

Automated Verification of Cyber-Physical Systems

A.A. 2024/2025

Corso di Laurea Magistrale in Informatica

Simulation of Systems

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

Simulation vs Model Checking

- In “standard” Model Checking, we are given
 - a non-deterministic Kripke Structure (KS)
 - an LTL or CTL property to be verified
- The output is either PASS or FAIL
 - if PASS, then *all* evolutions (paths) of the given model fulfill the given property
 - if FAIL, we also have a counterexample
- In probabilistic model checking, we consider probabilities of sets of evolutions
- *Simulation* of a system only considers *one* path

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Murphi Simulation

```
void Make_a_run(NFSS  $\mathcal{N}$ , invariant  $\varphi$ )
{
    let  $\mathcal{N} = \langle S, I, \text{Post} \rangle$ ;
    s_curr = pick_a_state(I);
    if ( $\neg \varphi(s_{\text{curr}})$ )
        return with error message;
    while (1) { /* loop forever */
        if ( $\text{Post}(s_{\text{curr}}) = \emptyset$ )
            return with deadlock message;
        s_next = pick_a_state( $\text{Post}(s_{\text{curr}})$ );
        if ( $\neg \varphi(s_{\text{next}})$ )
            return with error message;
        s_curr = s_next;
    }
}
```


UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

SPIN Simulation

```
void Make_a_run(NFSS  $\mathcal{N}$ )
{
    let  $\mathcal{N} = \langle S, \{s_0\}, \text{Post} \rangle$ ;
    s_curr =  $s_0$ ;
    if (some assertion fail in s_curr))
        return with error message;
    while (1) { /* loop forever */
        if ( $\text{Post}(s_{\text{curr}}) = \emptyset$ )
            return with deadlock message;
        s_next = pick_a_state( $\text{Post}(s_{\text{curr}})$ );
        if (some assertion fail in s_curr))
            return with error message;
        s_curr = s_next;
    }
}
```


UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Repeating a Simulation

- Simulations may be *deterministic* or *probabilistic*
 - both Murphi and SPIN simulations are probabilistic
 - at each step, a transition is chosen among the n possible ones with probability $\frac{1}{n}$
 - of course, n may be different at each step
- Running multiple probabilistic simulations typically implies obtaining different paths
 - the longest the path, the more likely this is to happen

Repeating a Simulation

- For deterministic simulations, all runs are the same
 - choice between successor states is fixed (e.g., always the first)
 - multiple simulations all result in the same path
- Deterministic simulation are however important when *inputs* from the environment are present
 - this is actually true for many systems
 - some inputs must be given at system startup, others must be given during the system evolution
 - for a given input tuple, there is only one possible successor
- Running multiple deterministic simulation results in different paths if we vary the inputs to be received
 - this is actually true for many systems

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Simulation

- Similar to testing
- If an error is found, the system is bugged
 - or the model is not faithful
 - actually, simulation in standard model checking is also used to understand if the model itself contains errors
- If an error is not found, we cannot conclude anything
- The error state may lurk somewhere, out of reach for the random choice in `pick_a_state`

Simulation vs Modeling

- However, for complex CPSs simulation is needed
- In fact, accurately modeling a complex CPS in a classical model checker is often too difficult or inconvenient
 - plant must be modeled by *real* variables: inherently infinite state systems
 - can be approximated, but accuracy may be low
- Simulators are often already available for testing, why can't we rely on them?
 - not "real" model checking, but something close to it
 - far better than "simple" testing
- May be either build from scratch, or implemented with dedicated tools
 - C/Java/Python dedicated programs vs. Simulink/Modelica

Simulation-based Model Checking

- Too many states, we cannot store them in a hash table
 - transition relation defined by a complex simulator, translation in OBDDs cannot be done
- Two main workhorses:

System Level Formal Verification chooses system inputs so as to cover as much as possible

- mainly for safety, but also some sort of LTL may be used

Statistical Model Checking uses powerful statistical methods to perform model checking

- something like Monte-Carlo sampling
- i.e., we run the simulation several times, and we try to derive some guaranteed answer

Simulation

- A simulation is an experiment on a model
 - we focus on simulations performed by a computer
- Simulation is very easy to implement in the case of classical model checkers
 - no problems with RAM or execution time
- This stems from the fact that classical model checking deals with finite state systems
 - one step at a time, time passing typically not important
 - state space is finite and described by discrete-typed variables
 - computing a transition from a state to another is straightforward

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Simulation

- What if we need to simulate a cyber-physical system?
 - e.g., simulate the Apollo mission
 - many subsystem interacting with each other via continuous signals
 - some subsystems are described by ODEs (Ordinary Differential Equations)
- In some cases, system developers also builds a simulator from scratch, e.g., in the C language
 - directly experimenting on the physical object may be dangerous, expensive, or simply impossible (e.g., it still does not exist)
- Many tools are available to easily describe complex models to be simulated
 - e.g., able to approximate solutions for ODEs
- Here we will deal with the open-source Modelica
 - we will also have a look to Simulink

Some Background: ODEs

- With some simplification, an ODE is an equation

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

- The unknown y is a function $y = f(x)$, and $y^{(n)}$ is the the n -th derivative of y w.r.t. x
- In our context, the independent variable is time, denoted by t
 - in simulations, we are interested in the system evolution over time...
- Thus, we have functions $x = f(t)$ and n -th derivatives expressed in Newton's notation \dot{x}
- Finally, our ODE is an equation

$$F(t, x, \dot{x}, \dots, \dot{x}^n) = 0$$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background: ODEs

- We will consider *explicit* ODEs $\dot{x} = F(t, x)$
 - x usually is in some n -dimensional space, e.g., $x \in \mathbb{R}^n$
 - thus, this is a system of equations
 - note that, with explicit ODEs, derivatives higher than 1 are not needed
 - simply put $x_1 = x, x_2 = \dot{x}_1 \dots$

Example ODEs

- $\dot{x} = t + x$
- $(\dot{x}_1, \dot{x}_2) = (t + x_2 e^{x_1}, x_1 \log t)$
- Model of an infectious disease (HIV):
 $(\dot{x}_1, \dot{x}_2) = (\lambda - dx_1 - \eta\beta x_1 x_2, -x_2(a + I) + \eta\beta x_1 x_2)$
 - x_1, x_2 are uninfected and infected cells, I is an action by the immune system
 - $a, d, \lambda, \beta, \eta$ are system parameters
 - this latter example is time-invariant (see next slide)

ODEs: Euler Approximation

- Given the *time-invariant* ODE $\dot{x} = F(x)$, we may use the Euler approximation
 - for small τ , $\dot{x} \approx \frac{x(t+\tau) - x(t)}{\tau}$
 - if we sample time with τ , i.e., we only consider $t \in \{0, \tau, 2\tau, \dots, k\tau, \dots\} \dots$
 - ... we have that $F(x(k\tau)) = \frac{x(k\tau + \tau) - x(k\tau)}{\tau}$
 - thus by setting $x_k = x(k\tau)$, we have a discrete-time difference equation $x_{k+1} = x_k + \tau F(x_k)$
- This only works for small τ and small k
 - it can be proved that $\|x_k - x(k\tau)\| \leq \tau \psi(k)$, where ψ is *not* bounded
 - at least, in the general case

