−  also some work done on CTMC/MDP counterexamples 
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DTMC notation 
•  DTMC: D = (S,sinit,P,L) 
•  Path(s) = set of all infinite paths starting in state s 
•  Prs : ΣPath(s) → [0,1] = probability measure over infinite paths 

−  where ΣPath(s) is the σ-algebra on Path(s) 
−  defined in terms of probabilities for finite paths 

•  Ps(ω) = probability for finite path ω = ss1…sn 
−  Ps(s) = 1 
−  Ps(ss1…sn) = P(s,s1) · P(s1,s2) · … · P(sn-1,sn) 
−  extend notation to sets: Ps(C) for set of finite paths C 
−  Ps extends uniquely to Prs 

•  Path(s, ψ) = { ω ∈ Path(s) | ω ⊨ ψ } 
−  Prob(s, ψ) = Prs(Path(s, ψ)) 

•  Pathfin(s, ψ) = set of finite paths from s satisfying ψ 
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Counterexamples for DTMCs 
•  Consider PCTL properties of the form: 

−  P≤p [ Φ1 U≤k Φ2 ],  where k ∈ ℕ ∪ {∞} 
−  i.e. bounded or unbounded until formulae with closed upper 

probability bounds 

•  Refutation: 
−  s ⊭ P≤p [ Φ1 U≤k Φ2 ] 
− ⇔ Prs(Path(s, Φ1 U≤k Φ2)) > p 
−  i.e. total probability mass of Φ1 U≤k Φ2 paths exceeds p 

•  Since the property is an until formula 
−  this is evidenced by a set of finite paths 
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Counterexamples for DTMCs 
•  A counterexample for P≤p [ Φ1 U≤k Φ2 ] in state s is: 

−  a set C of finite paths such that C ⊆ Pathfin(s, ψ) and Ps(C) > p 

•  Example 
−  Consider the PCTL formula: 
−  P≤0.3 [ F a ] 
−  This is not satisfied in s0 
−  Prob(s0, F a) = 1/4+1/8+1/16+… = 1/2 
−  A counterexample: C = { s0s2, s0s0s2 } 
−  Ps0(C) = 1/4 + (1/2)(1/4) = 3/8 = 0.375 

s1 

1/2 

1 

1/4 

1 

{a} 

s0 

s2 

1/4 
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Finiteness of counterexamples 
•  There is always a finite counterexample for: 

−  s ⊭ P≤p [ Φ1 U≤k Φ2 ] 

•  On the other hand, consider this DTMC: 
−  and the PCTL formula: 
−  P<1/2 [ F a ] 

−  Prob(s0, F a) = 1/4+1/8+1/16+… 
                    = 1/2 

−  s0 ⊭ P<1/2 [ F a ] 

−  counterexample would require infinite set of paths 
−  { (s0)is2 }i∈ℕ 

s1 

1/2 

1 

1/4 

1 

{a} 

s0 

s2 

1/4 
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Counterexamples for DTMCs 
•  Aim: counterexamples should be succinct, comprehensible 
•  Set of all counterexamples: 

−  CXp(s,ψ) = set of all counterexamples for P≤p [ψ] in state s 
•  Minimal counterexample 

−  counterexample C with |C| ≤ |C’| for all C’ ∈ CXp(s,ψ) 
•  “Smallest” counterexample 

−  minimal counterexample C with P(C) ≥ P(C’)  
for all minimal C’ ∈ CXp(s,ψ) 

−  reduces to finding… 
•  Strongest (most probable) evidence 

−  finite path ω in Pathfin(s, ψ) such that P(ω) ≥ P(ω’)  
for all ω’ ∈ Pathfin(s, ψ) 

−  i.e. contributes most to violation of PCTL formula 
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Example 
•  PCTL formula: P≤1/2 [ F b ] 

−  s0 ⊭ P≤1/2 [ F b ] 
−  since Prob(s0, F b) = 0.9 

•  Counterexamples: 
−  C1 = { s0s1s2, s0s1s4s2, s0s1s4s5, s0s4s2 } 

•  Ps0(C1) = 0.2+0.2+0.12+0.15 = 0.67      (not minimal) 
−  C2 = { s0s1s2, s0s1s4s2, s0s1s4s5 } 

•  Ps0(C2) = 0.2+0.2+0.12 = 0.52      (not “smallest”) 
−  C3 = { s0s1s2, s0s1s4s2, s0s4s2 } 

•  Ps0(C3) = 0.2+0.2+0.15 = 0.55      (“smallest”) 

{b} 
1/3 

1 1 

s0 s1 s2 

s3 s4 s5 

0.6 

0.3 0.1 

0.2 

0.3 

0.3 
0.7 

0.5 
2/3 

{b} 
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Weighted digraphs 
•  A weighted directed graph is a tuple G = (V, E, w) where: 

−  V is a set of vertices 
−  E ⊆ V × V is a set of edges 
−  w : E → ℝ≥0 is a weight function 

•  Finite path ω in G 
−  is a sequence of vertices v0v1v2…vn such that (vi,vi+1)∈E ∀i≥0 
−  the distance of ω =  v0v1v2…vn is: Σi=0…n-1 w(vi,vi+1) 

•  Shortest path problem 
−  given a weighted digraph, find a path between two vertices v1 

and v2 with the smallest distance 
−  i.e. a path ω s.t. d(ω) ≤ d(ω’) for all other such paths ω’ 
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Finding strongest evidences 
•  Reduction to graph problem… 
•  Step 1: Adapt the DTMC 

−  make states satisfying ¬Φ1∧ ¬Φ2 absorbing 
•  (i.e. replace all outgoing transitions with a single self-loop) 

−  add an extra state t and replace all transitions from any Φ2 
state with a single transition to t (with probability 1) 

•  Step 2: Convert new DTMC into a weighted digraph 
−  for the (adapted) DTMC D = (S,sinit,P,L): 
−  corresponding graph is GD = (V, E, w) where: 
−  V = S and E = { (s,s’)∈S×S | P(s,s’)>0 } 
−  w(s,s’) = log(1/P(s,s’)) 

•  Key idea: for any two paths ω and ω’ in D (and in GD) 
−  Ps(ω’) ≥ Ps(ω) if and only if d(ω’) ≤ d(ω) 
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Example… 
•  PCTL formula: P≤1/2 [ F b ] 

log(3) 

log(1) 

s0 s1 s2 

s3 s4 s5 

log(5/3) 

log 
(10/3) 

log(10) 

log(5) 

log 
(10/3) 

log 
(2) log 

(3/2) t 
1 

1 
1 

{b} 
1/3 

1 1 

s0 s1 s2 

s3 s4 s5 

0.6 

0.3 0.1 

0.2 

0.3 

0.3 
0.7 

0.5 
2/3 

{b} 

DTMC 

weighted digraph 
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Finding strongest evidences 
•  To find strongest evidence in DTMC D 

−  analyse corresponding digraph 
•  For unbounded until formula P≤p [ Φ1 U Φ2 ] 

−  solve shortest path problem in digraph (target t) 
−  polynomial time algorithms exist 

•  e.g. Dijsktra’s algorithm can be implemented in O(|E|+|V|·log|V|) 
•  For bounded until formula P≤p [ Φ1 U≤k Φ2 ] 

−  solve special case of the constrained shortest path problem  
−  also solvable in polynomial time 

•  Generation of smallest counterexamples 
−  based on computation of k shortest paths 
−  k can be computed on the fly 
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Other cases 
•  Lower bounds on probabilities 

−  i.e. s ⊭ P≥p [ Φ1 U≤k Φ2 ] 
−  negate until formula to reverse probability bound 
−  solvable with BSCC computation + probabilistic reachability 
−  for details, see [HK07] 

•  Continuous-time Markov chains 
−  these techniques can be extended to CTMCs and CSL [HK07b] 
−  naïve approach: apply DTMC techniques to uniformised DTMC 
−  modifications required to get smaller counterexamples 
−  another possibility: directed search based techniques [AHL05] 
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Bisimulation 
•  Identifies models with the same branching structure 

−  i.e. the same stepwise behaviour 
−  each model can simulate the actions of the other 
−  guarantees that models satisfy many of the same properties 

•  Uses of bisimulation: 
−  show equivalence between a model and its specification 
−  state space reduction: bisimulation minimisation 

•  Formally, bisimulation is an equivalence relation over states 
−  bisimilar states must have identical labelling 

and identical stepwise behaviour 
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Equivalence relations 
•  Let R be a relation over some set S 

−  i.e. R ⊆ S × S 
−  we write s1 R s2 as shorthand for (s1,s2) ∈ R  

•  R is an equivalence relation iff: 
−  R is reflexive, i.e. s R s 
−  R is symmetric, i.e. if s1 R s2 then s2 R s1 

−  R is transitive, i.e. if s1 R s2 and s2 R s3 then s1 R s3 

•  R partitions S: 
−  equivalence classes: [s]R = { s’ ∈ S | s’ R s } 
−  the quotient of S under R is denoted S/R = { [s]R | s ∈ S } 
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Bisimulation on DTMCs 
•  Consider a DTMC D = (S,sinit,P,L) 
•  Some notation: 

−  P(s,T) = Σs’∈T P(s,s’) for T ⊆ S 

•  An equivalence relation R on S is a probabilistic 
bisimulation on D if and only if for all s1 R s2: 
−  L(s1) = L(s2) 
−  P(s1, T) = P(s2, T) for all T ∈ S/R  (i.e. for all equivalence classes of R) 

•  States s1 and s2 are bisimulation-equivalent (or bisimilar) 
−  if there exists a probabilistic bisimulation R on D with s1 R s2 
−  denoted s1 ~ s2 
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Simple example 
•  Bisimulation relation ~ 

•  Quotient of S under ~ 
−  { {s1}, {u1, u2}, {v1, v2} } 

•  Bisimilar states: 
−  u1 ~ u2 

−  v1 ~ v2 u2 u1 1 

{b} {a} 

v1 v2 

1 

2/3 

s1 

1/3 

{b} 
{a} 

1 1 

1/2 1/6 
1/6 1/6 
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Bisimulation on DTMCs 
•  Bisimulation between DTMCs D1 and D2 

−  D1 ~ D2 if they have bisimilar initial states 
•  Formally: 

−  state labellings for D1 and D2 over same set of atomic prop.s 
−  bisimulation relation is over disjoint union of D1 and D2 

u2 u1 1 

{b} {a} 

v1 v2 

1 

2/3 

s1 

1/3 

{b} 
{a} 

1 1 

1/2 1/6 
1/6 1/6 

u 1 v 

s 

{b} {a} 

1 

2/3 1/3 

1 

D1 D2 
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Simple example 
•  Bisimilar states:                Bisimilar DTMCs: D1 ~ D2 

−  u1 ~ u2 ~ u 

−  v1 ~ v2 ~ v 
−  s1 ~ s 

u2 u1 1 

{b} {a} 

v1 v2 

1 

2/3 

s1 

1/3 

{b} 
{a} 

1 1 

1/2 1/6 
1/6 1/6 

u 1 v 

s 

{b} {a} 

1 

2/3 1/3 

1 

D1 D2 
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Quotient DTMC 
•  For a DTMC D = (S,sinit,P,L) and probabilistic bisimulation ~ 

•  Quotient DTMC is 
−  D/~ = (S’,s’init,P’,L’) 

•  where: 
−  S’ = S/~ = { [s]~ | s ∈ S } 
−  s’init = [sinit]~ 
−  P’([s]~, [s’]~) = P(s, [s’]~) 
−  L’([s]~) = L(s) 

[u]~ 1 

[s]~ 

{b} {a} 

1 

2/3 1/3 

1 

[v]~ 

well defined since 
bisimulation ensures 

P(s, [s’]~) same for all s in [s]~ 
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Bisimulation and PCTL 
•  Probabilistic bisimulation preserves all PCTL formulae 

•  For all states s and s’:  

s ~ s’ 
⇔ 

for all PCTL formulae Φ, s ⊨ Φ if and only if s’ ⊨ Φ 

•  Note also: 
−  every pair of non-bisimilar states can be distinguished with 

some PCTL formula 
−  ~ is the coarsest relation with this property 
−  in fact, bisimulation also preserves all PCTL* formulae 
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CTMC bisimulation 
•  Check equivalence of rates, not probabilities… 

•  An equivalence relation R on S is a probabilistic 
bisimulation on CTMC C=(S,sinit,R,L)  
if and only if for all s1 R s2: 
−  L(s1) = L(s2) 
−  R(s1, T) = R (s2, T) for all classes T in S/R 

•  Alternatively, check: 
−  L(s1) = L(s2), Pemb(C)(s1, T) = Pemb(C)(s2, T), E(s1) = E(s2) 

•  Bisimulation on CTMCs preserves CSL 
−  (see [BHHK03] and also [DP03]) 
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Bisimulation minimisation 
•  More efficient to perform PCTL/CSL model checking on the 

quotient DTMC/CTMC 
−  assuming quotient model can be constructed efficiently 
−  (see [KKZJ07] for experimental results on this) 

•  Bisimulation minimisation 
−  algorithm to construct quotient model 
−  based on partition refinement 
−  repeated splitting of an initially coarse partition 
−  final partition is coarsest bisimulation wrt. initial partition 
−  (optimisations/variants possible by changing initial partition) 
−  complexity: O(|P|·log|S| + |AP|·|S|) [DHS’03] 

•  assuming suitable data structure used (splay trees) 
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Bisimulation minimisation 
•  1. Start with initial partition 

−  say Π = { { s∈S | L(s)=lab } | lab∈2AP } 

•  2. Find a splitter T ∈ Π for some block B ∈ Π 
−  a splitter T is a block such that probability of going to T 

differs for some states in block B 
−  i.e. ∃s,s’∈B . P(s,T) ≠ P(s’,T) 

•  3. Split B into sub-blocks 
−  such that P(s,T) is the same for all states in each sub-block 

•  4. Repeat steps 2/3 until no more splitters exist 
−  i.e. no change to partition Π 

replace P with R 
for CTMCs 
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CTMC example 
•  Consider model checking P~p [ F[0,t] a ] on this CTMC: 

Minimisation: 

Π0: B1={s0,s1,s2,s3,s4,s5}, B2={s6} 
B2 is a splitter for B1 

(since e.g. R(s1,B2)=0≠2=R(s2,B2)) 
Π1: B1={s0,s1,s4,s5}, B2={s6}, B3={s2,s3} 
B3 is a splitter for B1 

(since e.g. R(s1,B3)=0≠4=R(s0,B3)) 
Π2: B1={s1,s5}, B2={s6}, B3={s2,s3}, B4={s0,s4} 
No more splitters… 

S/~ = { {s1,s5}, {s6}, {s2,s3}, {s0,s4} } 

s1 s0 1 s2 s3 

2 

{a} s5 s4 s6 

2 

2.5 
1.5 

4 

3.5 
1 

1 2 

5.5 

5 

6 



Original Slides

28 DP/Probabilistic Model Checking, Michaelmas 2011 

CTMC example… 

C S/~ = { {s1,s5}, {s6}, {s2,s3}, {s0,s4} } 

C/~ 

s0,s4 1 s6 

{a} 
2 

4 

1 
5.5 

s1,s5 s2,s3 
11 

ProbC(s0, F[0,t] a)  =  ProbC/~({s0,s4}, F[0,t] a) 

s1 s0 1 s2 s3 

2 

{a} s5 s4 s6 

2 

2.5 
1.5 

4 

3.5 
1 

1 2 

5.5 

5 

6 
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Summing up… 
•  Counterexamples 

−  essential ingredient of non-probabilistic model checking 
−  counterexamples for PCTL + DTMCs 

•  finite set of paths showing ⊭ P≤p [ Φ1 U≤k Φ2 ] 
−  computing smallest counterexamples 

•  reduction to well-known graph problems 

•  Bisimulation 
−  relates states/Markov chains with identical labelling 

and identical stepwise behaviour 
−  preserves PCTL, CSL, … 
−  bisimulation minimisation: automated reduction to quotient 

model 
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Overview 

•  Nondeterminism 

•  Markov decision processes (MDPs) 

•  Paths, probabilities and adversaries 

•  End components 
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Recap: DTMCs 
•  Discrete-time Markov chains (DTMCs) 

−  discrete state space,  transitions are discrete time-steps 
−  from each state, choice of successor state (i.e. which 

transition) is determined by a discrete probability distribution 

•  DTMCs are fully probabilistic 
−  well suited to modelling, for example, simple random 

algorithms or synchronous probabilistic systems where 
components move in lock-step 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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Nondeterminism 
•  But, some aspects of a system may not be probabilistic and 

should not be modelled probabilistically; for example: 

•  Concurrency - scheduling of parallel components 
−  e.g. randomised distributed algorithms - multiple probabilistic 

processes operating asynchronously 
•  Unknown environments 

−  e.g. probabilistic security protocols - unknown adversary 
•  Underspecification - unknown model parameters 

−  e.g. a probabilistic communication protocol designed for 
message propagation delays of between dmin and dmax 

•  Abstraction 
−  e.g. partition DTMC into similar (but not identical) states 
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Probability vs. nondeterminism 

•  Labelled transition system 
−  (S,s0,R,L) where R ⊆ S×S 
−  choice is nondeterministic 

•  Discrete-time Markov chain 
−  (S,s0,P,L) where P : S×S→[0,1] 
−  choice is probabilistic 

•  How to combine? 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 

s1 s0 

s2 

s3 

{fail} 

{succ} 

{try} 
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Markov decision processes 
•  Markov decision processes (MDPs) 

−  extension of DTMCs which allow nondeterministic choice 

•  Like DTMCs: 
−  discrete set of states representing possible configurations of 

the system being modelled 
−  transitions between states occur in discrete time-steps 

•  Probabilities and nondeterminism 
−  in each state, a nondeterministic  

choice between several discrete  
probability distributions over  
successor states 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b

c 
a 

a 
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Markov decision processes 
•  Formally, an MDP M is a tuple (S,sinit,Steps,L) where:  

−  S is a finite set of states (“state space”) 
−  sinit ∈ S is the initial state 
−  Steps : S → 2Act×Dist(S) is the transition probability function 

 where Act is a set of actions and Dist(S) is the set of discrete 
probability distributions over the set S 

−  L : S → 2AP is a labelling with atomic propositions 

•  Notes: 
−  Steps(s) is always non-empty,  

i.e. no deadlocks 
−  the use of actions to label  

distributions is optional 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b

c 
a 

a 



Comments

In the previous slide: from “transition probability matrix” of
DTMCs to “transition probability function” of MDPs

Act, if provided, must be finite

Dist(S) = {π | π : S → [0, 1] ∧
∑

s∈S π(s) = 1}
for all s ∈ S , Steps(s) is a set where each element is a pair
(l , π)
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Simple MDP example 
•  Modification of the simple DTMC communication protocol 

−  after one step, process starts trying to send a message 
−  then, a nondeterministic choice between: (a) waiting a step 

because the channel is unready; (b) sending the message 
−  if the latter, with probability 0.99 send successfully and stop 
−  and with probability 0.01, message sending fails, restart 

s1 s0 

s2 

s3 

0.01 

0.99 

1 

1 

1 

1 

{fail} 

{succ} 

{try} 
start send 

stop 

wait 

restart 
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Simple MDP example 2 
•  Another simple MDP example with four states 

−  from state s0, move directly to s1 (action a) 
−  in state s1, nondeterministic choice between actions b and c 
−  action b gives a probabilistic choice: self-loop or return to s0 
−  action c gives a 0.5/0.5 random choice between heads/tails 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 

