Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

©

©

©

©

In “standard” Model Checking, we are given

o a non-deterministic Kripke Structure (KS)
o an LTL or CTL property to be verified

The output is either PASS or FAIL

o if PASS, then all evolutions (paths) of the given model fulfill
the given property
o if FAIL, we also have a counterexample

In probabilistic model checking, we consider probabilities of
sets of evolutions

Simulation of a system only considers one path

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

void Make_a_run(NFSS N,
{

invariant ¢)
let N =(S,[,Post);
s_curr = pick_a_state(/);
if (l¢(s_curr))
return with error message;
while (1) { /* loop forever */
if (Post(s_curr)=9)
return with deadlock message;

s_next = pick_a_state (Post(s_curr));
if ('y(s_next))

return with error message;
s_curr = s_next;

}
}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

void Make_a_run (NFSS N)
{
let N =(S,{sp},Post);

sS_curr = Sy;

if (some assertion fail in s_curr))

return with error message;

while (1) { /* loop forever */

if (Post(s_curr)=9)

return with deadlock message;
s_next = pick_a_state (Post(s_curr));
if (some assertion fail in s_curr))
return with error message;
s_curr = s_next;

}
}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Simulations may be deterministic or probabilistic
o both Murphi and SPIN simulations are probabilistic
o at each step, a transition is chosen among the n possible ones
with probability %
o of course, n may be different at each step
o Running multiple probabilistic simulations typically implies
obtaining different paths
o the longest the path, the more likely this is to happen

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o For deterministic simulations, all runs are the same
o choice between successor states is fixed (e.g., always the first)
o multiple simulations all result in the same path
o Deterministic simulation are however important when inputs
from the environment are present
o this is actually true for many systems
o some inputs must be given an system startup, others must be
given during the system evolution
o for a given input tuple, there is only one possible successor

o Running multiple deterministic simulation results in different

paths if we vary the inputs to be received
E% UNIVERSITA DISIM
AR/ et e

o this is actually true for many systems

©

©

©

©

Similar to testing
If an error is found, the system is bugged

o or the model is not faithful
o actually, simulation in standard model checking is also used to
understand if the model itself contains errors

If an error is not found, we cannot conclude anything

The error state may lurk somewhere, out of reach for the
random choice in pick_a_state

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o However, for complex CPSs simulation is needed
o In fact, accurately modeling a complex CPS in a classical
model checker is often too difficult or inconvenient
o plant must be modeled by real variables: inherently infinite
state systems
o can be approximated, but accuracy may be low
o Simulators are often already available for testing, why can't
we rely on them?
o not “real” model checking, but something close to it
o far better than “simple” testing
o May be either build from scratch, or implemented with
dedicated tools

o C/Java/Python dedicated programs vs. Sl u n/I\/Iodell .

o Too many states, we cannot store them in an hash table
o transition relation defined by a complex simulator, translation
in OBDDs cannot be done
o Two main workhorses:
chooses system inputs so as
to cover as much as possible
o mainly for safety, but also some sort of LTL
may be used
uses powerful statistical methods
to perform model checking
o something like Monte-Carlo sampling
o i.e., we run the simulation several times, and we

try to derive some guaranteed-an ‘wer
% Rt B
\ DELL'AQUILA Sy

o A simulation is an experiment on a model
o we focus on simulations performed by a computer
o Simulation is very easy to implement in the case of classical
model checkers
o no problems with RAM or execution time
o This stems from the fact that classical model checking deals
with finite state systems

o one step at a time, time passing typically not important

o state space is finite and described by discrete-typed variables

o computing a transition from a state to another is
straightforward

()

What if we need to simulate a cyber-physical system?

o e.g., simulate the Apollo mission

o many subsystem interacting with each other via continuous
signals

o some subsystems are described by ODEs (Ordinary Differential
Equations)

©

In some cases, system developers also builds a simulator from
scratch, e.g., in the C language

o directly experimenting on the physical object may be
dangerous, expensive, or simply impossible (e.g., it still does
not exist)

