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General Info for This Class

Software Testing and Verification is an elective course for the
Informatica Bachelor Degree

Lecturer: Igor Melatti

Where to find these slides and more:

https://igormelatti.github.io/sw_test_val/

20222023/index.html (Italian)
https://igormelatti.github.io/sw_test_val/

20222023/index_eng.html (English)
also on MS Teams: “DT0758: Software Testing and Validation
2022/23”, code 098n9tu

2 classes every week, 2 hours per class

https://igormelatti.github.io/sw_test_val/20222023/index.html
https://igormelatti.github.io/sw_test_val/20222023/index.html
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Rules for Exams

Each exam has a written part (50% of mark) and a
project/paper (50% of mark)

each student may choose if making a project or reviewing a
paper
teams of at most 2 students are allowed for projects

Written exam will be a mix of open and closed questions on
the whole exam program

Project/paper may be discussed only after having passed the
written exam

however, pre-evaluation is possible



Rules for Exams

Project: perform testing and validation of a given software

each team may choose one among the ones selected by lecturer
or may propose one (but wait for lecturer approval!)
each team will have to discuss its project with slides

Paper: read a conference or journal paper and present it with
slides

each student may choose one among the ones selected by
lecturer
or may propose one (but wait for lecturer approval!)



Verification Problem

Dates back to computer science origins

of course, not only in computer science

Let us focus on software

Only in some few cases it is possible to generate (synthesize)
a correct-by-construction program starting from (formal)
requirements

Otherwise, the verification problem would not exist, at least
not in its current form



Utopia!

1 Suppose you want to write a software fulfilling some given
requirements

given an array A, sort A in a non-decreasing way
given a graph G = (V ,E ) and two nodes u, v ∈ V , decide if
there exists a path from u to v
build the data base for a library
write a program able to manage an airport
etc.

2 Let us try to write the corresponding requirements

∀1 ≤ i ≤ n − 1 A[i ] ≤ A[i + 1]
∃u1, . . . , un s.t.
u1 = u ∧ un = v ∧ ∀1 ≤ i ≤ n − 1 (ui , ui+1) ∈ E?
It is possible also for the remaining cases, though it is more
complicated



Utopia!

Suppose you have an automatic program synthesizer
(generator)

a special program which takes requirements as input

must be described in some formal way, i.e., using an
unambiguous mathematical language

... and outputs a correct-by-construction program which fulfills
the input requirements

Requirements Program

Programs synthesizer



Utopia!

All efforts are in making the program generator correct,
efficient and effective

It outputs correct-by-construction programs

if I say “give me a program sorting arrays”, then I obtain a
program which never fails
i.e., given any array (input instance), it outputs always the
correct sorted array (corresponding output)



Instead, the Reality



Instead, the Reality

Do you need to build a software? then, you will have to do it
ad hoc

totally general approaches to build program generators cannot
exist
it is easy to see that building a program generator is an
undecidable problem

Of course, you can rely on libraries, methodologies, etc, but...

... there is no guarantee that the starting requirements are
met by the final software

e.g., if you implement an iterative program to sort arrays, but
you forget to increment the index, the starting requirements
will not be met
more subtle errors may be very difficult to find



Software Verification

So you need a verification phase

for simple cases like sorting, it is sufficient to perform it in the
end
for more complex cases, verification must be performed also
during developing phase

Verification goal is to find errors, if any

for our pruposes, an error is a violation of the requirements
some requirements are present since the beginning, some other
may add up later



Software Verification

Software Engineers are well aware of the problem
All software design processes include one or more verification
phases

though it may be simply called test o testing
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Systems Verification

We have been speaking of software, but all we said holds for
any computer-based system

Hardware

digital circuits
microprocessors

Embedded Systems

tiny dedicated computer inside bigger systems
typically, either controllers or monitors
cars (ABS, ESC/ESP...), generic means of transportation,
domestic electrical appliances (fridges, TVs, ...)
errors could be in hardware, software, both, or in the
“communication” (interface) between hardware and software