1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b 

c 

a 

a 
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Simple MDP example 2 

M = (S,sinit,Steps,L) 

S = {s0, s1, s2, s3}  
sinit = s0 

Steps(s0) = { (a, [s1↦1]) } 
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) } 
Steps(s2) = { (a, [s2↦1]) } 
Steps(s3) = { (a, [s3↦1]) } 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 

1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b 

c 

a 

a 

AP = {init,heads,tails} 
L(s0)={init}, 
L(s1)=∅, 
L(s2)={heads}, 
L(s3)={tails} 
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The transition probability function 
•  It is often useful to think of the function Steps as a matrix 

−  non-square matrix with |S| columns and Σs∈S |Steps(s)| rows 

•  Example (for clarity, we omit actions from the matrix) 

Steps(s0) = { (a, s1↦1) } 
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) } 
Steps(s2) = { (a, s2↦1) } 
Steps(s3) = { (a, s3↦1) } 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b

c 
a 

a 



Comments

In the previous slide: that is not actually a matrix, needs delimiters

could be seen as a sequence of matrices M1, . . . ,M|S| where
Ms has |S | columns and |Steps(s)| rows
all piled vertically
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Example - Parallel composition 

t0 t1 t2 1 

1 

0.5 
0.5 

s0 s1 s2 1 

1 

0.5 
0.5 

Asynchronous parallel composition of two 3-state DTMCs 

PRISM code: 

module M1 
    s : [0..2] init 0; 
    [] s=0 -> (s’=1); 
    [] s=1 -> 0.5:(s’=0) + 0.5:(s’=2); 
    [] s=2 -> (s’=2); 

endmodule 

module M2 = M1 [ s=t ] endmodule 
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Example - Parallel composition 

t0 t1 t2 1 

1 

0.5 
0.5 

1 1 1 

s0   t0 s0   t1 s0   t2 

s1   t0 

s2   t0 

s1   t1 

s2   t1 

s1   t2 

s2   t2 

0.5 

1 

1 

1 

1 0.5 1 0.5 1 
1 

0.5 

1 

0.5 

1 

0.5 

0.5 

0.5 

0.5 

0.5 0.5 0.5 

s0 

s1 

s2 

0.5 1 

0.5 

1 

Asynchronous parallel  
composition of two  
3-state DTMCs 

Action labels 
omitted here 



Comments

In the previous 2 slides:

blue PRISM input language code: little trick to say “define a
new module equal to M1, where all occurrence of variable s
are replaced by t”

we now have two modules without any synchronizing label,
thus we have to make a parallel composition

formally, S = S1 × S2, where Si is the set of “local” states of
Mi

sinit = (s0, t0)

Steps(si , tj) = {((i , j)1, λx . P1(si , x)), ((i , j)2, λx . P2(tj , x))}
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Paths and probabilities 
•  A (finite or infinite) path through an MDP 

−  is a sequence of states and action/distribution pairs 
−  e.g. s0(a0,µ0)s1(a1,µ1)s2… 
−  such that (ai,µi) ∈ Steps(si) and µi(si+1) > 0 for all i≥0 
−  represents an execution (i.e. one possible behaviour) of the 

system which the MDP is modelling 

•  Path(s) = set of all paths through MDP starting in state s 
−  Pathfin(s) = set of all finite paths from s 

•  Paths resolve both nondeterministic  
 and probabilistic choices 
−  how to reason about probabilities? 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b

c 
a 

a 



Original Slides

15 DP/Probabilistic Model Checking, Michaelmas 2011 

Adversaries 
•  To consider the probability of some behaviour of the MDP 

−  first need to resolve the nondeterministic choices 
−  …which results in a DTMC 
−  …for which we can define a probability measure over paths 

•  An adversary resolves nondeterministic choice in an MDP 
−  also known as “schedulers”, “policies” or “strategies” 

•  Formally: 
−  an adversary σ of an MDP M is a function mapping every finite 

path ω = s0(a0,µ0)s1...sn to an element σ(ω) of Steps(sn) 
−  i.e. resolves nondeterminism based on execution history 

•  Adv (or AdvM) denotes the set of all adversaries 
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Adversaries - Examples 
•  Consider the previous example MDP 

−  note that s1 is the only state for which |Steps(s)| > 1 
−  i.e. s1 is the only state for which an adversary makes a choice 
−  let µb and µc denote the probability distributions associated 

with actions b and c in state s1 

•  Adversary σ1 
−  picks action c the first time 
−  σ1(s0s1)=(c,µc) 

•  Adversary σ2 
−  picks action b the first time, then c 

−  σ2(s0s1)=(b,µb), σ2(s0s1s1)=(c,µc),  
σ2(s0s1s0s1)=(c,µc) 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b

c 
a 

a 

(Note: actions/distributions 
omitted from paths for clarity) 



Comments

In the previous slide: of course, there are infinitely many
adversaries also for this little example

note that each adversary must resolve all possible finite paths

in this easy example, σ1, σ2 are well defined because there are
not other paths, given that choices
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Adversaries and paths 
•  Pathσ(s) ⊆ Path(s)  

−  (infinite) paths from s where nondeterminism resolved by σ 
−  i.e. paths s0(a0,µ0)s1(a1,µ1)s2… 
−  for which σ(s0(a0,µ0)s1…sn)) = (an,µn) 

•  Adversary σ1 
−  (picks action c the first time) 
−  Pathσ1(s0) = { s0s1s2

ω, s0s1s3
ω } 

•  Adversary σ2 
−  (picks action b the first time, then c) 
−  Pathσ2(s0) = { s0s1s0s1s2

ω, s0s1s0s1s3
ω, s0s1s1s2

ω, s0s1s1s3
ω } 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 

{heads} 

{tails} 

{init} 
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1 a 

b

c 
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Induced DTMCs 
•  Adversary σ for MDP induces an infinite-state DTMC Dσ 

•  Dσ = (Pathσfin(s),s,Pσs) where: 
−  states of the DTMC are the finite paths of σ starting in state s 
−  initial state is s (the path starting in s of length 0) 
−  Pσs(ω,ω’)=µ(s’) if ω’= ω(a, µ)s’ and σ(ω)=(a,µ) 
−  Pσs(ω,ω’)=0 otherwise 

•  1-to-1 correspondence between Pathσ(s) and paths of Dσ 

•  This gives us a probability measure Prσs over Pathσ(s) 
−  from probability measure over paths of Dσ 
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Adversaries - Examples 
•  Fragment of induced DTMC for adversary σ1 

−  σ1 picks action c the first time 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
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{tails} 

{init} 
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b
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s0s1 s0 

0.5 
1 s0s1s2 

s0s1s3 
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s0s1s3s3 0.5 

1 
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Adversaries - Examples 
•  Fragment of induced DTMC for adversary σ2 

−  σ2 picks action b, then c 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 
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{tails} 

{init} 

0.3 

1 a 

b

c 
a 

a 

s0 
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1 
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s0s1s0 

s0s1s1 
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s0s1s0s1 

0.5 s0s1s1s2 

s0s1s1s3 0.5 

1 

1 

s0s1s1s2s2 

s0s1s1s3s3 
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MDPs and probabilities 
•  Probσ(s, ψ) = Prσs { ω ∈ Pathσ(s) | ω ⊨ ψ } 

−  for some path formula ψ 
−  e.g. Probσ(s, F tails) 

•  MDP provides best-/worst-case analysis 
−  based on lower/upper bounds on probabilities 
−  over all possible adversaries 

s1 s0 

s2 

s3 
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0.5 0.7 

1 
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{init} 
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b
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€ 

pmin(s,ψ) = infσ∈Adv Probσ (s,ψ)

  

€ 

pmax(s,ψ) = supσ∈Adv Probσ(s,ψ)
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Examples 
•  Probσ1(s0, F tails) = 0.5 
•  Probσ2(s0, F tails) = 0.5 

−  (where σi picks b i-1 times then c) 
•  … 
•  pmax(s0, F tails) = 0.5 
•  pmin(s0, F tails) = 0 

•  Probσ1(s0, F tails) = 0.5 
•  Probσ2(s0, F tails)  

  = 0.3+0.7·0.5 = 0.65 
•  Probσ3(s0, F tails)  

  = 0.3+0.7·0.3+0.7·0.7·0.5 = 0.755 
•  … 
•  pmax(s0, F tails) = 1 
•  pmin(s0, F tails) = 0.5 
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Comments

In the previous slide:

Probσ2(s0,F tails) =
Prob({s0s1s1p(i1), s0s1s0s1p(i2) | p(k) = sk3 }) =
0.3 · 0.5 + 0.7 · 0.5 = 0.5 · (0.3 + 0.7)...

Probσ3(s0,F tails) = Prob({s0s1s1s1p(i1), s0s1s0s1s0s1p(i2),
s0s1s1s0s1p(i3),
s0s1s0s1s1p(i4) | p(k) = sk3 }) = 0.32 · 0.5 + 0.72 · 0.5 + 2 · 0.7 ·
0.3 · 0.5 = 0.5 · (0.32 + 0.72 + 2 · 0.3 · 0.7) = 0.5; actually,

Probσk (s0,F tails) = 0.5

so, why the minimum is zero?? because, if we take the limit,
then there is always an adversary which traps the MDP in a
finite sequence of s0s1...
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Memoryless adversaries 
•  Memoryless adversaries always pick same choice in a state 

−  also known as: positional, Markov, simple 
−  formally, σ(s0(a0,µ0)s1...sn) depends only on sn 

−  can write as a mapping from states, i.e. σ(s) for each s ∈ S 
−  induced DTMC can be mapped to a |S|-state DTMC 

•  From previous example: 
−  adversary σ1 (picks c in s1) is memoryless; σ2 is not 

s1 s0 

s2 

s3 

0.5 
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Other classes of adversary 
•  Finite-memory adversary 

−  finite number of modes, which can govern choices made 
−  formally defined by a deterministic finite automaton 
−  induced DTMC (for finite MDP) again mapped to finite DTMC 

•  Randomised adversary 
−  maps finite paths s0(a1,µ1)s1...sn in MDP to a probability 

distribution over element of Steps(sn) 
−  generalises deterministic schedulers 
−  still induces a (possibly infinite state) DTMC 

•  Fair adversary 
−  fairness assumptions on resolution of nondeterminism 
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End components 
•  Consider an MDP M = (S,sinit,Steps,L) 

•  A sub-MDP of M is a pair (S’,Steps’) where: 
−  S’ ⊆ S is a (non-empty) subset of M’s states 
−  Steps’(s) ⊆ Steps(s) for each s ∈ S’ 
−  is closed under probabilistic branching, i.e.: 
−  { s’ | µ(s’)>0 for some (a,µ)∈Steps’(s) } ⊆ S’  

•  An end component of M is a  
strongly connected sub-MDP 

s0 

s1 s2 

s5 s4 s3 

s7 s8 s6 
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0.1 0.9 
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End components 
•  For finite MDPs… 

•  For every end component, there  
is an adversary which,  
with probability 1, forces the MDP 
to remain in the end component 
and visit all its states infinitely often 

•  Under every adversary σ,  
with probability 1 an end component 
will be reached and all of its states 
visited infinitely often 

−  (analogue of fundamental property of finite DTMCs) 
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Summing up… 
•  Nondeterminism 

−  concurrency, unknown environments/parameters, abstraction 
•  Markov decision processes (MDPs) 

−  discrete-time + probability and nondeterminism 
−  nondeterministic choice between multiple distributions 

•  Adversaries 
−  resolution of nondeterminism only 
−  induced set of paths and (infinite state DTMC) 
−  induces DTMC yields probability measure for adversary 
−  best-/worst-case analysis: minimum/maximum probabilities 
−  memoryless adversaries 

•  End components 
−  long-run behaviour: analogue of BSCCs for DTMCs 
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Recall - MDPs 

•  Markov decision process: M = (S,sinit,Steps,L) 
•  Adversary σ ∈ Adv resolves nondeterminism 
•  σ induces set of paths Pathσ(s) and DTMC Dσ 

•  Dσ yields probability space Prσs over Pathσ(s) 
•  Probσ(s, ψ) = Prσs { ω ∈ Pathσ(s) | ω ⊨ ψ } 
•  MDP yields minimum/maximum probabilities: 

  

€ 

pmin(s,ψ) = infσ∈Adv Probσ (s,ψ)

  

€ 

pmax(s,ψ) = supσ∈Adv Probσ(s,ψ)
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Probabilistic reachability 

•  Minimum and maximum probability of reaching target set 
−  target set = all states labelled with atomic proposition a 

•  Vectors:  pmin(F a)  and  pmax(F a) 
−  minimum/maximum probabilities for all states of MDP 

  

€ 

pmin(s,F a) = infσ∈Adv Probσ(s,F a)

  

€ 

pmax(s,F a) = supσ∈Adv Probσ(s,F a)
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Overview 

•  Qualitative probabilistic reachability 
−  case where pmin>0 or pmax>0 

•  Optimality equation 

•  Memoryless adversaries suffice 
−  finitely many adversaries to consider 

•  Computing reachability probabilities 
−  value iteration (fixed point computation) 
−  linear programming problem 
−  policy iteration 
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Qualitative probabilistic reachability 

•  Consider the problem of determining states for which 
pmin(s, F a) or pmax(s, F a) is zero (or non-zero) 
−  max case: Smax=0 = { s ∈ S | pmax(s, F a) = 0 } 
−  this is just (non-probabilistic) reachability 

R := Sat(a) 
done := false 
while (done = false)  
    R� = R ∪ { s ∈ S | ∃(a,µ)∈Steps(s) . ∃s�∈R . µ(s�)>0} 
    if (R�=R) then done := true 
    R := R� 
endwhile 
return S\R 
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Qualitative probabilistic reachability 

•  Min case: Smin=0 = { s ∈ S | pmin(s, F a) = 0 } 

R := Sat(a) 
done := false 
while (done = false)  
    R� = R ∪ { s ∈ S |∀(a,µ)∈Steps(s) . ∃s�∈R . 
µ(s�)>0} 
    if (R�=R) then done := true 
    R := R� 
endwhile 
return S\R 

note: quantification 
over all choices 



Original Slides

7 DP/Probabilistic Model Checking, Michaelmas 2011 

Optimality (min) 

•  The values pmin(s, F a) are the unique solution of the 
following equations: 

•  This is an instance of the Bellman equation 
−  (basis of dynamic programming techniques) 

    

€ 

xs =

1 if s ∈ Sat(a)

0 if s ∈ Smin=0

min µ(s' )⋅ xs'
s' ∈S

∑ | (a,µ) ∈ Steps (s)
% 
& 
' 

( ' 

) 
* 
' 

+ ' 
otherwise

% 

& 

' 
' 
' 

( 

' 
' 
' 

optimal solution for state s uses 
optimal solution for successors s� 

Smin=0 
= 

{ s | pmin(s, F a)=0 } 
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Optimality (max) 

•  Likewise, the values pmax(s, F a) are the unique solution of 
the following equations: 

    

€ 

xs =

1 if s ∈ Sat(a)

0 if s ∈ Smax=0

max µ(s' ) ⋅ xs'
s'∈S

∑ | (a,µ) ∈ Steps (s)
% 
& 
' 

( ' 

) 
* 
' 

+ ' 
otherwise

% 

& 

' 
' 
' 

( 

' 
' 
' 

Smax=0 
= 

{ s | pmax(s, F a)=0 } 
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Memoryless adversaries 

•  Memoryless adversaries suffice for probabilistic reachability 
−  i.e. there exist memoryless adversaries σmin & σmax such that: 
−  Probσmin(s, F a) = pmin(s, F a)  for all states s ∈ S 
−  Probσmax(s, F a) = pmax(s, F a)  for all states s ∈ S 

•  Construct adversaries from optimal solution: 

    

€ 

σmin(s) = argmin µ(s' ) ⋅ pmin(s',Fa)
s'∈S
∑ | (a,µ) ∈ Steps (s)
& 
' 
( 

) ( 

* 
+ 
( 

, ( 

    

€ 

σmax(s) = argmax µ(s' ) ⋅ pmax(s',Fa)
s'∈S

∑ | (a,µ) ∈ Steps (s)
& 
' 
( 

) ( 

* 
+ 
( 

, ( 
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Computing reachability probabilities 

•  Several approaches… 

•  1. Value iteration 
−  approximate with iterative solution method 
−  corresponds to fixed point computation 

•  2. Reduction to a linear programming (LP) problem 
−  solve with linear optimisation techniques 
−  exact solution using well-known methods 

•  3. Policy iteration 
−  iteration over adversaries 

Preferable 
in practice, 

e.g. in PRISM 

better 
complexity; 

good for small 
examples 



Original Slides

11 DP/Probabilistic Model Checking, Michaelmas 2011 

Method 1 - Value iteration (min) 

•  For minimum probabilities pmin(s, F a) it can be shown that: 
−  pmin(s, F a) = limn→∞ xs

(n) where: 

−  where: S? = S \ ( Sat(a) ∪ Smin=0 ) 

•  Approximate iterative solution technique 
−  iterations terminated when solution converges sufficiently 

    

€ 

xs

(n)
=

1 if s ∈ Sat(a)

0 if s ∈ Smin=0

0 if s ∈ S? and n = 0

min µ(s' ) ⋅ xs'

(n−1)

s'∈S

∑ | (a,µ) ∈ Steps (s)
& 
' 
( 

) ( 

* 
+ 
( 

, ( 
if s ∈ S? and n > 0

& 

' 

( 
( 
( 

) 

( 
( 
( 
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Method 1 - Value iteration (max) 

•  Value iteration applies to maximum probabilities in the 
same way… 
−  pmax(s, F a) = limn→∞ xs

(n) where: 

−  where: S? = S \ ( Sat(a) ∪ Smax=0 ) 

    

€ 

xs

(n)
=

1 if s ∈ Sat(a)

0 if s ∈ Smax=0

0 if s ∈ S? and n = 0

max µ(s' ) ⋅ xs'

(n−1)

s'∈S

∑ | (a,µ) ∈ Steps (s)
& 
' 
( 

) ( 

* 
+ 
( 

, ( 
if s ∈ S? and n > 0

& 

' 

( 
( 
( 

) 

( 
( 
( 
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Example 

•  Minimum/maximum probability of reaching an a-state 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 
0.4 

0.5 

0.1 

0.25 

1 
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Example - Value iteration (min) 

Compute: pmin(si, F a) 
Sat(a) = {s2}, Smin=0 ={s3}, S? = {s0, s1} 
 
            [ x0

(n),x1
(n),x2

(n),x3
(n) ] 

n=0:  [ 0, 0, 1, 0 ] 
n=1:  [ min(1·0, 0.25·0+0.25·0+0.5·1), 
                    0.1·0+0.5·0+0.4·1, 1, 0 ] 
         = [ 0, 0.4, 1, 0 ] 
n=2:  [ min(1·0.4,0.25·0+0.25·0+0.5·1), 
                    0.1·0+0.5·0.4+0.4·1, 1, 0 ] 
          =[ 0.4, 0.6, 1, 0 ] 
n=3:  … 
 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

Smin=0 
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Example - Value iteration (min) 

              [ x0
(n),x1

(n),x2
(n),x3

(n) ] 
n=0:  [ 0.000000, 0.000000, 1, 0 ] 
n=1:  [ 0.000000, 0.400000, 1, 0 ] 
n=2:  [ 0.400000, 0.600000, 1, 0 ] 
n=3:  [ 0.600000, 0.740000, 1, 0 ] 
n=4:  [ 0.650000, 0.830000, 1, 0 ] 
n=5:  [ 0.662500, 0.880000, 1, 0 ] 
n=6:  [ 0.665625, 0.906250, 1, 0 ] 
n=7:  [ 0.666406, 0.919688, 1, 0 ] 
n=8:  [ 0.666602, 0.926484, 1, 0 ] 
… 
n=20:  [ 0.666667, 0.933332, 1, 0 ] 
n=21:  [ 0.666667, 0.933332, 1, 0 ] 
           ≈ [ 2/3, 14/15, 1, 0 ] 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

Smin=0 

pmin(F a) 
= 

[ 2/3, 14/15, 1, 0 ] 
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Generating an optimal adversary 

•  Min adversary σmin               [ x0
(n),x1

(n),x2
(n),x3

(n) ] 
… 
n=20:  [ 0.666667, 0.933332, 1, 0 ] 
n=21:  [ 0.666667, 0.933332, 1, 0 ] 
           ≈ [ 2/3, 14/15, 1, 0 ] 
 

s0 : min(1·14/15, 0.5·1+0.25·0+0.25·2/3) 
    =min(14/15, 2/3) s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

Smin=0 
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Generating an optimal adversary 

•  DTMC Dσmin 

s0 

s1 s2 

s3 
0.5 

0.25 

1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

              [ x0
(n),x1

(n),x2
(n),x3

(n) ] 
… 
n=20:  [ 0.666667, 0.933332, 1, 0 ] 
n=21:  [ 0.666667, 0.933332, 1, 0 ] 
           ≈ [ 2/3, 14/15, 1, 0 ] 
 

s0 : min(1·14/15, 0.5·1+0.25·0+0.25·2/3) 
    =min(14/15, 2/3) 
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Value iteration as a fixed point 

•  Can view value iteration as a fixed point computation over 
vectors of probabilities y ∈ [0,1]S, e.g. for minimum: 

•  Let: 
−  x(0) = 0   (i.e. x(0)(s) = 0 for all s) 
−  x(n+1) = F(x(n)) 

•  Then: 
−  x(0) ≤ x(1) ≤ x(2) ≤ x(3) ≤ … 
−  pmin(F a) = limn→∞ x(n)  

!
!