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background: Systems

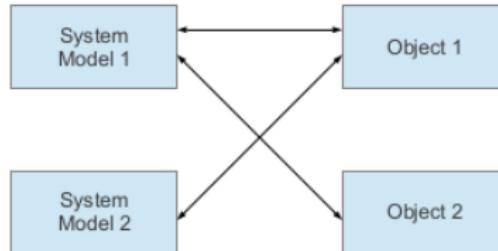
- A *system* is a mathematical concept used to study properties of physical objects
 - sometimes also called abstract system, or system model
- It is typically used to study evolutions as a function of *time*
- Virtually infinite examples:
 - population of rabbits
 - spread of diseases
 - physical objects: a fridge, an oven, a building, a car, ...
 - part of physical objects: a resistor, a brick, a wheel, ...
 - controllers for physical objects: ABS, autonomous driving, ...
- First distinction is among objects (what we want to model) and system (the mathematical model)
 - a system is defined through functions, sets, etc

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background: Systems

- Given an object, one may devise different systems
 - as we may have different programs to solve the same problem
 - not only because of different people doing it: different properties on the same object may be investigated
- Given a system, it may be applied to different objects
 - spreading of different diseases may have a common model
 - wheel of a car and of a motorcycle



UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background: Systems

- We start defining systems by looking at their *inputs and outputs*
 - keeping in mind that it is all as a function of time
- Deterministic systems: given an input sequence from some “start”, the output is the same
 - probabilistic systems also exist, we do not consider them here
- Black-box system: at first, we perform *experiments* on the system
 - we provide sequences of inputs and observe the sequence of outputs

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background: Systems

- We begin experiments at some time $t_0 \in T$, with $T \subseteq \mathbb{R}$
 - for some systems, $T \subseteq \mathbb{N}$
- We consider all input functions $u : T \rightarrow U$ for our object
 - U is some set on which inputs may vary
 - it may be multidimensional, e.g. $U = \mathbb{N} \times \mathbb{Z} \times \mathbb{R}^2$
 - of course, such input functions are uncountably many, this is a conceptual experiment
- For each u , we have an output function $y : T \rightarrow Y$ coming out of the object
 - U and Y may be different
 - again, Y may be multidimensional
- We define the system $\mathcal{S} = \{(u, y) \mid u \text{ is an input function and } y \text{ the corresponding output function}\}$
 - thus, $\mathcal{S} \subset \mathcal{U} \times \mathcal{Y}$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

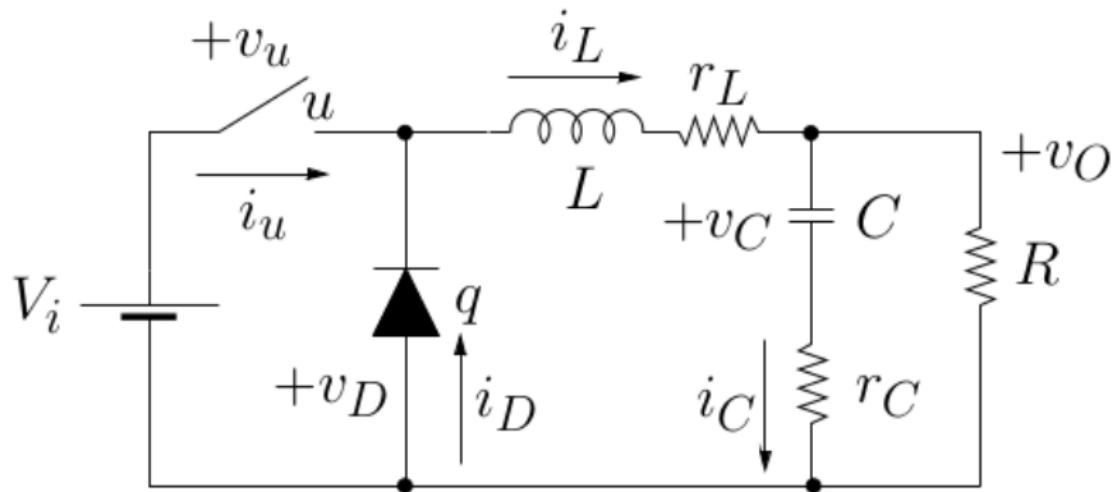
DISIM
Dipartimento di Ingegneria
dell'Informazione
e della Produzione

Some Background: Systems

- Example: determine the number of students which graduate in same bachelor course
 - assumption: student enrolls once every year, thus $T \subset \mathbb{N}$
 - $U \subset \mathbb{N}$: number of students enrolling “from outside”
 - $Y \subset \mathbb{N}$: number of graduated students
 - $\mathcal{U} = \{f \mid f : T \rightarrow U\}$, analogous for \mathcal{Y}
 - example of input-output:
 - $u_1(2020) = 200, u_1(2021) = 221, u_1(2022) = 198$, and
 $u_1(x) = 0$ for $x \notin \{2020, 2021, 2022\}$...
 - ... and we observe
 $y_1(2020) = 51, y_1(2021) = 51, y_1(2022) = 60$
 - $u_1(2020) = 136, u_2(2021) = 231, u_2(2022) = 90$, and
 $u_2(x) = 0$ for $x \notin \{2020, 2021, 2022\}$...
 - ... and we observe
 $y_2(2020) = 42, y_2(2021) = 37, y_2(2022) = 98$
- $u_1, u_2 \in \mathcal{U}, y_1, y_2 \in \mathcal{Y}, (u_1, y_1), (u_2, y_2) \in \mathcal{S}$

