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Kripke Structures

Let AP be a set of “atomic propositions”

in the sense of first-order logic: each atomic proposition is
either true or false
tipically identified with lower case letters p, q, . . .

A Kripke Structure (KS) over AP is a 4-tuple ⟨S , I ,R, L⟩
S is a finite set, its elements are called states
I ⊆ S is a set of initial states
R ⊆ S × S is a transition relation
L : S → 2AP is a labeling function



Labeled Transition Systems

A Labeled Transition System (LTS) is a 4-tuple ⟨S , I ,Λ, δ⟩
S is a finite set of states as before
I ⊆ S is a set of initial states as before (not always included)
Λ is a finite set of labels
δ ⊆ S × Λ× S is a labeled transition relation



Peterson’s Mutual Exclusion as a Kripke Structure

S = {(p1, p2, q1, q2, t) | p1, p2 ∈ {L0,L1,L2,L3,L4}, q1, q2 ∈
{0, 1}, t ∈ {1, 2}} = {L0,L1,L2,L3,L4}2 × {0, 1}2 × {1, 2}
I = {L0}2 × {0}2 × {1, 2}
R: see next slide

AP = {(P1 = v) | v ∈ {L0,L1,L2,L3,L4}} ∪ {(P2 = v) | v ∈
{L0,L1,L2,L3,L4}} ∪ {(Q1 = v) | v ∈ {0, 1}} ∪ {(Q2 =
v) | v ∈ {0, 1}} ∪ {(turn = v) | v ∈ {1, 2}}

e.g.: L(L0,L0, 0, 0, 1)) = {(P1 = L0), (P2 = L0), (Q1 =
0), (Q2 = 0), (turn = 1)}



Peterson’s Mutual Exclusion as a Kripke Structure

E.g.: ((L0,L0, 0, 0, 1), (L1,L0, 1, 0, 1)) ∈ R, whilst
((L0,L0, 0, 0, 1), (L2,L0, 0, 0, 1)) /∈ R

Of course, |R| = number of arrows in figure above



Kripke Structure vs Labeled Transition Systems

KSs have atomic propositions on states, LTSs have labels on
transitions

In model checking, atomic propositions are mandatory

to specify the formula to be verified, as we will see
a first example was the invariant in Murphi

Instead, it is not required to have a label on transitions

Murphi allows to do so, but it is optional
may be easily added automatically, if needed

Labels are typically needed when:

we deal with macrostates, as in UML state diagrams
when we are describing a complex system by specifying its
sub-components, so labels are used for synchronization



Total Transition Relation

In many cases, the transition relation R is required to be total

∀s ∈ S .∃s ′ ∈ S : (s, s ′) ∈ R

this of course allows also s = s ′ (self loop)

In the Peterson’s example, the relation is actually total

Murphi allows also non-total relations, by using option -ndl

note however that not giving option -ndl is stronger:
∀s ∈ S .∃s ′ ∈ S : s ̸= s ′ ∧ (s, s ′) ∈ R
otherwise, if s is s.t. ∀s ′. s = s ′ ∨ (s, s ′) /∈ R, Murphi calls s a
deadlock state
that is, you cannot go anywhere, except possibly self looping
on s

By deleting any rule, we will obtain a non-total transition
relation



Non-Determinism

The transition relation is, as the name suggests, a relation

Thus, starting from a given state, it is possible to go to many
different states

in a deterministic system,
∀s1, s2, s3 ∈ S . (s1, s2) ∈ R ∧ (s1, s3) ∈ R → s2 = s3
this does not hold for KSs

This means that, starting from state s1, the system may
non-deterministically go either to s2 or to s3

or many other states

Motivations for non-determinism: modeling choices!

underspecified subsystems
unpredictable interleaving
interactions with an uncontrollable environment
...



