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Probabilistic model checking

- Probabilistic model checking...

— is a formal verification technique
for modelling and analysing systems
that exhibit probabilistic behaviour

- Formal verification...

— is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems
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Outline

Introducing probabilistic model checking...

- Topics for this lecture
— the role of automatic verification
— what is probabilistic model checking?
— why is it important?
— where is it applicable?
— what does it involve?

About this course
— aims and organisation
— information and links

DISIM

DP/Probabilistic Model Checking, Michaelmas 2011 3



Conventional software engineering

From requirements to software system
— apply design methodologies
— code directly in programming language
— validation via testing, code walkthroughs

Informal

R System
requirements

Validation

,00
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o In the previous slide, “validation” is used in a broad sense

o More precise meaning: when a software artifact is checked
with its final user
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Formal verification

- From requirements to formal specification
— formalise specification, derive model
— formally verify correctness

Formal — Model

specification

System

Verification

Abstract
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Informal
requirements
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But my program works!

- True, there are many successful large-scale complex
computer systems...

— online banking, electronic commerce

information services, online libraries, business processes
— supply chain management

mobile phone networks

- Yet many new potential application domains with far
greater complexity and higher expectations

— automotive drive-by-wire
— medical sensors: heart rate & blood pressure monitors
— intelligent buildings and spaces, environmental sensors

Learning from mistakes costly...

DISIM
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Toyota Prius

- Toyota Prius
— first mass-produced hybrid vehicle

February 2010
— software “glitch” found in e T
anti-lock braking system ’ R =

— in response to numerous
complaints/accidents

Eventually fixed via software update
— in total 185,000 cars recalled, at huge cost

— handling of the incident prompted
much criticism, bad publicity

DISIM

DP/Probabilistic Model Checking, Michaelmas 2011 7



Ariane 5

ESA (European Space Agency) Ariane 5 launcher

— shown here in maiden flight
on 4th June 1996

- 37secs later self-destructs

— uncaught exception: numerical
overflow in a conversion routine
results in incorrect altitude sent
by the on-board computer

- Expensive, embarrassing...
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The London Ambulance Service

London Ambulance Service
computer aided despatch system

— Area 600sqg miles

— Population 6.8million

5000 patients per day

— 2000-2500 calls per day

— 1000-1200 999 calls per day

Introduced October 1992
- Severe system failure:
— position of vehicles incorrectly recorded
— multiple vehicles sent to the same location
— 20-30 people estimated to have died as a result RS e
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What do these stories have in common?

Programmable computing devices
— conventional computers and networks
— software embedded in devices
- airbag controllers, mobile phones, etc

Programming error direct cause of failure

Software critical
— for safety
— for business
— for performance
- High costs incurred: not just financial

DISIM
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Why must we verify?

“Testing can only show the presence of errors, not their absence.”

To rule out errors need to
consider all possible executions
often not feasible mechanically!

— need formal verification...

“In their capacity as a tool,
computers will be but a ripple
on the surface of our culture.

In their capacity as intellectual Edsger Dijkstra
challenge, computers are
without precedent in the 1930-2002

cultural history of mankind.”

DISIM
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Automatic verification

Formal verification...

— the application of rigorous, mathematics-based techniques
to establish the correctness of computerised systems

— essentially: proving that a program satisfies it specification

— many techniques: manual proof, automated theorem proving,
static analysis, model checking, ...

1070 atoms

Automatic verification =
— mechanical, push-button technology
— performed without human intervention

DISIM
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Verification via model checking

Finite-state
System model -
) ¢ N esu
— m v %
Q‘zf f Model checker
e.g. SMV, Spin
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System Temporal logic (error trace)
require- specification ~0+0e00
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Model checking in practice

Model checking now routinely applied to real-life systems
— not just “verification”...
— model checkers used as a debugging tool

— at IBM, bugs detected in arbiter that could not be found with
simulations

- Now widely accepted in industrial practice
— Microsoft, Intel, Cadence, Bell Labs, IBM,...
Many software tools, both commercial and academic
— smyv, SPIN, SLAM, FDR2, FormalCheck, RuleBase, ...
— software, hardware, protocols, ...
Extremely active research area

— 2008 Turing Award won by Edmund Clarke, Allen Emerson
and Joseph Sifakis for their work on model checking

DISIM
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New challenges for verification

Devices, ever smaller
— laptops, phones, sensors...

Networking, wireless, wired & global
— wireless & internet everywhere

New design and engineering challenges
— adaptive computing,
ubiquitous/pervasive computing,
context-aware systems
— trade-offs between e.g. performance,
security, power usage, battery life, ...

DISIM
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New challenges for verification

Many properties other than correctness are important
Need to guarantee...

— safety, reliability, performance, dependability

— resource usage, e.g. battery life

— security, privacy, trust, anonymity, fairness

— and much more...

Quantitative, as well as qualitative requirements:
— “how reliable is my car’s Bluetooth network?”
— “how efficient is my phone’s power management policy?”
— “how secure is my bank’s web-service?”

DISIM
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Why probability?

Some systems are inherently probabilistic...

- Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

Examples: real-world protocols featuring randomisation
— Randomised back-off schemes
- IEEE 802.3 CSMA/CD, IEEE 802.11 Wireless LAN
— Random choice of waiting time
- IEEE 1394 Firewire (root contention), Bluetooth (device discovery)
— Random choice over a set of possible addresses
- IPv4 Zeroconf dynamic configuration (link-local addressing)
Randomised algorithms for anonymity, contract signing, ... o
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o There are protocols containing statements like if (rand() <
0.5) do_something; else do_something else;

o using standard model checking techniques, we may only use
non-determinism

o thus verifying if there is a path leading to an error (if we are
checking a safety property)

o but having a path going to the error may be straightforward

o instead, we may want to verify that an error has a low
probability

o with probabilistic model checking, probabilities are embedded

in the model



Why probability?

Some systems are inherently probabilistic...

- Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

Modelling uncertainty and performance
— to quantify rate of failures, express Quality of Service

- Examples:
— computer networks, embedded systems
— power management policies
— nano-scale circuitry: reliability through defect-tolerance

DISIM
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Why probability?

Some systems are inherently probabilistic...

- Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

Modelling uncertainty and performance
— to quantify rate of failures, express Quality of Service

- For quantitative analysis of software and systems
— to quantify resource usage given a policy
“the minimum expected battery capacity for a scenario...”

- And many others, e.g. biological processes Do
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Probabilistic model checking
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o Also compare with this slide
o Note that counterexamples in probabilistic model checking are
not as important as in standard model checking

Verification via model checking

Finite-state

System model

Result
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Model checker
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Here and in the next 5 slides, sketch of a widely used leader
election protocol

Case study: FireWire protocol

FireWire (IEEE 1394) e

\

— high-performance serial bus for networking ’,“.q
multimedia devices; originally by Apple &'

— "hot-pluggable" - add/remove o f
devices at any time g

— no requirement for a single PC (need acyclic topology)

Root contention protocol
— leader election algorithm, when nodes join/leave
— symmetric, distributed protocol
— uses electronic coin tossing and timing delays
— nodes send messages: "be my parent”
— root contention: when nodes contend leadership @Dw i
— random choice: "fast"/"slow" delay before retry

A L Ls

e AR g1 L

D -~



FireWire example
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FireWire leader election




FireWire root contention




FireWire root contention




FireWire analysis

Probabilistic model checking -
— model constructed and analysed using PRISM ﬂ = = ﬂ
— timing delays taken from IEEE standard s

— model includes:
. concurrency: messages between nodes and wires
. underspecification of delays (upper/lower bounds)
— max. model size: 170 million states

Analysis: O A

ySEs , S Es

— verified that root contention always
resolved with probability 1

— investigated time taken for leader election ™
— and the effect of using biased coin

- based on a conjecture by Stoelinga

DISIM
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FireWire: Analysis results

“minimum probability
of electing leader
by time T”

06

0.4

minimum probability of electing a leader by T

0.2
= short wire
- long wire
0 2 4 6 8 10

T (10% ns)
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o From the previous to the next 3 slides, results of verifying the
above protocol using PRISM (PRobabilistlc Symbolic Model
checker)

o state-of-the-art probabilistic model checker

o all figures are obtained by performing many verifications, each
time varying some parameters

o T or the bias of a coin used in the protocol itself
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FireWire: Analysis results
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FireWire: Analysis results
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FireWire: Analysis results

3850

3800 “maximum expected

time to elect a leader’
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3700

(short wire length)
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Probabilistic model checking

Probabilistic model

e.g. Markov chain Result
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Probabilistic model checking inputs

- Models: variants of Markov chains
— discrete-time Markov chains (DTMCs)
. discrete time, discrete probabilistic behaviours only
— continuous-time Markov chains (CTMCs)
. continuous time, continuous probabilistic behaviours
— Markov decision processes (MDPs)
- DTMCs, plus nondeterminism
Specifications
— informally:
. “probability of delivery within time deadline is ...”
- “expected time until message delivery is ...”
. “expected power consumption is ...”
— formally:
- probabilistic temporal logics (PCTL, CSL, LTL, PCTL*, ...)
- e.g.P_gos [ Ferr/total>0.1 ], P_, [ F<t reply_count=k ]
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o Standard model checking only accepts a Kripke Structure-like
input for the model
o in PRISM, 3 different mathematical models may be used
o it is the modeler task to understand which one to use
o some logic is for some input only (e.g., CSL is only for CTMCs)
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Probabilistic model checking involves...