Some Background: Systems

Example: determine the output voltage of a buck DC-DC converter

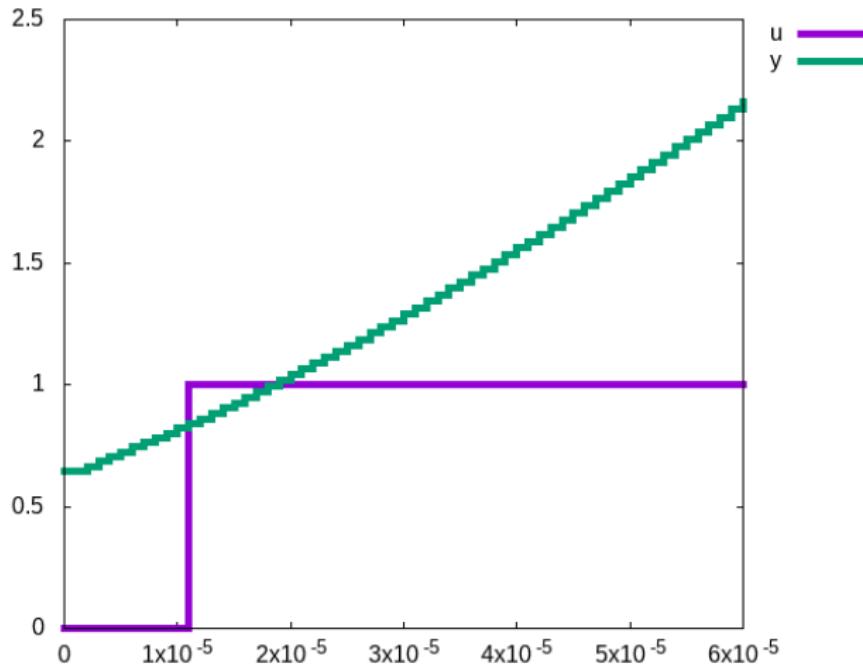


Some Background: Systems

- Example: determine the output voltage of a buck DC-DC converter
 - $T \subset \mathbb{R}$
 - $U \subset \{0, 1\} \times \mathbb{R}$
 - u may be closed (0) or open (1) at any time
 - V_i may be any real number
 - $Y \subset \mathbb{R}$: observed output voltage v_O
 - example of input-output (times are in microseconds):
 - $u_1(t) = (0, 5)$ for all $t \in [0, 10]$, $u_1(t) = (1, 5)$ for all $t \in [10, 100]$
 - $u_2(t) = (0, 15)$ for all $t \in [0, 9]$, $u_2(t) = (1, 10)$ for all $t \in (9, 15]$, $u_2(t) = (0, 7)$ for all $t > 15$

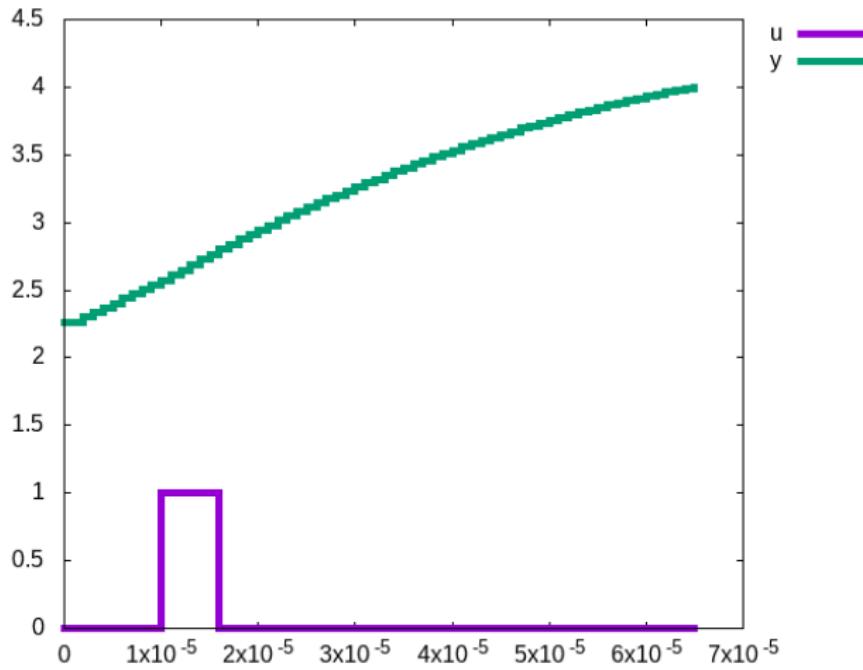
Some Background: Systems

Result for u_1



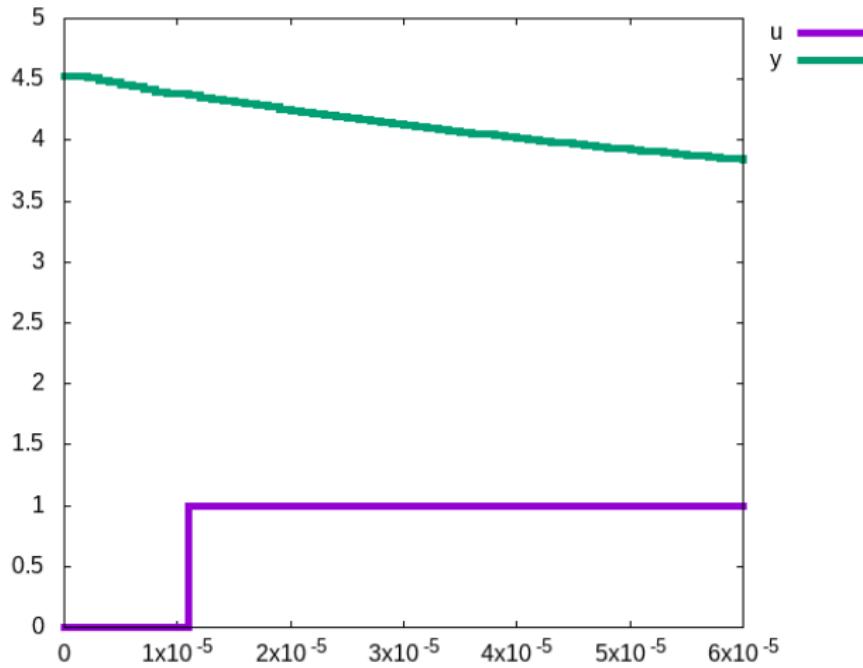
Some Background: Systems

Result for u_2



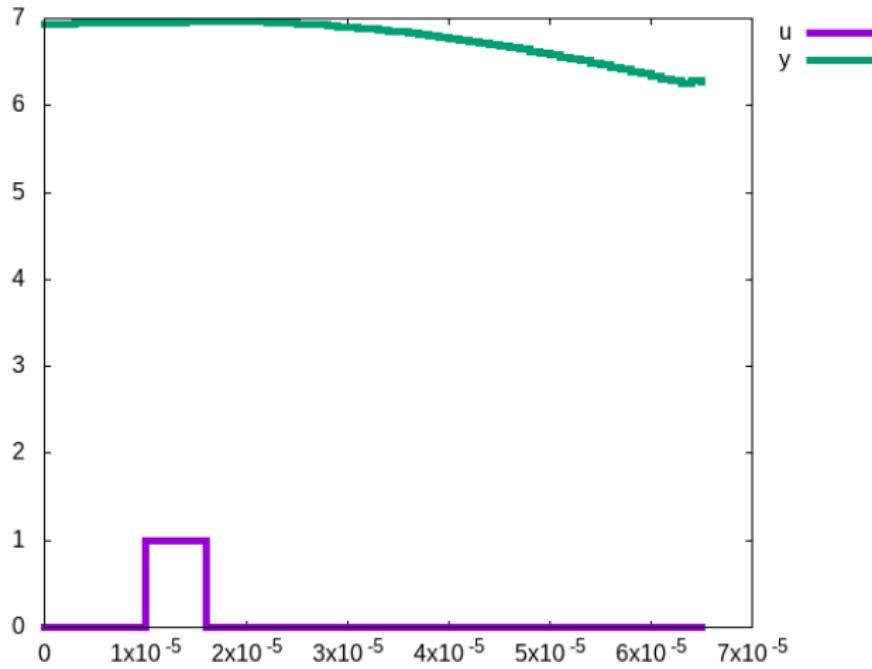
Some Background: Systems

... but this is also a result for u_1



Some Background: Systems

... and this is also a result for u_2



Some Background: Systems

- Is this a non-deterministic system??? NO!
- The point is that output is not determined by input only
 - though for some systems this is the case: number of students above
- The missing element is the *state*
 - essentially, the input/output function has side effects...
- Thus, the output (for *deterministic* systems) is a function of both the input and the state
 - in the examples above, we made different choices for the starting state