Systems Verification

Summing up:

1 start from requirements

2 develop some (partial or final) solution

you may “complicate” such steps at wish

3 verify that the current solution fulfills the starting
requirements

you may need to change the requirements (they could be
wrong too, or they may have been changed)
recall that verification may also be done during the
intermediate developing steps



Validation

Verification and validation are often used as synonyms

However, there is an important distinction between the two
terms

validation involves final users “expectations”
verification is performed only keeping in mind the software
requirements already collected
verification does not care whether requirements are what users
want or not

Validation is “did we built the right system?” → useful system

Verification is “did we built the system right?” → dependable
system



Validation and Verification

Requirements analysis vs. requirements specifications

requirements analysis: what (we understood that) the users
want
requirements specification: the solution we propose for the
requirements analysis

Validation is about checking requirements anaysis

more focused on the overall requirements and the final code

Verification is about checking requirements specifications

often with intermediate steps

In this course, we will mainly focus on verification

though also validation will be treated



Validation and Verification



How Verification is Performed

Method number 1: Testing
1 you have the actual system (or a part of it)
2 you feed it with predetermined inputs
3 you check if outputs are the expected ones

“expected” w.r.t. the requirements

4 if there is one output different from the expected one, then we
have an error

5 you correct it and start over again

Method number 1 bis: Simulation

instead of using the actual system, you have a (software)
simulator
especiall useful for hardware or for physical parts
if you want to do testing on hardware, you need to actually
build it, which may be expensive



How Verification is Performed



How Verification is Performed

Both testing and simulation may be performed in refined ways

In fact, the testing plan (the predetermined sequence of
inputs) may be computed using dedicated algorithms so that
coverage is maximized

we will get back soon on this concept

This is the most challenging and important step for such
techniques



Testing and Simulation: Pro and Cons

Pro

(Relatively) easy to implement

easier than the other methods we will consider here

Largely used in industry

in most cases, testing and/or simulation are the only
verification methods used

Cons

They can prove that a system has errors, but cannot prove
that a system does not have errors

Cannot be used to prove generic formal properties

The coverage of the “input space” is low

Errors are frequently detected when it is too late



Testing and Simulation: Cons

They can prove that a system has errors, but cannot prove that a
system does not have errors

If an error is detected, then the system must be corrected,
happy to have discovered it

Otherwise, we cannot conclude anything

That is, we cannot say that the system is error-free

In fact, having not be able to spot errors does not imply that
there are no errors



Testing and Simulation: Cons

Cannot be used to prove generic formal properties

This is a consequence of the previous slide

As an example: in an operating system, is it true that mutual
exclusion is enforced for 2 given processes?

In order to test such a property you would have to modify the
system itself

so that the output contains something like “propriety violated”
or “’property ok”

But even in this case, we cannot draw a formal statement on
the validity of the property

Again, not finding a violation does not imply there are no
violations



Testing and Simulation: Cons

The coverage of the “input space” is low

A successful testing phase should consider “all what may
happen” to the system in a real-world environment

This would need too much tests or simulations

The n in the figure may easily be 106 and more; outputs must
also be checked



Testing and Simulation: Cons

The coverage of the “input space” is low

This also has another bad consequence

Testing and simulation find the “easy” errors

the most frequent ones
i.e., those that are caused by many (different) input sequences

Instead, corner cases usually go undetected

i.e., errors that are caused by a few (or even single) input
sequences are usually not found



Testing and Simulation: Cons

Errors are frequently detected when it is too late

This is a consequence of the previous point: you need many
tests to get a reasonable coverage and discover possible corner
cases

The later an error is found, the more expensive the correction



Formal Verification

To solve the above underlined problems, we should consider
all inputs

That is, al possible system evolutions

of course, testing and simulation only consider some evolutions:
those “activated” by inputs chosen by the testing plan in use

A possible way to do this is to prove a dedicated theorem,
stating that the system is correct for all inputs

For sorting, this could be done (and it is actually done in
Algorithms textbooks...)