©

Many tools are available to easily describe complex models to
be simulated

o e.g., able to approximate solutions for ODEs _

Here we will deal with the open-source Model& 1

o we will also have a look to Simulink

©

o With some simplification, an ODE is an equation

Fix,y,y',y" . y(M) =0

o The unknown y is a function y = f(x), and y(") is the the
n-th derivative of y w.r.t. x
o In our context, the independent variable is time, denoted by t

o in simulations, we are interested in the system evolution over
time...

o Thus, we have functions x = f(t) and n-th derivatives
n
expressed in Newton’s notation x

o Finally, our ODE is an equation

Ft, x,%,...,x) = B it e

S
o

o We

©

©

©

©

will consider explicit ODEs x = F(t,x)
x usually is in some n-dimensional space, e.g., x € R”
thus, this is a system of equations

note that, with explicit ODEs, derivatives higher than 1 are
not needed

simply put x3 = x, x2 = X...

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o X=t+x

0 (>'<1,)'<2) = (l’ + x2e™, x1 log t)
o Model of an infectious desease (HIV):
(X1, %) = (A — dx1 — nBxixe, —x2(a + /) + nBxi1x2)
o x1,xy are uninfected and infected cells, / is an action by the
immune system
o a,d,)\, ,n are system parameters
o this latter example is time-invariant (see next slide)

o Given the time-invariant ODE x = F(x), we may use the
Euler approximation
o for small 7, x = M
o if we sample time with 7, i.e., we only consider
te{0,7,27,... k7,...}...
o ... we have that F(x(kt)) = M

o thus by setting xx = x(k7), we have a discrete-time difference
equation xgi1 = xx + 7F(xx)

o This only works for small 7 and small k
o it can be proved that ||xx — x(kT)|| < T4(k), where ¢ is not

bounded
\ B ‘

o at least, in the general case

©

A system is a mathematical concept used to study properties
of physical objects
o sometimes also called abstract system, or system model

©

It is typically used to study evolutions as a function of time

©

Virtually infinite examples:

population of rabbits

spread of diseases

physical objects: a fridge, an oven, a building, a car, ...

part of physical objects: a resistor, a brick, a wheel, ...
controllers for physical objects: ABS, autonomous driving, ...

© 06 06 0 o

©

First distinction is among objects (what we want to model)
and system (the mathematical model)

o a system is defined through functions, sets,»%
S o B
\ DELL'AQUILA Sy

o Given an object, one may devise different systems
o as we may have different programs to solve the same problem
o not only because of different people doing it: different
properties on the same object may be investigated

o Given a system, it may be applied to different objects

o spreading of different diseases may have a common model
o wheel of a car and of a motorcycle

System
Model 1 Sl

System

Model 2 Wifedz
‘ | pryERsiTa
\ DELL'AQUILA :

o We start defining systems by looking at their inputs and
outputs

o keeping in mind that it is all as a function of time

o Deterministic systems: given an input sequence from some
“start”, the output is the same

o probabilistic systems also exist, we do not consider them here

o Black-box system: at first, we perform experiments on the
system

o we provide sequences of inputs and observe the sequence of
outputs

o We begin experiments at some time tp € T, with T C R
o for some systems, T C N
o We consider all input functions u: T — U for our object

o U is some set on which inputs may vary

o it may be multidimensional, e.g. U =N x Z x R?

o of course, such input functions are uncountably many, this is a
conceptual experiment

o For each u, we have an output function y : T — Y coming
out of the object
o U and Y may be different
o again, Y may be multidimensional
o We define the system & = {(u,y) | u is an input function and
y the corresponding output function}

? thus, S CUXY %‘ TR ‘

o Example: determine the number of students which graduate
in same bachelor course

assumption: student enrolls once every year, thus T C N
U C N: number of students enrolling “from outside”
Y C N: number of graduated students
U={f|f: T — U}, analogous for Y
example of input-output:
o 11(2020) = 200, 13 (2021) = 221, 14 (2022) = 198, and
ur(x) = 0 for x ¢ {2020,2021,2022} ...
o ... and we observe
y1(2020) = 51, y1(2021) = 51, y1(2022) = 60
o u1(2020) = 136, 1x(2021) = 231, 1,(2022) = 90, and
u(x) = 0 for x ¢ {2020,2021,2022} ...
o ... and we observe
¥2(2020) = 42, y5(2021) = 37, y5(2022) = 98
o u,wm U, y1,¥2 €, (U17)/1)7(U27}/2)6\ ‘i