Some Background: Systems

- For our purposes, a system will be defined by a 6-tuple $\mathcal{S} = \langle T, U, Y, X, \eta, \phi \rangle$:
 - U, Y are sets of possible input and output values, resp.
 - T is a set of times
 - if $T \subseteq \mathbb{R}$ then we have a *continuous-time* system
 - if $T \subseteq \mathbb{N}$ then we have a *discrete-time* system
 - X is a set of states
 - may be either finite or infinite
 - if $T \subset \mathbb{N}$ and $|X| < \infty$ then we essentially have a Kripke structure
 - $\eta : T \times X \times U \rightarrow Y$ defines the output function
 - $\phi : T \times T \times X \times \mathcal{U} \rightarrow X$ defines the state transition function
 - recall that $\mathcal{U} = \{f \mid f : T \rightarrow U\}$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Some Background: Systems

- $\eta : T \times X \times U \rightarrow Y$ is as expected
 - given the current time, the current state, and the current input, we can compute the output
- $\phi : T \times T \times X \times U \rightarrow X$ is somewhat more complicated than expected
 - one would expect $\phi : T \times X \times U \rightarrow X$
 - actually, this is enough for most systems
- For some systems, the state transition function depend on some sequence of inputs, not only the last one
 - so we need a function, defined at least on an interval $[t_0, t)$
 - this is why ϕ also takes two times instead of one
- 3 conditions must hold for η and ϕ : *causality*, *consistency* and *separation*

Some Background: Causal Systems

- $\forall t, t_0 \in T, x_0 \in X. (t \geq t_0 \wedge u|_{[t_0, t]} = u'|_{[t_0, t]}) \Rightarrow \phi(t, t_0, x_0, u|_{[t_0, t]}) = \phi(t, t_0, x_0, u'|_{[t_0, t]})$
- That is, if we fix the first 3 arguments t, t_0, x_0 of ϕ ...
- ... and we provide, as a fourth argument, two possible different functions u, u' ...
- ... which however output the same values in the interval $[t_0, t]$...
- ... then the final value of ϕ does not change
- Thus, what happens in the interval $[t_0, t)$ causes the system to go to one single state

Some Background: Consistent Systems

- $\forall t \in T, x_0 \in X, u \in \mathcal{U}. \phi(t, t, x_0, u) = x_0$
- Recall that, for a call $\phi(t, t_0, x, u)$, u is considered in the interval $[t_0, t)$
- Thus, in a call $\phi(t, t, x_0, u)$, we are considering the empty interval $[t, t)$
- Hence, we have no input at all!
- Of course, without inputs, the system cannot change its current state

Some Background: Separation Property of Systems

- $\forall t, t_0, t_1 \in T, x_0 \in X, u \in \mathcal{U}. (t > t_1 > t_0) \Rightarrow \phi(t, t_0, x_0, u|_{[t_0, t)}) = \phi(t, t_1, \phi(t_1, t_0, x_0, u|_{[t_0, t_1]}), u|_{[t_1, t]})$
- In few words: the state you obtain if you go straight from t_0 to t , is the same state you would obtain if:
 - you first go from t_0 to some intermediate t_1
 - i.e., $x_1 = \phi(t_1, t_0, x_0, u|_{[t_0, t_1]})$
 - and then from t_1 to t
 - i.e., $\phi(t, t_1, x_1, u|_{[t_1, t]})$

Some Background: Hybrid Systems

- Note that the set of states X may be multi-dimensional
 - e.g., $X = \mathbb{R}^3$, or $X = \{1, 2, 3\} \times \mathbb{Z}$
- Thus, also ϕ may be multi-dimensional
- Informally, if X has dimension n , then we will have *n state variables*
 - recall that the same holds for U, Y : we may have multiple *input* and *output variables*
- Hybrid systems: those for which some variables are continuous and other are discrete
 - in some texts, a “hybrid system” have some variables depending on $T = \mathbb{N}$ and some other on $T = \mathbb{R}$
- This is exactly the case of cyber-physical systems!
 - plant + controller/monitor
 - plant is continuous, controller/monitor is discrete

Some Background: Special Systems

- With some simplification, a system is *time-invariant* iff $\forall t, t_0, t_1 \in T, x \in X, u \in \mathcal{U}. \phi(t, t_0, x, u) = \phi(t - t_0, 0, x, u) \wedge \eta(t, x, u(t)) = \eta(t_1, x, u(t_1))$
 - that is, the absolute time is not important
 - the *relative* time is
 - given a state x , system evolution from 1 to 3 seconds and from 10 to 12 seconds is the same
- For time-invariant systems, we can always set $t_0 = 0$
- For time-invariant systems, we can also write $\dot{x}(t) = \phi(x(t), u(t)), y(t) = \eta(x(t), u(t))$

Some Background: Special Systems

- With some simplification, a system is *linear* iff
 - U, Y, X are linear spaces
 - that is, any linear combination $\sum_{i=1}^n a_i x_i$ is in X etc
 - \mathcal{U} is a linear subspace of $U^T = \{f \mid f : T \rightarrow U\}$
 - again, any linear combination $\sum_{i=1}^n a_i u_i(t)$ is in \mathcal{U}
 - fixed any 2 times $t, t_0 \in T$ as first 2 arguments, ϕ is linear in the remaining 2 arguments
 - $\phi(t, t_0, x, u) = A \cdot [x, u] + b$ for some A and b
 - A, b may depend on t, t_0 , but not on x, u
 - fixed any time $t \in T$ as first argument, η is linear in the remaining 2 arguments
- Linear systems are easy to model, simulate and verify
- With some simplification, a system is:
 - a finite-state system if U, X, Y are finite sets (Kripke structure)
 - a finite-dimensional system if U, X, Y are linear finite-dimension spaces

Some Background: Generating Functions

- For discrete-time systems, we have that
$$x(t+1) = \phi(t+1, t, x(t), u|_{[t, t+1]}) = \phi(t+1, t, x(t), u(t)) = f(t, x(t), u(t))$$
 - first and second argument of ϕ are not independent...
 - f has the same domain of η
- For continuous-time systems, we focus on *regular* systems, i.e., those systems for which ϕ is differentiable and there exists a function f s.t.
 - $\frac{d\phi(t, t_0, x, u)}{dt} = f(t, \phi(t, t_0, x, u), u(t))$
 - with the initial condition that exists an $x_0 \in X$ s.t.
$$x_0 = \phi(t_0, t_0, x_0, u)$$
 - often, it is easier to provide f than ϕ
- Using Newtonian notation, we have $\dot{x}(t) = f(t, x(t), u(t))$
- For time-invariant systems, we have
$$\dot{x}(t) = f(x(t), u(t)), y(t) = \eta(x(t))$$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