Some Useful Notation

Given a KS S = ⟨S , I ,R, L⟩, we can define:

the predecessor function PreS : S → 2S

defined as PreS(s) = {s ′ ∈ S | (s ′, s) ∈ R}
we will write simply Pre(s) when S is understood

the successor function Post : S → 2S

defined as Post(s) = {s ′ ∈ S | (s, s ′) ∈ R}

Note that, if S is deterministic, ∀s ∈ S . |Post(s)| ≤ 1



Paths in KSs

A path (or execution) on a KS S = ⟨S , I ,R, L⟩ is a sequence
π = s0s1s2 . . . such that:

∀i ≥ 0. si ∈ S (it is composed by states)
∀i ≥ 0. (si , si+1) ∈ R (it only uses valid transitions)

We will denote i-th state of a path as π(i) = si

Note that paths in LTSs also have actions: π = s0a0s1a1 . . .
s.t. (si , ai , si+1 ∈ δ)



Paths in KSs

The length of a path π is the number of states in π

paths can be either finite π = s0s1 . . . sn, in which case
|π| = n + 1
or infinite π = s0s1 . . ., in which case |π| = ∞

We will denote the prefix of a path up to i as π|i = s0 . . . si
a prefix of a path is always a finite path

A path π is maximal iff one of the following holds

|π| = ∞
|π| = n + 1 and |Post(π(n))| = 0

that is, ∀s ∈ S . (π(n), s) /∈ R
i.e., the last state of the path has no successors
often called terminal state

If R is total, maximal paths are always infinite

for many model checking algorithms, this is required



Reachability

The set of paths of S starting from s ∈ S is denoted by
Path(S, s) = {π | π is a path in S ∧ π(0) = s}
The set of paths of S is denoted by
Path(S) = ∪s∈IPath(S, s)

that is, they must start from an initial state

A state s ∈ S is reachable iff
∃π ∈ Path(S), k ≤ |π| : π(k) = s

i.e., there exists a path from an initial state leading to s
through valid transitions

The set of reachable states is defined by
Reach(S) = {π(i) | π ∈ Path(S), i ≤ |π|}



Safety Property Verification

Verification of invariants: nothing bad happens

The property is a formula φ : S → {0, 1}
built using boolean combinations of atomic propositions in
p ∈ AP
i.e., the syntax is

Φ : (Φ) | Φ ∧ Φ | Φ ∨ Φ | ¬Φ | p

The KS S satisfies φ iff φ holds on all reachable states

∀s ∈ Reach(S). φ(s) = 1

Note that it may happen that φ(s) = 0 for some s ∈ S : never
mind, if s /∈ Reach(S)



From Murphi Description M to KS S

First, we mathematically define a Murphi description M
V = ⟨v1, . . . , vn⟩ is the set of global variables of M, with
domains ⟨D1, . . . ,Dn⟩

all variables are unfolded to the Murphi simple types

integer subranges
enumerations
the special “undefined” value should be added to all simple
types

that is, if a variable is an array with q elements, then it is
actually to be considered as q different variables
the same for records (and any nesting of arrays and records)
as an example: var a : array [1..n] of record begin

b : 1..m; c: 1..k; endrecord

then there will be 2n variables as follows:
a1b, . . . , anb, a1c , . . . , anc
the first n with type 1..m, the other with type 1..k



From Murphi Description M to KS S

I = {I1, . . . , Ik} is the set of startstate sections in M
startstates may be defined inside rulesets; again, all rulesets
are unfolded
thus, if a startstate I is inside m nested rulesets R1, . . . ,Rm...
and each ruleset Ri is defined on an index ji spanning on a
domain Di (note that Di must be a simple type)...
then there actually are

∏m
l=1 |Dl | startstates to be considered,

instead of just one
of course, in each of these startstates definitions, the tuple
j1, . . . , jm takes all possible values of R1 × . . .×Rm

T = {T1, . . . ,Tp} is the set of rule sections in M
again, if rulesets are present, they are unfolded



From Murphi Description M to KS S

The Kriepke structure S = ⟨S , I ,R, L⟩ described by M is such
that:

S = D1 × . . .× Dn

s ∈ I iff there is a startstate Ii ∈ I s.t. s may be obtained by
applying the body of Ii
(s, t) ∈ R iff there is a rule Ti ∈ T s.t. Ti guard is true in s
and Ti body changes s to t
AP = {(v = d) | v = vi ∈ V ∧ d ∈ Di}
(v = d) ∈ L(s) iff variable v has value d in s



From Murphi Description M to KS S

We also assume to have a function defining the semantics of
Murphi (sequence of) statements

those in bodies of rules and startstates

Let P be the set of all possible (syntactically legal) Murphi
statements

including while, if, for, assignments...