© 06 06 0 o

NIVERSI
EGLISTU
EL

TA DISIM
DI prtner i nssrer
L'AQUILA]

)
)

Example: determine the output voltage of a buck DC-DC converter

+Uy iy, -
U L

— W + 'U()
t b tve T ¢ % R
+UD NﬁD f'."-(_jl rc

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Example: determine the output voltage of a buck DC-DC
converter

o TCR

o UC{0,1} xR
o u may be closed (0) or open (1) at any time
o V; may be any real number

o Y C R: observed output voltage vp

o example of input-output (times are in microseconds):
o ui(t) = (0,5) for all t € [0,10], u1(t) = (1,5) for all

t € [10,100]

o w(t) = (0,15) for all t €[0,9], u2(t) = (1,10) for all

t € (9,15], ux(t) = (0,7) for all t > 15
% griy RS -

Result for ug

25 . . . ‘ ‘
U —
y —

2 |

15 t]

1 F

05 t]

0 1x10° 2x10° 3x10° 4x10° 5x10° 6x10° PBEEAR Eo

Result for us
4.5 - T T - - T

4

35

ITA DISIM
L s

L I
0 1x107° 2x107° 3x10° 4x10° 5x10° 6x10° 7x10° P BEGHASEL

... but this is also a result for u;

5 T T T . .

4 L

35 ¢

3 F

25 ¢

2 F

15 ¢

05 ¢

0 k105 2x10° 3x105 4x10° s5x10°

L
6x10° I BECHLS

ITA DISIM
L o

and this is also a result for us

A DISIM
[o

L
0 1x10° 2x10° 3x10-° 4x10° 5x10° 6x10° 7x10° P BEGHASEL

©

Is this a non-deterministic system??? NO!

©

The point is that output is not determined by input only

o though for some systems this is the case: number of students
above

o The missing element is the state
o essentially, the input/output function has side effects...

o Thus, the output (for deterministic systems) is a function of
both the input and the state
o in the examples above, we made different choices for the
starting state

o For our purposes, a system will be defined by a 6-tuple
S=(T,U,Y,X,n,¢):
o U, Y are sets of possible input and output values, resp.
o T is a set of times
o if T C R then we have a continuous-time system
o if T C N then we have a discrete-time system
o X is a set of states
o may be either finite or infinite
o if T C N and |X]| < oo then we essentially have a Kripke
structure

n: T x X x U—Y defines the output function
¢: T xTxXxU— X defines the state transition function

o recallthatd = {f | f: T — U}
[s
B bict G e

© ©

©

n: T xXxU-—Y is as expected

o given the current time, the current state, and the current
input, we can compute the output

0 ¢p: TxTxXxU— X is somewhat more complicated than
expected

o one would expect ¢ : T x X x U — X
o actually, this is enough for most systems

o For some systems, the state transition function depend on
some sequence of inputs, not only the last one

o so we need a function, defined at least on an interval [ty, t)
o this is why ¢ also takes two times instead of one

o 3 conditions must hold for and ¢: causality, consistency and

separation <iz
%‘ N =
\ DELLAQUILA e

©

Vt,top € T,xp € X. (t >t A U|[t0,t)] = Ul|[t0,t)) =
o(t, to, X0, Ul[ey,1)]) = P(t, to, X0, U'[[tg,1))
That it is, if we fix the first 3 arguments t, tg, xg of ¢...

©

©

. and we provide, as a fourth argument, two possible
different functions u, u'...

o ... which however output the same values in the interval
[to, t)...
... then the final value of ¢ does not change

©

©

Thus, what happens in the interval [to, t) causes the system

to go to one single state
% S -

Vte T,xo € X,uelU. ¢(t,t,xp,u) = Xp
Recall that, for a call ¢(t, ty, x, u), u is considered in the
interval [to, t)

Thus, in a call ¢(t,t,xp, u), we are considering the empty
interval [t, t)

Hence, we have no input at all!