Construction of models
— from a description in a high-level modelling language

Probabilistic model checking algorithms
— graph-theoretical algorithms
. e.g. for reachability, identifying strongly connected components
— numerical computation
- linear equation systems, linear optimisation problems
. iterative methods, direct methods
- uniformisation, shortest path problems
— automata for regular languages
— also sampling-based (statistical) for approximate analysis
- e.g. hypothesis testing based on simulation runs
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Probabilistic model checking involves...

Efficient implementation techniques
— essential for scalability to real-life systems
— symbolic data structures based on binary decision diagrams
— algorithms for bisimulation minimisation, symmetry reduction

- Tool support
— PRISM: free, open-source probabilistic model checker
— currently based at Oxford University
— supports all probabilistic models discussed here

DISIM
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Course aims

Introduce main types of probabilistic models and
specification notations

— theory, syntax, semantics, examples
— probability, expectation, costs/rewards
Explain the working of probabilistic model checking
— algorithms & (symbolic) implementation
Introduce software tools
— probabilistic model checker PRISM
Examples from wide range of application domains

— communication & coordination protocols, performance &
reliability modelling, biological systems, ...

Mix of theory and practice
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Course outline

- Discrete-time Markov chains (DTMCs) and their properties
- Probabilistic temporal logics: PCTL, LTL, etc.

- PCTL model checking for DTMCs

- The PRISM model checker

- Costs & rewards

- Continuous-time Markov chains (CTMCs)

- Counterexamples & bisimulation

- Markov decision processes (MDPs)

- Probabilistic LTL model checking

- Implementation and data structures: symbolic techniques

DISIM
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Course information

Prerequisites/background
— basic computer science/maths background
— no probability knowledge assumed

Lectures
— 20 lectures: Mon 2pm, Wed 3pm, Thur 12pm (wks 1-4)
- Classes/practicals (please sign up on-line)

— 4 problem sheets + 1 hr classes
(Tue 3pm, Wed 12pm, wks 3, 5, 7, 8)

— 4 practical exercises, based on PRISM,
4 scheduled 2 hr practical sessions (Tue 4pm, wks 3, 4, 6, 7),
+ work outside lab sessions

+ Assessment
— take-home assignment

DISIM
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Further information

Course lecture notes are self-contained
— www.cs.ox.ac.uk/teaching/materials11-12/probabilistic

For further reading material...
— two online tutorial papers also cover a lot of the material

. Stochastic Model Checking
Marta Kwiatkowska, Gethin Norman and David Parker

- Automated Verification Techniques for Probabilistic Systems
Vojtéch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker

— DTMC/MDP material also based on Chapter 10 of:

Principles of Model Checking
Christel Baier and Joost-Pieter Katoen
MIT Press

— PRISM web site: http://www.prismmodelchecker.org D
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Next lecture(s)

- Wed 3pm
« Thur 12pm

- Discrete-time Markov chains

DISIM
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Probabilistic Model Checking

Formal verification and analysis of systems that exhibit
probabilistic behaviour

— e.g. randomised algorithms/protocols
— e.g. systems with failures/unreliability

- Based on the construction and analysis of precise
mathematical models

- This lecture: discrete-time Markov chains

DISIM
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Overview

Probability basics

Discrete-time Markov chains (DTMCs)
— definition, properties, examples

Formalising path-based properties of DTMCs
— probability space over infinite paths

Probabilistic reachability
— definition, computation

- Sources/further reading: Section 10.1 of [BK08]

DISIM
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Probability basics

First, need an experiment
— The sample space Q is the set of possible outcomes
— An event is a subset of Q, can form events ANB,AUB,Q\ A

Examples:
— toss a coin: Q = {H,T}, events: “H”", “T”
— toss two coins: Q = {(H,H),(H,T),(T,H),(T, T},
event: “at least one H”
— toss a coin co-often: Q is set of infinite sequences of H/T
event: “H in the first 3 throws”
Probability is:

— Pr(*H”) = Pr(“T") = 1/2, Pr(“at least one H”) = 3/4
— Pr(“H in the first 3 throws”) =1/2 + 1/4+1/8=7/8

DISIM
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Probability example

Modelling a 6-sided die using a fair coin
— algorithm due to Knuth/Yao:

start at 0, toss a coin

— upper branch when H

— lower branch when T
— repeat until value chosen

Is this algorithm correct?
— e.g. probability of obtaining a 4?
— Obtain as disjoint union of events
— THH, TTTHH, TTTTTHH, ...
— Pr(“eventually 4”)
=(1/23+0/25+0/2)7+..=1/6

DP/Probabilistic Model Checking, Michaelmas 2011
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Example...

Other properties?
— “what is the probability of termination?”
e.g. efficiency?

— “what is the probability of needing
more than 4 coin tosses?”

— “on average, how many
coin tosses are needed?”

Probabilistic model checking provides a framework for
these kinds of properties...

— modelling languages

— property specification languages

— model checking algorithms, techniques and tools

DISIM
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o “termination”: arrive at one of the rightmost states

o “number of coin tosses’: number of transitions to “terminate”
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Discrete-time Markov chains

State-transition systems augmented with probabilities

- States
— set of states representing possible configurations of the
system being modelled

- Transitions

— transitions between states model
evolution of system’s state;
occur in discrete time-steps

- Probabilities

— probabilities of making transitions
between states are given by
discrete probability distributions

DISIM
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Markov property

- If the current state is known, then the future states of the
system are independent of its past states

i.e. the current state of the model contains all information
that can influence the future evolution of the system

also known as “memorylessness”

DISIM
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Simple DTMC example

Modelling a very simple communication protocol
— after one step, process starts trying to send a message
— with probability 0.01, channel unready so wait a step
— with probability 0.98, send message successfully and stop
— with probability 0.01, message sending fails, restart

DISIM
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Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s;,,P,L) where:
— S is a set of states (“state space”)
— Sinit € S'is the initial state
— P:S xS —[0,1]is the transition probability matrix
where X, s P(s,s’) = 1 foralls € S

— L:S — 227 is function labelling states with atomic propositions
(taken from a set AP)

0.01 {succ} o
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Note that all rows sum to 1

Simple DTMC example

AP = {try, fail, succ}

D = (5,S5iniuP,L) L(sp)=2
L(s,)={try},
S = {50, S1y S 53} LESS:%fay“}}v
Sinit = So L(s3)={succ}
0 1 0 0
P 0 0.01 0.01 0.98
o o o
0 0 0 1

.01
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In a stochastic matrix, from any state we must go to some
(possibly the same) state

Some more terminology

- Pis a stochastic matrix, meaning it satisifes:
— P(s,s’) € [0,1] forall s,s’ € Sand %, P(s,s’) = 1 foralls € S

- A sub-stochastic matrix satisfies:
— P(s,s’) € [0,1] for all s,s’ € Sand %, P(s,s’) < 1 foralls € S

« An absorbing state is a state s for which:
— P(s,s) = 1 and P(s,s’) = O for all s=s’
— the transition from s to itself is sometimes called a self-loop

- Note: Since we assume P is stochastic...
— every state has at least one outgoing transition psw,,
— i.e. no deadlocks (in model checking terminology) ‘



DTMCs: An alternative definition

- Alternative definition... a DTMC is:
— a family of random variables { X(k) | k=0,1,2,... }
— where X(k) are observations at discrete time-steps
— i.e. X(k) is the state of the system at time-step k
— which satisfies...