Thus, let η : P × D1 × . . .× Dn → D1 × . . .× Dn be our
evaluation function

it takes a Murphi statement P ∈ P and the state s preceding
such statement
it returns the new state s ′ obtained by executing P on s
e.g., η(a := a+ 1; b := b− 1, (1, 2, 3)) = (2, 1, 3)
η may be defined, e.g., using operational semantics



From Murphi Description M to KS S

We also assume to have a function defining the semantics of
Murphi boolean expression

those in guards of rules
and in invariants!

Let Q be the set of all possible (syntactically legal) Murphi
boolean expressions

including forall, exists, equality checks...

Thus, let ζ : Q× D1 × . . .× Dn → {0, 1} be our evaluation
function

it takes a Murphi boolean expression Q ∈ Q and the state s to
be evaluated
it returns 1 iff Q is true in s
e.g., ζ((a = 3|b = 4), (1, 4, 3)) = 1
ζ may be defined using atomic propositions in AP (see below)



From Murphi Description M to KS S

Let Q ∈ Q be a Murphi boolean expression

Flatten Q w.r.t. Forall and Exists

Forall is replaced by ANDs, Exists by ORs
e.g., from Exists i1: pid Do Exists i2: pid Do (i1

!= i2 & P[i1] = L3 & P[i2] = L3) End End ...
... to (1 != 1 & P[1] = L3 & P[1] = L3) | (2 != 1 &

P[2] = L3 & P[1] = L3) | (1 != 2 & P[1] = L3 &

P[2] = L3) | (2 != 2 & P[2] = L3 & P[2] = L3)

If we replace each variable vi ∈ V occurring in Q with a value
wji ∈ Di , we obtain a boolean value (true or false)

e.g., the former evaluates to true by setting P[1] = L3 and
P[2] = L3

Thus, ζ(Q, s) = 1 iff Q(wj1 , . . . ,wjn) = 1

where each wji is such that (vi = wji ) ∈ L(s)
Q(wj1 , . . . ,wjn) is the result of replacing variable vi with value
wji



From Murphi Description M to KS S

(s, t) ∈ R iff there is a rule Ti ∈ T s.t. Ti guard is true in s
and Ti body changes s to t

By using η and ζ, we can be more precise:

“Ti guard is true” means ζ(G (Ti ), s) = 1, being G (Ti ) the
Murphi expression used as guard of rule Ti

“Ti body changes s to t” means η(B(Ti ), s) = t, being B(Ti )
the Murphi statement used as body of rule Ti

s ∈ I iff there is a startstate Ii ∈ I s.t. s may be obtained by
applying the body of Ii

“s may be obtained by applying the body of Ii” means
η(B(Ii ), (⊥, . . . ,⊥)) = s, being B(Ti ) the Murphi statement
used as body of startstate Ii



From Murphi Description M to KS S

(s, t) ∈ R iff there is a rule Ti ∈ T s.t. Ti guard is true in s
and Ti body changes s to t:

that is: in the body of Ti , variables starting values are those of
s
note that there may be two or more rules defining the same
transition from s to t; no problem with this
simply, the same transition is described by multiple rules

A state s is a deadlock state for two possible reasons:
1 (s, t) /∈ R for all t ∈ S , i.e., the values for the variables in s do

not satisfy any ruleset guard
2 (s, t) ∈ R → t = s, i.e., there is some ruleset guard which is

satisfied by s, but its body do not change any of the global
variables (e.g., the body is empty)



How to Verify a Murphi Description M

Theoretically, extract KS S and property φ from M as
described above

for a given invariant I in M, φ(s) = ζ(I , s) for all s ∈ S

Then, KS S satisfies φ iff φ holds on all reachable states

∀s ∈ Reach(S). φ(s) = 1

Thus, consider KS as a graph and perform a visit

states are nodes, transitions are edges

If a state e s.t. φ(e) = 0 is found, then we have an error

Otherwise, all is ok



How to Verify a Murphi Description M

From a practical point of view, many optimization may be
done, but let us stick to the previous scheme