"

!
!

#

$

%
&
'

"
#
$

∈⋅

∈

∈

=

∑
∈

=

otherwise)s()µ(a,|)'s(y)'s(µmin

Ssif0
)a(Satsif1

)(s)yF(

S s'

0min

Steps
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Linear programming 

•  Linear programming 
−  optimisation of a linear objective function 
−  subject to linear (in)equality constraints 

•  General form: 
−  n variables: x1, x2, … ,xn 

−  maximise (or minimise): 
•  c1x1+c2x2+…+cnxn 

−  subject to constraints 
•  a11x1+a12x2+…a1nxn ≤ b1 
•  a21x1+a22x2+…a2nxn ≤ b2 

•  … 
•  am1x1+am2x2+…amnxn ≤ bm 

Many standard solution 
techniques exist, e.g. 

Simplex, ellipsoid method,  
interior point method 

In matrix/vector form: 
Maximise (or minimise) 
c·x subject to A·x ≤ b 
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Method 2 - Linear programming problem 

•  Min probabilities pmin(s, F a) can be computed as follows: 
−  pmin(s, F a) = 1 if s ∈ Sat(a) 
−  pmin(s, F a) = 0 if s ∈ Smin=0 

−  values for remaining states in the set S? = S \ (Sat(a) ∪ Sno) can 
be obtained as the unique solution of the following 
linear programming problem: 

    

€ 

maximize xs subject to the constraints :
s ∈S?∑

xs ≤ µ(s' ) ⋅ xs' +
s'∈S?

∑ µ(s' )
s'∈Sat(a)

∑

for all s ∈ S? and for all (a,µ) ∈ Steps (s)
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Linear programming problem (max) 

•  Max probabilities pmax(s, F a) can be computed as follows: 
−  pmax(s, F a) = 1 if s ∈ Sat(a) 
−  pmax(s, F a) = 0 if s ∈ Smax=0 

−  values for remaining states in the set S? = S \ (Sat(a) ∪ Sno) can 
be obtained as the unique solution of the following 
linear programming problem: 

Differences 
from min case 

    

€ 

minimize xs subject to the constraints :
s ∈S?∑

xs ≥ µ(s' ) ⋅ xs' +
s'∈S?

∑ µ(s' )
s'∈Sat(a)

∑

for all s ∈ S? and for all (a,µ) ∈ Steps (s)
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Example - Linear programming (min) 

Let xi = pmin(si, F a) 
Sat(a): x2=1, Smin=0: x3=0 
For S? = {s0, s1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 0.25·x0 + 0.5 
●  x1 ≤ 0.1·x0 + 0.5·x1 + 0.4 

 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

Smin=0 



Original Slides

23 DP/Probabilistic Model Checking, Michaelmas 2011 

Example - Linear programming (min) 

x0 

x1 

0 

0 

1 

1 2/3 

x0 

x1 

0 

0 

1 

1 

0.8 

x0 

x1 

0 

0 

1 

1 

x1 ≤ 0.2·x0 
+ 0.8 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

Smin=0 

Let xi = pmin(si, F a) 
Sat(a): x2=1, Smin=0: x3=0 
For S? = {s0, s1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 2/3 
●  x1 ≤ 0.2·x0 + 0.8 

 

x0 ≤ x1 

x0 ≤ 2/3 
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Example - Linear programming (min) 

x0 

x1 

0 

0 

1 

1 

0.8 

2/3 

max 

Solution: 
(x0, x1) 

= 
(2/3, 14/15) 

 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

Smin=0 

Let xi = pmin(si, F a) 
Sat(a): x2=1, Smin=0: x3=0 
For S? = {s0, s1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 2/3 
●  x1 ≤ 0.2·x0 + 0.8 

 

pmin(F a) 
= 

[ 2/3, 14/15, 1, 0 ] 
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Example - Linear programming (min) 

Let xi = pmin(si, F a) 
Sat(a): x2=1, Smin=0: x3=0 
For S? = {s0, s1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 2/3 
●  x1 ≤ 0.2·x0 + 0.8 

 

x0 

x1 

0 

0 

1 

1 

0.8 

2/3 

max 
Two memoryless 

adversaries 

x1 ≤ 0.2·x0 + 0.8 
 

x0 ≤ x1 

x0 ≤ 2/3 
 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

Smin=0 
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Example - Value iteration + LP 

              [ x0
(n),x1

(n),x2
(n),x3

(n) ] 
n=0:  [ 0.000000, 0.000000, 1, 0 ] 
n=1:  [ 0.000000, 0.400000, 1, 0 ] 
n=2:  [ 0.400000, 0.600000, 1, 0 ] 
n=3:  [ 0.600000, 0.740000, 1, 0 ] 
n=4:  [ 0.650000, 0.830000, 1, 0 ] 
n=5:  [ 0.662500, 0.880000, 1, 0 ] 
n=6:  [ 0.665625, 0.906250, 1, 0 ] 
n=7:  [ 0.666406, 0.919688, 1, 0 ] 
n=8:  [ 0.666602, 0.926484, 1, 0 ] 
… 
n=20:  [ 0.666667, 0.933332, 1, 0 ] 
n=21:  [ 0.666667, 0.933332, 1, 0 ] 
           ≈ [ 2/3, 14/15, 1, 0 ] 

x0 

x1 

0 

0 
2/3 

1 
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Example - Linear programming (max) 

x0 

x1 

0 

0 

1 

1 2/3 

x0 

x1 

0 

0 

1 

1 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

●  x3 ≥ x2 

●  x3 ≥ x3 
 

0 1 

x0 

x1 

0 

1 

0.8 

Let xi = pmax(si, F a) 
Sat(a): x2=1, Smax=0 = ∅ 
For S? = {s0, s1,s3} : 
Minimise x0+x1+x3 subject to constraints: 

●  x0 ≥ x1 

●  x0 ≥ 2/3 + 1/3x3 

●  x1 ≥ 0.2·x0 + 0.8 
 x1 ≥ 0.2·x0 +0.8 

x0 ≥ 1 

x0 ≥ x1 
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Example - Linear programming (max) 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

x0 x0 

x1 

0 

0 

1 

1 

0.8 

2/3 

min 

(only feasible) 
solution: 
(x0, x1,x2) 

= 
(1, 1, 1) 

●  x3 ≥ x2 

●  x3 ≥ x3 
 

Let xi = pmax(si, F a) 
Sat(a): x2=1, Smax=0 = ∅ 
For S? = {s0, s1,s3} : 
Minimise x0+x1+x3 subject to constraints: 

●  x0 ≥ x1 

●  x0 ≥ 2/3 + 1/3x3 

●  x1 ≥ 0.2·x0 + 0.8 
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Generating an adversary 

•  Max adversary σmax Let xi = pmax(si, F a) 
Sat(a): x2=1, Smax=0 = ∅ 
For S? = {s0, s1,s3} : 
Minimise x0+x1+x3 subject to constraints: 

●  x0 ≥ x1 

●  x0 ≥ 2/3 + 1/3x3 

●  x1 ≥ 0.2·x0 + 0.8 
Solution: 

●  (x0, x1,x3) = (1, 1, 1) 
 
 

●  x3 ≥ x2 

●  x3 ≥ x3 
 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 
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Method 3 - Policy iteration 

•  Value iteration: 
−  iterates over (vectors of) probabilities 

•  Policy iteration: 
−  iterates over adversaries (“policies”) 

•  1. Start with an arbitrary (memoryless) adversary σ 
•  2. Compute the reachability probabilities Probσ(F a) for σ 
•  3. Improve the adversary in each state 
•  4. Repeat 2/3 until no change in adversary 

•  Termination: 
−  finite number of memoryless adversaries 
−  improvement (in min/max probabilities) each time 
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Method 3 - Policy iteration 

•  1. Start with an arbitrary (memoryless) adversary σ 
−  pick an element of Steps(s) for each state s ∈ S 

•  2. Compute the reachability probabilities Probσ(F a) for σ 
−  probabilistic reachability on a DTMC 
−  i.e. solve linear equation system 

•  3. Improve the adversary in each state 

•  4. Repeat 2/3 until no change in adversary 

    

€ 

σ' (s) = argmin µ(s' ) ⋅ Probσ (s',Fa)
s'∈S

∑ | (a,µ) ∈ Steps (s)
& 
' 
( 

) ( 

* 
+ 
( 

, ( 

    

€ 

σ' (s) = argmax µ(s' ) ⋅ Probσ(s',Fa)
s'∈S

∑ | (a,µ) ∈ Steps (s)
& 
' 
( 

) ( 

* 
+ 
( 

, ( 
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Example - Policy iteration (min) 

Arbitrary adversary σ: 
Compute: Probσ(F a) 
Let xi = Probσ(si, F a) 
x2=1, x3=0 and: 

●  x0 = x1 

●  x1 = 0.1·x0 + 0.5·x1 + 0.4 
Solution: 
Probσ(F a) = [ 1, 1, 1, 0 ] 
Refine σ in state s0: 
min{1(1), 0.5(1)+0.25(0)+0.25(1)} 
= min{1, 0.75} = 0.75 
 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

Smin=0 
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Example - Policy iteration (min) 

Refined adversary σ�: 
Compute: Probσ�(F a) 
Let xi = Probσ�(si, F a) 
x2=1, x3=0 and: 

●  x0 = 0.25·x0 + 0.5 
●  x1 = 0.1·x0 + 0.5·x1 + 0.4 

Solution: 
Probσ�(F a) = [ 2/3, 14/15, 1, 0 ] 
This is optimal 
 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

Smin=0 
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Example - Policy iteration (min) 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Sat(a) 

Smin=0 

x0 x0 

x1 

0 

0 

1 

1 

0.8 

2/3 

σ 
 
σ
� 

x1 = 0.2·x0 + 0.8 
 

x0 = x1 

x0 = 2/3 
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Summing up… 

•  Probabilistic reachability in MDPs 
•  Qualitative case: min/max probability > 0 

−  simple graph-based computation 
−  need to do this first, before other computation methods 

•  Memoryless adversaries suffice 
−  reduction to finite number of adversaries 

•  Computing reachability probabilities…  
(and generation of optimal adversary) 

•  1. Value iteration 
−  approximate; iterative; fixed point computation 

•  2. Reduce to linear programming problem 
−  good for small examples; doesn’t scale well 

•  3. Policy iteration 
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Overview 

•  PCTL for MDPs 
−  syntax, semantics, examples 

•  PCTL model checking 
−  next, bounded until, until 
−  precomputation algorithms 
−  value iteration, linear optimisation 
−  examples 

•  Costs and rewards 
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PCTL 
•  Temporal logic for describing properties of MDPs 

−  identical syntax to the logic PCTL for DTMCs 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ]   (state formulas) 

−  ψ  ::=  X φ    |    φ U≤k φ     |   φ U φ   (path formulas) 

−  where a is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ 

“until” 

 ψ is true with 
probability ~p 

“bounded 
until” “next” 
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PCTL semantics for MDPs 
•  PCTL formulas interpreted over states of an MDP 

−  s ⊨ φ  denotes φ is “true in state s” or “satisfied in state s” 

•  Semantics of (non-probabilistic) state formulas and of path 
formulas are identical to those for DTMCs: 

•  For a state s of the MDP (S,sinit,Steps,L): 
−  s ⊨ a    ⇔  a ∈ L(s) 
−  s ⊨ φ1 ∧ φ2   ⇔  s ⊨ φ1  and  s ⊨ φ2 

−  s ⊨ ¬φ    ⇔  s ⊨ φ  is false 
•  For a path ω = s0(a1,µ1)s1(a2,µ2)s2… in the MDP: 

− ω ⊨ X φ   ⇔  s1 ⊨ φ 
− ω ⊨ φ1 U≤k φ2  ⇔  ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1 
− ω ⊨ φ1 U φ2  ⇔  ∃k≥0 such that ω ⊨ φ1 U≤k φ2 
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PCTL semantics for MDPs 
•  Semantics of the probabilistic operator P 

−  can only define probabilities for a specific adversary σ 
−  s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is true 

for an outgoing path satisfies ~p for all adversaries σ” 
−  formally  s ⊨ P~p [ ψ ]  ⇔  Probσ(s, ψ) ~ p for all adversaries σ 
−  where Probσ(s, ψ) = Prσs { ω ∈ Pathσ(s) | ω ⊨ ψ } 

s 

¬ψ 

ψ Probσ(s, ψ) ~ p 
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Minimum and maximum probabilities 
•  Letting: 

−  pmax(s, ψ) = supσ∈Adv Probσ(s, ψ) 
−  pmin(s, ψ) = infσ∈Adv Probσ(s, ψ) 

•  We have: 
−  if ~ ∈ {≥,>}, then s ⊨ P~p [ ψ ]  ⇔  pmin(s, ψ) ~ p  
−  if ~ ∈ {<,≤}, then s ⊨ P~p [ ψ ]  ⇔  pmax(s, ψ) ~ p 

•  Model checking P~p[ ψ ] reduces to the computation over all 
adversaries of either: 
−  the minimum probability of ψ holding 
−  the maximum probability of ψ holding 
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Classes of adversary 
•  A more general semantics for PCTL over MDPs 

−  parameterise by a class of adversaries Adv* 

•  Only change is: 
−  s ⊨Adv* P~p [ψ]  ⇔  Probσ(s, ψ) ~ p for all adversaries σ ∈ Adv* 

•  Original semantics obtained by taking Adv* = Adv 

•  Alternatively, take Adv* to be the set of all fair adversaries 
−  path fairness: if a state occurs on a path infinitely often, then 

each non-deterministic choice occurs infinitely often 
−  see e.g. [BK98] 
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PCTL derived operators 
•  Many of the same equivalences as for DTMCs, e.g.: 

−  F φ ≡ true U φ        (eventually) 
−  F≤k φ ≡ true U≤k φ 
−  G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ)    (always) 
−  G≤k φ ≡ ¬(F≤k ¬φ) 
−  etc. 

•  But… for example: 
−  P≥p [ ψ ] ≢ ¬P<p [ ψ ]     (negation + probability) 

•  Duality between min/max: 
−  for any path formula ψ:  pmin(s, ψ) = 1- pmax(s, ¬ψ)  
−  so, for example:  P≥p [ G φ ] ≡ P≤1-p [ F ¬φ ] 



Original Slides

9 DP/Probabilistic Model Checking, Michaelmas 2011 

Qualitative properties 
•  PCTL can express qualitative properties of MDPs 

−  like for DTMCs, can relate these to CTL’s AF and EF operators 
−  need to be careful with “there exists” and adversaries 

•  P≥1 [ F φ ] is (similar to but) weaker than AF φ 
−  P≥1 [ F φ ] ⇔ Probσ(s, F φ) ≥ 1 for all adversaries σ 
−  recall that “probability≥1” is weaker than “for all” 

•  We can construct an equivalence for EF φ 
−  EF φ  ≢ P>0[ F φ ] 
−  but: 
−  EF φ  ≡ ¬P≤0[ F φ ] 

⇔ there exists a finite path from s to a φ-state 
⇔ Probσ(s, F φ) > 0 for some adversary σ 
⇔ not Probσ(s, F φ) ≤ 0 for all adversaries σ 
⇔ ¬P≤0 [ F φ ] 
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Quantitative properties 
•  For PCTL properties with P as the outermost operator 

−  PRISM allows a quantitative form 
−  for MDPs, there are two types: Pmin=? [ ψ ] and Pmax=? [ ψ ] 
−  i.e. “what is the minimum/maximum probability (over all 

adversaries) that path formula ψ is true?” 
−  model checking is no harder since compute the values of pmin

(s, ψ) or pmax(s, ψ) anyway  
−  useful to spot patterns/trends 

•  Example CSMA/CD protocol 
−  “min/max probability 

 that a message is sent 
 within the deadline” 
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Some real PCTL examples 
•  Byzantine agreement protocol 

−  Pmin=? [ F (agreement ∧ rounds≤2) ] 
−  “what is the minimum probability that agreement is reached 

within two rounds?” 

•  CSMA/CD communication protocol 
−  Pmax=? [ F collisions=k ] 
−  “what is the maximum probability of k collisions?”  