For other cases (e.g., microprocessor design), it would be too
difficult or time consuming

Thus, techniques of formal verification have been developed



Formal Verification Methods

A set of (heterogeneous) techniques which make possible the
impossible

That is, algorithms able to generate and analyze all system
evolutions

so, they provide a mathematical certification of correctness
(not achievable with testing/simulation)
also for generic properties, like mutual exclusion

Actually, the problem of verifying a given system w.r.t. a
given property is undecidable

the property to be verified may be: is this system always
terminating?

So, there will be some (acceptable in many cases) limitations



Is Formal Verification Useful?

There are many techniques available for formal verification

Applying any of these techniques is usually much more
difficult than testing/simulation

both in terms of researchers and notions required

So, why to do this?

Because there are many cases in which testing/simulation
simply are not enough

for both economic and safety reasons



Is Formal Verification Useful?

Safety-critical systems: failures may affect humans

public transport software controllers (if an automatic pilot of
an airplane has a failure...)
trains crossing
ABS for cars
...

For most of such systems, formal verification is mandatory by
law

ESA (European Space Agency)
IEC (International Electrotechnical Commission)



Is Formal Verification Useful?

Mission-critical systems: failures cause huge economic losses

automatic space probes
logistics
communication networks
microprocessors
...

Internal company regulations often make formal verification
mandatory as well



Is Formal Verification Useful?

Also for systems which are neither safety nor mission critical:
there are economic motivations to use formal verification

Using testing/simulations, errors are eventually discovered

The problem is that they may be found late

this is a consequence of the low coverage issue

So late, that often errors are found after the system has been
deployed, i.e., when it is already used by its final users

for, e.g., a word processor, it is annoying, but we are somewhat
used to software updates to fix bugs
this is not always possible or easy

e.g., a legacy software out of support



Is Formal Verification Useful?

Hardware circuits: to “write” a circuit on silicon is the most
expensive part of the developing process

So, finding an error after having written the circuit entails a
huge economic loss

This also holds for other systems, when the developing process
is lengthy

In fact, finding a late error may cause going again through
preceding developing phases

less competitivity on the market
for both being late and for augemented costs



Is Formal Verification Useful?

Some famous errors in safety-critical systems

20/7/1969: Apollo 11, during the final descent on the Moon,
the driving computer fails multiple times

all ok because the large support team on Earth understands
the error may be ignored

26/9/1983, URSS believes USA have launched 5 nuclear
weapons

no 3rd WW only because a Russian official finds it strange
there are only 5 missiles
all due to a software bug in recognizing false negatives

1985-1987: Therac-25, computer system to treat cancer
through rediations

many patients due to too high radiations
the error was afterwards tracked to a “race condition” among
concurrent processes



Is Formal Verification Useful?

Some famous errors in mission-critical systems

1962: Mariner 1 automatic space probe (80 M$)
the most expensive dash in history
that is, in the software, the dash sign for numbers is missing
resulting trajectory is completely wrong
the support team blows the probe to avoid it hits something
on ground

1990: AT&T network failure

just one code line wrong in one telephone exchange
for hours, 60000 users are unable to make calls

1990: another space probe, Ariane 5 (500 M€ )

overflow in converting numbers from 64 to 16 bits (!)
due to reuse of Ariane 4 software



Is Formal Verification Useful?

Some famous errors in mission-critical systems (continued)

1994: Intel Pentium computes wrong ansers on some floating
point errors (450 M$)
2006: Airbus A380 internal wires

errors in the software controlling wiring
all design process have to be restarted from scratch
extremely huge economic losses

2010: Toyota Prius ABS

error “glitch” in the ABS controller
185,000 cars recalled for updating
also bad publicity



Is Formal Verification Useful?