The worst case time complexity for a DFS or a BFS is
O(|V |+ |E |) (and same for space complexity)

For KSs, this means O(|S |+ |R|), thus it is linear in the size
of the KS

Is this good? NO! Because of the state space explosion
problem

Assuming that B bits are needed to encode each state

i.e., B =
∑n

i=1 bi , being bi the number of bits to encode
domain Di

We have that |S | = O(2B)



State Space Explosion

The “practical” input dimension is B, rather than |S | or |R|
Typically, for a system with N components, we have O(N)
variables, thus O(B) encoding bits

It is very common to verify a system with N components, and
then (if N is ok) also for N + 1 components

verifying a system with a generic number N of components is a
typically proof checker task...

This entails an esponential increase in the size of |S |
Thus we need “clever” versions of BFS/DFS



Standard BFS: No Good for Model Checking

Assumes that all graph nodes are in RAM

For KSs, graph nodes are states, and we now there are too
many

state space explosion

You also need a full representation of the graph, thus also
edges must be in RAM

using adjacency matrices or lists does not change much
for real-world systems, you may easily need TB of RAM

Even if you have all the needed RAM, there is a huge
preprocessing time needed to build the graph from the Murphi
specification

Then, also BFS itself may take a long time



Murphi BFS

We need a definition inbetween the model and the KS: NFSS
(Nondeterministic Finite State System)

N = ⟨S , I ,Post⟩, plus the invariant φ

S is the set of states, I ⊆ S the set of initial states
Post : S → 2S is the successor function as defined before

given a state s, it returns T s.t. t ∈ T → (s, t) ∈ R

no labeling, we already have φ



Murphi BFS

KSs and NFSSs differ on having Post instead of R

Post may easily be defined from the Murphi specification

Such definition is implicit, as programming code, thus
avoiding to store adjacency matrices or lists

t ∈ Post(s) iff there is a rule Ti ∈ T s.t. Ti guard is true in s
and Ti body changes s to t

see above for using η and ζ

Essentially, if the current state is s, it is sufficient to inspect all
(flattened) rules in the Murphi specification M

for all guards which are enabled in s, execute the body so as
to obtain t, and add t to next(s)

This is done “on the fly”, only for those states s which must
be explored



Murphi Simulation

void Make_a_run(NFSS N , invariant φ)
{

let N = ⟨S , I ,Post⟩;
s_curr = pick_a_state(I );
i f (!φ(s_curr))
return with error message;

while (1) { /* loop forever */

s_next = pick_a_state(Post(s_curr));
i f (!φ(s_next))
return with error message;

s_curr = s_next;

}

}



Murphi Simulation

void Make_a_run(NFSS N , invariant φ)
{

let N = ⟨S , I ,Post⟩;
s_curr = pick_a_state(I );
i f (!φ(s_curr))
return with error message;

while (1) { /* loop forever */

i f (Post(s_curr) = ∅)

return with deadlock message;

s_next = pick_a_state(Post(s_curr));
i f (!φ(s_next))
return with error message;

s_curr = s_next;

}

}



Murphi Simulation

Similar to testing

If an error is found, the system is bugged

or the model is not faithful
actually, Murphi simulation is used to understand if the model
itself contains errors

If an error is not found, we cannot conclude anything

The error state may lurk somewhere, out of reach for the
random choice in pick a state



Standard BFS (Cormen-Leiserson-Rivest)



Murphi BFS

FIFO Queue Q;

HashTable T;

bool BFS(NFSS N , AP φ)
{

let N = (S , I , Post);
foreach s in I {

i f (!φ(s))
return f a l s e ;

}

foreach s in I
Enqueue(Q, s);

foreach s in I
Hash In s e r t (T, s);



Murphi BFS

while (Q ̸= ∅) {

s = Dequeue(Q);
foreach s_next in Post(s) {

i f (!φ(s_next))
return f a l s e ;

i f (s_next i s not in T) {

Enqueue(Q, s_next);

Hash In s e r t (T, s_next);

} /* if */ } /* foreach */ } /* while */

return true;
}



Murphi BFS

Edges are never stored in memory

(Reachable) states are stored in memory only at the end of
the visit

inside hashtable T

This is called on-the-fly verification

States are marked as visited by putting them inside an
hashtable

rather than coloring them as gray or black
which needs the graph to be already in memory



State Space Explosion

State space explosion hits in the FIFO queue Q and in the
hashtable T

and of course in running time...