- The Markov property (“memorylessness”)
— Pr(X(k)=s, | X(k-1)=s,_1, ... , X(0)=s, )
= Pr( X(k)=s, | X(k-1)=s,_;)
— for a given current state, future states are independent of past

- This allows us to adopt the “state-based” view presented so
far (which is better suited to this context) o
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Other assumptions made here

- We consider time-homogenous DTMCs
— transition probabilities are independent of time
— P(si_1,500 = Pr(X(K)=s, | X(k-1)=s,_;)
— otherwise: time-inhomogenous

- We will (mostly) assume that the state space S is finite
— in general, S can be any countable set

Initial state s;,; € S can be generalised...
— to an initial probability distribution s;,;; : S — [0,1]

- Transition probabilities are reals: P(s,s’) € [0,1]
— but for algorithmic purposes, are assumed to be rationals

DISIM
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o A more correct formula is
P(x(n+ k) = s | x(k) =s") = P(x(n) = s | x(0) = §') for all
n, k,s,s’ in respective domains

o The idea is that it is not important how you arrived in state s:
the process “re-starts over” from s, regardless of the past

o Using only the memorylessness property (i.e., P(x(k +1) =
s | x(0) =so,...,x(k) =sk) =P(x(k+1)=s|x(k) =sk)),
we may still have a non-homogeneous (also called
non-stationary) Markov Chain: the transition relation depends

on s, s, and k
B/ B S



o That is, the memorylessness property only looks at paths of
some fixed size k; for paths of a different size (where some
more or less time has passed...), probabilities may be different
(thus, it is not truly “memoryless”)

o Here, we will only consider stationary Markov Chains; thus,
for any path (of any length) leading to s, we only consider the
last step to define the probability

o This allows us to define transition probabilities to only depend

on the starting and ending states
% S s



Suitable APs may be used to label also the other “final” states
(only “interesting” labels are being shown)

DTMC example 2 - Coins and dice

- Recall Knuth/Yao’s die algorithm from earlier:

5 .D] {done} S={Sg Sy, »S6 1,2,...,6}
m] {done} Sinit = So

@) done P(50,5)=0.5
@0/\5:03 1 {done, four} P(sy,5,)=0.5
.5 etc
X ml {done}
L(sg) = {init}

o8 )1 (done etc. :
DISIM



DTMC example 3 - Zeroconf

Zeroconf = “Zero configuration networking”
— self-configuration for local, ad-hoc networks
— automatic configuration of unique IP for new devices
— simple; no DHCP, DNS, ...

- Basic idea:

— 65,024 available IP addresses (IANA-specified range)
— new node picks address U at random
— broadcasts “probe” messages: “Who is using U?”

a node already using U replies to the probe
in this case, protocol is restarted

— messages may not get sent (transmission fails, host busy, ...)
— so: nodes send multiple (n) probes, waiting after each one

DISIM
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DTMC for Zeroconf

— n=4 probes, m existing nodes in network
— probability of message loss: p
— probability that new address is in use: g = m/65024

{ok} @ e {error}
psw,,

1 1
DP/Probabilistic Model Checking, Michaelmas 2011 17



o In the previous 2 slides, this is what each node entering the
protocol does
o sy — s1 corresponds to: new node picks address U at random,
broadcasts probe message: “Who is using U?" and a node
already using U replies to the probe (the last step happens

with probability g = %)

o s; — S given that the picked address is not good, it may be
the case that the probe address was lost, so send it again with
probability p (this is inside the protocol!)

o if the probe got lost but the address is ok, it does not matter

o probability p is typically low



o In the previous 2 slides, this is what each node entering the
protocol does

o message loss is only considered when answering the probe, not
for the initial probe itself

o after error, needs manual restart or perhaps too many devices
are using the network

o the “waiting after each one" part is not directly modeled, i.e.,
we are after each wait

o protocols already with an IP must only answer to probes, if
they reach one



Properties of DTMCs

Path-based properties

— what is the probability of observing a particular behaviour (or
class of behaviours)?

— e.g. “what is the probability of throwing a 4?”

- Transient properties
— probability of being in state s after t steps?

Steady-state
— long-run probability of being in each state

- Expectations
— e.g. “what is the average number of coin tosses required?” Bt

DP/Probabilistic Model Checking, Michaelmas 2011 18



o First two properties of the previous slide are close to what it
may be done in standard model checking

o Of course, dropping the probabilistic part

o Last two are in probabilistic model checking only
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DTMCs and paths

A path in a DTMC represents an execution (i.e. one possible
behaviour) of the system being modelled

Formally: 1 frail)

— infinite sequence of states 5,s;5,5;...
such that P(s;,s;,;) > 0 Vi=0

— infinite unfolding of DTMC
- Examples:
— never succeeds: (5¢5,5,)®
— tries, waits, fails, retries, succeeds: $45,5,5,505;(S3)*
Notation:

— Path(s) = set of all infinite paths starting in state s
— also sometimes use finite (length) paths

— Pathg,(s) = set of all finite paths starting in state s

0.01 {succ}

DISIM
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Paths and probabilities

- To reason (quantitatively) about this system
— need to define a probability space over paths

Intuitively:

SO

— sample space: Path(s) = set of all _,,_,.....
infinite paths from a state s '{}3.‘.‘.‘.‘]

— events: sets of infinite paths from s ST

— basic events: cylinder sets (or “cones”)

— cylinder set Cyl(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: Cyl(ss;s,)

DISIM
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o In the previous slide, if w is a path of length 0, we have that
all paths starting from s are in the cylinder

o in probabilistic model checking, we only consider “basic
events”

o thus an event is any subset of paths, but a basic event is a
“well-formed" (measurable) subset of path

o well-formedness is defined through the concept of o-algebra



Probability spaces

Let Q be an arbitrary non-empty set

- A o-algebra (or o-field) on Q is a family X of subsets of Q
closed under complementation and countable union, i.e.:

— if A € , the complement Q \ Aisin X
— if A, e Zfori e N, the union U; A;is in £
— the empty set @ isin X

Elements of X are called measurable sets or events

- Theorem: For any family F of subsets of Q, there exists a
unique smallest o-algebra on Q containing F

DISIM
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o In the previous slide, if a family F does not fulfill the
o-algebra properties, simply add (the minimal number of)
elements in order to fulfill them

o

© ©6 06 06 0 o

o-algebra may also be called Borel field (requires countably
infinite unions)

note that “family of subsets of Q" means a set ¥ C 2%
since a subset of 2 is an “event”, ¥ is a set of events

of course, the first and the last property imply that Q € *
example: F =29 is a o-algebra for all Q

example: F = {@,Q} is a o-algebra for all Q

example: for Q = {a, b}, F = {9, {a},{a, b}} is not a

o-algebra since Q\ {a} = {b} ¢ F
% BECTSTURY ”” :



Probability spaces

Probability space (Q, X, Pr)
— Q is the sample space
— 2 is the set of events: o-algebra on Q

— Pr: X — [0,1] is the probability measure:
Pr(Q) = 1 and Pr(u; A) = Z; Pr(A)) for countable disjoint A,

DISIM
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o In the previous slide: typically, & = 2%

o however, we could be interested in understanding the
“minimal” ¥ C 2% we may use without disrupting probability
definition

o thus, we take “good” subsets of ¥ C 2, namely o-algebras

o we will never ask which is probability of a “bad” subset of €,
i.e., of an element not in

‘ UNIVERSITA DIsIM
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Probability space - Simple example

- Sample space Q
-Q=1{1,2,3}

- Event set X
— e.g. powerset of Q
-2={0, {1} {2} {3} {1,2},{1,3},{2,3}, {1,2,3} }
— (closed under complement/countable union, contains &)

- Probability measure Pr
— e.g.Pr(1) = Pr(2) = Pr(3) = 1/3
— Pr({1,2) = 1/3+1/3 = 2/3, etc.