A should-be-famous error in mission-critical systems:
Needham-Schroeder protocol

public-key authentication protocol, designed in 1978
widespread use in many systems for decades
initiated a large body of work on the design and analysis of
cryptographic protocols

After 17 years of usage, an error was (manually) discovered in
1995 by Lowe

In 1996, Lowe showed that, using formal verification, it would
have been easy to immediately detect the error

more in detail, by using model checking

Other examples are in
https://spinroot.com/spin/success.html

https://spinroot.com/spin/success.html


Summing Up

Testing and simulation are the most used verification tools

most companies (especially for software) use only these tools
easier and cheaper to use
at least one between testing and simulation are always
performed

For mission critical or safety critical systems, formal
verification methods must be used

more difficult to be applied
may provide a methematical certification for the system
correctness
only applied when budget allows it



Formal Verification Methodologies: a Classification

There are two macro-categories:

Interactive methods

as the name suggests, not (fully) automatic
human intervention is typically required
in this course, we do not deal with such techniques

Automatic methods

only human intervention is to model the system

There also exist hybridations among the two categories
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Formal Verification Methodologies: a Classification
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Interactive Methods

Also called proof checkers, proof assistants or high-order
theorem provers

Tools which helps in building a mathematical proof of
correctness for the given system and property

Pros

virtually no limitation to the type of system and property to be
verified

Cons

highly skilled personnel is needed
both in mathematical logic and in deductive reasoning
needed to “help” tools in building the proof



Interactive Methods

Used for projects with high budgets

For which the automatic methods limitations are not
acceptable

used, e.g., to prove correctness of microprocessor circuits or
OS microkernels

Some tools in this category (see
https://en.wikipedia.org/wiki/Proof_assistant):

HOL
PVS
Coq

https://en.wikipedia.org/wiki/Proof_assistant


Automatic Methods

Commonly dubbed Model Checking

Model Checking software tools are called model checkers

There are some tens model checkers developed; the most
important ones are listed in https://en.wikipedia.org/

wiki/List_of_model_checking_tools

Many are freely downloadable and modifiable for research and
study purposes

Research area with many achievements in over 30 years

https://en.wikipedia.org/wiki/List_of_model_checking_tools
https://en.wikipedia.org/wiki/List_of_model_checking_tools


Verification Tradeoffs



The Model Checking Dream



The Model Checking Dream



Actual Model Checking

In order to have this computationally feasible, we need a
strong assumption on the system under verification (SUV)

I.e., it must have a finite number of states

Finite State System (FSS)

In this way, model checkers “simply” have to implement
reachability-related algorithms on graphs

Such finite state assumption, though strong, is applicable to
many interesting systems

that is: many systems are actually FSSs
or they may be approximated as such
or a part of them may be approximated as such



What Is a State?

There are many notions of “state” in computer science

Model checking states are not the ones in UML-like state
diagrams

Model checking states are similar to operational semantics
states

That is: suppose that a system is “described” by n variables

Then, a state is an assignment to all n variables

given D1, . . . ,Dn as our n variables domains, then a state is
s ∈ ×n

i=1Di



What Is a State: Example

We have two identical processes accessing to a shared resource

in the figure below, i , j denote the two processes
the well-known Peterson algorithm is used



What Is a State: Example

The 5 “states” in the preceding figure are actually modalities

From a model checking point of view, they correspond to
multiple states

To see which are the actual states, let us model this system
with the following variables:

mi , with i = 1, 2: the modality for process i
Qi , with i = 1, 2: Qi is a boolean which holds iff process i
wants to access the shared resource
turn: shared variable



What Is a State: Example

Thus, the resulting model checking states are the following:



What Is a State: Example

There are 25 reachable states

assuming state ⟨L0, L0, f , f , 1⟩ as the starting one

All possible states are 200

there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 × 52 overall assignments

The L0 modality for the first process encloses 6 (reachable)
states

No need of guards on transitions!

guards will be needed for systems with external inputs
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From State Diagrams to Model Checking

The UML-like state diagram is often useful to write the model

as we will see, this will depend on the model checker input
language

It is the model checker task to extract the global (reachable)
graph as seen before

And then analyze it



Is Model Checking Important?