However, Q is not really a problem

it is accessed sequentially
always in the front for extraction, always in the rear for
insertion
can be efficiently stored using disk, much more capable of
RAM

T is the real problem

random access, not suitable for a file
what to do?
before answering, let’s have a look at Murphi code



Murphi Usage

As for all explicit model checker, a Murphi verification has the
following steps:

0 compile Murph source code and write a Murphi model
model.m

1 invoke Murphi compiler on model.m: this generates a file
model.cpp

mu options model.m

see mu -h for available options

2 invoke C++ compiler on model.cpp: this generates an
executable file

g++ -Ipath to include model.cpp -o model

path to include is the include directory inside Murphi
distribution

3 invoke the executable file

./model options

see ./model -h for available options



Murphi compiler

Executable mu is in src directory of Murphi distribution

Obtained by compiling the 25 source files in src

of course, a Makefile is provided for this

Standard compiler implementation, with Flex lexical analyzer
(mu.l) and Yacc parser (mu.y)

The main function which builds model.cpp is
program::generate code in cpp code.cpp (called by main,
in mu.cpp)

program::generate code uses the parse tree generated by
Yacc to “implement” in C++ the guards and the bodies of
the rules

The result goes in model.cpp: model-specific code



Organization of model.cpp

Each Murphi variable v (local or global) corresponds to a
C++ instance mu v of the class mu int (possibly through
class generalizations)

Class mu int is used to handle variables with max value 254
(255 is used for the undefined value)

For integer subranges with greater values, class mu long is
used; also mu byte (equal to mu int...) and mu boolean

exist

If v is a local variable, mu v directly contains the value
(attribute cvalue, in world is false)

Otherwise, if v is global, mu v retrieves the value from a
fixed-address structure containing the current state value
(workingstate; in world is true)



Organization of model.cpp

c la s s mu__int {

enum {undef_value =0xff};

bool in_world; /* local iff false */

int lb , ub; /* bounds */

int byteOffset; /* in bytes */

/* points to workingstate ->bits[byteOffset]

for global variables , to cvalue for

local

*/

unsigned char *valptr;

unsigned char cvalue;



Organization of model.cpp

public:
/* constructor , sets all attributes (the

variable is supposed to be local by

default , with an undefined value);

byteOffset is computed by generate_code

*/

mu__int( int lb , int ub, int size , char *n,

int byteOffset);

/* other useful functions */

int operator= ( int val) {

i f (val <= ub && val >= lb) value(val);

e l se boundary_error(val);

return val;

}



Organization of model.cpp

operator int () const {

i f (isundefined ()) return undef_error ();

return value();

};

const int value () const {return *valptr ;};

int value( int val) {

*valptr = val; return val;};

void to_state(state *thestate) {

/* used to make the variable global */

in_world = TRUE;

valptr = (unsigned char *)&( workingstate ->

bits[byteOffset ]);

};

};



Organization of model.cpp

As for the byteOffset computation,
program::generate code simply computes the one for a
variable mu v mapping a Murphi variable v in the following
way

Let M1, . . . ,Mn be the upper bounds of the n variables
preceeding the declaration of v
Let b(x) = ⌊log2(x + 1)⌋+ 1 be the number of bits required to
represent the maximum value x (plus the undefined value)
Let B(x) = 1 if b(x) ≤ 8, 4 otherwise (i.e. only 1-byte or
4-bytes integers may be used)
Then, byteOffset(mu v) =

∑n
i=1 B(Mi )