DISIM

DP/Probabilistic Model Checking, Michaelmas 2011 23



Probability space - Simple example 2

- Sample space Q
-0=N={0,1,2,3,4,... }

- Event set X

—eg.2={0, “odd”, “even”, N }
— (closed under complement/countable union, contains &)

- Probability measure Pr
— e.g. Pr(*odd”) = 0.5, Pr(“even”) = 0.5

DISIM
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Probability space over paths

- Sample space Q = Path(s)
set of infinite paths with initial state s
Event set 3,
— the cylinder set Cyl(w) = { w’ € Path(s) | w is prefix of w’}

— Zpans) 1S the least o-algebra on Path(s) containing Cyl(w) for
all finite paths w starting in s

Probability measure Pr,
— define probability P,(w) for finite path w = ss,...s, as:
- P(w) = 1 if w has length one (i.e. w = s)
- P(w) = P(s,s;) - ... - P(s,,5,) otherwise
- define Pry(Cyl(w)) = P,(w) for all finite paths w
— Prg extends uniquely to a probability measure Prg:3p,,—[0,1]

- See [KSK76] for further details

DISIM
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o The “experiment” consists in selecting a path in the DTMC
o So, each single path is an “outcome” w € Q

o However, for a given path 7, the subset {7} may not be an
event (see example below)

o Note that there are |S| probability spaces in a DTMC...

o Informally: in probabilistic model checking, we consider sets of
paths (that is, subsets of Path), but not all of them: an event
must consider all and only paths having some common prefix

o an event with two paths without a common prefix (not even in
the very first state) is not an event

o an event not including a path having some common prefix to
all other paths in the event is not an event
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o More formally, w.r.t. o-algebras, sets in & must have the
following property: taken some finite prefix w, all infinite
paths having w as a prefix must be in the family

o Thatis, Cyl(w) € &

o We can see a cylinder Cyl(w) as the sub-tree of paths starting
from the last state of w

o Suppose we have only three paths starting from s, i.e.,

Q = Path(s) = {m1, m, 73} and that 71, m> share a common
prefix |w| > 0

o Then X = {0, {m},{m1, 73}, {m1, 72, m3}} is a o-algebra but
does not fulfill the above property because {71, m} ¢ L

o Simply adding {m1,m} we have

Y = {(Z)v {7T2}, {ﬂ—l’ 7T3}, {717 T2, 7T3}, {ﬂ—l’ 71—2]%}?:}%{2?{?’? n[m :
o-algebra 2 ‘



o We have to take the least o-algebra containing {71, m}, i.e.,
Y= {@, {71'1, 7T2}, {71'3}, {71'1, T2, 7T3}}

o We will never ask the probability of, e.g., {m1,m3}: the only
finite path they have in common is s, which is also in common
with mo...

o note that all three paths share the common prefix consisting in
the state s alone; thus, {1, 72, 73} must be in *, which is

true
o {m1} and {m,} are not events, despite being possible

experiment outcomes
\ / DEGLI STUDI ience aelin
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Paths and probabilities - Example

Paths where sending fails immediately
— W = 545,5, T ffail}
— Cyl(w) = all paths starting sys;s,...
— Po(w) = P(sq,s;) - P(sy,5,)
=1-0.01 =0.01
— Pryo(Cyl(w)) = Pyy(w) = 0.01

0.01 {succ}

Paths which are eventually successful and with no failures
— Cyl(sys153) U Cyl(s45,5,53) U Cyl(s45;5,5,53) U ...
— Pryo( Cyl(s¢S;53) U Cyl(55,5;53) U Cyl(545;5,5;53) U ... )
= P(505153) + Pyo(50515153) + Pyo(5051515153) + ...
=1-0.98 +1-0.01-0.98 + 1-0.01-0.01-0.98 + ...
0.9898989898...
=98/99 o
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o In the previous slide: note that the first point is a “single”
event, despite being an infinite set of paths
o Instead, the second point is an infinite union of “single”
events
o note that all listed cylinders (set of paths) have null
intersection, thus we may sum their probabilities
o Of course, we can compute a probability for both cases
o actually, with such definition, we may build efficient algorithms

to compute probabilities
o ‘“efficient” in the number of states, so recall that state

explosion always exists...



Reachability

Key property: probabilistic reachability
— probability of a path reaching a state in some target set T = S
— e.g. “probability of the algorithm terminating successfully?”
— e.g. “probability that an error occurs during execution?”

- Dual of reachability: invariance
— probability of remaining within some class of states
— Pr(“remain in set of states T") = 1 - Pr(“reach set S\T")
— e.g. “probability that an error never occurs”

We will also consider other variants of reachability
— time-bounded, constrained (“until”), ...

DISIM
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o In the previous slide: in KSs, reachability and invariance
excludes each other, whilst in DTMCs they can coexist

o So, we have probabilities on cylinders, but how do | specify
“interesting” cylinders?

o in the sense, for which it would interesting to compute the
probability?

o Reachability: set of paths (from cylinders!) leading to

TCS..

o S is finite, any T is good, no need of o-algebras here...
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Reachability probabilities

Formally: ProbReach(s, T) = Pr(Reach(s, T))
— where Reach(s, T) = { 5455, ... € Path(s) | s;in T for some i }

Is Reach(s, T) measurable forany T = S ? Yes...

— Reach(s, T) is the union of all basic cylinders
Cyl(ses;...s,) where s¢s,...s, in Reachg,(s, T)

— Reachy;, (s, T) contains all finite paths sgs,...s, such that:
S0=S,Sgy--sSp1 € T, 5, €T

— set of such finite paths sgs;...s, is countable

Probability
— in fact, the above is a disjoint union
— so probability obtained by simply summing... —
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o In the previous slide: once reached, I'm done, so | don't
consider paths going back to T after having already touched
T before (see definition of Reachgy)

o if a loop is present before going to T, then we have infinite
paths, but always countable
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Computing reachability probabilities

- Compute as (infinite) sum...

- Example:
— ProbReach(sg, {4})

DISIM
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From definition to computation

Computing reachability probabilities

- ProbReach(s,, {s¢}) : compute as infinite sum?
— doesn’t scale...

{error}

DP/Probabilistic Model Checking, Michaelmas 2011 30
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From definition to computation

Computing reachability probabilities

- Alternative: derive a linear equation system
— solve for all states simultaneously
— i.e. compute vector ProbReach(T)

+ Let x, denote ProbReach(s, T)

- Solve:
1 ifseT
X, = 0 if T is not reachable from s
EP(s,s') X, otherwise
s'ES
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Example

Compute ProbReach(s,, {4})

DISIM
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o From the previous slide: let's perform the computation

0 X = X = X = X{1} = X2} = X3} = X5} = X6} = 0

° Xay =1 X = 3x(a) =

o st - %XS5 + %XSGy XSs =
solved

Xsys Xy = %XSQ, which may be easily

‘ UNIVERSITA DIsIM
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Unique solutions

- Why the need to identify states that cannot reach T?

- Consider this simple DTMC:
— compute probability of reaching {s,} from s,

93

1

— linear equation system: x;, = 1, X,
— multiple solutions: (x,,, X,,) = (1,p) for any p € [0,1]

= XS]

DISIM
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If the condition “if T is not reachable from s were omitted in the
left slide, then we would have the non-unique solution of the right
slide
o “reachable” here means Reachgy(s, T) # ()
o to be determined using standard model checking techniques,
essentially considering only edges with a strictly positive
probability

Computing reachability probabilities Unique solutions

+ Alternative: derive a linear equation system + Why the need to identify states that cannot reach T?

solve for all states simultaneously

~ iLe. compute vector ProbReach(T) + Consider this simple DTMC

~ compute probability of reaching {sq) from s,

- Let x, denote ProbReach(s, T)

- Solve
1 ifseT
X = 0 if Tis not reachable from s
JPGs,s) - x, otherwise
a2

X = 1, %,
SITA DISIM
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Computing reachability probabilities

- Another alternative: least fixed point characterisation

- Consider functions of the form:

_F:[O,]]S_,[O’]]S T
\ vectors of

i probabilities
- And define: i for each state

-y <y iffy(s) <y'(s) forall s
- yis afixed point of Fif F(y) = y

- A fixed point x of F is the least fixed point of F if x <y for
any other fixed point y

DISIM

DP/Probabilistic Model Checking, Michaelmas 2011 34



o In the previous slide, AB is the set of functions f : B — A
o so, F takes a function from S to [0, 1] and returns another
function from S to [0, 1]
o need not to be distribution probabilities, thus for y € [0,1]° we
may have 3, y(s) # 1
o note that, for some y;,y» € [0,1]°, both y; < y> and y» < y;
may be false, i.e., this is a partial ordering
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No more need of the reachability clause

Least fixed point

- ProbReach(T) is the least fixed point of the function F:

1 ifseT

) - EP(S'S')' ¥(s') otherwise.
s'eS

- This yields a simple iterative algorithm to approximate

ProbReach(T):
— x® =0 (i.e. xO(s) = 0 for all s) in practice, terminate
- - - when for example:
— x(+D) = F(x(M)

max | Xx0+1)(s) - xM(s)) | <¢
— X0 < xM < x@ < x® < .