•  Self-stabilisation protocols  
−  Pmin=? [ F≤t stable ] 
−  “what is the minimum probability of reaching a stable state 

within k steps?” 
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PCTL model checking for MDPs 
•  Algorithm for PCTL model checking [BdA95] 

−  inputs:  MDP M=(S,sinit,Steps,L),  PCTL formula φ 
−  output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ 

•  Often, also consider quantitative results 
−  e.g. compute result of Pmin=? [ F≤t stable ] for 0≤t≤100 

•  Basic algorithm same as PCTL for DTMCs 
−  proceeds by induction on parse tree of φ 

•  For the non-probabilistic  operators: 
−  Sat(true) = S 
−  Sat(a) = { s ∈ S | a ∈ L(s) } 
−  Sat(¬φ) = S \ Sat(φ) 
−  Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2) 
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PCTL model checking for MDPs 
•  Main task: model checking P~p [ ψ ] formulae  

−  reduces to computation of min/max probabilities 
−  i.e. pmin(s, ψ) or pmax (s, ψ) for all s ∈ S 
−  dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤} 

•  Three cases: 
−  next (X φ) 
−  bounded until (φ1 U≤k φ2) 
−  unbounded until (φ1 U φ2) 
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PCTL next for MDPs 
•  Computation of probabilities for PCTL next operator 
•  Consider case of minimum probabilities… 

−  Sat(P~p[ X φ ]) = { s ∈ S | pmin(s, X φ) ~ p } 
−  need to compute pmin(s, X φ) for all s ∈ S 

•  Recall in the DTMC case 
−  sum outgoing probabilities for  

transitions to φ-states 
−  Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’) 

•  For MDPs, perform computation for each distribution 
available in s and then take minimum: 
−  pmin(s, X φ) = min { Σs’∈Sat(φ) µ(s’) | (a,µ)∈Steps(s) } 

•  Maximum probabilities case is analogous 

s 

φ 
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PCTL next - Example 
•  Model check: P≥0.5 [ X heads ] 

−  lower probability bound so minimum probabilities required 
−  Sat (heads)= {s2} 
−  e.g. pmin(s1, X heads) = min (0, 0.5) = 0 
−  can do all at once with matrix-vector multiplication: 

•  Extracting the minimum for each state yields 
−  pmin(X heads) = [0, 0, 1, 0]  
−  Sat(P≥0.5 [ X heads ]) = {s2} 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b

c 
a 

a 
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PCTL bounded until for MDPs 
•  Computation of probabilities for PCTL U≤k operator 
•  Consider case of minimum probabilities… 

−  Sat(P~p[ φ1 U≤k φ2 ]) = { s ∈ S | pmin(s, φ1 U≤k φ2) ~ p } 
−  need to compute pmin(s, φ1 U≤k φ2) for all s ∈ S 

•  First identify (some) states where probability is 1 or 0 
−  Syes = Sat(φ2)  and  Sno = S \ (Sat(φ1) ∪ Sat(φ2)) 

•  Then solve the recursive equations:  

•  Maximum probabilities case is analogous 
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PCTL bounded until for MDPs 
•  Simultaneous computation of vector pmin(φ1 U≤k φ2) 

−  i.e. probabilities pmin(s, φ1 U≤k φ2) for all s ∈ S 

•  Recursive definition in terms of matrices and vectors 
−  similar to DTMC case 
−  requires k matrix-vector multiplications 
−  in addition requires k minimum operations 
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PCTL bounded until - Example 
•  Model check: P<0.95 [ F≤3 init ] ≡ P<0.95 [ true U≤3 init ] 

−  upper probability bound so maximum probabilities required 
−  Sat (true) = S and Sat (init) = {s0} 
−  Syes = {s0} and Sno = ∅ 
−  S? = {s1,s2,s3} 

•  The vector of probabilities is 
computed successively as: 
−  pmax(true U≤0 init ) = [ 1, 0, 0, 0 ] 
−  pmax(true U≤1 init ) = [ 1, 0.7, 0, 0 ] 
−  pmax(true U≤2 init ) = [ 1, 0.91, 0, 0 ] 
−  pmax(true U≤3 init ) = [ 1, 0.973, 0, 0 ] 

•  Hence, the result is: 
−  Sat(P<0.95 [ F≤3 init ]) = { s2, s3 } 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b

c 
a 

a 
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PCTL until for MDPs 
•  Computation of probabilities for all s ∈ S: 

−  pmin(s, φ1 U φ2) or pmax(s, φ1 U φ2) 

•  Essentially the same as computation of reachability 
probabilities (see previous lecture) 
−  just need to consider additional φ1 constraint 

•  Overview: 
−  precomputation: 

•  identify states where the probability is 0 (or 1) 
−  several options to compute remaining values: 

•  value iteration 
•  reduction to linear programming 
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PCTL until for MDPs - Precomputation 
•  Determine all states for which probability is 0 

−  min case: Sno = { s∈S | pmin(s, φ1 U φ2)=0 }  -  Prob0E 
−  max case: Sno = { s∈S | pmax(s, φ1 U φ2)=0 }  -  Prob0A 

•  Determine all states for which probability is 1 
−  min case: Syes = { s∈S | pmin(s, φ1 U φ2)=1 }  -  Prob1A 
−  max case: Syes = { s∈S | pmax(s, φ1 U φ2)=1 }  -  Prob1E 

•  Like for DTMCs: 
−  identifying 0 states required (for uniqueness of LP problem) 
−  identifying 1 states is optional (but useful optimisation) 

•  Advantages of precomputation 
−  reduces size of numerical computation problem 
−  gives exact results for the states in Syes and Sno (no round-off) 
−  suffices for model checking of qualitative properties 

not 
covered 

here 
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PCTL until for MDPs - Prob0E 
•  Minimum probabilities 0 

−  Sno = { s∈S | pmin(s, φ1 U φ2)=0 } = Sat(¬P>0 [ φ1 U φ2 ]) 
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PCTL until for MDPs - Prob0A 
•  Maximum probabilities 0 

−  Sno = { s∈S | pmax(s, φ1 U φ2)=0 } 
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PCTL until for MDPs - Prob1E 
•  Maximum probabilities 1 

−  Syes = { s∈S | pmax(s, φ1 U φ2)=1 } = Sat(¬P<1 [ φ1 U φ2 ]) 
•  Prob1E algorithm (see next slide) 

−  two nested loops (double fixed point) 
−  result, stored in R, will be Syes; initially R is S 
−  iteratively remove (some) states u with pmax(u, φ1 U φ2)<1 

•  i.e. remove (some) states for which,  
under no adversary σ, is Probσ(s, φ1 U φ2)=1 

−  done by inner loop which computes subset R’ of R 
•  R’ contains φ1-states with a probability distribution for which all 

transitions stay within R and at least one eventually reaches φ2 

−  note: after first iteration, R contains: 
•  { s | ProbA(s, φ1 U φ2)>0 for some A } 
•  essentially: execution of Prob0A and removal of Sno from R 
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PCTL until for MDPs - Prob1E 
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Prob1E - Example 
•  Syes = { s∈S | pmax(s, ¬a U b)=1 } 

•  R = { 0, 1, 2, 3, 4 ,5 6 } 
−  R’ = {2} ; R’ = {1, 2, 5} ; R’ = {1, 2, 4, 5} ; R’ = {1, 2, 4, 5, 6} 

•  R = { 1, 2, 4, 5, 6 } 
−  R’ = {2} ; R’ = {1, 2, 5} 

•  R = { 1, 2, 5 } 
−  R’ = {2} ; R’ = {1, 2, 5} 

•  R = { 1, 2, 5 } 

•  Syes = { 1, 2, 5 } 4 

1 2 

5 

{b} 

0 3 

6 

{a} 
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PCTL until for MDPs - Prob1A 
•  Minimum probabilities 1 

−  Syes = { s∈S | pmin(s, φ1 U φ2)=1 } 

•  Can also be done with a graph-based algorithm 

•  Details omitted here 

•  For minimum probabilities, just take Syes = Sat(φ2) 
−  recall that computing states for which probability=1 is just an 

optimisation: it is not required for correctness 
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PCTL until for MDPs 
•  Min/max probabilities for the remaining states, i.e.  

S? = S \ ( Syes ∪ Sno ), can be computed using either… 

•  1. Value iteration 
−  approximate iterative solution method 
−  preferable in practice for efficiency reasons 

•  2. Reduction to a linear optimisation problem 
−  solve with well-known linear programming (LP) techniques 

•  Simplex, ellipsoid method, interior point method 
−  yields exact solution in finite number of steps 

•  NB: Policy iteration also possible but not considered here 
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Method 1 - Value iteration (min) 
•  Minimum probabilities satisfy: 

−  pmin(s, φ1 U φ2) = limn→∞ xs
(n) where: 

•  Approximate iterative solution: 
−  compute vector x(n) for “sufficiently large” n 
−  in practice: terminate iterations when some pre-determined 

convergence criteria satisfied 
−  e.g. maxs | x(n)(s) - x(n-1)(s)) | < ɛ for some tolerance ɛ 
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Method 1 - Value iteration (max) 
•  Similarly, maximum probabilities satisfy: 

−  pmax(s, φ1 U φ2) = limn→∞ xs
(n) where: 

•  …and can be approximated iteratively 
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PCTL until - Example 
•  Model check: P>0.5 [ F a ] ≡ P>0.5 [ true U a ] 

−  lower probability bound so minimum probabilities required 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 
0.4 

0.5 

0.1 

0.25 

1 
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PCTL until - Example 
•  Model check: P>0.5 [ F a ] ≡ P>0.5 [ true U a ] 

−  lower probability bound so minimum probabilities required 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Syes = Sat(a) 

Sno = { s∈S | pmin(s, F a)=0 } 

Prob0E 
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PCTL until - Example 
Compute: pmin(si, F a) 
Syes = {s2}, Sno ={s3}, S? = {s0, s1} 

            [ x0
(n),x1

(n),x2
(n),x3

(n) ] 
n=0:  [ 0, 0, 1, 0 ] 
n=1:  [ min(1·0, 0.25·0+0.25·0+0.5·1), 
                    0.1·0+0.5·0+0.4·1, 1, 0 ] 
         = [ 0, 0.4, 1, 0 ] 
n=2:  [ min(1·0.4,0.25·0+0.25·0+0.5·1), 
                    0.1·0+0.5·0.4+0.4·1, 1, 0 ] 
          =[ 0.4, 0.6, 1, 0 ] 
n=3:  … 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Syes 

Sno 
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PCTL until - Example 
              [ x0

(n),x1
(n),x2

(n),x3
(n) ] 

n=0:  [ 0.000000, 0.000000, 1, 0 ] 
n=1:  [ 0.000000, 0.400000, 1, 0 ] 
n=2:  [ 0.400000, 0.600000, 1, 0 ] 
n=3:  [ 0.600000, 0.740000, 1, 0 ] 
n=4:  [ 0.650000, 0.830000, 1, 0 ] 
n=5:  [ 0.662500, 0.880000, 1, 0 ] 
n=6:  [ 0.665625, 0.906250, 1, 0 ] 
n=7:  [ 0.666406, 0.919688, 1, 0 ] 
n=8:  [ 0.666602, 0.926484, 1, 0 ] 
… 
n=20:  [ 0.666667, 0.933332, 1, 0 ] 
n=21:  [ 0.666667, 0.933332, 1, 0 ] 
           ≈ [ 2/3, 14/15, 1, 0 ] 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Syes 

Sno 

pmin(F a) = 
[ 2/3, 14/15, 1, 0 ] 

Sat(P>0.5 [F a]) = { s0, s1, s2 } 
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Example - Optimal adversary 
•  Like for reachability, can generate an optimal memoryless 

adversary using min/max probability values 
−  and thus also a DTMC 

•  Min adversary σmin               [ x0
(n),x1

(n),x2
(n),x3

(n) ] 
… 
n=20:  [ 0.666667, 0.933332, 1, 0 ] 
n=21:  [ 0.666667, 0.933332, 1, 0 ] 
           ≈ [ 2/3, 14/15, 1, 0 ] 

s0 : min(1·14/15, 0.5·1+0.5·0+0.25·2/3) 
    =min(14/15, 2/3) s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Syes 

Sno 
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Method 2 - Linear optimisation problem 
•  Probabilities for states in S? = S \ (Syes ∪ Sno) can also be 

obtained from a linear optimisation problem 
•  Minimum probabilities: 

•  Maximum probabilities: 

    

€ 

minimize xs subject to the constraints :
s∈S?∑

xs ≥ µ(s' )⋅ xs' +
s'∈S?

∑ µ(s' )
s'∈Syes

∑

for all s ∈ S? and for all (a,µ) ∈ Steps (s)

    

€ 

maximize xs subject to the constraints :
s∈S?∑

xs ≤ µ(s' )⋅ xs' +
s'∈S?

∑ µ(s' )
s'∈Syes

∑

for all s ∈ S? and for all (a,µ) ∈ Steps (s)
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PCTL until - Example 
Let xi = pmin(si, F a) 
Syes: x2=1, Sno: x3=0 
For S? = {s0, s1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 0.25·x0 + 0.5 
●  x1 ≤ 0.1·x0 + 0.5·x1 + 0.4 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Syes 

Sno 
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PCTL until - Example 

x0 

x1 

0 

0 

1 

1 2/3 
x0 

x1 

0 

0 

1 

1 

0.8 

x0 

x1 

0 

0 

1 

1 

x1 ≤ 0.2·x0 
+ 0.8 

Let xi = pmin(si, F a) 
Syes: x2=1, Sno: x3=0 
For S? = {s0, s1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 2/3 
●  x1 ≤ 0.2·x0 + 0.8 

x0 ≤ x1 

x0 ≤ 2/3 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Syes 

Sno 
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PCTL until - Example 

x0 

x1 

0 

0 

1 

1 

0.8 

2/3 

max 

Solution: 
(x0, x1) 

= 
(2/3, 14/15) 

Let xi = pmin(si, F a) 
Syes: x2=1, Sno: x3=0 
For S? = {s0, s1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 2/3 
●  x1 ≤ 0.2·x0 + 0.8 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Syes 

Sno 

pmin(F a) = 
[ 2/3, 14/15, 1, 0 ] 

Sat(P>0.5 [F a]) = 
{ s0, s1, s2 } 
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Example - Optimal adversary 
Get optimal adversary from constraints of 
optimisation problem that yield solution 

Alternatively, use optimal probability 
values in value iteration function, as 
shown in value iteration example 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
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1 

{a} 
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0.5 

0.1 

0.25 
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Sno 

x0 

x1 

0 

0 

1 

1 

0.8 

2/3 

max 
Two memoryless 

adversaries 

x1 = 0.2·x0 + 0.8 

x0 = x1 

x0 = 2/3 
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PCTL until - Example 2 
•  Model check: P<0.1 [ F a ]  

−  upper probability bound so maximum probabilities required 

s0 

s1 s2 

s3 
0.5 
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PCTL until - Example 2 
•  Model check: P<0.1 [ F a ] 

−  upper probability bound so maximum probabilities required 

•  pmax(F a) = [ 1, 1, 1, 1 ]  and  Sat(P<0.1 [ F a ]) = ∅ 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Syes = { s∈S | pmin(s, F a)=1 } = S 

Sno = { s∈S | pmin(s, F a)=0 } = ∅ 

Prob0A 

Prob1E 
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PCTL until - Example 3 
•  Model check: P>0 [ F a ]  

−  lower probability bound so minimum probabilities required 
−  qualitative property so numerical computation can be avoided 

•  pmin(F a) = [ ?, ?, ?, 0 ]  and  Sat(P>0 [ F a ]) = {s0,s1,s2} 

Sno = { s∈S | pmin(s, F a)=0 } 

Prob0E yields Sno = {s3} 
s0 

s1 s2 

s3 
0.5 
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1 
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Costs and rewards 
•  We can augment MDPs with rewards (or costs) 

−  real-valued quantities assigned to states and/or actions 
−  different from the DTMC case where transition rewards 

assigned to individual transitions 

•  For a MDP (S,sinit,Steps,L), a reward structure is a pair (ρ,ι) 
−  ρ : S → ℝ≥0 is the state reward function 
−  ι : S × Act → ℝ≥0 is transition reward function 

•  As for DTMCs these can be used to compute: 
−  elapsed time, power consumption, size of message queue, 

number of messages successfully delivered, net profit, … 
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PCTL and rewards 
•  Augment PCTL with rewards based properties 

−  allow a wide range of quantitative measures of the system 
−  basic notion: expected value of rewards 

   φ  ::=  …  |  R~r [ I=k ]  |  R~r [ C≤k ]  |  R~r [ F φ ] 

 where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ 

•  R~r [ · ] means “the expected value of · satisfies ~r for all 
adversaries” 

“reachability” 

 expected reward is ~r 

“cumulative” “instantaneous” 
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Types of reward formulas 
•  Instantaneous: R~r [ I=k ] 

−  the expected value of the reward at time-step k is ~r for all 
adversaries 

−  “the minimum expected queue size after exactly 90 seconds” 

•  Cumulative: R~r [ C≤k ] 
−  the expected reward cumulated up to time-step k is ~r for all 

adversaries 
−  “the maximum expected power consumption over one hour” 

•  Reachability: R~r [ F φ ] 
−  the expected reward cumulated before reaching a state 

satisfying φ is ~r for all adversaries 
−  the maximum expected time for the algorithm to terminate 
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Reward formula semantics 
•  Formal semantics of the three reward operators: 

−  for a state s in the MDP: 
−  s ⊨ R~r [ I=k ]  ⇔  Expσ(s, XI=k) ~ r for all adversaries σ 
−  s ⊨ R~r [ C≤k ]  ⇔  Expσ(s, XC≤k) ~ r for all adversaries σ 
−  s ⊨ R~r [ F Φ ]  ⇔  Expσ(s, XFΦ) ~ r for all adversaries σ 

ExpA(s, X) denotes the expectation of the random variable  
X : Pathσ(s) → ℝ≥0 with respect to the probability measure Prσs 
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Reward formula semantics 
•  For an infinite path ω= s0(a0,µ0)s1(a1,µ1)s2… 

 where kφ =min{ i | si ⊨ φ } 
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Model checking reward formulas 
•  Instantaneous: R~r [ I=k ] 

−  similar to the computation of bounded until probabilities 
−  solution of recursive equations 
−  k matrix-vector multiplications (+ min/max) 

•  Cumulative: R~r [ C≤k ] 
−  extension of bounded until computation 
−  solution of recursive equations 
−  k iterations of matrix-vector multiplication + summation 

•  Reachability: R~r [ F φ ] 
−  similar to the case for until 
−  solve a linear optimization problem (or value iteration) 
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Model checking complexity 
•  For model checking of an MDP (S,sinit,Steps,L) and PCTL 

formula φ  (including reward operators) 
−  complexity is linear in |Φ| and polynomial in |S| 

•  Size |φ| of φ is defined as number of logical connectives 
and temporal operators plus sizes of temporal operators 
−  model checking is performed for each operator 

•  Worst-case operators are P~p [ φ1 U φ2 ] and R~r [ F φ ] 
−  main task: solution of linear optimization problem of size |S| 
−  can be solved with ellipsoid method (polynomial in |S|) 
−  and also precomputation algorithms (max |S| steps) 



Original Slides

50 DP/Probabilistic Model Checking, Michaelmas 2011 

Summing up… 
•  PCTL for MDPs 

−  same as syntax as for PCTL 
−  key difference in semantics: “for all adversaries” 
−  requires computation of minimum/maximum probabilities 

•  PCTL model checking for MDPs 
−  same basic algorithm as for DTMCs 
−  next: matrix-vector multiplication + min/max 
−  bounded until: k matrix-vector multiplications + min/max 
−  until : precomputation algorithms + numerical computation 

•  precomputation: Prob0A and Prob1E for max, Prob0E for min 
•  numerical computation: value iteration, linear optimisation 

−  complexity linear in |Φ| and polynomial in |S| 
•  Costs and rewards 
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Overview 

•  LTL - Linear temporal logic 

•  Repeated reachability and persistence 

•  Long-run properties of DTMCs 
−  bottom strongly connected components (BSCCs) 

•  Long-run properties of MDPs 
−  end components (E.C.s) 
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Limitations of PCTL 
•  PCTL, although useful in practice, has limited expressivity 

−  essentially: probability of reaching states in X, passing only 
through states in Y (and within k time-steps) 

•  More expressive logics can be used, for example: 
−  LTL [Pnu77] - the non-probabilistic linear-time temporal logic 
−  PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL 
−  both allow path operators to be combined 