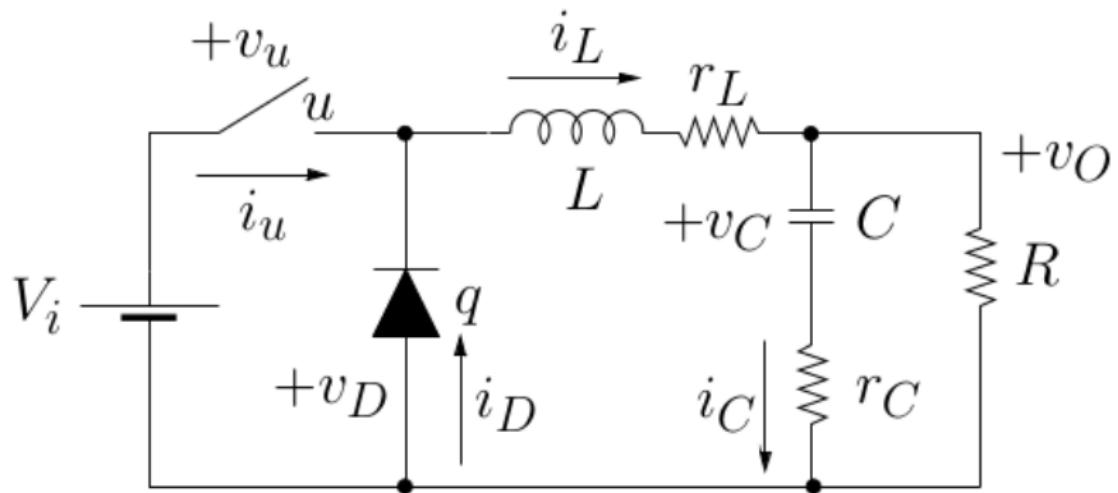
Some Background: System For Students' Example

- $X \subseteq \mathbb{N}^3, U, Y \subseteq \mathbb{N}, T = \mathbb{N}$
- Parameters $\alpha_i(t) \in [0, 1]$ is ratio of students passing an year t
- $x_1(t + 1) = (1 - \alpha_1(t))x_1(t) + u(t)$
- $x_i(t + 1) = (1 - \alpha_i(t))x_i(t) + \alpha_{i-1}(t)x_{i-1}(t)$ for $i = 2, 3$
- $y(t) = \alpha_3(t)x_3(t)$
- Note that, if $\alpha_i(t) = 1$ for all t , then states are not needed, as we have $y(t) = u(t - 3)$
- Summing up:

$$\bullet f(t) = \begin{pmatrix} (1 - \alpha_1(t))x_1(t) + u(t) \\ (1 - \alpha_2(t))x_2(t) + \alpha_1(t)x_1(t) \\ (1 - \alpha_3(t))x_3(t) + \alpha_2(t)x_2(t) \end{pmatrix}$$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica



Some Background: System For Buck DC/DC Converter

- $X \subseteq \mathbb{R}^2, U \in \{0, 1\} \times \mathbb{R}, Y \subseteq \mathbb{R}, T = \mathbb{R}$
- $L, C, R, r_L, r_C \in \mathbb{R}$ are system parameters
 - we will also use 6 real numbers $a_{i,j}$ for $i \in \{1, 2\}, j \in \{1, 2, 3\}$ which are functions of such parameters
 - e.g., $a_{2,3} = -\frac{1}{L} \frac{r_C R}{r_C + R}$
- Variables for state are $i_L, v_O, v_D, i_D, v_u, i_u$ (real) and q (boolean)
- Variables for input are u (boolean) and V_i (real)
- $y(t) = v_O(t)$, thus η is easy
- ϕ is defined by cases in the following slide
 - for the definition of ϕ , some other (*auxiliary*) variables are useful: v_D, i_D, v_u, i_u (real) and q (boolean)
 - $R_{on} \approx 0, R_{off} \gg R_{on}$ are fixed parameters

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Scienze dell'Informazione
e Matematica

Some Background: System For Buck DC/DC Converter

We omit (t) for better readability

There must exist a value for $v_D, i_D, v_u, i_u \in \mathbb{R}, q \in \{0, 1\}$ s.t.

$$\dot{i_L} = a_{1,1}i_L + a_{1,2}v_O + a_{1,3}v_D \quad (1)$$

$$\dot{v_O} = a_{2,1}i_L + a_{2,2}v_O + a_{2,3}v_D \quad (2)$$

$$q \rightarrow v_D = R_{\text{on}}i_D \quad (3) \qquad \bar{q} \rightarrow v_D = R_{\text{off}}i_D \quad (7)$$

$$q \rightarrow i_D \geq 0 \quad (4) \qquad \bar{q} \rightarrow v_D \leq 0 \quad (8)$$

$$u \rightarrow v_u = R_{\text{on}}i_u \quad (5) \qquad \bar{u} \rightarrow v_u = R_{\text{off}}i_u \quad (9)$$

$$v_D = v_u - V_{in} \quad (6) \qquad i_D = i_L - i_u \quad (10)$$

Both ODEs and algebraic equations

Modeling in Modelica

- Modelica is an open-source language for specifying (complex) systems
 - developed by experts starting in late 1990s
- Many implementations exist
 - OpenModelica+simForge, Dymola, Simulation X, MapleSim, MathModelica
 - here we will stick to OpenModelica+simForge
- Also see Modelica slides

Modeling in Modelica

- Object-oriented language: classes and objects (i.e., class instances)
 - strongly typed
- Compositional modeling:
 - break up the system in subsystems (components)
 - connect the components
- Very useful for complex systems, with many components
 - some standard components already defined, e.g., resistors, flows etc
- May use equations, also with derivatives
- Generates a C program, thus it is very efficient

Modeling in Modelica

- Synchronous data flow principle: time is the same for all components
 - such as clocks for digital systems, but in Modelica it may be continuous
- May specify “algorithms” using assignments, ifs, whiles, etc
 - all variables must be instances of some class
 - this also includes integers and reals
- Acausal modeling: simply first provide the equations for each object, then connect the objects between them
 - other modeling languages, e.g., Simulink, requires to first design the full chain of connections...
 - ...and to make computation in sequence
 - Modelica allows both causal and acausal modeling
 - physical “reality” is lost
- Modelica easier for modelers, Simulink easier for computers

UNIVERSITÀ
DEGLI STUDI
di ROMA 'LA SAPIENZA'

DISIM
Dipartimento di Ingegneria
di Informazione
e Matematica

Modelica: Acausal Modeling

Acausal Modeling

The order of computations is not decided at modeling time

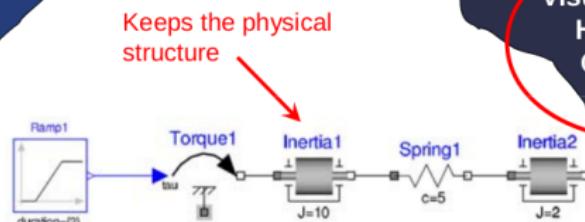
	Acausal	Causal
Visual Component Level		
Equation Level	A resistor equation: $R \cdot i = v;$	Causal possibilities: $i := v/R;$ $v := R \cdot i;$ $R := v/i;$

Modelica: Acausal Modeling

What is Special about Modelica?