— ProbReach(T) = lim,_, x® for some user-defined
- tolerance value € oism
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The “power method” is the one shown in the previous slide

Least fixed point

Expressing ProbReach as a least fixed point...

corresponds to solving the linear equation system
using the power method

- other iterative methods exist (see later)

. power method is guaranteed to converge

— generalises non-probabilistic reachability
— can be generalised to:

. constrained reachability (see PCTL “until”)
- reachability for Markov decision processes

also yields bounded reachability probabilities... nsm ‘
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We always have to use infinite paths, as this is our Q

Bounded reachability probabilities

+ Probability of reaching T from s within k steps

- Formally: ProbReach=X(s, T) = Pr,(Reach=k(s, T)) where:
— Reach=k(s, T) = { 5455, ... € Path(s) | s; in T for some i<k }

- ProbReach=KT) = x&+1 from the previous fixed point
— which gives us...

1 ifseT
ProbReach®(s, T) = 0 ifk=0&se&T
EP(s,s')- ProbReach®'(s', T) ifk>0&s¢&T

s'eS
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(Bounded) reachability

- ProbReach(sy, {1,2,3,4,5,6}) = 1

- ProbReach=k (s, {1,2,3,4,5,6}) = ...

Probability
o
“u
1=}

=)
~

DP/Probabilistic Model Checking, Michaelmas 2011
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o In the plot of the previous slide, probability is always
approaching to 1, without actually being equal to 1

o only the first probability, which considers infinite paths,
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Summing up...

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

- Formalising path-based properties of DTMCs
— probability space over infinite paths

- Probabilistic reachability
— infinite sum
— linear equation system
— least fixed point characterisation
— bounded reachability

DISIM
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Next lecture

« Thur 12pm

Discrete-time Markov chains...
— transient
— steady-state
— long-run behaviour

DISIM
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Probabilistic Model Checking Michaelmas Term 2011

Lecture 3
Discrete-time Markov Chains...

Dr. Dave Parker

UNIVERSITY OF

OXFORD

Department of Computer Science
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DISIM



Next few lectures...

- Today:
— Discrete-time Markov chains (continued)

Mon 2pm:
— Probabilistic temporal logics

- Wed 3pm:
— PCTL model checking for DTMCs

« Thur 12pm:
— PRISM

DISIM
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Overview

Transient state probabilities

- Long-run / steady-state probabilities

- Qualitative properties
— repeated reachability
— persistence

DISIM
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Transient state probabilities

- What is the probability, having started in state s, of being in
state s’ at time k?

— i.e. after exactly k steps/transitions have occurred
— this is the transient state probability: 17, (s’)

- Transient state distribution: 1
— vector T, i.e. 11 (s’) for all states s’

Note: this is a discrete probability distribution
— sowe have g, : S — [0,1]
— rather than e.g. Prg: 25,6 — [0,1] where 3,4, S 2Path® o,

DP/Probabilistic Model Checking, Michaelmas 2011 4



o In the previous slide, note that you need two states and a
bound to define the transient state probability
o we have |S]| transient state distributions for each value of k, by
varying the starting state of the distribution
o note that, in transient state distributions, the destination
varies and the source stays constant
o of course, being a probability distribution, > s 7sk(s") =1
o It is not a special case of ProbReach=k because here we have
exactly k steps
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Transient distributions

DISIM
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Computing transient probabilities

Transient state probabilities:
= T (") = Zgnes P(s”,87) - 1T, 1(s”)
— (i.e. look at incoming transitions)
Computation of transient state distribution:
— i, is the initial probability distribution

— e.g.inour case T o(s’) = 1 if s’=s and m, ((s’) = O otherwise
- Es,k = Es,kfl -P

i.e. successive vector-matrix multiplications

DISIM
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Computing transient probabilities

00~ [1,0,0,0,0,0]

R o,o]

Tso,2 = %!0)%)%!%10]
0 05 0 05 0 0 N
05 0 025 0 0250 T3 = O,g,O,g,g,g]
b |00 0 0 1 0 )
o 0 0 1 0 0
o 0 0 0 1 0
o 0 1 0 0 0
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Computing transient probabilities

Mg = Mgy P = LY Pk

- kth matrix power: Pk
— P gives one-step transition probabilities
— Pk gives probabilities of k-step transition probabilities
— i.e. PK(s,s’) = 1y, (s”)

- A possible optimisation: iterative squaring
- e.g. P8 = ((PZ)Z)Z
— only requires log k multiplications
— but potentially inefficient, e.g. if P is large and sparse

— in practice, successive vector-matrix multiplications preferred ois
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Notion of time in DTMCs

Two possible views on the timing aspects of a system
modelled as a DTMC:

Discrete time-steps model time accurately
— e.g. clock ticks in a model of an embedded device
— or like dice example: interested in number of steps (tosses)

- Time-abstract

— no information assumed about the time transitions take
— e.g. simple Zeroconf model

In the latter case, transient probabilities are not very useful
In both cases, often beneficial to study long-run behaviour P
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Long-run behaviour

Consider the limit: 7w = lim,_ , 1,

— where 11, is the transient state distribution at time k
having starting in state s

— this limit, where it exists, is called the limiting distribution

Intuitive idea
— the percentage of time, in the long run, spent in each state

— e.g. reliability: “in the long-run, what percentage of time is the
system in an operational state”

DISIM

DP/Probabilistic Model Checking, Michaelmas 2011 10



o In the previous slide, recall that 75 is a vector where, at
position s’, we have limy_,o 75 k(5')
o i.e., the probability that, in the long run, you go from s to s’
o the starting distribution (k =0) is 1 for s’ = s and 0 otherwise
o we have |S] long-run distributions
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Limiting distribution

50,0 =

Mo =

0,2 =

Mso,3 =

Mo =
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Long-run behaviour

Questions:
— when does this limit exist?
— does it depend on the initial state/distribution?

CEBO o))

1
0.5 e’ 1

- Need to consider underlying graph
— (V,E) where V are vertices and E < VxV are edges
—V=SandE={(s,s’)s.t. P(s,s’) >0} o
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You can escape from an SCC, you cannot escape from a BSCC

Graph terminology

- A state s’ is reachable from s if there is a finite path
starting in s and ending in s’

- A subset T of S is strongly connected if, for each pair of
states s and s’ in T, s’ is reachable from s passing only
through states in T

- A strongly connected component (SCC) is a maximally
strongly connected set of states (i.e. no superset of it is
also strongly connected)

« A bottom strongly connected component (BSCC) is an SCC
T from which no state outside T is reachable from T

- Alternative terminology: “s communicates with s’”,

“communicating class”, “closed communicating class”
|: :'msw
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Example - (B)SCCs

SCC
0.5
02 scc

> S S > S B

0 0.5 y 2
0i5 0.25 . .

A4 v

S3 Sy

1 1
BSCC BSCC

DISIM
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Graph terminology

Markov chain is irreducible if all its states belong to a
single BSCC; otherwise reducible

1

- A state s is periodic, with period d, if
— the greatest common divisor of the set{ n | f™>0} equals d

— where f,™ is the probability of, when starting in state s,
returning to state s in exactly n steps

- A Markov chain is aperiodic if its period is 1

DISIM
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o In the previous slide, a state is aperiodic if d = 1, a Markov
Chain is aperiodic if all its states are aperiodic

o if a state as a self loop, then it is aperiodic

o orif, e.g., has a cycle of length 3 and one of length 4

o the example in this slide has period 2 for both states, and it is
easy to see that the limiting distribution does not exist

o the other example in slide 92 is not irreducible, thus the
limiting distribution depends on the starting distribution



This is a fix point computation

Steady-state probabilities

- For a finite, irreducible, aperiodic DTMC...
— limiting distribution always exists
— and is independent of initial state/distribution

+ These are known as steady-state probabilities
— (or equilibrium probabilities)

— effect of initial distribution has disappeared, denoted

- These probabilities can be computed as the unique solution
of the linear equation system:

m-P=1 and Eﬁg(s)ﬂ
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m is a row vector; “balance of leaving and entering”: 7 vs. P

Steady-state - Balance equations

« Known as balance equations

m-P=m and ESESE(S)=1

« Thatis: balance the
probability of
«— | leaving and

~ () = Zyes T(S) - P(s,5) entering a state s’

= ZesT(s) = 1 \
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Irreducible and aperiodic, the “original” one (with a loop on s3)
was reducible instead

Steady-state - Example

0 1 0 0

p_[0 0.01 0.01 0.98
1.0 0 o0 x ~ [0.332215, 0.335570,
0 0.003356, 0.328859] ‘

1 0 0
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Steady-state — Example

letx=m x ~[0.332215, 0.335570,
- Solve: x-P = x, Zxx(s) =1 0.003356, 0.328859 ]

Long-run percentage of time
spent in the state “try”
~ 33.6%

Long-run percentage of time

0 1 0 0 P n
spent in “fail”/"succ
p_|0 001 0.01 0.98 ~ 0.003356 + 0.328859
1 0 0 0 ~ 33.2%
1 0 0 0 o,
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Periodic DTMCs

For (finite, irreducible) periodic DTMCs, this limit:
U ACIEPRAN | C oo
1
does not exist, but this limit does:

(and where both limits exist,

lim 1 2_”_ ") e.g. for aperiodic DTMCs,
—sk

n— oo H these 2 limits coincide)

- Steady-state probabilities for these DTMCs can be
computed by solving the same set of linear equations:

m-P=1 and ESESE(S)=1

DISIM

DP/Probabilistic Model Checking, Michaelmas 2011 20



o In the previous slide, the period of the small example is 2
o new limit: we are considering the average of the distributions

resulting after 1,..., n steps; we then take the limit of such
averages

o the computation is the same, but the interpretation is slightly
different
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“Compute vector 75" is of course the final goal...