ESA, NASA e IEC require most of their project to be model
checked

Important companies have dedicated laboratories for Model
Checking

hardware: Intel, IBM, SUN, NVIDIA
software: IBM, SUN, Microsoft

Many universities have research groups

USA: MIT, CMU, Austin, Stanford...
very close collaboration with companies

The 3 “inventors” of Model Checking received Touring Award
in 2007:

E. A. Emerson, E. M. Clarke, J. Sifakis



Model Checking Usage



Model Checking Usage

3 steps:

0 Choose the model checker M which is most suitable to the
SUV S (and the property φ)

1 Describe S in the input language of M

2 Describe the property φ

3 Invoke the model checker and wait for the answer

OK ⇒ S |= φ
FAIL ⇒ counterexample

correct the error (it may happen that S or φ must be
corrected instead...) and go back to step 3

OutOfMem or OutOfTime

adjust system parameters (or the description of S)



Model Checking Usage

Not actually to verify programs with “standard” input and
outputs

input is known in advance, e.g. in sorting; standalone
computation
for such systems, testing can be complemented with theorem
proving (or with manual proof derivation)
of course, budget must be taken into account

Most used for reactive systems

always executing: monitoring (warns if something bad
happens) or controlling (avoids that something bad happens)



Model Checking: Pro and Cons

Pro

Same guarantees of proof checking

But requiring less “mathematics” and “computer science”
knowledge

Cons

Computational Complexity

causing “OutOfMem” and “OutOfTime”: State Explosion
Problem

You check a model of the system, not the actual system

though in some cases models can be automatically extracted
from the system



State Explosion Problem: Why?

With some semplification, all Model Checking algorithms are
essentially like this:

1 Extract, from the description of the SUV S, the transition
relation of S

2 Compute the reachable states (reachability)
3 Check if φ holds in all reachable states

All steps may be computationally heavy, but let us focus on
the reachability

see mutual exclusion example

If S is described by n (binary) variables, then the number of
reachable states is O(2n)



State Explosion Problem: Why?

Such complexity cannot be avoided in the most general case

Theoretically speaking, (LTL) Model Checking is P-SPACE
complete

CTL Model Checking is in P, but as we will see this does not
make things better

There are different model checking algorithms, depending on
the “type” of S

each checker has its “preferred” SUVs



Model Checking Algorithms

There are 3 categories:

Explicit

each reachable state is separately stored
very good for communication protocols

Implicit (symbolic)

dedicated data structures are used to represent sets of
reachable states
very good for digital hardware

SAT-based

many problems may be rewritten as SAT, but in model
checking this works pretty well also in practice
software model checking

Proof checker ibridations

not completely automatic, but better than proof checkers
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Model Checking-Related Problems

Controllers generators

particular case for the program synthesizer seen in the
beginning
controllers are software modules which sends digital commands
to some physical device
in some cases, they may be built automatically, using
algorithms similar to those of Model Checking

Probabilistic Model Checking

verification of stochastic processes

Stochastic Model Checking

verification outcome is correct with high probability



We Will See Theory...

A Kriepke structure is a 4-tuple: ⟨S , I ,R, L⟩
Formulas satisfiability: π |= φUψ iff
∃j ∈ N ∀0 ≤ i < jπ(i) |= φ ∧ π(j) |= ψ

µ-calcolus, e.g.: R(x) = µZ [I (x) ∨ ∃x ′[N(x ′, x) ∧ Z (x ′)]]

Algorithms on graphs, hash tables, OBDDs...



...and Practice

We will examine the most important model checkers, also
considering the source code

often very well written
in order to delay state explosion as much as possible
good way to learn how to code

SUVs modeling examples



Roadmap

1 Modeling systems with the Murphi model checker

2 Kripke structures and algorithms inside Murphi: Model
Checking of invariants

3 LTL and CTL properties

safety and liveness

4 CTL Model Checking algorithms

5 LTL Model Checking with SPIN

6 CTL Model Checking with NuSMV

7 Bounded Model Checking with NuSMV

8 Testing (starting from April)