Organization of model.cpp: workingstate

Structure containing the current global state, is an instance of
class state

Essentially, it consists of an array of unsigned characters,
named bits

so that any value of any global variable may be casted inside it
at a precise location, pointed to by valptr from mu int

Note that workingstate has a fixed length, that is

BLOCKS IN WORLD =
∑N

i=1 B(Mi )

being N the number of all global variables
namely, bits has BLOCKS IN WORLD unsigned chars



Translation of Murphi Model Statements

Straightforward for ifs, whiles and so on: the “difficult” part
is assignments (and expressions evaluation)

Essentially, a := b; in model.m becomes mu a = (mu b); in
model.cpp

The operator () is redefined so that mu b retrieves the value
for b, either from itself (attribute cvalue) or from
workingstate (thanks to valptr)

Then, the redefined operator = is called, so that mu a updates
the value for a to be equal to that of b, either from itself
(attribute cvalue) or from workingstate

If the right side of the assignment has a generic expression, it
is evaluated in a similar way (the operator () solves the
Murphi variable references, the other values will be integer
constants or function calls...)

BTW, functions are mapped as C++ methods...



Translation of Murphi Rules

For each rule i (starting from 0 at the end of model.m!) there
is a class named RuleBasei

Such class has Code method for the body and Condition

method for the guard

Startstates are similar, but they only have the body

A suitable C++ code flattens rulesets, if present



Translation of Murphi Rules: From This...

Const VAL_LIM: 5;

Type val_t : 0.. VAL_LIM;

Var v : val_t;

Rule "incBy1"

v <= VAL_LIM - 1 ==>

Var useless : val_t;

Begin
useless := 1;

v := v + useless;

End;



Translation of Murphi Rules: ... To This

c la s s RuleBase1 {

public:
...

bool Condition(unsigned r) { /* guard */

return (mu_v) <= (4);

}

...

void Code(unsigned r) { /* body */

mu_1_val_t mu_useless("useless", 0);

mu_useless = 1;

mu_v = (mu_v) + (mu_useless);

};

...

}



Translation of Murphi Rules: From This...

ruleset i: l1..u1 do
ruleset j: l2..u2 do
Rule "incBy1"

i < j ==>

Begin v := v + i - j; End;
Endruleset; Endruleset;



Translation of Murphi Rules: ... To This

c la s s RuleBase0 {

public:
bool Condition(unsigned r) {

/* called (u1 − l1 + 1)(u2 − l2 + 1) with r ranging

from 0 to (u1 − l1 + 1)(u2 − l2 + 1)− 1 */

s ta t i c mu__subrange_7 mu_j;

mu_j.value((r % (u2 − l2 + 1)) + l2);
r = r / (u2 − l2 + 1);
s ta t i c mu__subrange_6 mu_i;

mu_i.value((r % (u1 − l1 + 1)) + l1);
/* useless , but it is automatically

generated ... */

r = r / (u1 − l1 + 1);
return (mu_i) < (mu_j);

}



Translation of Murphi Rules: ... To This

void Code(unsigned r) {

s ta t i c mu__subrange_7 mu_j;

mu_j.value((r % (u2 − l2 + 1)) + l2);
r = r / (u2 − l2 + 1);
s ta t i c mu__subrange_6 mu_i;

mu_i.value((r % (u1 − l1 + 1)) + l1);
r = r / (u1 − l1 + 1);
mu_v = ((mu_v) + (mu_i)) - (mu_j);

};
...

};



Translation of Murphi Rules: ... To This

void Code(unsigned r) {

s ta t i c mu__subrange_7 mu_j;

mu_j.value((r % (u2 − l2 + 1)) + l2);
r = r / (u2 − l2 + 1);
s ta t i c mu__subrange_6 mu_i;

mu_i.value((r % (u1 − l1 + 1)) + l1);
r = r / (u1 − l1 + 1);
mu_v = ((mu_v) + (mu_i)) - (mu_j);

};
...