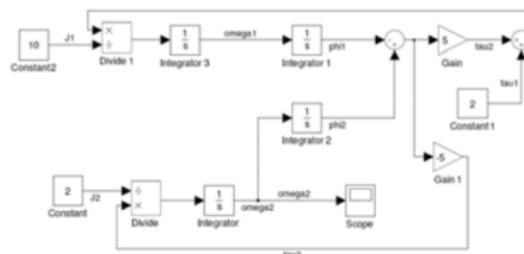
Multi-Domain
Modeling

Acausal model
(Modelica)



Visual Acausal
Hierarchical
Component
Modeling

Causal
block-based
model
(Simulink)



Modelica: Hybrid Modeling

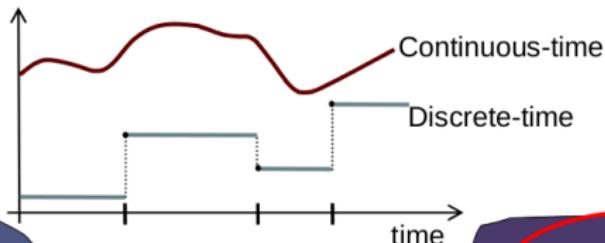
What is Special about Modelica?

Multi-Domain
Modeling

Visual Acausal
Component
Modeling

Hybrid modeling =
continuous-time + discrete-time modeling

Typed
Declarative
Equation-based
Textual Language



Hybrid
Modeling

Modelica: Toy Example

- Text file with .mo extension, let us say model.mo

```
class Example
  output Real x, y, z;
  algorithm
    when initial() then //at 0, both this...
      x := 0; // Pascal-like assignments
    elsewhen sample(0, 1) then // ... and this
      x := 1;
      y := pre(x); //0 till 1, then always 2
    elsewhen sample(0, 0.5) then
      //elsewhen order is important! from bottom to top
      x := 2;
      z := pre(x); //0 till 0.5, then always 1
    end when;
  end Example;
```


DISIM
Dipartimento di Ingegneria
e Matematica

Modelica: Toy Example

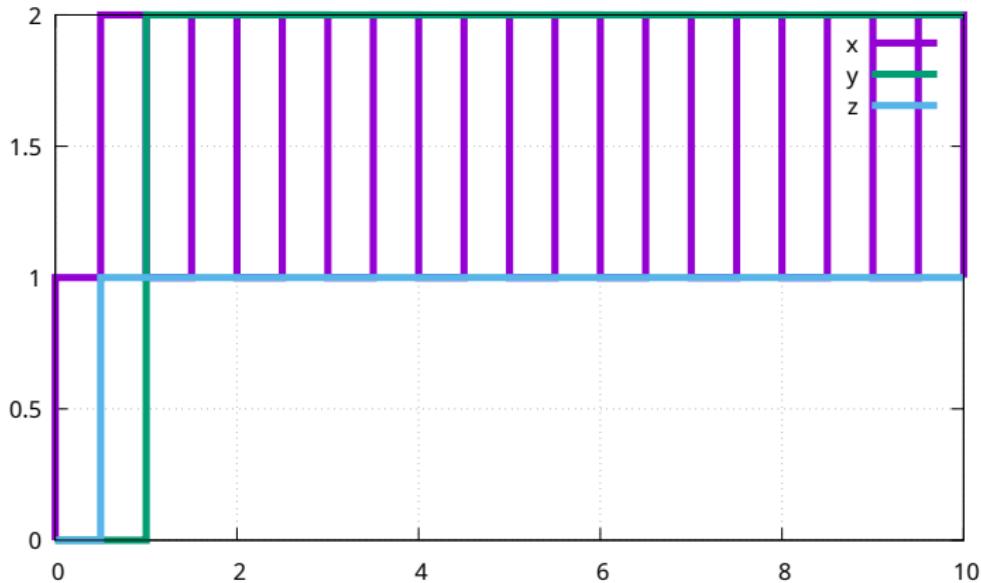
- Text file with .mos extension, let us say run.mos

```
loadModel(Modelica);
getErrorString(); // should be used after every command,
                  // skipped in the following
loadFile("model.mo");
//Example is defined in model.mo
simulate(Example, stopTime=10);
//x, y, z are variables of Example
plot({x, y, z}, externalWindow=true,
      fileName="Example_res.mat");
```

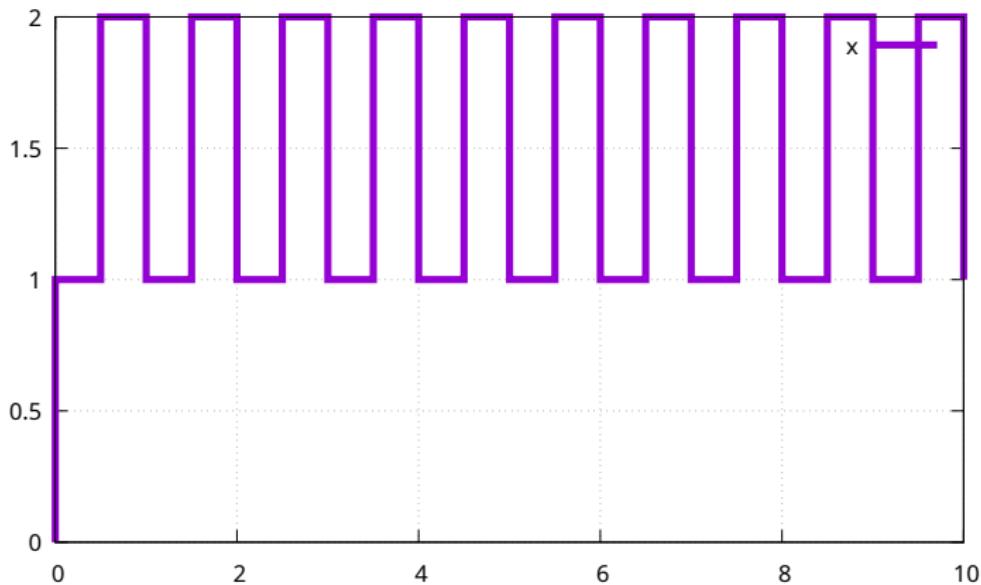

Modelica: Toy Example

- Run the command `omc run.mos`
 - of course, you must have installed `omc` for your OS
- This has the following effect:
 - generates a C program `model.c`
 - compiles `model.c` to obtain the executable file `model`
 - executes `model`
 - outputs both a file `Example_res.mat` and a graphical window with the graph of variables `x`, `y`, `z` as function of time