Steady-state - General case

- General case: reducible DTMC
— compute vector T,
— (note: distribution depends on initial state s)
- Compute BSCCs for DTMC; then two cases to consider:
- (1)sisinaBSCCT
— compute steady-state probabilities x in sub-DTMC for T
—m(s’) = x(s") ifs’inT
—m(s’) =0 ifs’notinT
« (2) sis notin any BSCC

— compute steady-state probabilities x; for sub-DTMC of each
BSCC T and combine with reachability probabilities to BSCCs

— m,(s’) = ProbReach(s, T) - x{(s’) if s’ is in BSCC T

- m,(s") = 0 if s’ is not in a BSCC
DP/Probabilistic Model Checking, Michaelmas 2011 21



Steady-state - Example 2

- 1, depends on initial state s
m;=[000100]

m,=[000010]

0.5

M = T = [0,0,001]

15

1 2 1 1
o = [O!OJB!;!E!E]

T = ...

DISIM
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o Let us comment some values from the previous slide
o in the long run, any SCC which is not BSCC will be left, thus

me(so) = me(s1) = 0 for all ¢
o of course, this is a consequence of the algorithm in slide 101

o mo(n) =331+ A1+ 414, )=1(12)=1

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2



Qualitative properties

- Quantitative properties:
— “what is the probability of event A?”

- Qualititative properties:
— “the probability of event Ais 1” (“almost surely A”)
— or: “the probability of event Ais > 0" (“possibly A”)

For finite DTMCs, qualititative properties do not depend on
the transition probabilities - only need underlying graph
— e.g. to determine “is target set T reached with probability 1?”
(see DTMC model checking lecture)

— computing BSCCs of a DTMCs yields information about
long-run qualitative properties...

DISIM
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Fundamental property

Fundamental property of (finite) DTMCs...

- With probability 1, e ~ o
a BSCC will be reached ’
and all of its states s 02
visited infinitely often é é : ] ‘

Formally:

— Pryg(5¢515;... | 3i=0, 3 BSCC T such that
Vjzis;€Tand
V seT s, = s for infinitely many k) = 1

DISIM
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o In the previous slide, note that all BSCCs are reached with
probability 1, as in the long run such probabilities do not sum
up

o so reaching a selected BSCC has probability 1...

o .. and also reached any of the three BSCCs has probability 1!

o in the computation of 7 this does not happen only because we
have the normalization factor

| UNIVERSITA DISIM
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Zeroconf example

- 2 BSCCs: {sg}, {sg}

- Probability of trying to acquire a new address infinitely
often is 0

{ok} @ e {error}

1 1
DP/Probabilistic Model Checking, Michaelmas 2011 25



o In the previous slide, note that both ok and error have
probability 1
° % with normalization

o all other states (including the retry state s, mentioned
slide) have probability 0

in the



Aside: Infinite Markov chains

- Infinite-state random walk

p p p
"
-CEC R el el -

1-p 1-p 1-p
- Value of probability p does affect qualitative properties
— ProbReach(s, {s,}) = 1if p < 0.5

— ProbReach(s, {s;) < 1 if p > 0.5

DISIM
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“Always eventually” and “infinitely often” = GF

Repeated reachability

Repeated reachability:
— “always eventually...”, “infinitely often...”
Proo($081S5... | Vi=0 3 j=is; € B)

— where B c S is a set of states

- e.g. “what is the probability that the protocol successfully
sends a message infinitely often?”

Is this measurable? Yes...
— set of satisfying paths is: ﬂ Ucm

n=0 m=n

— where C,, is the union of all cylinder sets Cyl(sys;...s,,) for

finite paths sgs,...s,, such thats, € B
Disim
DP/Probabilistic Model Checking, Michaelmas 2011 27



Qualitative repeated reachability

« Prig(58;5;,... | Vi=03j=is; €B) =1
Pry, (“always eventually B”) = 1

if and only if

- Tn B+ & for each BSCC T that is reachable from s,

0.5
0.25
3 50 5‘/ > s,
Example:
ois 025 L
B =1{s3 54 S5} .
b4 b4
3 Sq
{(:)] 1()] ...................... i .
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“Eventually forever" = FG

Persistence

Persistence properties:
— “eventually forever...”
Proo($081S5... | 3120 V j=is; € B)
— where B c S is a set of states

- e.g. “what is the probability of the leader election algorithm
reaching, and staying in, a stable state?”

- e.g. “what is the probability that an irrecoverable error
occurs?”

Is this measurable? Yes...

DP/Probabilistic Model Checking, Michaelmas 2011 29



Qualitative persistence

Proo (Ss1S;... | 3120 V j=is; €B) = 1
Pryo ( “eventually forever B”) = 1

if and only if

- T < B for each BSCC T that is reachable from s,

0.5

.' Sosy

Example:
ois 0ps 3

B =1{s, 53 54 S .
{2, 53, 54, S5} b 0
S5 S,
1 ] ......................

DISIM
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Summing up...

Transient state probabilities
— successive vector-matrix multiplications

Long-run/steady-state probabilities
— requires graph analysis
— irreducible case: solve linear equation system
— reducible case: steady-state for sub-DTMCs + reachability

- Qualitative properties
— repeated reachability
— persistence

DISIM
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Overview

- Temporal logic

- Non-probabilistic temporal logic
— CTL

Probabilistic temporal logic
— PCTL = CTL + probabilities

- Qualitative vs. quantitative

Linear-time properties
— LTL, PCTL*

DISIM
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Temporal logic

Temporal logic

— formal language for specifying and reasoning about how the
behaviour of a system changes over time

— extends propositional logic with modal/temporal operators

— one important use: representation of system properties to be
checked by a model checker

- Logics used in this course are probabilistic extensions of
temporal logics devised for non-probabilistic systems

— So we revert briefly to (labelled) state-transition diagrams

{fail}

{fail}

0.01 fsucct {succ} Rt

DP/Probabilistic Model Checking, Michaelmas 2011 3



State-transition systems

Labelled state-transition system (LTS) (or Kripke structure)
— is a tuple (S,s;,i,—,L) where:

— S is a set of states (“state space”) e
— Sinit € Sis the initial state e e

J
— — < S x Sis the transition relation ' e’

— L:S — 2APis function labelling {succ}
states with atomic propositions
(taken from a set AP)

DTMC (S,s,ir,P,L) has underlying LTS (S,S;qi,—>L)
— where — ={(s,s’) s.t. P(s,s’) > 0}

DISIM
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Paths - some notation

- Path w = s4s,;5,... such that (s;,s;,;) € — fori >0
— we write s; — s;,; as shorthand for (s;,s;,;) € —

- w(i) is the (i+1)th state of w, i.e. s;

- wl...i] denotes the (finite) prefix ending in the (i+1)th state
—ie. wl...i] = 545, 8,

- wli...] denotes the suffix starting from the (i+1)th state
—i.e. wli...] =551Si42.--

- As for DTMCs, Path(s) = set of all infinite paths from s

DISIM
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Some derivable operators, like OR and implication, are omitted;
others, like F and G, are present

CTL

« CTL - Computation Tree Logic

- Syntax split into state and path formulae
— specify properties of states/paths, respectively
— a CTL formula is a state formula