};



Murphi Overall Translation

Note that the first part of Condition and Code is meant to
translate an integer from 0 to (u1 − l1 + 1)(u2 − l2 + 1)− 1 in
2 values for the rulesets indeces

The interface class for the verification algorithm is
NextStateGenerator

Suppose there are R rules r0, . . . , rR−1, and that each ri is
contained in Ni nested rulesets having upper bound uij and
lower bound lij , for j = 1, . . . ,Ni

Note that Condition simply calls its homonymous method of
the RuleBase class corresponding the current r...



Murphi Overall Translation

Let P(k) =
∑k−1

i=0 (
∏Ni

j=1(uij − lij + 1)) + 1 be the number

of flattened rules preceding the rule rk ;

c la s s NextStateGenerator {

RuleBase0 R0;
...

RuleBase(R − 1) R(R − 1);
public:
void SetNextEnabledRule(unsigned &

what_rule);



Murphi Overall Translation

bool Condition(unsigned r) { /* r will

range from 0 to P(R) */

category = CONDITION;

i f (what_rule < P(1))
return R0.Condition(r - 0);

i f (what_rule >= P(1) && what_rule < P(2))
return R1.Condition(r - P(1));

...

i f (what_rule >= P(R − 1) && what_rule <

P(R))
return R(R − 1).Condition(r - P(R − 1));

return Error;

}



Murphi Overall Translation

void Code(unsigned r) {

i f (what_rule < P(1)) {

R0.Code(r - 0); return;
}

i f (what_rule >= P(1) && what_rule < P(2)) {

R1.Code(r - P(1)); return;
}
...

i f (what_rule >= P(R − 1) && what_rule <

P(R)) {

R(R − 1).Code(r - P(R − 1)); return;
} }

};

const unsigned numrules = P(R);



Step 2: What Is Actually Compiled by C++ Compiler

Concatenation of include/*.h

model.cpp

Concatenation of include/*.C



Murphi BFS

FIFO Queue Q;

HashTable T;

bool BFS(NFSS N , AP φ)
{

let N = (S , I , Post);
foreach s in I {

i f (!φ(s))
return f a l s e ;

}

foreach s in I
Enqueue(Q, s);

foreach s in I
Hash In s e r t (T, s);



Murphi BFS

while (Q ̸= ∅) {

s = Dequeue(Q);
foreach s_next in Post(s) {

i f (!φ(s_next))
return f a l s e ;

i f (s_next i s not in T) {

Enqueue(Q, s_next);

Hash In s e r t (T, s_next);

} /* if */ } /* foreach */ } /* while */

return true;
}



BFS in Murphi

Post(s) is computed using class NextStateGenerator

It is equivalent to a for loop on all flattened rules

For each flattened rule index r , Condition(r) tells if the
current state workingstate enables the guard of r

If so, the next state is obtained via Code(r), by directly
modifying workingstate



Hashtable in Murphi

Open addressing ...

insert: repeatedly call e = h(s, i) (for i = 1, 2, . . .) till
T[e] = ∅, then insert s in T[e]
search: repeatedly call e = h(s, i) (for i = 1, 2, . . .) till either:

T[e] = ∅ → s is not present
T[e] = s → s is present

... with double hasing

there are two hash functions h1, h2
h(s, i) = (h1(s) + ih2(s)) mod m
m is the size of T, and is a prime number



Reducing Hashtable in Murphi

States must be stored in T

For efficiency reasons, T is a fixed-length array, each entry is
an instance of state class

if T becomes full, the verification is terminated and you have
to run it again with more memory
option -m of model executable

Thus, T stores workingstates

Two possible ways (also together):
1 use less memory for each state
2 store less states



Hash Compaction

Enabled by compiling the Murphi model with -c

When dealing with hash table insertions and searches, state
“signatures” are used instead of the whole states

The idea is that it is unlikely to happen that two different
states have the same signature

If this happens, some states may be never reached, even if
they are indeed reachable

Thus, there may be “false positives”: the verification
terminates with an OK messages, while the system was buggy
instead

However, this is very unlikely to happen, and in every case it
is much better than testing, which may miss whole classes of
bugs



Hash Compaction

At the beginning of the verification, a vector hashmatrix of
24*BLOCKS IN WORLD longs (4 byte per each long) is created
and initialized with random values (hashmatrix will never be
modified)