Of course, without inputs, the system cannot change its
current state

o Vt,to, 1 € T, xp e X,uel. (t>t > ty) =
d(t, to, X0, Ul[t,1)]) = O(t, t1, &(t1, to, X0, Ul{tg 1)) Uy, 1))
o In few words: the state you obtain if you go straight from tg
to t, is the same state you would obtain if:
o you first go from ty to some intermediate t;
o ie., x3 = ¢(t17 to, Xo, u|[t07tl))
o and then from t; to t
o ie., ¢(t,tr,x1, Ulfy,y)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Note that the set of states X may be multi-dimensional
oeg, X=R3o X={1,23}xZ
o Thus, also ¢ may be multi-dimensional

o Informally, if X has dimension n, then we will have n state
variables
o recall that the same holds for U, Y: we may have multiple
input and output variables
o Hybrid systems: those for which some variables are continuous
and other are discrete
o in some texts, a “hybrid system” have some variables
depending on T = N and some otheron T =R

o This is exactly the case of cyber-physical systems!

o plant + controller/monitor o
‘ UNIVERSITA DISIM
o plant is continuous, controller/monitor is dIS e St s

o With some semplification, a system is time-invariant iff
Vit to,t1 € T,x € X,u € U. ¢(t, tg, x,u) =
o(t — to, 0, x, u) An(t,x, u(t)) =n(ty, x, u(tr))
o that is, the absolute time is not important
o the relative time is

o given a state x, system evolution from 1 to 3 seconds and
from 10 to 12 seconds is the same

o For time-invariant systems, we can always set tg = 0

o For time-invariant systems, we can also write

x(t) = ¢(x(t), u(t)), y(t) = n(x(t), u(t))
% TR ‘

o With some semplification, a system is linear iff
o U,Y,X are linear spaces
o that is, any linear combination >_7 | aix; is in X etc
o U is a linear subspace of UT = {f | f: T — U}
o again, any linear combination Y[; a;jui(t) is in U
o fixed any 2 times t, ty € T as first 2 arguments, ¢ is linear in
the remaining 2 arguments
o ¢(t,to,x,u) =A-[x,u] + b for some A and b
o A, b may depend on t, ty, but not on x, u
o fixed any time t € T as first argument, 7 is linear in the
remaining 2 arguments

o Linear systems are easy to model, simulate and verify

o With some semplification, a system is:
o a finite-state system if U, X, Y are finite sets sgrlpke stru

BEGLISTUDI
DELL'AQUIL

o a finite-dimensional system if U, X, Y are li RS Rt
finite-dimension spaces

o For discrete-time systems, we have that
x(t+1) = o(t + 1, t,x(t), ulfr,r1)) =
Qb(t +1, th(t)v U(t)) = f(t,X(t), u(t))
o first and second argument of ¢ are not independent...
o f has the same domain of 7

o For continuous-time systems, we focus on regular systems,
i.e., those systems for which ¢ is differentiable and there
exists a function f s.t.

do(t,to,x,

o dObboxt) _ £(¢ ¢(t, 1y, x, u), u(t))

o with the initial condition that exists an xy € X s.t.
Xo = ¢(t07 t0>X07 U)

o often, it is easier to provide f than ¢

o Using Newtonian notation, we have x(t) = f(t, x(t), u(t))

o For time-invariant systems, we have j»/'* seenen
() = F(x(0) () oy(0) = mix() o (g3)=

©

XCN3 U YCN,T=N

o Parameters «;(t) € [0, 1] is ratio of students passing an year t
o x1(t+1)=(1—ay(t))x(t) + u(t)

o xi(t+1)=(1—ai(t))xi(t) + aj—1(t)xi—1(t) for i = 2,3

o y(t) = az(t)xs(t)

o Note that, if «;(t) = 1 for all ¢, then states are not needed, as
we have y(t) = u(t — 3)

o Summing up:

((1 = aa(t))xa(t) + u(t))

(1 — aa(t))xe(t) + ar(t)x(t)
% vy o

o f(t) =
(1 — az(t))xs(t) + aa(t)xa(t)

.rL
U - —f—v()
L e I C
?'H + @ % R
f q
V.’ T—— | N r(ﬂ

XCR2LUc{0,1} xR, YCR,T=R

L,C,R,ri,rc € R are system parameters
o we will also use 6 real numbers a; ; for i € {1,2},j € {1,2,3}

which are functions of such parameters

. _l rcR
© eg., 3= "1 IR

©

©

Variables for state are iy, vo, vp, ip, vy, iy (real) and g
(boolean)