Modelica: Commands Chain



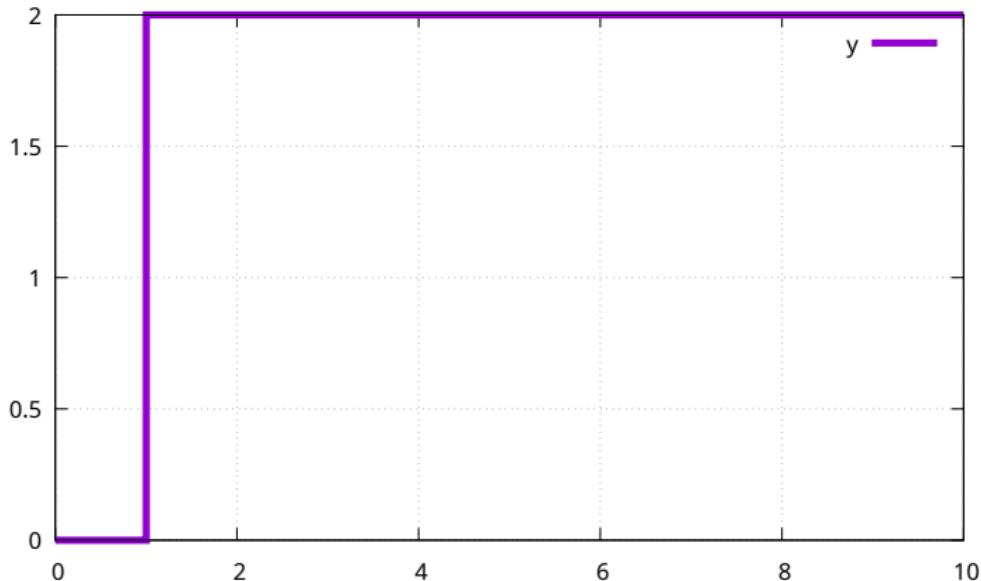
Modelica: Commands Chain



UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione e
Matematica

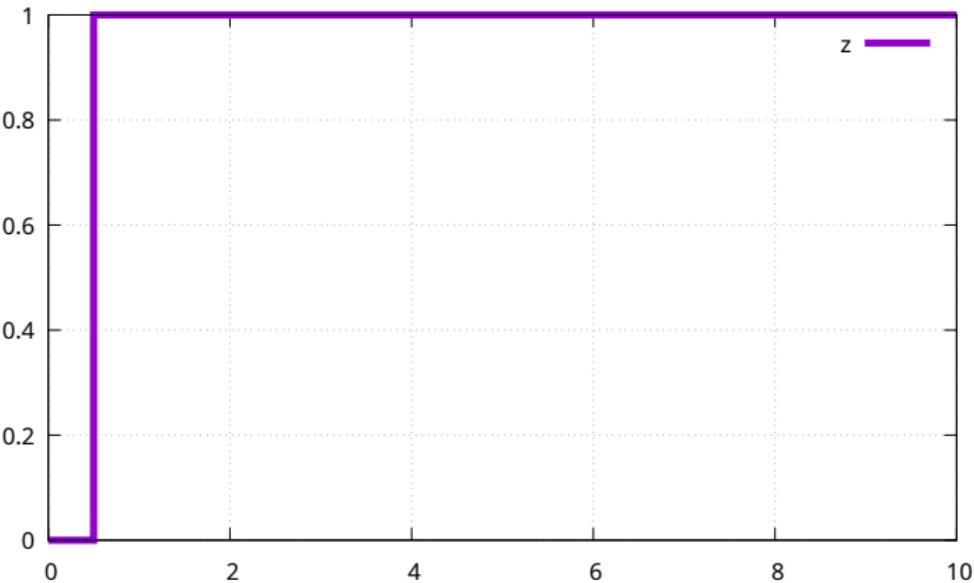
Modelica: Commands Chain



UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Modelica: Commands Chain

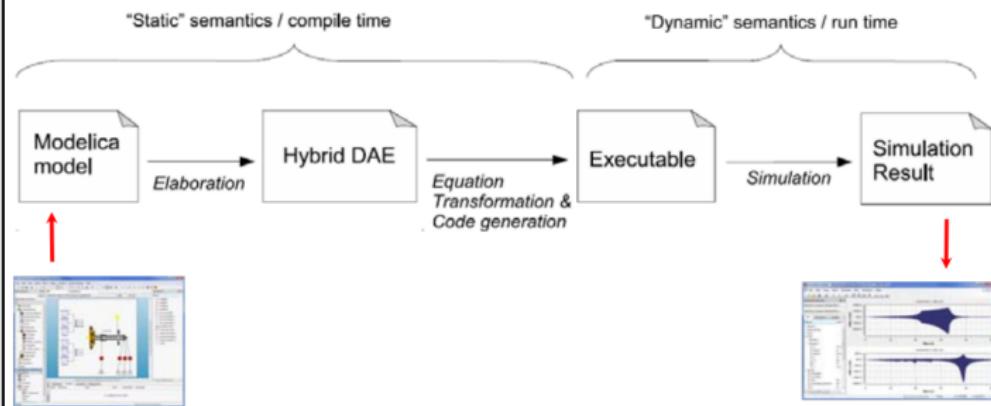


UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione e
Matematica

Modelica: Commands Chain

Typical Simulation Process



Modelica: Toy Example Examined

```
class Example
  output Real x, y, z;
  algorithm
    when initial() then //at 0, both this...
      x := 0;
    elsewhen sample(0, 1) then // ... and this
      x := 1;
      y := pre(x); //0 till 1, then always 2
    elsewhen sample(0, 0.5) then
      x := 2;
      z := pre(x); //0 till 0.5, then always 1
    end when;
  end Example;
```


UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Modelica: Toy Example Examined

- Example is a class defined by the modeler: Modelica is OO
- It has 3 real-valued variables, which may become the input for other blocks
- The dynamics is an algorithm based on the `sample` construct
 - `when initial()` C executes code in C at time 0
 - `when sample(A , B)` C executes code in C every $A + Bx$ seconds, for $x \in \mathbb{N}$
 - there may be multiple `elsewhen sample(A , B)` C triggered at a given time
 - they are all executed, starting from the bottom of the file
 - now explain the output of the previous example...
- In expressions, `pre(var)` holds the value of `var` *before* the current event

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
e Matematica

Simplest Model – Hello World!