Then, given a state s to be sought/inserted, 3 longs l0, l1
and l2 are computed from hashmatrix

Namely, li , for i = 0, 1, 2, is the bit-to-bit xor of the longs in
the set H(i) = {hashmatrix[3k + i ] | the k-th bit of the
uncompressed state s is 1};
That is to say, every bit of s is used to determine if a given
element of hashmatrix has or hasn’t to be used in the
signature computation



Hash Compaction

This is accomplished in the functions of file
include/mu hash.cpp, where to avoid to compute
8*BLOCKS IN WORLD bit-to-bit xor operations, some xor
properties allow to use the preceeding computed signature and
save some xor computation (oldvec variable)
Then, l0 is used as a hash value (index in the hash table)
The concatenation of l1 and l2 (truncated to a given number
of bits by option -b) gives the signature (the value to be
sought/inserted in T)
It should be obvious, now, that a signature cannot be used to
generate states, so that’s why Q entries do not point to hash
table entries any more
Thus, if current workingstate state is found to be new, and
so its signature is put inside the hash table, a new memory
block is allocated to be assigned to the current from of the
queue, and workingstate is copied into that



Bit Compression

To save some (not much...) space, the Murphi compiler
option -b may be used to compress states (bit compression in
SPIN’s parlance)

Whilst hashcompaction is a lossy compression, this is lossless

But very less efficient

In this way, workingstate contents are not forced to be
aligned to byte boundaries, so it occupies less space

Moreover, effective subranges size is used (remember we store
the lower bound...)

Of course, a more complex handling than the valptr and
byteOffset one has to be used



Murphi BFS

Var
x : 255..261;

y : 30..53;

StartState
x := 256;

y := 53;

End;



Bit Compression

without −b

y

x y

0xc

0x00x0 0x1 0x0 0x35

with −b0x2

workingstate−>bits

workingstate−>bits



Symmetry and Multiset Reductions

Differently from SPIN’s partial order reduction, these
techniques are not transparent to the user

In fact, symmetry reduction are applicable only if some types
have been declared using the scalarset keyword (for
multiset reduction, the keyword is multiset)

Not all systems are symmetric

However, when it is possible to apply symmetry reduction,
only a subset of the state space is (safely) explored

To be more precise, symmetry reduction induces a partition of
the state space in equivalence classes

A functions chain (implemented in the model-dependent part
in model.cpp) is able to return the representative of the
equivalence class of a given state



Symmetry and Multiset Reductions

Rules for scalarset:

the values are not used in any comparison operation except
equality testing
the values are not used in any arithmetic operation
the result from the for loop with the subrange as index does
not depend on the order of the iteration
cannot be directly assigned to some value: either it is used on
a forall, exists, for, ruleset, or it is used an assignment with
some other scalarset value



Murphi BFS with Symmetry Reduction

FIFO Queue Q;

HashTable T;

bool BFS(NFSS N , AP φ)
{

let N = (S , I , Post);
foreach ss in I {

s = Normalize(ss);

i f (!φ(s))
return f a l s e ;

}

foreach s in I
Enqueue(Q, s);

foreach s in I
Hash In s e r t (T, s);



Murphi BFS with Symmetry Reduction

while (Q ̸= ∅) {

s = Dequeue(Q);
foreach ss_next in Post(s) {

s_next = Normalize(ss_next);

i f (!φ(s_next))
return f a l s e ;

i f (s_next i s not in T) {

Enqueue(Q, s_next);

Hash In s e r t (T, s_next);

} /* if */ } /* foreach */ } /* while */

return true;
}



Symmetry Reduction

How is Normalize implemented? Here are the main ideas

Suppose that variable v is a scalarset(N), and v = ṽ in a
state s ∈ S

Then, any permutation of the set {1, . . . ,N} brings to an
equivalent state

Thus, all possible permutations are generated, and the
lexicographically smaller state is chosen as the representative

apply a permutation means: change the value of v , and
reorder any array or ruleset or for which depends on v

Could be expensive, heuristics are also used to perform faster
but potentially not complete normalizations

i.e., two symmetric states may be declared different
this does not hinders verification correctness, only its efficiency