Some of these

operators (e.g.
- State formulae: 2 eg

A, F, G) are
—¢p =truelaldbad| -d|AY]|EY derivable...
— where a € AP and @ is a path formula
- Path formulae X = “next”
F = “future”

-~y = Xo|Fe|GoldUS G = “globally”
— where ¢ is a state formula U = “until” R

R T T T ~



CTL semantics

Intuitive semantics:
— of quantifiers (A/E) and temporal operators (F/G/U)

. T A
bt Ao dnTd

EF red EG red E [ yellow U red ]

*r A .9
e l £ A ! ' I l ) T
0 QG > o ¢ 0o 0 ¢
AF red AG red A[yellow U red]
DP/Probabilistic Model Checking, Michaelmas 2011 7
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CTL semantics

Semantics of state formulae:
— s = ¢ denotes “s satisfies ¢” or “¢ is true in s”

For a state s of an LTS (S,S;,i,—,L):

— s E true always

—-ska < ael(s)

-sEb, A, < sE®, and sE b,

—skE - < sk

—sEAY < w = Y forall w € Path(s)
—-sEEY < w = Y for some w € Path(s)

DISIM
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CTL semantics

- Semantics of path formulae:
— w E P denotes “w satisfies @” or “Y is true along w”

- For a path w of an LTS (S,sn,,—,L):

- wWEX$ < Wl E$

- wkEF® < Jk=0s.t. wk) = ¢

- wEeEGe < Viz0 w() = ¢

-—wEd, Uod, < Jk=0 s.t. wk) = ¢, and Vi<k w(i) = $,

DISIM
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CTL examples

- Some examples of satisfying paths:

— Wy = X succ {try} {succ} {succ} {succ}

— w, = —fail U succ

{try} {try} {succ} {succ}

@ 9 9 @ @ {fail}

wy:
(i A
Example CTL formulas: @ 9

— s, E try A —fail ' e’

- s, FE[Xsucclands,, s; = A[Xsucc] {succ}
— 5o E E [—fail U succ] but sy # A [—fail U succ] o

DP/Probabilistic Model Checking, Michaelmas 2011 10



CTL examples

AG (—(crity Acrity))
— mutual exclusion

AG EF initial

— for every computation, it is always possible to return to the
initial state

AG (request — AF response)
— every request will eventually be granted

AG AF crit; A AG AF crit,
— each process has access to the critical section infinitely often

DISIM
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CTL equivalences

- Basic logical equivalences:

— false = —true (false)
= ¢y Vb, = (= A —y) (disjunction)
-~ d=-0, v P, (implication)

- Path quantifiers:
- Ay = -E(-y)

- Ey =-A-y)
For example:

- Temporal operators: AG ¢ = ~EF(= ¢)

—Fod=trueUd
- G =-F(—9)

DISIM
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CTL - Alternative notation

- Some commonly used notation...

- Temporal operators:
-F¢ = 0 ¢ (“diamond”)

- G¢ = 0 (“box”)
-Xb =0¢
- Path quantifiers:
—-Ay =Vuy
—-Eyp =3y
- Brackets: none/round/square
— AF Y
-A(p, Uy,)
—AlY, Uy, ] e

DP/Probabilistic Model Checking, Michaelmas 2011 13



PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H)94]
— essentially the same as the logic pCTL of [ASB+95]

- Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— guantitative extension of CTL’s A and E operators

- Example
— send — P, 95 [ F<'0 deliver]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

DISIM
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PCTL syntax

PCTL syntax: Y is true with
/ probability ~p
— ¢ = true | a | dAD | - | Polwl (state formulae)
—pu=Xéd | dU*d | U (path formulae)
4

— where a is an atomic proposition, p € [0,1] is a probability
bound, ~ € {<,>,<,2}, ke N

- APCTL formula is always a state formula
— path formulae only occur inside the P operator

DISIM
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CTL

CTL - Computation Tree Logic

Syntax split into state and path formulae
— specify properties of states/paths, respectively
— a CTL formula is a state formula
Some of these

operators (e.g.
- State formulae: P (&g

A, F, G) are
~bu=tuelalond|-dlAw|EY CENZ IR
— where a € AP and Y is a path formula

Path formulae X = “next” A

F = “future”
—pu=Xo|FolGeloUd G = “globally”

— where ¢ is a state formula U = “until”

..................................................... : DISIM
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o Compare PCTL and CTL from previous 2 slides

o

state formulas with E and A have disappeared, replaced by the
quantitative operator P, which allows intermediate results
between “at least one” and “for all”

the path formulas are actually the same, with the addition of
the bounded until

as explained in the next slide, there would be no problem in
adding it to CTL too

of course, k > 1, and ®;U=d, = d, (see slide 127)

F and G, though absent, are expressible using U as shown 5
slides ago (“CTL Equivalences”)

the bounded until also allows bounded F and G (will be back
on this in 5 slides)

PCTL only outputs boolean values: either C |: dorC o

o probabilities are always compared with so ven th res
ERSIT D\SM
o we will see how we can also ask for sub- f a ..‘pae@ba e



PCTL semantics for DTMCs

- Semantics for non-probabilistic operators same as for CTL:
— s = ¢ denotes “s satisfies ¢” or “¢ is true in s”
— w = P denotes “w satisfies Y” or “g is true along w”

- For a state s of a DTMC (S,s;,,P,L):

TS r e always U=k not in CTL
-ska < acll) (but could easily
—sEd A o sE¢, and sF b, be added)
-skE-d e sEd

- For a path w of a DTMC (S,s;,+,P,L):
- wWEXd = w()Eod

- wE ¢, Uskep, <« Fi<k such that wii) = ¢,
and Vj<i, w(j) = ¢,
-—wEeEd, Uod, < 3k=0 s.t. wk) = b, and Vi<k w(i) = ¢,
DP/Probabilistic Model Checking, Michaelmas 2011 16
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PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s = P_, [ @ ] means that “the probability,
from state s, that @ is true for an outgoing path satisfies ~p”

— example: s = P_y,s [ X fail ] & “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

- formally: s = P, [W] < Prob(s, p) ~p
— where: Prob(s, p) = Pr,{ w € Path(s) | w = Y }

Prob(s, @) ~p ? o

DP/Probabilistic Model Checking, Michaelmas 2011 17



o In the previous slide, Prob(s, ) to be defined as in slide 85:
disjoint sum of cylinders probabilities
o that is, collect all infinite paths starting from s and satisfying
1, consider all their common distinct finite prefixes and sum
the probabilities of such prefixes
o note that such prefixes always exist, as we have a finite
number of states

o It may be proved that, given the PCTL syntax and semantics,
Prob(s, ) is always a disjoint sum of cylinders (see slide 171)

| UNIVERSITA DISIM
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PCTL equivalences for DTMCs

- Basic logical equivalences:

— false = —true (false)
- b, Vb, =(=d; A by (disjunction)
-~ b, =-d, VP, (implication)

- Negation and probabilities
—eg. P (¢ U 1=P [, Ud,]

DISIM

DP/Probabilistic Model Checking, Michaelmas 2011 18



Reachability and invariance

Derived temporal operators, like CTL...

- Probabilistic reachability: P_, [ F ¢ ]

the probability of reaching a state satisfying ¢
—Fb=trueUd

— “¢ is eventually true”

bounded version: F<k ¢ = true U=k ¢

Probabilistic invariance: Py [Go]
the probability of ¢ always remaining true
—Go=—(F-d) = ~(true U ~dp) «—

— “¢ is always true”

bounded version: G=k ¢ = —(F=k =)

strictly speaking,
G ¢ cannot be
derived from the
PCTL syntax in
this way since
there is no
negation of path
formulae

DP/Probabilistic Model Checking, Michaelmas 2011
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Derivation of P_, [ G ¢ ]

- In fact, we can derive P_, [ G ¢ ] directly in PCTL...

DISIM
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o Explanation fro the last 2 slides:

(*]

Qo

in LTL, G¢ = —=(F¢)

in CTL, the same formula cannot be applied, as negations of
path formulas are not allowed

however, since A—W = —EWV (the first formula is in CTL*, the
second in CTL), we may define G on F and ultimately on U
an analogous trick may be done in PCTL, by negating the
comparison: P.,[G¢] = P>,[F—¢] and similar...

| UNIVERSITA DISIM
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PCTL examples

P_oos [ F err/total>0.1]

— “with probability at most 0.05, more than 10% of the NAND
gate outputs are erroneous?”