©

()

Variables for input are u (boolean) and V; (real)
y(t) = vo(t), thus 7 is easy
¢ is defined by cases in the following slide

o for the definition of ¢, some other (auxiliary) variables are
useful: vp,ip, vy, i, (real) and g (boolean)

o Ron ~ 0, Ror >> R, are fixed parameters %\ R m .
\ DELL'AQUILA o

©

©

We omit (t) for better readability
There must exist a value for vp, ip, vy, iy € R, q € {0,1} s.t.

i = ai1iL+aiavo +ai3vp (1)

Vo = 82711'[_ + azx2vo + a23vp (2)
g — vp=Roip (3) g — vp=Rgip (7)
g — ip=>0 (4) g — vw<0 (8)
u = = Roniy (5) i — vy=Regiy (9)
vwo = v,—Vp (6) ip = ip—1Iy (10)

Both ODEs and algebraic equations =~
% S LI
\ DELL'AQUILA Sy

o Modelica is an open-source language for specifying (complex)
systems
o developed by experts starting in late 1990s
o Many implementations exist
o OpenModelica+simForge, Dymola, Simulation X, MapleSim,
MathModelica
o here we will stick to OpenModelica+simForge

o Also see Modelica slides

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

©

Object-oriented language: classes and objects (i.e., class
instances)

o strongly typed

©

Compositional modeling:

o break up the system in subsystems (components)
o connect the components

©

Very useful for complex systems, with many components

o some standard components already defined, e.g., resistors,
flows etc

o May use equations, also with derivatives

©

Generates a C program, thus it is very efficient

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Synchronous data flow principle: time is the same for all
components
o such as clocks for digital systems, but in Modelica it may be
continuous

o May specify “algorithms” using assignments, ifs, whiles, etc

o all variables must be instances of some class
o this also includes integers and reals

o Acausal modeling: simply first provide the equations for each
object, then connect the objects between them

o other modeling languages, e.g., Simulink, requires to first
design the full chain of connections...

o ...and to make computation in sequence

o Modelica allows both causal and acausal modeling

o physical “reality” is lost

o Modelica easier for modelers, Simulink ea&er%cwmp‘ute e

Acausal Modeling
The order of computations is not decided at modeling time
Acausal Causal
Visual il s
Component oy = .)
Level .
Equation Aresistor equation: Causal possibilities:
Level R*i = v; i := v/R;
v := R*i;
R := v/i;
2 Peter Fritzson Copyright @ Open Source Modelica Consortium no nm A pelab-.-.-

What is Special about Modelica?

Multi-Domain
Modeling

Acausal model
(Modelica)

Causal
block-based
model
(Simulink)

Visual Acausal
Keeps the physical

Hierarchical
structure Component
\ Modelinog
Torquel Inertiat Spring1 nertia2
> T, o A fo—et T
o — —_—
o J=10 J=2
> »
wo 5 & ’
»
o
R -
-

Peter Fritzson

Copyright ©@ Open Source Modelica Consortium

wop e pelab-'-'-

DISIM

What is Special about Modelica?

Multi-Domain
Modeling

Visual Acausal
Component
Modeling

Hybrid modeling =
continuous-time + discrete-time modeling

/\/—\/c()minuous—time

; Discrete-time

Typed t 1 } ime

Declarative

Hybrid

Equation-based Modeling

Textual Language

pIsiM
o [T]
9 Peter Fritzson Copyfight ©® Open Source Modelica Consortium mopELCA pelab... @ e

o Text file with .mo extension, let us say model.mo

class Example
output Real x, y, z;
algorithm
when initial() then //at 0O, both this...
x := 0; // Pascal-like assignments
elsewhen sample(O, 1) then // ... and this
x := 1;
y := pre(x); //0 till 1, then always 2
elsewhen sample(0, 0.5) then
//elsewhen order is important! from bottom to top
X = 2;
z := pre(x); //0 till 0.5, then always 1

end when; :%Jm.m“ m
. =
end Exa.mple; %

o Text file with .mos extension, let us say run.mos

loadModel (Modelica) ;
getErrorString(); // should be used after every command,
// skipped in the following

loadFile("model.mo");