•  In PCTL, temporal operators always appear inside P~p […] 
−  (and, in CTL, they always appear inside A or E) 
−  in LTL (and PCTL*), temporal operators can be combined 
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Review - CTL and PCTL 
•  CTL: 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | A ψ | E ψ 

−  ψ  ::=  X φ | φ U φ 

•  PCTL 
−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] 
−  ψ  ::=  X φ | φ U≤k φ | φ U φ 

•  Notation for paths: ω = s0s1s2…  
−  Path(s) = set of all (infinite) paths with s0 = s 
− ω(i) denotes the (i+1)th state, i.e. ω(i) = si 

− ω[i…] is the suffix starting from si, i.e. ω[i…] = sisi+1si+2… 
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LTL - Linear temporal logic 
•  LTL syntax 

−  path formulae only 

−  ψ ::=  true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
−  where a ∈ AP is an atomic proposition 

•  LTL semantics (for a path ω) 
− ω ⊨ true    always 
− ω ⊨ a    ⇔  a ∈ L(ω(0)) 
− ω ⊨ ψ1 ∧ ψ2  ⇔  ω ⊨ ψ1 and ω ⊨ ψ2 

− ω ⊨ ¬ψ    ⇔  ω ⊭ ψ 
− ω ⊨ X ψ   ⇔  ω[1…] ⊨ ψ 
− ω ⊨ ψ1 U ψ2  ⇔  ∃k≥0 s.t. ω[k…] ⊨ ψ2 and  

      ∀i<k ω[i…] ⊨ ψ1 
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LTL - Linear temporal logic 
•  Derived operators like CTL, for example: 

−  F ψ ≡ true U ψ 
−  G ψ ≡ ¬F(¬ψ) 

•  LTL semantics (non-probabilistic) 
−  implicit universal quantification over paths 
−  i.e. for an LTS M = (S,sinit,→,L)  and LTL formula ψ 
−  s ⊨ ψ iff ω ⊨ ψ for all paths ω ∈ Path(s) 
−  M ⊨ ψ iff sinit ⊨ ψ 

•  e.g: 
−  A F (req ∧ X ack) 
−  “it is always possible that a request, followed immediately by 

an acknowledgement, can occur” 
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More LTL examples 
•  (F tmp_fail1) ∧ (F tmp_fail2) 

−  “both servers suffer temporary failures at some point” 

•  GF ready 
−  “the server always eventually returns to a ready-state” 

•  G (req → F ack) 
−  “requests are always followed by an acknowledgement” 

•  FG stable 
−  “the system reaches and stays in a ‘stable’ state” 
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Branching vs. Linear time 

•  LTL but not CTL: 
−  FG stable 
−  “the system reaches and stays in a ‘stable’ state” 
−  e.g. A FG stable ≢ AF AG stable  

•  CTL but not LTL: 
−  AG EF init 
−  e.g. “for every computation, it is always possible to return to 

the initial state” 
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LTL + probabilities 
•  Same idea as PCTL: probabilities of sets of path formulae 

−  for a state s of a DTMC and an LTL formula ψ: 
−  Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ } 
−  all such path sets are measurable (see later lecture) 

•  For MDPs, we can again consider lower/upper bounds 
−  pmin(s, ψ) = infσ∈Adv Probσ(s, ψ) 
−  pmax(s, ψ) = supσ∈Adv Probσ(s, ψ) 
−  (for LTL formula ψ) 

•  For DTMCs or MDPs, an LTL specification often comprises 
an LTL (path) formula and a probability bound 
−  e.g. P>0.99 [ F ( req ∧ X ack ) ] 
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PCTL* 
•  PCTL* subsumes both (probabilistic) LTL and PCTL 

•  State formulae: 
−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] 
−  where a ∈ AP, ~ ∈ {<,>,≤,≥}, p ∈ [0,1] and ψ a path formula 

•  Path formulae: 
−  ψ  ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
−  where φ is a state formula 

•  A PCTL* formula is a state formula φ 
−  e.g. P>0.99 [ GF crit1 ] ∧ P>0.99 [ GF crit2 ] 
−  e.g. P≥0.75 [ GF P>0 [ F init ] 
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Fundamental property of DTMCs 
•  Strongly connected component (SCC) 

−  maximally strongly connected set of states 
•  Bottom strongly connected component (BSCC) 

−  SCC T from which no state outside T is reachable from T 

•  With probability 1,  
a BSCC will be reached  
and all of its states 
visited infinitely often 

•  Formally: 
−  Prs { ω ∈ Path(s) | ∃ i≥0, ∃ BSCC T such that 

                            ∀ j≥i ω(i) ∈ T and  
                            ∀ s’∈T ω(k) = s' for infinitely many k }  =  1 

s0 

0.25 1 

s1 s2 

s3 s4 s5 

1 

1 1 

0.25 

0.5 

0.5 

0.5 
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Repeated reachability - DTMCs 
•  Repeated reachability: 

−  “always eventually…” or “infinitely often…” 

•  e.g. “what is the probability that the protocol successfully 
sends a message infinitely often?” 

•  Using LTL notation: 
− ω ⊨ GF a 
        ⇔ 
− ∀ i≥0 . ∃ j≥i . ω(j) ∈ Sat(a) 

•  Prob(s, GF a) 
         = Prs { ω ∈ Path(s) | ∀ i≥0 . ∃ j≥i . ω(j) ∈ Sat(a) } 
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Qualitative repeated reachability 
•  Prs { ω ∈ Path(s) | ∀ i≥0 . ∃ j≥i . ω(j) ∈ Sat(a) } = 1 
•  P≥1 [ GF a ] 

 if and only if  

•  T ∩ Sat(a) ≠ ∅ for all BSCCs T reachable from s 

s0 

0.25 1 

s1 s2 

s3 s4 s5 

1 

1 1 

0.25 0.5 

0.5 

0.5 

Examples: 

s0 ⊨ P≥1 [ GF (b∨c) ] 
s0 ⊭ P≥1 [ GF b ] 
s2 ⊨ P≥1 [ GF c ] 

PCTL* 

{b} {b} 
{c} 



Original Slides

14 DP/Probabilistic Model Checking, Michaelmas 2011 

Quantitative repeated reachability 
•  Prob(s, GF a) = Prob(s, F TGFa) 

−  where TGFa = union of all BSCCs T with T ∩ Sat(a) ≠ ∅ 

•  From the above, we also have: 
−  P>0 [ GF a ]  ⇔  T ∩ Sat(a) ≠ ∅ for some reachable BSCC T 

Example: 

Prob(s0, GF b) 
= Prob(s0, F TGFb) 
= Prob(s0, F (T1∪T2)) 
= Prob(s0, F {s3,s4}) 
= 2/3 + 1/6 = 5/6 
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Persistence - DTMCs 
•  Persistence properties: “eventually always…” 

−  e.g. “what is the probability of the leader election algorithm 
reaching, and staying in, a stable state?” 

−  e.g. “what is the probability that an irrecoverable error 
occurs?” 

•  Using LTL notation: 
− ω ⊨ FG a 
        ⇔ 
−  ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a) 

•  Prob(s, FG a) 
         = Prs { ω ∈ Path(s) | ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a) } 
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Qualitative persistence 
•  Prs { ω ∈ Path(s) | ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a) } = 1 
•  P≥1 [ FG a ] 

 if and only if  

•  T ⊆ Sat(a) for all BSCCs T reachable from s 
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0.25 1 

s1 s2 

s3 s4 s5 
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Examples: 

s0 ⊭ P≥1 [ FG (b∨c) ] 
s0 ⊨ P≥1 [ FG (b∨c∨d) ] 

s2 ⊨ P≥1 [ FG (c∨d) ] 
{b} {b} 

{c} 

{d} 
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Quantitative persistence 
•  Prob(s, FG a) = Prob(s, F TFGa) 

−  where TFGa = union of all BSCCs T with T⊆Sat(a) 

Example: 

Prob(s0, FG (b∨c)) 
= Prob(s0, F TFG(b∨c)) 
= Prob(s0, F (T1∪T2)) 
= Prob(s0, F {s3,s4}) 
= 2/3 + 1/6 = 5/6 
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s1 s2 
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Success sets 
•  The sets TP for property P are called success sets 

−  TGFa = union of all BSCCs T with T ∩ Sat(a) ≠ ∅ 
−  TFGa = union of all BSCCs T with T ⊆ Sat(a) 

•  Sometimes denoted UP 
−  e.g. UGFa 

−  we use Tp here (to avoid confusion with the until operator) 
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Repeated reachability + persistence 
•  Repeated reachability and persistence are dual properties 

−  GF a ≡ ¬(FG ¬a) 
−  FG a ≡ ¬(GF ¬a) 

•  Hence, for example: 
−  Prob(s, GF a) = 1 - Prob(s, FG ¬a) 

•  Can show this through LTL equivalences, or… 

•  Prob(s, GF a) + Prob(s, FG ¬a) 
 = Prob(s, F TGFa) + Prob(s, F TFG¬a) 

−  TGFa = union of BSCCs T with T∩Sat(a)≠∅  (T intersects Sat(a)) 
−  TFG¬a = union of BSCCs T with T⊆(S\Sat(a))  (no intersection) 

 = Prob(s, F (TGFa ∪ TFG¬a)) = 1 (fundamental DTMC property) 
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End components of MDPs 
•  Consider an MDP M = (S,sinit,Steps,L) 

•  A sub-MDP of M is a pair (T,Steps’) where: 
−  T ⊆ S is a (non-empty) subset of M’s states 
−  Steps’(s) ⊆ Steps(s) for each s ∈ T 
−  (T,Steps’) is closed under probabilistic  

branching, i.e. the set of states 
{ s’ | µ(s’)>0 for some (a,µ)∈Steps’(s) }  
is a subset of T 

•  An end component of M is a  
strongly connected sub-MDP 

s0 

s1 s2 

s5 s4 s3 

s7 s8 s6 

0.6 
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0.7 

0.1 0.9 

0.1 

Note: 
●  action labels omitted 
●  probabilities omitted where =1 
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End components - Examples 
•  Sub-MDPs 

−  can be formed from state sets such as: 
−  {s2,s5,s7,s8}, {s0,s2,s5,s7,s8}, {s5,s7,s8}, 
−  {s1,s3,s4}, {s1,s3,s4,s6}, {s3,s4}, … 

•  End components 
−  can be formed from state sets: 
−  {s3,s4}, {s1,s3,s4}, {s6}, {s5,s7,s8} 

•  Note that 
−  state sets do not necessarily  

uniquely identify end components 
−  e.g. {s1,s3,s4}  
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End components of MDPs 
•  For finite MDPs… 

−  (analogue of fundamental property  
of finite DTMCs) 

•  For every end component, there  
is an adversary which, with 
probability 1, forces the MDP 
to remain in the end component,  
and visit all its states infinitely often 

•  Under every adversary σ,  
with probability 1 an end component 
will be reached and all of its states 
visited infinitely often 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Repeated reachability - MDPs (max) 
•  Repeated reachability (GF) for MDPs 

−  consider first the case of maximum probabilities… 
−  pmax(s, GF a) 

•  First, a simple qualitative property: 
−  Probσ(s, GF a) > 0 for some adversary σ, i.e. pmax(s, GF a) > 0 
     ⇔ 
−  T ∩ Sat(a) ≠ ∅ for some end component T reachable from s 

•  The quantitative case (for maximum probabilities): 
−  pmax(s, GF a) = pmax(s, F TGFa) 
−  where TGFa is the union of sets T for all end components 

(T,Steps’) with T ∩ Sat(a) ≠ ∅ (i.e. at least one a-state in T) 
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Example 
•  Check: P<0.8 [ GF b ] for s0 

•  Compute pmax(GF b) 
−  pmax(GF b) = pmax(s, F TGFb) 
−  TGFb is the union of sets T  

for all end components 
with T ∩ Sat(b) ≠ ∅ 

−  Sat(b) = { s4, s6 } 
−  TGFb = T1∪T2∪T3 = { s1, s3 s4, s6 } 
−  pmax(s, F TGFb) = 0.75 
−  pmax(GF b) = 0.75 

•  Result: s0 ⊨ P<0.8 [ GF b ] 
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Repeated reachability - MDPs (max) 
•  Quantitative case: 

−  pmax(s, GF a) = pmax(s, F TGFa) 
•  This yields the qualitative property given earlier: 

−  Probσ(s, GF a) > 0 for some adversary σ 
    ⇔  pmax(s, GF a) > 0 
    ⇔  pmax(s, F TGFa) > 0 
    ⇔  Probσ(s, F TGFa) > 0 for some adversary σ 
    ⇔  s ⊨ EF TGFa 

    ⇔  T ∩ Sat(a) ≠ ∅ for some E.C. T reachable from s 

•  Another qualitative property: 
−  Probσ(s, GF a) = 1 for some adversary σ 
    ⇔  pmax(s, GF a) = 1 
    ⇔  pmax(s, F TGFa) = 1 

Compute with 
Prob1E 
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Repeated reachability - MDPs (min) 
•  Repeated reachability for MDPs - minimum probabilities 

−  pmin(s, GF a) 

•  First, a useful qualitative property:  

−  Probσ(s, GF a) = 1 for all adversaries σ 
     ⇔ 
−  s ⊨ P≥1 [ GF a ] 
     ⇔ 
−  T ∩ Sat(a) ≠ ∅ for all end components T reachable from s 

PCTL* 
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Examples 

•  s0 ⊨ P≥1 [ GF (b∨c∨d) ]  ? 

•  s0 ⊨ P≥1 [ GF (b∨d) ]  ? 

s0 

s1 s2 

s5 s4 s3 

s7 s8 s6 

0.6 

0.3 

0.3 

0.7 

0.1 0.9 

0.1 
T1 

T2 

T3 

T4 

{b} 

{c} 

{b} 

{d} 
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Repeated reachability - MDPs (min) 
•  Repeated reachability for MDPs - minimum probabilities 

−  pmin(s, GF a) 

•  Quantitative case 
−  use duality of min/max probabilities for MDPs 
−  pmin(s, ψ) = 1- pmax(s, ¬ψ) 
−  e.g. pmin(s, GF a) = 1- pmax(s, FG¬a) 

•  So min probabilities for repeated reachability (GF) 
−  can be computed as max probabilities for persistence (FG) 
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Persistence - MDPs 
•  Persistence for MDPs 

−  pmin(s, FG a) or pmax(s, FG a) 

•  Quantitative case - maximum probabilities 
−  pmax(s, FG a) = pmax(s, F TFGa) 
−  where TFGa is the union of sets T for all end components 

(T,Steps’) with T ⊆ Sat(a) (i.e. all states in T satisfy a) 
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Repeated reachability (again) 
•  We now have way a of computing minimum probabilities 

for repeated reachability (GF) 
−  pmin(s, GF a) = 1 - pmax(s, FG¬a) 
                       = 1 - pmax(s, F TFG¬a) 
−  where TFG¬a is the union of sets T for all end components 

(T,Steps’) with T ⊆ S\Sat(a) 
−  ie. TFG¬a is the union of sets T for all end components 

(T,Steps’) with T ∩ Sat(a) = ∅ 

•  Can also now show why: 
−  s ⊨ P≥1 [ GF a ] 
     ⇔ 
−  T ∩ Sat(a) ≠ ∅ for all end components T reachable from s 

Opposite of 
condition for GFa 
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Examples 

•  s0 ⊨ P>0 [ GF d ] ? 

•  s0 ⊨ P>0.3 [ GF d ] ? 

s0 

s1 s2 

s5 s4 s3 

s7 s8 s6 

0.6 

0.3 

0.3 

0.7 

0.1 0.9 

0.1 
T1 

T2 

T3 

T4 

{b} 

{c} 

{b} 

{d} 
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Summing up… I 
•  LTL: path-based, path operators can be combined 
•  PCTL*: subsumes PCTL and LTL 

non-probabilistic 
(LTSs) 

probabilistic 
(DTMCs, MDPs) 

CTL 

LTL 

PCTL 

LTL + prob. 

PCTL* 

Φ 

ψ 

Φ 

Prob(s, ψ) 

Φ 
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Summing up… II 
•  2 useful instances of LTL formulae: 

−  repeated reachability: GF a 
−  persistence: FG a 

•  DTMCs 
−  qualitative: properties of reachable BSCCs 
−  quantitative: probability of reaching success set (BSCC set)  

•  MDPs 
−  end components: MDP analogue of BSCCs 
−  pmax(s, GF a) - max. reachability of success set (T∩Sat(a)≠∅) 
−  P≥1 [ GF a ] - reachability of end components 
−  pmin(s, GF a) - one minus max. prob. for dual property 
−  pmax(s, FG a) - max. reachability of success set (T ⊆ Sat(a)) 
−  pmin(s, FG a) – again, via dual property 
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Property specifications 
•  1. Reachability properties, e.g. in PCTL 

−  F a or F≤t a  (reachability) 
−  a U b or  a U≤t b  (until - constrained reachability) 
−  G a  (invariance) (dual of reachability) 
−  probability computation: graph analysis + solution of linear 

equation system (or linear optimisation problem)  
 

•  2. Long-run properties, e.g. in LTL 
−  GF a (repeated reachability) 
−  FG a (persistence) 
−  probability computation: BSCCs + probabilistic reachability 

•  This lecture: more expressive class for type 1 
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Overview 

•  Nondeterministic finite automata (NFA) 

•  Regular expressions and regular languages 

•  Deterministic finite automata (DFA) 

•  Regular safety properties 

•  DFAs and DTMCs 
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Some notation 
•  Let Σ be a finite alphabet 

•  A (finite or infinite) word w over Σ is  
−  a sequence of α1α2… where αi ∈ Σ for all i 

•  A prefix w’ of word w = α1α2… is 
−  a finite word β1 β2… βn with βi=αi for all 1≤i≤n 

•  Σ* denotes the set of finite words over Σ 

•  Σω denotes the set of infinite words over Σ 
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Finite automata 
•  A nondeterministic finite automaton (NFA) is… 

−  a tuple A = (Q, Σ, δ, Q0, F) where: 

−  Q is a finite set of states 
−  Σ is an alphabet 
−  δ : Q × Σ → 2Q is a transition function 
−  Q0 ⊆ Q is a set of initial states 
−  F ⊆ Q is a set of “accept” states 

 

q0 

α 

q1 q2 

β 

β 
β 

α 
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Language of an NFA 
•  Consider an NFA A = (Q, Σ, δ, Q0, F) 

•  A run of A on a finite word w=α1α2…αn is: 
−  a sequence of automata states q0q1…qn such that: 
−  q0 ∈ Q0  and  qi+1 ∈ δ(qi, αi+1) for all 0≤i<n 

•  An accepting run is a run with qn ∈ F 

•  Word w is accepted by A iff: 
−  there exists an accepting run of A on w 

•  The language of A, denoted L(A) is: 
−  the set of all words accepted by A 

•  Automata A and A’ are equivalent if L(A)=L(A’) 
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Example - NFA 

q0 

α 

q1 q2 

β 

β 
β 

α 
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Regular expressions 
•  Regular expressions E over a finite alphabet Σ 

−  are given by the following grammar: 
−  E ::= ∅ | ɛ | α | E + E | E.E | E* 
−  where α ∈ Σ 

•  Language L(E) ⊆ Σ* of a regular expression: 
−  L(∅) = ∅                                                      (empty language) 
−  L(ɛ) = { ɛ }                                                           (empty word) 
−  L(α) = { α }                                                                 (symbol) 
−  L(E1 + E2) = L(E1) ∪ L(E2)                                              (union) 
−  L(E1.E2) = { w1.w2 | w1∈L(E1) and w2∈L(E2) }      (concatenation) 
−  L(E*) = { wi | w∈L(E) and i∈ℕ }                       (finite repetition) 
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Regular languages 
•  A set of finite words L is a regular language… 