P.og [ F< reply_count=n]

— “the probability that the sender has received n
acknowledgements within k clock-ticks is at least 0.8”

P_o.4 [ —fail, U faily ]

— “the probability that component B fails before component A is
less than 0.4”

—oper — P.; [F(P.gq9 [ G=1%0 0per]) ]

— “if the system is not operational, it almost surely reaches a
state from which it has a greater than 0.99 chance of staying
operational for 100 time units”

DISIM
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o For the last formula of the previous slide, oper is evaluated on
the first state only
o however, PRISM allows a probability distribution as the initial

state...
o note also that the last property has nested probability
operators, as a CTL formula may have nested state formulas



PCTL and measurability

- All the sets of paths expressed by PCTL are measurable
— i.e. are elements of the o-algebra X,
— see for example [Var85] (for a stronger result in fact)

Recall: probability space (Path(s), Zpy,), Prs)

— Zpanes) CONtains cylinder sets C(w) for all finite paths w starting
in's and is closed under complementation, countable union

Next (X ¢)

— cylinder sets constructed from paths of length one
Bounded until (¢, Usk &,)

— (finite number of) cylinder sets from paths of length at most k
Until (b, U $,)

— countable union of paths satisfying ¢, U<k &, for all k=0 o
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When the event space is infinite, an event with probability 1 is not
sure (and one with probability 0 is not impossible)

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

+ Qualitative PCTL properties
- P, [ @ ]where pis either 0 or 1
- Quantitative PCTL properties
— P, [W]where pis in the range (0,1)

« P_o[Fd]isidentical to EF ¢
— there exists a finite path to a ¢-state
« P_, [Fd]is (similar to but) weaker than AF ¢

— a ¢-state is reached “almost surely” @”” .
— see next slide...



Example: Qualitative/quantitative

- Toss a coin repeatedly until “tails” is thrown

- Is “tails” always eventually thrown? 1 {heads}
— CTL: AF “tails”
— Result: false
— Counterexample: $45,5055¢S; ..

- Does the probability of eventually
throwing “tails” equal one?

— PCTL: P, [F "tails” ] {tails}
— Result: true
— Infinite path s45,505,5¢5;... has zero probability

DISIM
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o In the previous slide:

k

o P((s051)%) = limk_ 00 I'I,?:O% = im0 2% =0

o actually, it is not even an event! it does not belong to any
cylinder, thus it is not in the o-algebra

o in fact, any prefix of (sps1)* with odd length (i.e., ending in
So) may go on with s,

o thus, singling out (sps1)* only (i.e., considering the singleton
event {(sps1)“}) is impossible in this example

o thus, it is correct that the final probability of reaching tails is
1.



This is outside standard PCTL, but PRISM allows it as it is useful
and “easy”; note that it must be the outermost P

Quantitative properties

. Consider a PCTL formula Pop [w]

— if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P

— PRISM allows formulae of the form P_, [y ]

— “what is the probability that path formula @ is true?”

Model checking is no harder: compute the values anyway

- Useful to spot patterns, trends SpT e
- Example

— P_, [ Ferr/total>0.1]

— “what is the probability
that 10% of the NAND
gate outputs are erroneous?”

PRISM [21]

o
®

—e— A =0.01

o
>

Analytical
0

Probability

)
=

e e o
0

2 3 4 5 8
Number of restorative stages
R T T T -~

o
N




Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

More expressive logics can be used, for example:
— LTL [Pnu77], the non-probabilistic linear-time temporal logic
— PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL

- To introduce these logics, we return briefly again to
non-probabilistic logics and models...

DISIM
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Branching vs. Linear time

In CTL, temporal operators always appear inside A or E
— in LTL, temporal operators can be combined

LTL but not CTL:
— F[req A Xack]

— “eventually a request occurs, followed immediately by an
acknowledgement”

CTL but not LTL:
— AG EF initial

— “for every computation, it is always possible to return to the
initial state”

DISIM
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LTL

LTL syntax
— path formulae only

pu=tuelalwaw|-w[xXp|lpUuy
— where a € AP is an atomic proposition

LTL semantics (for a path w)

w E true
wEa
WEY AY,
wE -
wEXY
wEY Uy,

(I

always

a € L(w(0))

wWEY, and w E Y,
WEY

w[l..]Eyp

Jk=0 s.t. wlk...] = Y, and
Vi<k wli...] & g,

DP/Probabilistic Model Checking, Michaelmas 2011
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Example in CTL*

LTL

LTL semantics
— implicit universal quantification over paths
— i.e. foran LTS M = (S,5;,—,L) and LTL formula ¢
— s =y iff w = P for all paths w € Path(s)
-MEeyYiffs F Y
- e.g:
— AF[reqg A Xack]

— “itis always the case that, eventually, a request occurs,
followed immediately by an acknowledgement”

Derived operators like CTL, for example:
—Fyp=truely

- Gy = -F(-y)
oism
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LTL + probabilities

Same idea as PCTL: probabilities of sets of path formulae
— for a state s of a DTMC and an LTL formula y:
— Prob(s, ) = Pry{w € Path(s) | w = Y }
— all such path sets are measurable (see later)
- Examples (from DTMC lectures)...
- Repeated reachability: “always eventually...”
— Prob(s, GF send)

— e.g. “what is the probability that the protocol successfully
sends a message infinitely often?”

Persistence properties: “eventually forever...”
— Prob(s, FG stable)
— e.g. “what is the probability of the leader election algorithm
reaching, and staying in, a stable state?”

DISIM
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PCTL*

PCTL* subsumes both (probabilistic) LTL and PCTL

- State formulae:
—¢=truelaldad|-d|P,[w]

— where a € AP and Y is a path formula

Path formulae:

—p=dlwayp|-w[Xxw|lpuy
— where ¢ is a state formula

- APCTL* formula is a state formula ¢
—e.9.P o, [GFcrit;] A P.g, [ GF crit, ] o
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PCTL syntax

PCTL syntax: Y is true with
/ probability ~p
— ¢ = true | a | dAD | - | Polwl (state formulae)
—pu=Xéd | dU*d | U (path formulae)
4

— where a is an atomic proposition, p € [0,1] is a probability
bound, ~ € {<,>,<,2}, ke N

- APCTL formula is always a state formula
— path formulae only occur inside the P operator

DISIM
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o Comparison of the last 2 slides:

Qo

Qo

state formulas are the same

path formulas also allow state formulas, as well as (direct)
logical combinations of path formulas

note that such logical combinations are NOT redundant, i.e.,
they cannot be derived from the path formulas

the given example is not in PCTL because of GF

‘ UNIVERSITA DIsIM
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Simply LTL + prob does not have a name, you can use PCTL*
instead

Summing up...

- Temporal logic:

— formal language for specifying and reasoning about how the
behaviour of a system changes over time

CTL ®
non-probabilistic
- " (e.g. LTSs)
PCTL ®
probabilistic
LTL + prob. Prob(s, ¥) (e.g. DTMCs) i
PCTL* @ ' -
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Overview

PCTL model checking for DTMCs

- Computation of probabilities for PCTL formulae
— next
— bounded until
— (unbounded) until

Solving large linear equation systems
— direct vs. iterative methods
— iterative solution methods

DISIM
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PCTL

PCTL syntax: Y is true with
/ probability ~p
— ¢ = true | a | dAD | - | Polwl (state formulae)
—pu=Xéd | dU*d | U (path formulae)
4

— where a is an atomic proposition, p € [0,1] is a probability
bound, ~ € {<,>,<,2}, ke N

Remaining operators can be derived (false, v, —, F, G, ...)
— hence will not be discussed here

DISIM
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PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
— inputs: DTMC D=(S,s;,,P,L), PCTL formula ¢
— output: Sat(p) ={s S |s k= ¢} =setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— often, just want to know if s;;, = &, i.e. if s;,;, € Sat(dp)
— sometimes, want to check thats = ¢ V s € S, i.e. Sat(p) = S

- Sometimes, focus on quantitative results
— e.g. compute result of P_, [ F error ]
— e.g. compute result of P_, [ F<k error ] for 0<k<100

DISIM
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o Previous slide: let us assume it is not a problem to have full
graphs in memory
o as we will see, PRISM uses OBDDs (for sets of states) and a

special extension of theirs known as MTBDD for functions
S —[0,1]

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA ]



PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ¢
— example: ¢ = (—fail A try) — P45 [ —fail U succ]

- For the non-probabilistic operators:
— Sat(true) =S
—Sat(@) ={seS|aecl(s)}
- Sat(—~¢) = S \ Sat(¢)
— Sat(p; A ;) = Sat