//Example is defined in model.mo

simulate (Example, stopTime=10);

//x, y, z are variables of Example

plot({x, y, z}, externalWindow=true,
fileName="Example_res.mat");

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Run the command omc run.mos

[+]

of course, you must have installed omc for your OS

o This has the following effect:

o
(®)
(8]
Q

generates a C program model.c

compiles model.c to obtain the executable file model
executes model

outputs both a file Example_res.mat and a graphical window
with the graph of variables x, y, z as function of time

0.5

Il Il Il Il
2 4 6 8 10
<)]
| | UNIVERSITA DISIM
| DEGLISTUDI Spariner i
DELL'AQUILA

0.5

UNIVER
| DEGLI

DELL

10

SITA
STUDI
AQUILA

DISIM

2 T T T T
Y —
1.5 b
1+ -
05 b
0 1 1 1 1
0 2 4 6 8 10

A DISIM
[o

0.8

0.6

0.4

0.2

DISIM

Typical Simulation Process

“Static” semantics / compile time

“Dynamic” semantics / run time
Modelica | .] T
model —» HybridDAE | — — » | Executable glmullauon

Elaboration Equation Simulation esult
Transformation &
I Code generation l

3 Peter Fritzson

Copyright © Open Source Modelica Consortium

worliea pelabm

DISIM

class Example
output Real x, y, z;

algorithm
when initial() then //at O, both this...
x := 0;
elsewhen sample(0, 1) then // ... and this
x = 1;

y := pre(x); //0 till 1, then always 2
elsewhen sample(0, 0.5) then

X = 2;
z := pre(x); //0 till 0.5, then always 1
end when;

end Example; %\ - -
A) B e

o Example is a class defined by the modeler: Modelica is OO

o It has 3 real-valued variables, which may become the input for
other blocks

o The dynamics is an algorithm based on the sample construct

o when initial() C executes code in C at time 0

o when sample(A, B) C executes code in C every A+ Bx
seconds, for x € N

o there may be multiple elsewhen sample(A, B) C triggered
at a given time

o they are all executed, starting from the bottom of the file

o now explain the output of the previous example...

o In expressions, pre(var) holds the value of var before the

current event % .
: | thnvrssm B e
\ DELL'AQUILA Sy

Simplest Model - Hello World!
A Modelica “Hello World” model

Equation: X’ = - X class HelloWorld "A simple equation"”
Initial condition: x(0) = 1 Real x(start-1);
equation
der (x)= -x;
end HelloWorld;

Simulation in OpenModelica environment

‘simulate(HelloWorld, stopTime = 2)
‘ plot (x)

pIsiM
Vel [1] e
n Peter Frizson Copyright © Open Source Modelica Consortium MopELTCA pelab--- @ e

Model Including Algebraic Equations

Include algebraic equation |ciass przexample
X . . Real x(start=0.9);
Algebraic equations contain Real y;
no derivatives equation
der (y) + (1+0.5%sin(y)) *der (x)
= sin(time) ;
x -y = exp(-0.9%x) *cos (y) ;
end DAEexample;

RS

Simulation in OpenModelica environment

simulate (DAEexample, stopTime = 1) I
plot (x)

DISIM

0 | 1]
12 Peter Fritzson ~ Copyright © Open Source Modelica Consortium nopELca pelab---

o time is a special variable, holding current simulation time

o System dynamics of previous example is defined as

siny
2

y+(1+)x =sint

x—y=e"%cosy

o Can be transformed in “normal” form by adding state

variables:)
__sint—y1
- siny
e
y=n
71 = e—0.9x
Zy =cCosy

X=z1zp+y ' " —— @ o
y —_— X - 2122 \ ‘/V DELL'AQUILA g

©

©

©

©

Till now, stand-alone systems with just one component

Modelica allows compositional modeling of many components

Each component is modeled autonomously, by simply looking
at the interaction with the environment (input/output)
Complex systems are made of connected components
Connectors can be explicitly defined

o causal: input/output relation is explicitly stated
o acausal: input/output relation is left unspecified
o Modelica will understand which is input and which is output

Mind the difference between = and :=

model ContinuousBehav

Boolean x;
Real i (start = 1);

equation
(if x then 0.5%time else -0.1%time)*der(i) = time;
end ContinuousBehav;

model GenerateBoolInputs

Boolean x;
parameter Real sampling = 1.0;

algorithm
when initial() then
x := false;
elsewhen sample(sampling, sampling) then
X := not(x);
end when;
end GenerateBoolInputs; .