 
−  iff L = L(E) for some regular expression E 

 
−  iff L = L(A) for some finite automaton A 

q0 

α 

q1 q2 

β 

β 
β 

α (α+β)*β(α+β) 
 

(i.e. penultimate symbol is β) 
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Operations on NFA 
•  Can construct NFA from regular expression inductively 

−  includes addition (and then removal) of ɛ-transitions 

•  Can construct the intersection of two NFA 
−  build (synchronised) product automaton 
−  cross product of A1 ⊗ A2 accepts L(A1) ∩ L(A2)  

α 

ε 

ε ε 

ε ε ε 

ε 

ε 
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Deterministic finite automata 
•  A finite automaton is deterministic if: 

−  |Q0|=1 
−  |δ(q, α)| ≤ 1 for all q ∈ Q and α ∈ Σ 
−  i.e. one initial state and no nondeterministic successors 

•  A deterministic finite automaton (DFA) is total if: 
−  |δ(q, α)| = 1 for all q ∈ Q and α ∈ Σ 
−  i.e. unique successor states 

•  A total DFA 
−  can always be constructed from a DFA 
−  has a unique run for any word w ∈ Σ* 
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Determinisation: NFA → DFA 
•  Determinisation of an NFA A = (Q, Σ, δ, Q0, F) 

−  i.e. removal of choice in each automata state 

•  Equivalent DFA is Adet = (2Q, Σ, δdet, q0, Fdet) where: 

−  δdet(Q’, α) = 

−  Fdet = { Q’ ⊆ Q | Q’ ∩ F ≠ ∅ } 

•  Note exponential blow-up in size… 

 'Qq
)α,q(δ

∈
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Example 

q0 

α 

q1 q2 

β 

β 
β 

α NFA A 
regexp:  

 
(α+β)*β(α+β) 
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Example 

q0 

α 

q1 q2 

β 

β 
β 

α 

{q0} 

α 

{q0,q1} 
β 

β α 

{q0,q2} {q0,q1,q2} 

β 

α 
β 

α 

DFA Adet 

NFA A 
regexp:  

 
(α+β)*β(α+β) 
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Other properties of NFA/DFA 
•  NFA/DFA have the same expressive power 

−  but NFA can be more efficient (up to exponentially smaller) 

•  NFA/DFA are closed under complementation 
−  build total DFA, swap accept/non-accept states 

•  For any regular language L, there is a unique minimal DFA 
that accepts L (up to isomorphism) 
−  efficient algorithm to minimise DFA into equivalent DFA 
−  partition refinement algorithm (like for bisimulation) 

•  Language emptiness of an NFA reduces to reachability 
−  L(A) ≠ ∅ iff can reach a state in F from an initial state in Q0 
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Languages as properties 
•  Consider a model, i.e. an LTS/DTMC/MDP/… 

−  e.g. DTMC D = (S, sinit, P, Lab) 
−  where labelling Lab uses atomic propositions from set AP 
−  let ω ∈ Path(s) be some infinite path 

•  Temporal logic properties 
−  for some temporal logic (path) formula ψ, does ω ⊨ ψ ? 

•  Traces and languages 
−  trace(ω) ∈ (2AP)ω denotes the projection of state labels of ω 
−  i.e. trace(s0s1s2s3…) = Lab(s0)Lab(s1)Lab(s2)Lab(s3)… 
−  for some language L ⊆ (2AP)ω, is trace(ω) ∈ L ? 



Original Slides

17 DP/Probabilistic Model Checking, Michaelmas 2011 

Example 

•  Atomic propositions 
−  AP = { fail, try } 
−  2AP = { ∅, {fail}, {try}, {fail,try} } 

•  Paths and traces 
−  e.g. ω = s0s1s1s2s0s1s2s0s1s3s3s3… 
−  trace(ω) = ∅ {try} {try} {fail} ∅ {try} {fail} ∅ {try} ∅ ∅ ∅ … 

•  Languages 
−  e.g. “no failures” 
−  L = { α1α2… ∈ (2AP)ω | αi is ∅ or {try} for all i } 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{try} 
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Regular safety properties 
•  A safety property P is a language over 2AP such that 

−  for any word w that violates P (i.e. is not in the language),  
w has a prefix w’, all extensions of which, also violate P 

•  A regular safety property is 
−  safety property for which the set of “bad prefixes” (finite 

violations) forms a regular language 

•  Formally… 
−  P ⊆ (2AP)ω is a safety property if: 

•  ∀ w ∈ ((2AP)ω\P) . ∃ finite prefix w’ of w such that: 
•  P ∩ { w’’∈ (2AP)ω | w’ is a prefix of w’’ } = ∅ 

−  P is a regular safety property if: 
•  { w’ ∈ (2AP)* | ∀ w’’ ∈ (2AP)ω . w’.w’’ ∉ P } is regular 
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Regular safety properties 
•  A safety property P is a language over 2AP such that 

−  for any word w that violates P (i.e. is not in the language),  
w has a prefix w’, all extensions of which, also violate P 

•  A regular safety property is 
−  safety property for which the set of “bad prefixes” (finite 

violations) forms a regular language 

•  Examples: 
−  “at least one traffic light is always on” 
−  “two traffic lights are never on simultaneously” 
−  “a red light is always preceded immediately by an amber light” 
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Example 
•  Regular safety property: 

−  “at most 2 failures occur” 
−  language over: 
    2AP = { ∅, {fail}, {try}, {fail,try} } s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{try} 
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Example 
•  Regular safety property: 

−  “at most 2 failures occur” 
−  language over: 
    2AP = { ∅, {fail}, {try}, {fail,try} } 

•  Bad prefixes (regexp): 
(¬fail)*.fail.(¬fail)*.fail.(¬fail)*.fail 

•  Bad prefixes (DFA): 

q0 q1 q3 
fail 

¬fail 

q2 
fail 

¬fail 

fail 

¬fail 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{try} 

fail denotes: 
{fail}, {fail,try} 
¬fail denotes: 

∅, {try} 

fail denotes: 
({fail} + {fail,try}) 
¬fail denotes: 

(∅ + {try}) 
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Regular safety properties + DTMCs 
•  Consider a DTMC D (with atomic propositions from AP)  

and a regular safety property P ⊆ (2AP)ω  

•  Let ProbD(s, P) denote the probability of P being satisfied 
−  i.e. ProbD(s, P) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ P } 
−  where PrD

s is the probability measure over Path(s) for D 
−  this set is always measurable (see later) 

•  Example (safety) specifications 
−  “the probability that at most 2 failures occur is ≥0.999” 
−  “what is the probability that at most 2 failures occur?” 

•  How to compute ProbD(s, P) ? 
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Product DTMC 
•  We construct the product of 

−  a DTMC D = (S, sinit, P, L) 
−  and a (total) DFA A = (Q, Σ, δ, q0, F) 
−  intuitively: records state of A for path fragments of D 

•  The product DTMC D ⊗ A is: 
−  the DTMC (S×Q, (sinit,qinit), P’, L’) where: 

−  qinit = δ(q0,L(sinit)) 

−    
 
−  L’(s,q) = { accept } if q ∈ F and L’(s,q) = ∅ otherwise 

    

€ 

P'((s1,q1),(s2,q2)) =
P(s1,s2) if q2 = δ(q1,L(s2))

0 otherwise

# 
$ 
% 

& % 
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Example 

q0 q1 q3 
fail 

¬fail 

q2 
fail 

¬fail 

fail 

¬fail 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{try} 

DTMC D DFA A 

fail denotes: 
{fail}, {fail,try} 
¬fail denotes: 

∅, {try} 
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Example 

s0q0 

0.01 

0.98 

0.01 

1 

1 

{accept} 

s1q0 

s2q1 

s3q0 

s0q1 

0.01 

0.98 

0.01 

1 

1 

s1q1 

s2q2 

s3q1 

s0q2 

0.01 

0.98 

0.01 

1 

1 

s1q2 

s2q3 

s3q2 

1 

Product DTMC D ⊗ A 
states beyond “accept” 

state unimportant 

s0,δ(q0,L(s0))     
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Product DTMC 
•  One interpretation of D ⊗ A: 

−  unfolding of D where q for each state (s,q) records state of 
automata A for path fragment so far 

•  In fact, since A is deterministic… 
−  for any ω ∈ Path(s) of the DTMC D: 

•  there is a unique run in A for trace(ω) 
•  and a corresponding (unique) path through D ⊗ A 

−  for any path ω’ ∈ PathD⊗A(s,qinit) where qinit = δ(q0,L(s)) 
•  there is a corresponding path in D and a run in A 

•  DFA has no effect on probabilities 
−  i.e. probabilities preserved in product DTMC 
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Regular safety properties + DTMCs 
•  Regular safety property P ⊆ (2AP)ω 

−  “bad prefixes” (finite violations) represented by DFA A 

•  Probability of P being satisfied in state s of D 
−  ProbD(s, P) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ P } 
                    = 1 - PrD

s{ ω ∈ Path(s) | trace(ω) ∉ P } 
                    = 1 - PrD

s{ ω ∈ Path(s) | pref(trace(ω)) ∩ L(A) ≠ ∅ } 
−  where pref(w) = set of all finite prefixes of infinite word w 

−  where qs = δ(q0,L(s)) 

 

ProbD(s, P) = 1 - ProbD⊗A((s,qs), F accept) 
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Example 
•  ProbD(s0, “at most 2 failures occur”) 
      = 1 - ProbD⊗A((s0,q0), F accept) 
      = 1 - (1/99)3 
      ≈ 0.9999989694 

s0q0 

0.01 

0.98 

0.01 

1 

1 

{accept} 

s1q0 

s2q1 

s3q0 

s0q1 

0.01 

0.98 

0.01 

1 

1 

s1q1 

s2q2 

s3q1 

s0q2 

0.01 

0.98 

0.01 

1 

1 

s1q2 

s2q3 

s3q2 

1 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{try} 
D 

D⊗A 
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Summing up… 
•  Nondeterministic finite automata (NFA) 

−  can represent any regular language, regular expression 
−  closed under complementation, intersection, … 
−  (non-)emptiness reduces to reachability 

•  Deterministic finite automata (DFA) 
−  can be constructed from NFA through determinisation 
−  equally expressive as NFA, but may be larger 

•  Regular safety properties 
−  language representing set of possible traces 
−  bad (violating) prefixes form a regular language 

•  Probability of a regular safety property on a DTMC 
−  construct product DTMC 
−  reduces to probabilistic reachability 
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Long-run properties 
•  Last lecture: regular safety properties 

−  e.g. “a message failure never occurs” 
−  e.g. “an alarm is only ever triggered by an error” 
−  bad prefixes represented by a regular language 
−  property always refuted by a finite trace/path 

•  Liveness properties 
−  e.g. "for every request, an acknowledge eventually follows” 
−  no finite prefix refutes the property 
−  any finite prefix can be extended to a satisfying trace 

•  Fairness assumptions 
−  e.g. “every process that is enabled infinitely often is scheduled 

infinitely often” 
•  Need properties of infinite paths 
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Overview 

•  ω-regular expressions and ω-regular languages 

•  Nondeterministic Büchi automata (NBA) 

•  Deterministic Büchi automata (DBA) 

•  Deterministic Rabin automata (DRA) 

•  Deterministic ω-automata and DTMCs 
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ω-regular expressions 
•  Regular expressions E over alphabet Σ are given by: 

−  E ::= ∅ | ɛ | α | E + E | E.E | E*         (where α ∈ Σ) 

•  An ω-regular expression takes the form: 
−  G = E1.(F1)ω + E2.(F2)ω + … + En.(Fn)ω 

−  where Ei and Fi are regular expressions with ɛ ∉ L(Fi) 

•  The language L(G) ⊆ Σω of an ω-regular expression G 
−  is L(E1).L(F1)ω ∪ L(E2).L(F2)ω + … + L(En).L(Fn)ω 

−  where L(E) is the language of regular expression E 
−  and L(E)ω = { wω | w∈L(E) } 

•  Example: (α+β+γ)*(β+γ)ω for Σ = { α, β, γ } 
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ω-regular languages/properties 
•  A language L ⊆ Σω over alphabet Σ is an ω-regular 

language if and only if: 
−  L = L(G) for some ω-regular expression G 

•  ω-regular languages are: 
−  closed under intersection 
−  closed under complementation 

•  P ⊆ (2AP)ω is an ω-regular property 
−  if P is an ω-regular language over 2AP 

−  (where AP is the set of atomic propositions for some model) 
−  path ω satisfies P if trace(ω) ∈ P 
−  NB: any regular safety property is an ω-regular property 
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Examples 
•  A message is sent successfully infinitely often 

−  ((¬succ)*.succ)ω 

•  Every time the process tries to send a message, it 
eventually succeeds in sending it 
−  ((¬try)* + try.(¬succ)*.succ)ω 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

0.5 

1 

1 

{fail} 

{succ} 

{try} 

0.5 
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Büchi automata 
•  A nondeterministic Büchi automaton (NBA) is… 

−  a tuple A = (Q, Σ, δ, Q0, F) where: 

−  Q is a finite set of states 
−  Σ is an alphabet 
−  δ : Q × Σ → 2Q is a transition function 
−  Q0 ⊆ Q is a set of initial states 
−  F ⊆ Q is a set of “accept” states 

−  i.e. just like a nondeterministic finite automaton (NFA) 

•  The difference is the accepting condition… 
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Language of an NBA 
•  Consider a Büchi automaton A = (Q, Σ, δ, Q0, F) 

•  A run of A on an infinite word α1α2… is: 
−  an infinite sequence of automata states q0q1… such that: 
−  q0 ∈ Q0  and  qi+1 ∈ δ(qi, αi+1) for all i≥0 

•  An accepting run is a run with qi ∈ F for infinitely many i 

•  The language L(A) of A is the set of all infinite words on 
which there exists an accepting run of A 
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Example 
•  Infinitely often a 

q0 q1 
¬a 

a 
a 

¬a 
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Example… 
•  As in the last lecture, we use automata to represent 

languages of the form L ⊆ (2AP)ω 

•  So, if AP = {a,b}, then: 

•  …is actually: 

q0 q1 
¬a 

a 
a 

¬a 

q0 q1 

∅, {b} 

{a}, {a,b} 
{a}, 
{a,b} 

∅, {b} 
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Properties of Büchi automata 
•  ω-regular languages 

−  L(A) is an ω-regular language for any NBA A 
−  any ω-regular language can be represented by an NBA 

•  ω-regular expressions 
−  like for finite automata, can construct an NBA from an 

arbitrary ω-regular expression E1.(F1)ω + … + En.(Fn)ω 
−  i.e. there are operations on NBAs to: 

•  construct NBA accepting Lω for regular language L 
•  construct NBA from NFA for (regular) E and NBA for (ω-regular) F 
•  construct NBA accepting union L(A1) ∪ L(A2) for NBA A1 and A2 
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Büchi automata and LTL 
•  LTL formulae 

−  ψ ::=  true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
−  where a ∈ AP is an atomic proposition 

•  Can convert any LTL formula ψ into an NBA A over 2AP 

−  i.e. ω ⊨ ψ ⇔ trace(ω) ∈ L(A) for any path ω 

•  LTL-to-NBA translation (see e.g. [VW94], [DGV99]) 
−  construct a generalized NBA (multiple sets of accept states) 
−  based on decomposition of LTL formula into subformulae 
−  can convert GNBA into an equivalent NBA 
−  various optimisations to the basic techniques developed 
−  not covered here; see e.g. section 5.2 of [BK08] 



Original Slides

13 DP/Probabilistic Model Checking, Michaelmas 2011 

Büchi automata and LTL 
•  GF a     (“infinitely often a”) 

•  G(a → F b)     (“b always eventually follows a”) 

q0 q1 
¬a 

a 
a 

¬a 

b 

a∧¬b 
¬b 

¬a∨b 

q0 q1 
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Deterministic Büchi automata 
•  Like for finite automata… 

•  A NBA is deterministic if: 
−  |Q0|=1 
−  |δ(q, α)| ≤ 1 for all q ∈ Q and α ∈ Σ 
−  i.e. one initial state and no nondeterministic successors 

•  A deterministic Büchi automaton (DBA) is total if: 
−  |δ(q, α)| = 1 for all q ∈ Q and α ∈ Σ 
−  i.e. unique successor states 

•  But, NBA can not always be determinised… 
−  i.e. NBA are strictly more expressive than DBA 
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NBA and DBA 
•  NBA and DBA for the LTL formula G b ∧ GF a 

q0 q1 

a∧b 

b 
a∧b 

b 

q0 q1 

¬a∧b 

a∧b 
a∧b 

¬a∧b 

NBA: 

DBA: 
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No DBA possible 
•  Consider the ω-regular expression (α+β)*αω over Σ={α,β} 

−  i.e. words containing only finitely many instances of β 
−  there is no deterministic Büchi automata accepting this 

•  In particular, take α = {a} and β = ∅,  i.e. Σ=2AP, AP={a} 
−  (α+β)*αω represents the LTL formula FG a 

•  FG a is represented by the following NBA: 

•  But there is no DBA for FG a 

q0 q1 
¬a a 

a true 

q2 

true 
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Deterministic Rabin automata 
•  A deterministic Rabin automaton (DRA) is… 

−  a tuple A = (Q, Σ, δ, q0, Acc) where: 

−  Q is a finite set of states 
−  Σ is an alphabet 
−  δ : Q × Σ → Q is a transition function 
−  q0 ∈ Q is an initial state 
−  Acc ⊆ 2Q × 2Q is an acceptance condition 

•  The acceptance condition is a set of pairs of state sets 
−  Acc = { (Li, Ki) | 1≤i≤k } 
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Deterministic Rabin automata 
•  A run of a word on a DRA is accepting iff: 

−  for some pair (Li, Ki), the states in Li are visited finitely often 
and (some of) the states in Ki are visited infinitely often 

−  or in LTL:  

•  Hence: 
−  a deterministic Büchi automaton is a special case of a 

deterministic Rabin automaton where Acc = { (∅, {F}) } 
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FG a 
•  NBA for FG a  (no DBA exists) 

•  DRA for FG a 

−  where acceptance condition is Acc = { ({q0},{q1}) } 

q0 q1 
¬a a 

a true 

q2 

true 

q0 

¬a 

a 
a 

¬a 

q1 
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Example - DRA 
•  Another example of a DRA (over alphabet 2{a,b}) 

−  where acceptance condition is Acc = { ({q1},{q0}) } 

•  In LTL:  G(a → F(¬a∧b)) ∧ FG ¬a 

q0 

¬a∧b 

a 
a∨¬b 

¬a 

q1 
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Properties of DRA 

•  Any ω-regular language can represented by a DRA 
−  (and L(A) is an ω-regular language for any DRA A) 

•  i.e. DRA and NBA are equally expressive 
−  (but NBA may be more compact) 
−  and DRA are strictly more expressive than DBA 

•  Any NBA can be converted to an equivalent DRA [Saf88] 
−  size of the resulting DRA is 2O(nlogn) 
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Deterministic ω-automata and DTMCs 
•  Let A be a DBA or DRA over the alphabet 2AP 

