Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

o Murphi or Murp, the simplest among “model checkers”

o as all model checkers we will see in this course, Murphi may be
freely downloaded with the source code, thus it may also be
modified

o links for download of all model checkers we will see are on the
course web-page: https://igormelatti.github.io/sw_
test_val/20222023/index.html

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

https://igormelatti.github.io/sw_test_val/20222023/index.html
https://igormelatti.github.io/sw_test_val/20222023/index.html

o Formally, as all model checkers, Murphi needs the following
input:
Q a description of the system S you want to verify (i.e., the
“model” you want to “check”)

o as we will see, this is essentially a Kriepke structure
Q a property ¢ you want the system S to satisfy

o The output will be either OK or FAIL
o if FAIL, it is possible to tell Murphi to print a counterexample

o In Murphi, both the description of S and of ¢ must be written

ina

Qo

single text file, following a precise syntax

in other model checkers we will see (e.g., SPIN), this syntax
has a name; but this is not the case for Murphi

o thus, we will refer to it simply as Murphi input language
o as we will see, in many points Murphi input language is similar

to some imperative programming languages, especially Pascal
(for statements) and C (for expressions)

A description for S and ¢ written in the Murphi input language
must be organized as follows

o 1. definitions of:

o constants, also named parameters
o data types, divided in simple and composed
o there are only two simple types: enumerations and integer
subranges
o the boolean data type is predefined as an enumeration (true,
false)
o the composed types are formed using array and/or records
(structs), possibly mixed, following the Pascal syntax

o 1. (Continuing)
o global variables, each having one of the types above

o global variables are fundamental, as they define the states
space S

o thatis, S is defined by all possible values of all global variables

o thus, is defined by the Cartesian product of all types of all
global variables defined

o as all types are finite, S may be huge but it is always finite

o see example below

o note that such definitions may be mixed, of course keeping in
mind variables scoping

o e.g., if you need constant A to define type B of variable C,
you must define constant A first, then type B and finally
variable C

o type B could also be used inline directly v%declaring
UNIVERSITA s
\ / DEGLI STUDI ento di
\ DELL'AQUILA Sy

o 2. Definitions of:
o functions

Qo
(*]
Qo

return a value

may have side effects (i.e., modify a global variable)

may modify input arguments, but must be explicitly stated as
in Pascal (parameter passed as reference)

o procedures

Qo
(*]
Qo

do not return a value

may have side effects (i.e., modify a global variable)

may modify input arguments, but must be explicitly stated as
in Pascal (parameter passed as reference)

| UNIVERSITA pisim
\ | DEGLI STUDI
\ DELL'AQUILA ,

o For both functions and procedures:
o Pascal-like syntax
o it is possible to define and use local variables
o local variables must not be considered in the definition of the
state space S

o Again, you can mix them, provided scoping is respected

o E.g., if function F calls procedure G which calls function H,
then G must be defined before F and H before G

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o 3. Definitions (mixed as you like it) of:

o start states, defined as Pascal-like statements, intended as
atomically executed

o may contain the typical statements of imperative
programming languages: assignments, cycles, ifs, functions
and procedures calls

o local variables may be defined

o rules, each defined by:

o a(n application) guard, defining if a rule is applicable (fired, as
Murphi says) or not

o a body, again formed by atomically executed Pascal-like
statements

o an optional string, working as a short comment for the rule

o by the way, comments may be either with C syntax (/*x/) or

Pascal syntax (--) [[o
\ | BECEAGUIA i

Of course the guard must be a boolean expression
Only global variables and constants may occur in a guard
It is possible to call functions (not procedures!)

The body may contain the typical statements of imperative
programming languages: assignments, cycles, ifs, functions
and procedures calls

Local variables may be defined and used

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o 3. (Continuing):
o invariants, each of them defines a property to be checked

o

Qo
Qo
(*]

same as guards: it must be a boolean expression

only global variables and constants may occur in a guard
exceptions are possible when forall or exist are used
it is of course possible to call functions

o Finally, at least one initial state and one rule must be present
(see 00.minimal model.m)

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Murphi checks that all reachable states of S satisfy all
invariants

o a state s € S is reachable if there exists a path in the
transition graph from an initial state to s

o that is: starting from an initial state, there exists a chain of
rules, each applied to the state obtained from the preceding
one, leading to s

o this is a safety property

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

boolean flag [2];
int turn;
void P0() Peterson’s Algorithm

while (true) {
flag [0] true;
turn = 1;
while (flag [1] && turn == 1) /* do nothing */;
/* critical section */;
flag [0] = false;
/* remainder */;

}

void P1()

while (true) {
flag [1] = true;
turn = 0;
while (flag [0] && turn == 0) /* do nothing */;
/* critical section */;
flag (1] = false;
/* remainder */

}
void main()
flag (0] = false;

flag [1] = false;
parbegin (PO, P1); | b
DI

NIVERSITA DISIM

o Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

o UML-like state diagram: this is the first process; the second
may be obtained exchanging 1's with 2's and viceversa
Q[1] := true;

turn :=1; !Q[2] or turn =2

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Q[2] and turn = 1

QI[1] := false;

o Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

o two identical processes

o each applies Peterson protocol to access to the critical section
L3

o the first issuing the request enters L3
o Q is a global variable, defined as an array of two integers
o each process i may modify QL[i1 and read Q[(i + 1) mod 2]
o turn is another global variable, which may be both read and
modified by both processes

o Murphi description for Peterson protocol: let's start with the
variables

o of course turn and Q, but also two variables P for the modality
(“states” in the UML-like state diagram)

o see 01.2_peterson.no_rulesets.no_parametric.m

o to this aim, we define constants and types

o the N constant (number of processes) is here fictious: only 2
processes, not more

o this version of Peterson protocol only works for 2 processes

o thus, the state space is
S = label t2 x {true, false}? x {1,2}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

P v e {L0,L1,12, 13,14} v e {L0,L1,12, 13,14}

Q v € {true, false} v € {true, false}

turn v € {1..N}

o Hence, |S| = 52 x 22 x 2 = 200 (there are 200 possible states)

o as a matter of comparison, the “state” LO in the UML-like
state diagram actually contains 5% x 22 x 2 = 40 states...

o However, as we will see, reachable states are about 10 times
less

o 2 initial states: turn may be initialized with any value in its
domain

o Note that 01.2_peterson.no_rulesets.no_parametric.m
we have rules repeated 2 times in a nearly equal fashion

o This can be done in this very simple model, but in general

descriptions must be parametric -
j» “ UNIVERSITA DISIM
A B g

o If we want to check Peterson with 3 processes, currently we
would have to add one more rule in the desciprion

o Instead, it must be possible to only change the value of N
from 2 to 3

o To write parametric descriptions in Murphi, rules are grouped
with rulesets
o an index will allow to describe the behavior of the generic

process i
o see 02.2 peterson.with_rulesets.no_parametric.m, but

invariant is still for two processes only
U/ BEt i

o Finally, in 03.2_peterson.with_rulesets.parametric.m
also the invariant is parametric in N

o Exists x:T E(x) End is equivalent to Vyc7E(X)
o Forall x:T E(x) End is equivalent to AxeTE(x)
o all types T = {xi,...,x 7} are finite, thus it is a finite formula

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