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

model BoolCont

GenerateBoolInputs gbi;
ContinuousBehav cb;

equation
ghbi.x = cb.x;

end BoolCont;

May also collect parts of commands in a file file.mos and use
runScript("file.mos")

loadModel (Modelica) ;

getErrorString();

loadFile("model.mo");

simulate(BoolCont, stopTime=10);

plot({gbi.x, cb.i}, externalWindow=true,
fileName="BoolCont_res.mat") ;

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o For all objects defined, the time passes in the same way
o it is a kind of common clock, as in digital circuits

o This is of course consistent with physical reality
o components are close enough...

o It is always continuous time, but using sample we can also
have discrete time

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Both may be used, the modeler has to choose
o of course, x := x + 1 inside an algorithm is ok, x = x + 1
in an equation is not
o using imperative vs. declarative style is left to the modeler
o in some cases, algorithm is more natural, in some other
equation has to be preferred
o note that loops and ifs are available in both formats
o eg.,a = (if b then 1 else 2); vs if (b) then a:=1;
else a:=2; end if;
o orsimplya := (if b then 1 else 2);
o Algorithms, as well as equations solving, does not cause time
to pass
o number of computation steps required is not important

| UNIVERSITA DISIM
| DEGLI STUDI pormerto i
DELL'AQUILA]

Generally speaking, when A B clauses triggers the
corresponding block B when condition A is true

o A can be any boolean expression, not only sample

Functions may also be defined and used

o time does not pass during function calls
o again, number of computation steps is not important
o must have input and output

External C or Fortran functions may be called

external "C" result = myfun();
annotation(Include = "#include \"myfile.c\"");

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Discrete events happens in a discrete number of time points

o given that the simulation terminates somewhere, it is actually
a finite number of points

o We saw initial and sample, there is also terminal
o triggered at the end of the simulation
o Simulation ends either because of:

o the stopTime attribute inside simulate command
o a terminate statement

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

©

©

Simulink is a graphical extension to MATLAB

o MATLAB itself is proprietary, but UnivAQ provides it to
students

Main goal: modeling and simulation of systems

o also non-linear ones
Also see https://ctms.engin.umich.edu/CTMS/index.
php7aux=Basics_Simulink

No way of simply writing a text file: you have to use the GUI
and manipulate graphical objects

o model files are saved in a binary proprietary SLX format

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

https://ctms.engin.umich.edu/CTMS/index.php?aux=Basics_Simulink
https://ctms.engin.umich.edu/CTMS/index.php?aux=Basics_Simulink

o Two major classes of objects: blocks and lines

o blocks used to generate, modify, combine, output, and display
signals

o lines used to connect blocks, i.e., transfer signals from one
block to another

o again, a common clock for all objects in a model

o Suppose you create a new or open an existing Simulink model
file
o How to add a new block:

o click “Library Browser”
o select the type of block you need

o hundreds of types available, could also be searched by name

o drag it to the model window e

o by double clicking, you can edit the propertl%} panvERaITA m

o How to add a new connecting line:
o simply drag the mouse from the first object to the second
object
o If you are connecting an object with a line:

o first make a dangling line from the destination
o connect the end of such line with the “source” line
o this will make the source line bifurcated

Step Gain Pl Controller

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

Most notable types of blocks:
o Sources: used to generate various signals
o Sinks: used to output or display signals
o Continuous: continuous-time system elements
o transfer functions, state-space models, PID controllers, etc.

o Discrete: linear, discrete-time system elements
o discrete transfer functions, discrete state-space models, etc.

©

Math Operations: contains many common math operations
o gain, sum, product, absolute value, etc.

©

Ports & Subsystems: contains useful blocks to build a system

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