−  i.e. L(A) ⊆ (2AP)ω identifies a set of paths in a DTMC 

•  Let ProbD(s, A) denote the corresponding probability 
−  from state s in a discrete-time Markov chain D 
−  i.e. ProbD(s, A) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ L(A) } 

•  Like for finite automata (i.e. DFA), we can evaluate  
ProbD(s, A) by constructing a product of D and A 
−  which records the state of both the DTMC and the automaton 
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Product DTMC for a DBA 
•  For a DTMC D = (S, sinit, P, L) 
•  and a (total) DBA A = (Q, Σ, δ, q0, F) 

•  The product DTMC D ⊗ A is: 
−  the DTMC (S×Q, (sinit,qinit), P’, L’) where: 
      qinit = δ(q0,L(sinit)) 

      L’(s,q) = { accept } if q ∈ F and L’(s,q) = ∅ otherwise 

•  Since A is deterministic 
−  unique mappings between paths of D, A and D ⊗ A 
−  probabilities of paths are preserved 
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Product DTMC for a DBA 
•  For DTMC D and DBA A 

−  where qs = δ(q0,L(s)) 

•  Hence: 

−  where TGFaccept = union of D⊗A BSCCs T with T∩Sat(accept)≠∅ 

•  Reduces to computing BSCCs and reachability probabilities 

ProbD(s, A) = ProbD⊗A((s,qs), GF accept) 

ProbD(s, A) = ProbD⊗A((s,qs), F TGFaccept) 
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Example 

•  Compute Prob(s0, GF a) 
−  property can be represented as a DBA 

•  Result: 1 

q0 q1 
¬a 

a 
a 

¬a 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 
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Example 2 
•  Compute Prob(s0, G ¬b ∧ GF a) 

−  property can be represented as a DBA 

•  Result: 0.75 

q0 q1 

¬a∧¬b 

a∧¬b 
a∧¬b 

¬a∧¬b 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 
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Product DTMC for a DRA 
•  For a DTMC D = (S, sinit, P, L) 
•  and a (total) DRA A = (Q, Σ, δ, q0, Acc) 

−  where Acc = { (Li, Ki) | 1≤i≤k } 

•  The product DTMC D ⊗ A is: 
−  the DTMC (S×Q, (sinit,qinit), P’, L’) where: 
      qinit = δ(q0,L(sinit)) 

      li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki 
      (i.e. state sets of acceptance condition used as labels)  

•  (same product as for DBA, except for state labelling) 
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Product DTMC for a DRA 
•  For DTMC D and DRA A 

−  where qs = δ(q0,L(s)) 
•  Hence: 

−  where TAcc is the union of all accepting BSCCs in D⊗A 
−  an accepting BSCC T of D⊗A is such that, for some 1≤i≤k: 

•  q ⊨ ¬li for all (s,q) ∈ T and q ⊨ ki for some (s,q) ∈ T 
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅ 

•  Reduces to computing BSCCs and reachability probabilities 

ProbD(s, A) = ProbD⊗A((s,qs), F TAcc) 

ProbD(s, A) = ProbD⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki) 
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Example 3 
•  Compute Prob(s0, FG a) 

−  property can be represented as a DRA 

•  Result: 0.125 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 

q0 

¬a 

a 
a 

¬a 

q1 

Acc = { ({q0},{q1}) } 
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Example 4 
•  Compute Prob(s0, G(b → F(¬b∧a)) ∧ FG ¬b) 

−  property can be represented as a DRA 

•  Result: 1 

q0 

¬b∧a 

b 
b∨¬a 

¬b 

q1 

Acc = { ({q1},{q0}) } 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 
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Summing up… 
•  ω-regular expressions and ω-regular languages 

−  languages of infinite words: E1.(F1)ω + E2.(F2)ω + … + En.(Fn)ω 
•  Nondeterministic Büchi automata (NBA) 

−  accepting runs visit a state in F infinitely often 
−  can represent any ω-regular language by an NBA 
−  can translate any LTL formula into equivalent NBA 

•  Deterministic Büchi automata (DBA) 
−  strictly less expressive than NBA (e.g. no NBA for FG a) 

•  Deterministic Rabin automata (DRA) 
−  generalised acceptance condition: { (Li, Ki) | 1≤i≤k } 
−  as expressive as NBA; can convert any NBA to a DRA 

•  Deterministic ω-automata and DTMCs 
−  product DTMC + BSCC computation + reachability 
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Overview 

•  Recall 
−  deterministic ω-automata (DBA or DRA) and DTMCs 

•  LTL model checking for DTMCs 
−  measurability 
−  complexity 
−  PCTL* model checking for DTMCs 

•  LTL model checking for MDPs 
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Recall - DBA and DRA 
•  Deterministic Büchi automata (DBA) 

−  (Q, Σ, δ, q0, F) 
−  accepting run must visit some state in F infinitely often 
−  less expressive than nondeterministic Büchi automata (NBA) 

•  Deterministic Rabin automata (DRA) 
−  (Q, Σ, δ, q0, Acc) 
−  Acc = { (Li, Ki) | 1≤i≤k } 
−  for some pair (Li, Ki), the states in Li must be visited finitely 

often and (some of) the states in Ki visited infinitely often 
−  equally expressive as NBA 
−  (i.e. all ω-regular properties; and hence all LTL formulae) 
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Product DTMC for a DBA 
•  For DTMC D and DBA A 

−  where qs = δ(q0,L(s)) 
•  Hence: 

−  where TGFaccept is the union of all BSCCs T in D⊗A with T∩Sat
(accept)≠∅ 

•  Reduces to computing BSCCs and reachability probabilities 

ProbD(s, A) = ProbD⊗A((s,qs), GF accept) 

ProbD(s, A) = ProbD⊗A((s,qs), F TGFaccept) 
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Product DTMC for a DRA 
•  For DTMC D and DRA A 

−  where qs = δ(q0,L(s)) 
•  Hence: 

−  where TAcc is the union of all accepting BSCCs in D⊗A 
−  an accepting BSCC T of D⊗A is such that, for some 1≤i≤k: 

•  q ⊨ ¬li for all (s,q) ∈ T and q ⊨ ki for some (s,q) ∈ T 
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅ 

•  Reduces to computing BSCCs and reachability probabilities 

ProbD(s, A) = ProbD⊗A((s,qs), F TAcc) 

ProbD(s, A) = ProbD⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki) 
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LTL model checking for DTMCs 
•  Model check LTL specification P~p [ ψ ]  against DTMC D 

•  1. Generate a deterministic Rabin automaton (DRA) for ψ 
−  build nondeterministic Büchi automaton (NBA) for ψ [VW94] 
−  convert the NBA to a DRA [Saf88] 

•  2. Construct product DTMC D⊗A 
•  3. Identify accepting BSCCs of D⊗A 
•  4. Compute probability of reaching accepting BSCCs 

−  from all states of the D⊗A 
•  5. Compare probability for (s, qs) against p for each s 

•  Qualitative LTL model checking - no probabilities needed  
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Example 3 (Lec 17) revisited 
•  Model check P>0.2 [ FG a ] 

•  Result: 
−  Prob(FG a) = [ 0.125, 0.5, 1, 0, 0, 1 ] 
−  Sat(P>0.2 [ FG a ]) = { s1, s2, s5 } 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 

q0 

¬a 

a 
a 

¬a 

q1 

Acc = { ({q0},{q1}) } 
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Measurability of ω-regular properties 
•  For any ω-regular property ψ 

−  the set of ψ-satisfying paths in any DTMC D is measurable 
•  Hence, the same applies to 

−  any regular safety property 
−  any LTL formula 

•  Proof sketch 
−  any ω-regular property can be represented by a DRA A 
−  we can construct D⊗A, in which there is a direct mapping from 

any path ω in D to a path ω’ in D⊗A 
− ω ⊨ ψ iff ω’ ⊨ 
−  GF Φ and FG Φ are measurable (see lecture 3) 
−  ∧ and ∨ = intersection/union (which preserve measurability) 
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Complexity 
•  Complexity of model checking LTL formula ψ on DTMC D 

−  is doubly exponential in |ψ| and polynomial in |D| 
−  (for the algorithm presented in these lectures) 

•  Converting LTL formula ψ to DRA A 
−  for some LTL formulae of size n, size of smallest DRA is  

•  BSCC computation 
−  Tarjan algorithm - linear in model size (states/transitions) 

•  Probabilistic reachability 
−  linear equations - cubic in (product) model size 

•  In total: O(poly(|D|,|A|)) 
•  In practice: |ψ| is small and |D| is large 
•  Complexity can be reduced to single exponential in |ψ| 

−  see e.g. [CY88,CY95] 
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PCTL* model checking 
•  PCTL* syntax: 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] 

−  ψ  ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
•  Example: 

−  P>p [ GF ( send → P>0 [ F ack ] ) ] 

•  PCTL* model checking algorithm 
−  bottom-up traversal of parse tree for formula (like PCTL) 
−  to model check P~p [ ψ ]: 

•  replace maximal state subformulae with atomic propositions 
•  (state subformulae already model checked recursively) 
•  modified formula ψ is now an LTL formula 
•  which can be model checked as for LTL 
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Recall - end components in MDPs 
•  End components of MDPs 

are the analogue of BSCCs in DTMCs 

•  An end component is a  
strongly connected sub-MDP 

•  A sub-MDP comprises a subset 
of states and a subset of the  
actions/distributions available  
in those states, which is closed  
under probabilistic branching 

s0 

s1 s2 

s5 s4 s3 

s7 s8 s6 

0.6 

0.3 

0.3 

0.7 

0.1 0.9 

0.1 

Note: 
●  action labels omitted 
●  probabilities omitted where =1 
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Recall - end components in MDPs 
•  End components of MDPs 

are the analogue of BSCCs in DTMCs 

•  For every end component, there  
is an adversary which, with 
probability 1, forces the MDP 
to remain in the end component,  
and visit all its states infinitely often 

•  Under every adversary σ, with 
probability 1, the set of states 
visited infinitely often forms 
an end component  

s0 

s1 s2 

s5 s4 s3 

s7 s8 s6 

0.6 

0.3 

0.3 

0.7 

0.1 0.9 

0.1 
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Recall - long-run properties of MDPs 
•  Maximum probabilities 

−  pmax(s, GF a) = pmax(s, F TGFa) 
•  where TGFa is the union of sets T for all end components 

(T,Steps’) with T ∩ Sat(a) ≠ ∅ 

−  pmax(s, FG a) = pmax(s, F TFGa) 
•  where TFGa is the union of sets T for all end components 

(T,Steps’) with T ⊆ Sat(a) 

•  Minimum probabilities 
−  need to compute from maximum probabilities… 
−  pmin(s, GF a) = 1- pmax(s, FG¬a) 
−  pmin(s, FG a) = 1- pmax(s, GF¬a) 
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Automata-based properties for MDPs 
•  For an MDP M and automaton A over alphabet 2AP 

−  consider probability of “satisfying” language L(A) ⊆ (2AP)ω  
−  ProbM,σ(s, A) = Prs

M,σ
 { ω ∈ PathM,σ(s) | trace(ω) ∈ L(A) } 

−  pmax
M(s, A) = supσ∈Adv ProbM,σ(s, A) 

−  pmin
M(s, A) = infσ∈Adv ProbM,σ(s, A) 

•  Might need minimum or maximum probabilities 
−  e.g. s ⊨ P≥0.99 [ ψgood ] ⇔ pmin

M
 (s, ψgood) ≥ 0.99 

−  e.g. s ⊨ P≤0.05 [ ψbad ] ⇔ pmax
M

 (s, ψbad) ≤ 0.05 
•  But, ψ-regular properties are closed under negation 

−  as are the automata that represent them 
−  so can always consider maximum probabilities… 
−  pmax

M(s, ψbad) or 1 - pmax
M(s, ¬ψgood)  
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LTL model checking for MDPs 
•  Model check LTL specification P~p [ ψ ]  against MDP M 

•  1. Convert problem to one needing maximum probabilities 
−  e.g. convert P>p [ ψ ] to P<1-p [ ¬ψ ] 

•  2. Generate a DRA for ψ (or ¬ψ) 
−  build nondeterministic Büchi automaton (NBA) for ψ [VW94] 
−  convert the NBA to a DRA [Saf88] 

•  3. Construct product MDP M⊗A 
•  4. Identify accepting end components (ECs) of M⊗A 
•  5. Compute max. probability of reaching accepting ECs 

−  from all states of the D⊗A 
•  6. Compare probability for (s, qs) against p for each s 
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Product MDP for a DRA 
•  For a MDP M = (S, sinit, Steps, L) 
•  and a (total) DRA A = (Q, Σ, δ, q0, Acc) 

−  where Acc = { (Li, Ki) | 1≤i≤k } 

•  The product MDP M ⊗ A is: 
−  the MDP (S×Q, (sinit,qinit), Steps’, L’) where: 
      qinit = δ(q0,L(sinit)) 
      Steps’(s,q) = { µq | µ ∈ Step(s) } 

   li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki 
      (i.e. state sets of acceptance condition used as labels)  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Product MDP for a DRA 
•  For MDP M and DRA A 

−  where qs = δ(q0,L(s)) 

•  Hence: 

−  where TAcc is the union of all sets T for accepting end 
components (T,Steps’) in D⊗A 

−  an accepting end components is such that, for some 1≤i≤k: 
•  (s,q) ⊨ ¬li for all (s,q) ∈ T and (s,q) ⊨ ki for some (s,q) ∈ T 
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅ 

pmax
M(s, A) = pmax

M⊗A((s,qs), F TAcc) 

pmax
M(s, A) = pmax

M⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki) 
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MDPs - Example 1 
•  Model check P<0.8 [ G ¬b ∧ GF a ] 

•  Result: 
−  pmax(G ¬b ∧ GF a) = [ 0.7, 0, 1, 1 ] 
−  Sat(P<0.8 [ G ¬b ∧ GF a ]) = { s0, s1 } 

s0 

s2 s1 

s3 

0.3 

0.7 
{b} 

{a} 
Acc = { (∅, {q1}) } 

DRA (in fact DBA): 

q0 

¬a∧¬b 

a∧¬b 
q1 

¬a∧¬b a∧¬b 
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MDPs - Example 2 
•  Model check P>0 [ G ¬b ∧ GF a ] 

−  pmin(s, G ¬b ∧ GF a) = 1 - pmax(s, ¬(G ¬b ∧ GF a)) 
                                   = 1 - pmax(s, F b ∨ FG ¬a)) 

•  Result: pmin(G ¬b ∧ GF a) = [ 0, 0, 0, 1 ] 
−  Sat(P>0 [ G ¬b ∧ GF a ]) = {s3} 

s0 

s2 s1 

s3 

0.3 

0.7 
{b} 

{a} 

DRA: 

Acc = { (∅,{q2}), 
               ({q1,q2},{q0}) } 

q0 

¬a∧¬b 

q1 

q2 

b b 

a∧¬b 

¬a∧¬b 

a∧¬b 

true 
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LTL model checking for MDPs 
•  Maximal end components 

−  can optimise LTL model checking using maximal end 
components (there may be exponentially many ECs) 

•  Qualitative LTL model checking 
−  no numerical computation: use Prob1E, Prob0A algorithms 

•  Complexity of model checking LTL formula ψ on MDP M 
−  is doubly exponential in |ψ| and polynomial in |M| 
−  unlike DTMCs, this cannot be improved upon 

•  PCTL* model checking 
−  LTL model checking can be adapted to PCTL*, as for DTMCs 

•  Optimal adversaries for LTL formulae 
−  memoryless adversary always exists for pmax(s, GF a)  

and for pmax(s, FG a) but not for arbitrary LTL formulae 
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Summing up… 
•  Deterministic ω-automata (DBA or DRA) and DTMCs 

−  probability of language acceptance reduces to probabilistic 
reachability of set of accepting BSCCs in product DTMC 

•  LTL model checking for DTMCs 
−  via construction of DRA for LTL formula 
−  complexity: (doubly) exponential in the size of the LTL 

formula and polynomial in the size of the DTMC 
−  measurability of any ω-regular property on a DTMC  

•  PCTL* model checking for DTMCs 
−  combination of PCTL and LTL model checking algorithms 

•  LTL model checking for MDPs 
−  max. probabilities of reaching accepting end components 
−  min. probabilities through negation and max. probabilities 
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Overview 

•  Implementation of probabilistic model checking 
−  overview, key operations, symbolic vs. explicit 

•  Binary decision diagrams (BDDs) 
−  introduction, sets, transition relations, … 

•  Multi-terminal BDDs (MTBDDs) 
−  introduction, vectors, matrices, … 

•  Operations on/with BDDs and MTBDDs 
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Implementation overview 
•  Overview of the probabilistic model checking process 

−  two distinct phases: model construction, model checking 
−  three different models, several different logics,  

various different solution/analysis methods 
−  but… all these processes have much in common 

Model 
construction 

High-level 
model 

Model 

Result Model 
checking 

Property 
PRISM 

language 
description 

PCTL or CSL 
formula 

DTMC, MDP 
or CTMC 
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Model construction 

PRISM 
language 

description graph-based 
algorithm 

Translation 
from 

high-level 
language 

Reachability: 
building set 
of reachable 

states 

Model construction 

Model High-level 
model 

matrix 
manipulation 

DTMC, MDP 
or CTMC 
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Model checking 

Precomputation 
algorithms 

Bottom strongly 
connected 
component 

computation 

Model checking 
Solution of linear 
equation systems 

(iterative methods) 

Solution of linear 
optimisation problems 

(iterative methods) 

Uniformisation-based 
iterative methods 

Basic set 
operations 

Model 
Result 

Property 

DTMC, MDP 
or CTMC 

PCTL or CSL 
formula 

Two distinct classes of techniques: 
graph-based algorithms 

iterative numerical computation 
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Underlying operations 
•  Key objects/operations for probabilistic model checking 

•  Graph-based algorithms 
−  underlying transition relation of DTMC/MDP/CTMC 
−  manipulation of transition relation and state sets 

•  Iterative numerical computation 
−  transition matrix of DTMC/MDP/CTMC, real-valued vectors 
−  manipulation of real-valued matrices and vectors 
−  in particular: matrix-vector multiplication 
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State-space explosion 
•  Models of real-life systems are typically huge 

−  familiar problem for verification/model checking techniques 

•  State-space explosion problem 
−  linear increase in size of system can result in an exponential 

increase in the size of the model 
−  e.g. n parallel components of size m, can give up to mn states 

•  Need efficient ways of storing models, sets of states, etc. 
−  and efficient ways of constructing, manipulating them 

•  Here, we will focus on symbolic approaches 
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Explicit vs. symbolic data structures 
•  Symbolic data structures 

−  usually based on binary decision diagrams (BDDs) or variants 
−  avoid explicit enumeration of data by exploiting regularity 
−  potentially very compact storage (but not always) 

•  Sets of states: 
−  explicit: bit vectors 
−  symbolic: BDDs 

•  Real-valued vectors: 
−  explicit: arrays of reals (in practice, doubles/floats) 
−  symbolic: multi-terminal BDDs (MTBDDs) 

•  Real-valued matrices: 
−  explicit: sparse matrices 
−  symbolic: MTBDDs 
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Representations of Boolean formulas 
•  Propositional formula:  f = (x1 ∨ x2) ∧ x3 

x2 

x1 

x3 

0 0 0 1 0 1 0 1

x3 x3 x3 

x2 
x1 x2 x3 f 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

x2 

x1 

0 1

x3 

Binary decision tree Truth table 

Binary decision diagram 
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Binary decision trees 
•  Graphical representation of Boolean functions 