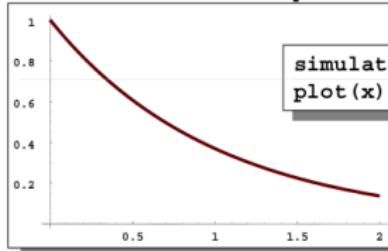
A Modelica “Hello World” model

Equation: $x' = -x$

Initial condition: $x(0) = 1$

```
class HelloWorld "A simple equation"
  Real x(start=1);
equation
  der(x) = -x;
end HelloWorld;
```

Simulation in OpenModelica environment



```
simulate(HelloWorld, stopTime = 2)
plot(x)
```

Modelica: Derivatives and Algebraic Equations

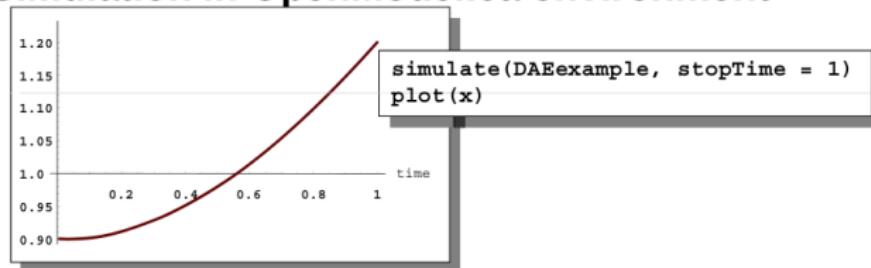
Model Including Algebraic Equations

Include algebraic equation

Algebraic equations contain no derivatives

```
class DAEexample
  Real x(start=0.9);
  Real y;
equation
  der(y) + (1+0.5*sin(y))*der(x)
  = sin(time);
  x - y = exp(-0.9*x)*cos(y);
end DAEexample;
```

Simulation in OpenModelica environment



Modelica: Derivatives and Algebraic Equations

- time is a special variable, holding current simulation time
- System dynamics of previous example is defined as

$$\dot{y} + \left(1 + \frac{\sin y}{2}\right)\dot{x} = \sin t$$

$$x - y = e^{-0.9x} \cos y$$

- Can be transformed in “normal” form by adding state variables:

$$\dot{x} = \frac{\sin t - y_1}{1 + \frac{\sin y}{2}}$$

$$\dot{y} = y_1$$

$$z_1 = e^{-0.9x}$$

$$z_2 = \cos y$$

$$x = z_1 z_2 + y$$

$$y = x - z_1 z_2$$

UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Modelica: Subsystems and Connections

- Till now, stand-alone systems with just one component
- Modelica allows compositional modeling of many components
- Each component is modeled autonomously, by simply looking at the interaction with the environment (input/output)
- Complex systems are made of *connected* components
- Connectors can be explicitly defined
 - causal: input/output relation is explicitly stated
 - acausal: input/output relation is left unspecified
 - Modelica will understand which is input and which is output

Modelica: Toy Example With 2 Components

Mind the difference between = and :=

```
model ContinuousBehav

  Boolean x;
  Real i (start = 1);

  equation
    (if x then 0.5*time else -0.1*time)*der(i) = time;
  end ContinuousBehav;
```


Modelica: Toy Example With 2 Components

```
model GenerateBoolInputs

  Boolean x;
  parameter Real sampling = 1.0;

  algorithm
    when initial() then
      x := false;
    elsewhen sample(sampling, sampling) then
      x := not(x);
    end when;
  end GenerateBoolInputs;
```


Modelica: Toy Example With 2 Components

```
model BoolCont

GenerateBoolInputs gbi;
ContinuousBehav cb;

equation
  gbi.x = cb.x;

end BoolCont;
```


Modelica: Toy Example With 2 Components

May also collect parts of commands in a file `file.mos` and use
`runScript("file.mos")`

```
loadModel(Modelica);
getErrorString();
loadFile("model.mo");
simulate(BoolCont, stopTime=10);
plot({gbi.x, cb.i}, externalWindow=true,
      fileName="BoolCont_res.mat");
```


Modelica: Passing of Time

- For all objects defined, the time passes in the same way
 - it is a kind of common clock, as in digital circuits
- This is of course consistent with physical reality
 - components are close enough...
- It is always continuous time, but using `sample` we can also have discrete time

Modelica: Algorithms and Equations

- Both may be used, the modeler has to choose
 - of course, $x := x + 1$ inside an algorithm is ok, $x = x + 1$ in an equation is not
 - using imperative vs. declarative style is left to the modeler
 - in some cases, algorithm is more natural, in some other equation has to be preferred
 - note that loops and ifs are available in both formats
 - e.g., $a = (\text{if } b \text{ then } 1 \text{ else } 2);$ vs $\text{if } (b) \text{ then } a:=1;$
 $\text{else } a:=2; \text{ end if};$
 - or simply $a := (\text{if } b \text{ then } 1 \text{ else } 2);$
- Algorithms, as well as equations solving, does not cause time to pass
 - number of computation steps required is not important

Modelica: Algorithms

- Generally speaking, when A B clauses triggers the corresponding block B when condition A is true
- A can be any boolean expression, not only sample
- Functions may also be defined and used
 - time does not pass during function calls
 - again, number of computation steps is not important
 - must have input and output
- External C or Fortran functions may be called

```
external "C" result = myfun();  
annotation(Include = "#include \"myfile.c\"");
```


Modelica: Events

- Discrete events happens in a discrete number of time points
 - given that the simulation terminates somewhere, it is actually a finite number of points
- We saw `initial` and `sample`, there is also `terminal`
 - triggered at the end of the simulation
- Simulation ends either because of:
 - the `stopTime` attribute inside `simulate` command
 - a `terminate` statement

DISIM
Dipartimento di Ingegneria
dell'Informazione
e Matematica

Modeling in Simulink

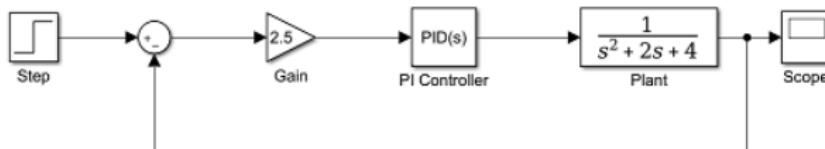
- Simulink is a graphical extension to MATLAB
 - MATLAB itself is proprietary, but UnivAQ provides it to students
- Main goal: modeling and simulation of systems
 - also non-linear ones
- Also see https://ctms.engin.umich.edu/CTMS/index.php?aux=Basics_Simulink
- No way of simply writing a text file: you have to use the GUI and manipulate graphical objects
 - model files are saved in a binary proprietary SLX format

Modeling in Simulink

- Two major classes of objects: blocks and lines
 - blocks used to generate, modify, combine, output, and display *signals*
 - lines used to connect blocks, i.e., transfer signals from one block to another
 - again, a common clock for all objects in a model
- Suppose you create a new or open an existing Simulink model file
- How to add a new block:
 - click “Library Browser”
 - select the type of block you need
 - hundreds of types available, could also be searched by name
 - drag it to the model window
 - by double clicking, you can edit the properties

Modeling in Simulink

- How to add a new connecting line:
 - simply drag the mouse from the first object to the second object
- If you are connecting an object with a line:
 - first make a dangling line from the destination
 - connect the end of such line with the “source” line
 - this will make the source line bifurcated



Modeling in Simulink

Most notable types of blocks:

- Sources: used to generate various signals
- Sinks: used to output or display signals
- Continuous: continuous-time system elements
 - transfer functions, state-space models, PID controllers, etc.
- Discrete: linear, discrete-time system elements
 - discrete transfer functions, discrete state-space models, etc.
- Math Operations: contains many common math operations
 - gain, sum, product, absolute value, etc.
- Ports & Subsystems: contains useful blocks to build a system