−  f(x1,…,xn) : {0,1}n → {0,1} 
•  Binary tree with two types of nodes 
•  Non-terminal nodes 

−  labelled with a Boolean variable xi 

−  two children: 1 (“then”, solid line) and 0 (“else”, dotted line) 
•  Terminal nodes (or “leaf” nodes) 

−  labelled with 0 or 1 
•  To read the value of f(x1,…,xn) 

−  start at root (top) node 
−  take “then” edge if xi=1 
−  take “else” edge if xi=0 
−  result given by leaf node 

x2 

x1 

x3 

0 0 0 1 0 1 0 1

x3 x3 x3 

x2 
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Binary decision diagrams 
•  Binary decision diagrams (BDDs) [Bry86] 

−  based on binary decision trees, but reduced and ordered 
−  sometimes called reduced ordered BDDs (ROBDDs) 
−  actually directed acyclic graphs (DAGs), not trees 
−  compact, canonical representation for Boolean functions 

•  Variable ordering 
−  a BDD assumes a fixed total ordering 

over its set of Boolean variables 
−  e.g. x1<x2<x3 

−  along any path through the BDD,  
variables appear at most once each 
and always in the correct order 

x2 

x1 

0 1

x3 
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BDD reduction rule 1 
•  Rule 1: Merge identical terminal nodes 

•  Example: 

x2 

x1 

x3 

0 0 0 1 0 1 0 1

x3 x3 x3 

x2 x2 

x1 

x3 

0 1

x3 x3 x3 

x2 

0 0 0 
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BDD reduction rule 2 
•  Rule 2: Merge isomorphic nodes, redirect incoming nodes 

•  Example: 

x2 

x1 

x3 

0 1

x3 x3 x3 

x2 x2 

x1 

x3 

0 1

x3 

x2 

xj 

xi xi 

xj xj 

xi xi 

xj xj 

xi 

xj 
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BDD reduction rule 3 
•  Rule 3: Remove redundant nodes (with identical children) 

•  Example: 

x2 

x1 

x3 

0 1

x3 

x2 x2 

x1 

0 1

x3 

xi 

xj xj 
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Canonicity 
•  BDDs are a canonical representation for Boolean functions 

−  two Boolean functions are equivalent if and only if the BDDs 
which represent them are isomorphic 

−  uniqueness relies on: reduced BDDs, fixed variable ordered 

•  Important implications for implementation efficiency 
−  can be tested in linear (or even constant) time 

x2 

x1 

x3 

0 0 0 1 0 1 0 1

x3 x3 x3 

x2 x2 

x1 

0 1

x3 
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BDD variable ordering 
•  BDD size can be very sensitive to the variable ordering 

−  example: f = (x1∧y1) ∨ (x2∧y2) ∨ (x3∧y3) 

x2 

x1 

x3 

10

x3 x3 x3 

x2 

y1 y1 y1 y1 

y2 y2 

y3 

x1 

y1 

x2 

y2 

x3 

y3 

0 1

x1<y1<x2<y2< x3<y3 x1<x2<x3<y1< y2<y3 

2n+2 nodes 2n+1 nodes 
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BDDs to represent sets of states 
•  Consider a state space S and some subset S’ ⊆ S 

•  We can represent S’ by its characteristic function χS’ 
−  χS’ : S → {0,1}  where  χS’(s) = 1 if and only if s ∈ S’ 

•  Assume we have an encoding of S into n Boolean variables 
−  this is always possible for a finite set S 
−  e.g. enumerate the elements of S and use a binary encoding 
−  (note: there may be more efficient encodings though) 

•  So χS’ can be seen as a function χS’(x1,…xn) : {0,1}n → {0,1} 
−  which is simply a Boolean function 
−  which can therefore be represented as a BDD 
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BDD and sets of states - Example 
•  State space S:  {0, 1, 2, 3, 4, 5, 6, 7} 
•  Encoding of S:  {000, 001, 010, 011, 100, 101, 110, 111} 
•  Subset S’ ⊆ S:  {3, 5, 7} → {011, 101, 111} 

x1 x2 x3 fB 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

x2 

x1 

0 1

x3 

Truth table: BDD: 

B 
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BDDs and transition relations 
•  Transition relations can also be represented by their 

characteristic function, but over pairs of states 
−  relation: R ⊆ S × S 
−  characteristic function: χR : S × S → {0,1} 

•  For an encoding of state space S into n Boolean variables 
−  we have Boolean function fR(x1,…,xn,y1,…,yn) : {0,1}2n → {0,1} 
−  which can be represented by a BDD 

•  Row and column variables 
−  for efficiency reasons, we interleave the row variables x1,..,xn 

and column variables y1,…,yn 
−  i.e. we use function fR(x1,y1,…,xn,yn) : {0,1}2n → {0,1} 
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BDDs and transition relations 
•  Example: 

−  4 states: 0, 1, 2, 3 
−  Encoding: 0↦00, 1↦01, 2↦10, 3↦11 

y1 

x1 

1 0

x2 

y1 

x2 

y2 y2 

x2 

Transition x1 x2 y1 y2 x1y1x2y2 

(0,1) 0 0 0 1 0001 
(0,2) 0 0 1 0 0100 
(1,0) 0 1 0 0 0010 
(2,3) 1 0 1 1 1101 
(3,1) 1 1 0 1 1011 
(3,2) 1 1 1 0 1110 

0 1 

3 2 
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Multi-terminal binary decision diagrams 
•  Multi-terminal BDDs (MTBDDs), sometimes called ADDs 

−  extension of BDDs to represent real-valued functions 
−  like BDDs, an MTBDD M is associated with n Boolean variables 
−  MTBDD M represents a function fM(x1,…,xn) : {0,1}n → ℝ 

x1 x2 x3 fM 

0 0 0 0 
0 0 1 3 
0 1 0 9 
0 1 1 0 
1 0 0 4 
1 0 1 4 
1 1 0 9 
1 1 1 0 

x2 

x1 

3 9

x3 x3 

x2 

4

M 
For clarity, we omit 
the zero terminal 

node and any 
incoming edges 

e.g. 
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MTBDDs to represent vectors 
•  In the same way that BDDs can represent sets of states… 

−  MTBDDs can represent real-valued vectors over states S 
−  e.g. a vector of probabilities Prob(s, ψ) for each state s ∈ S 
−  assume we have an encoding of S into n Boolean variables 
−  then vector v : S → ℝ is a function fv(x1,…,xn) : {0,1}n → ℝ 

x2 

x1 

3 9

x3 x3 

x2 

4

MTBDD v 
x1 x2 x3 i fv 

0 0 0 0 0 
0 0 1 1 3 
0 1 0 2 9 
0 1 1 3 0 
1 0 0 4 4 
1 0 1 5 4 
1 1 0 6 9 
1 1 1 7 0 

Vector v 

[0,3,9,0,4,4,9,0] 
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MTBDDs to represent matrices 
•  MTBDDs can be used to represent real-valued matrices 

indexed over a set of states S 
−  e.g. the transition probability/rate matrix of a DTMC/CTMC 

•  For an encoding of state space S into n Boolean variables 
−  a matrix M maps pairs of states to reals i.e. M : S × S→ℝ 
−  this becomes:  fM(x1,…,xn,y1,…,yn) : {0,1}2n → ℝ 

•  Row and column variables 
−  for efficiency reasons, we interleave the row variables x1,..,xn 

and column variables y1,…,yn 
−  i.e. we use function fM(x1,y1,…,xn,yn) : {0,1}2n → ℝ 
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Matrices and MTBDDs - Example 

Entry in M  x1 x2 y1 y2 x1y1x2y2 fM 

(0,1) = 8 0 0 0 1 0001 8 
(1,0) = 2 0 1 0 0 0010 2 
(0,3) = 5 0 0 1 1 0101 5 
(1,3) = 5 0 1 1 1 0111 5 
(2,3) = 5 1 0 1 1 1101 5 
(3,2) = 2 1 1 1 0 1110 2 

Matrix M MTBDD M 

y1 

x1 

8 2

x2 

y1 

5

x2 

y2 y2 y2 
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Matrices and MTBDDs - Recursion 
•  Descending one level in the MTBDD (i.e. setting xi=b) 

−  splits the matrix represented by the MTBDD in half 
−  row variables (xi) give horizontal split 
−  column variables (yi) give vertical split 

M|x=0,y=0 M|x=0,y=1 

M|x=1,y=0 M|x=1,y=1 

M|x=0 

M|x=1 

M 
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Matrices and MTBDDs - Recursion 

Entry in M  x1 x2 y1 y2 x1y1x2y2 fM 

(0,1) = 8 0 0 0 1 0001 8 
(1,0) = 2 0 1 0 0 0010 2 
(0,3) = 5 0 0 1 1 0101 5 
(1,3) = 5 0 1 1 1 0111 5 
(2,3) = 5 1 0 1 1 1101 5 
(3,2) = 2 1 1 1 0 1110 2 

Matrix M MTBDD M 

y1 

x1 

8 2

x2 

y1 

5

x2 

y2 y2 y2 
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Matrices and MTBDDs - Regularity 

Entry in M  x1 x2 y1 y2 x1y1x2y2 fM 

(0,1) = 8 0 0 0 1 0001 8 
(1,0) = 2 0 1 0 0 0010 2 
(0,3) = 5 0 0 1 1 0101 5 
(1,3) = 5 0 1 1 1 0111 5 
(2,3) = 5 1 0 1 1 1101 5 
(3,2) = 2 1 1 1 0 1110 2 

Matrix M MTBDD M 

y1 

x1 

8 2

x2 

y1 

5

x2 

y2 y2 y2 

Repeated  
submatrices 

Shared  
MTBDD node 
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Matrices and MTBDDs - Regularity 

Entry in M  x1 x2 y1 y2 x1y1x2y2 fM 

(0,1) = 8 0 0 0 1 0001 8 
(1,0) = 2 0 1 0 0 0010 2 
(0,3) = 5 0 0 1 1 0101 5 
(1,3) = 5 0 1 1 1 0111 5 
(2,3) = 5 1 0 1 1 1101 5 
(3,2) = 2 1 1 1 0 1110 2 

Matrix M MTBDD M 

y1 

x1 

8 2

x2 

y1 

5

x2 

y2 y2 y2 

Identical 
adjacent 

submatrices 

MTBDD node  
removed 



Original Slides

29 DP/Probabilistic Model Checking, Michaelmas 2011 

Matrices and MTBDDs - Sparseness 

Entry in M  x1 x2 y1 y2 x1y1x2y2 fM 

(0,1) = 8 0 0 0 1 0001 8 
(1,0) = 2 0 1 0 0 0010 2 
(0,3) = 5 0 0 1 1 0101 5 
(1,3) = 5 0 1 1 1 0111 5 
(2,3) = 5 1 0 1 1 1101 5 
(3,2) = 2 1 1 1 0 1110 2 

Matrix M MTBDD M 

y1 

x1 

8 2

x2 

y1 

5

x2 

y2 y2 y2 

Blocks of 
zeros 

Edge goes 
straight to 
zero node 
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Matrices and MTBDDs - Compactness 
•  Some simple matrices have extremely compact 

representations as MTBDDs 
−  e.g. the identify matrix or a constant matrix 

8

x1 

y1 

x2 

y1 

y2 

x3 

y2 

y3 y3 

1
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Manipulating BDDs 
•  Need efficient ways to manipulate Boolean functions 

−  while they are represented as BDDs 
−  i.e. algorithms which are applied directly to the BDDs 

•  Basic operations on Boolean functions: 
−  negation (¬), conjunction (∧), disjunction (∨), etc. 
−  can all be applied directly to BDDs 

•  Key operation on BDDs: Apply(op, A, B) 
−  where A and B are BDDs and op is a binary operator over 

Boolean values, e.g. ∧, ∨, etc. 
−  Apply(op, A, B) returns the BDD representing function fA op fB 
−  often just use infix notation, e.g. Apply(∧, A, B) = A ∧ B 

−  efficient algorithm: recursive depth-first traversal of A and B 
−  complexity (and size of result) is O( |A|·|B| ) 

•  where |C| denotes size of BDD C  
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Apply - Example 
•  Example: Apply(∨, A, B) 

∨ 

x2 

x1 

0 1

x3 

x4 

A 

A1 

A2 

A3 

A4 A5 

A6 

x1 

0 1

x3 

x4 

B 

B1 

B2 

B3 B4 

B5 

A1,B1 

A2,B2 

A6,B2 A6,B5 

A3,B4 A5,B2 A3,B2 

A5,B4 A4,B3 

Argument BDDs, with node labels: Recursive calls to Apply: 
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Apply - Example 
•  Example: Apply(∨, A, B) 

−  recursive call structure implicitly defines resulting BDD 

x2 

x1 

0 1

x3 

x4 

x3 

1 1

A1,B1 

A2,B2 

A6,B2 A6,B5 

A3,B4 A5,B2 A3,B2 

A5,B4 A4,B3 
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Apply - Example 
•  Example: Apply(∨, A, B) 

−  but the resulting BDD needs to be reduced 
−  in fact, we can do this as part of the recursive Apply operation, 

implementing reduction rules bottom-up 

x2 

x1 

0 1

x3 

x4 

x3 

1 1

A1,B1 

A2,B2 

A6,B2 A6,B5 

A3,B4 A5,B2 A3,B2 

A5,B4 A4,B3 

x2 

x1 

0 1

x3 

x4 
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Implementation of BDDs 
•  Store all BDDs currently in use as one multi-rooted BDD 

−  no duplicate BDD subtrees, even across multiple BDDs 
−  every time a new node is created, check for existence first 
−  sometimes called the “unique table” 
−  implemented as set of hash tables, one per Boolean variable 
−  need: node referencing/dereferencing, garbage collection 

•  Efficiency implications 
−  very significant memory savings  
−  trivial checking of BDD equality (pointer comparison) 

•  Caching of BDD operation results for reuse 
−  store result of every BDD operation (memory dependent) 
−  applied at every step of recursive BDD operations 
−  relies on fast check for BDD equality 
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Operations with BDDs 
•  Operations on sets of states easy with BDDs 

−  set union: A ∪ B,  in BDDs: A ∨ B 
−  set intersection: A ∩ B,  in BDDs: A ∧ B 
−  set complement: S ∖ A,  in BDDs: ¬A 

•  Graph-based algorithms (e.g. reachability) 
−  need forwards or backwards image operator 

•  i.e. computation of all successors/predecessors of a state 
•  again, easy with BDD operations (conjunction, quantification) 

−  other ingredients 
•  set operations (see above) 
•  equality of state sets (fixpoint termination) - equality of BDDs 
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Operations on MTBDDs 
•  The BDD operation Apply extends easily to MTBDDs 

•  For MTBDDs A, B and binary operation op over the reals: 
−  Apply(op, A, B) returns the MTBDD representing fA op fB 
−  examples for op: +, -, ×, min, max, … 
−  often just use infix notation, e.g. Apply(+, A, B) = A + B 

•  BDDs are just an instance of MTBDDs 
−  in this case, can use Boolean ops too, e.g. Apply(∨, A, B) 

•  The recursive algorithm for implementing Apply on BDDs 
−  can be reused for Apply on MTBDDs 
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Some other MTBDD operations 
•  Threshold(A, ~, c) 

−  for MTBDD A, relational operator op and bound c ∈ ℝ 
−  converts MTBDD to BDD based on threshold ~c 
−  i.e. builds BDD representing function fA ~ c 
−  e.g. computing the underlying transition relation from the 

probability matrix of a DTMC:  R = Threshold(P, >, 0) 

•  Abstract(op, {x1,…,xn}, A) 
−  for MTBDD A, variables {x1,…,xn} and commutative/associative 

binary operator over reals op 
−  analogue of existential/universal quantification for BDDs 
−  e.g. Abstract(+, {x}, A) constructs the MTBDD representing the 

function fA|x=0 + fA|x=1 
−  e.g. for BDD A:  ∃(x1,..,xn).A  ≡  Abstract(∨, {x1,…,xn}, A) 
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MTBDD matrix/vector operations 
•  Pointwise addition/multiplication and scalar multiplication 

−  can be implemented with the Apply operator 
−  Matrices:  A + B,   MTBDDs:  Apply(+, A, B) 

•  Matrix-matrix multiplication A·B 
−  can be expressed recursively based on 4-way matrix splits 

−  which forms the basis of an MTBDD implementation 
−  various optimisations are possible 

•  Matrix-matrix multiplication A·v is done in similar fashion 

A1 = B1·C1 + B2 · C3,  etc. 
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Sparse matrices 
•  Explicit data structure for matrices with many zero entries 

−  assume a matrix P of size n × n with nnz non-zero elements 
−  store three arrays: val and col (of size nnz) and row (of size n) 
−  for each matrix entry (r,c)=v, c and v are stored in col/val 
−  entries are grouped by row, with pointers stored in row 
−  also possible to group by column 

0.5 1 0.3 1 0.7 0.5 val 

1 2 0 0 3 3 col 

0 3 5 6 2 row 
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Sparse matrices 
•  Advantages 

−  compact storage (proportional to number of non-zero entries) 
−  fast access to matrix entries 
−  especially if usually need an entire row at once 
−  (which is the case for e.g. matrix-vector multiplication) 

•  Disadvantage 
−  less efficient to manipulate (i.e. add/delete matrix entries) 

•  Storage requirements 
−  for a matrix of size n × n with nnz non-zero elements 
−  assume reals are 8 byte doubles, indices are 4 byte integers 
−  we need  8·nnz+4·nnz+4·n  = 12·nnz+4·n bytes 
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Sparse matrices vs. MTBDDs 
•  Storage requirements 

−  MTBDDs: each node is 20 bytes 
−  sparse matrices: 12·nnz+4·n bytes (n states, nnz transitions) 

•  Case study: Kanban manufacturing system, N jobs 
−  store transition rate matrix R of the corresponding CTMCs 

N States 
(n) 

Transitions 
(nnz) 

MTBDD 
(KB) 

Sparse matrix 
(KB) 

3 58,400 446,400 48 5,459 
4 454,475 3,979,850 96 48,414 
5 2,546,432 24,460,016 123 296,588 
6 11,261,376 115,708,992 154 1,399,955 
7 41,644,800 450,455,040 186 5,441,445 
8 133,865,325 1,507,898,700 287 13,193,599 
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Implementation in PRISM 
•  PRISM is a symbolic probabilistic model checker 

−  the key underlying data structures are MTBDDs (and BDDs) 

•  In fact, has multiple numerical computation engines 

−  MTBDDs: storage/analysis of very large models (given 
structure/regularity), numerical computation can blow up 

−  Sparse matrices: fastest solution for smaller models (<106 
states), prohibitive memory consumption for larger models 

−  Hybrid: combine MTBDD storage with explicit storage,  
ten-fold increase in analysable model size (~107 states) 
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Summing up… 
•  Implementation of probabilistic model checking 

−  graph-based algorithms, e.g. reachability, precomputation 
−  manipulation of sets of states, transition relations 
−  iterative numerical computation 
−  key operation: matrix-vector multiplication 

•  Binary decision diagrams (BDDs) 
−  representation for Boolean functions 
−  efficient storage/manipulation of sets, transition relations 

•  Multi-terminal BDDs (MTBDDs) 
−  extension of BDDs to real-valued functions 
−  efficient storage/manipulation of real-valued vectors, matrices 

(assuming structure and regularity) 
−  can be much more compact than (explicit) sparse matrices 


