
Software Testing and Validation
A.A. 2022/2023

Corso di Laurea in Informatica

The NuSMV Model Checker

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

CTL (and LTL) Model Checking

We saw the theoretical algorithm for CTL model checking

we said it was not effective, as it required S and R to be in
RAM

Actually, there are methodologies which are able to fit S and
R in RAM, also for industrial-sized models

The “father” of the model checkers using such technologies is
SMV

Symbolic Model Verifier
it has then been refactored as NuSMV

This set of techniques is referred to as symbolic model
checking

Murphi and SPIN style is dubbed explicit model checking

CTL (and LTL) Model Checking

In order to understand how symbolic model checking works,
we need some preliminaries

ROBDDs

needed to actually fit S and R in RAM

µ-calculus

together with fixpoint computation
extension of λ-calculus
needed to efficiently implement CTL and LTL model checking
using ROBDDs

ROBDD

Reduced Ordered (Complemented Edges) Binary Decision
Diagrams

sometimes called simply OBDDs, and even BDDs
here we stick to the precise notation, by also outlining the
differences

Let us start with the basis: BDD

A BDD is a data structure representing a boolean function

of course, OBDDs and ROBDDs are data structure as well
we will define them in the following

Boolean Functions

In our setting a boolean function is f : Bn → B
where B = {0, 1} is the set of boolean values
0 stands for false, 1 for true
thus, our boolean functions have n boolean variables as
arguments
and return a single boolean value

Examples:

0 and 1 are boolean functions with n = 0
complementation (f (x) = ¬x) and identity (f (x) = x) are
boolean functions with n = 1
AND (f (x , y) = x ∧ y), OR (f (x , y) = x ∨ y) are boolean
functions with n = 2
generally speaking, there are 22

n

different boolean functions of
n boolean variables

Boolean Functions Representation

Roughly speaking, if you have f (x) = x + 1 with x ∈ R, you
can only represent f through its computation

rules s.t., given x , you compute x + 1

For boolean functions, the explicit tabular representation is
also possible (truth table)

a table with n + 1 columns
first n columns are for variables values
last column is for function value
of course, you need 2n rows

All Boolean Functions of 2 Variables

A truth table must take into account all possible values for all
its n arguments

Which leads to a O(2n) RAM required

even with optimizations (e.g., only 1 column is actually
needed)

One could represent functions with CNF or DNF, but they are
difficult to manipulate

furthermore, not canonical: there may be multiple CNFs or
DNFs for the same function

Boolean Functions for Model Checking

In Model Checking algorithms, the following operations are
needed:

compute the returned value for a given tuple of values
b1, . . . , bn

could be ok for truth tables

test of equivalence between boolean functions f1 ≡ f2
not ok for truth tables
needs canonicity

compute the representation of a logical combination of
boolean functions

e.g.: given the representation of f1, f2, compute the
representation of f1 ∧ f2
not ok for truth tables

Goal: find a representation able to fulfill such requirements

while possibly requiring less than O(2n)

Binary Decision Diagrams

Roughly speaking, it is a connected DAG (Directed Acyclic
Graph), i.e., a tree

only one root
each internal node has two successors
nodes are labeled by boolean variables
edges are labeled by boolean values
only two leaves, labeled with boolean values

Binary Decision Diagrams

Represented function: f (a, b, c , d) = ab + ācd + ab̄cd

recall that + is OR, · is AND, ·̄ is negation

BDDs: Formal Definition

A BDD is a tuple B = ⟨V ,E , r ,V, var, low,high⟩ where:
V is a finite set of nodes containing two special nodes 0 and 1
E ⊆ V × V is a set of edges s.t.:

there are no cycles, i.e., for all path π = v0, . . . , vn, where
∀i = 0, . . . , n. vi ∈ V and ∀i = 0, . . . , n − 1. (vi , vi+1) ∈ E , we
have that i ̸= j implies vi ̸= vj
let S(v) = {w ∈ V | (v ,w) ∈ E} be the set of successors of v
each internal node has exactly two successors, i.e.,
∀v ∈ V \ {0, 1}. |S(v)| = 2
0 and 1 are terminal nodes, i.e., ∀v ∈ {0, 1}. |S(v)| = 0

r ∈ V is the root (i.e., ∀v ∈ V . (v , r) /∈ E)
low,high : V → V is the labeling of edges

the labeling must be consistent with E , i.e.,
∀v ∈ V . low(v), high(v) ∈ S(v)

BDDs: Formal Definition

A BDD is a tuple B = ⟨V ,E , r ,V, var, low,high⟩ where:
V is a finite set of boolean variables

thus, the boolean function represented by B will depend on
variables in V
it may be a subset of V

var : V → V is the labeling of nodes

A maximal path in B starts from r and ends up either in 0 or 1

The semantics of B is the boolean function represented by B
intuitively, we follow all maximal paths which end up in 1
formally: next slide

BDDs: Semantics

Given a BDD B = ⟨V ,E , r ,V, var, low,high⟩, we recursively
define the semantics of each node v ∈ V

each node may be seen as the root of a subtree...
notation: JvKB, or simply JvK when B is understood

Terminal nodes denote the boolean constants:
J0K = false, J1K = true

For internal nodes v ∈ V \ {0, 1}, semantics is defined as

JvK = var(v)Jhigh(v)K + var(v)Jlow(v)K
recall that + is OR, · is AND, ·̄ is negation

The semantics of B is of course JrK

Canonicity of BDDs

For a given BDD B, we have a unique represented boolean
function

Given a boolean function f , there is a BDD B representing f ,
i.e., JrKB = f

However, there may be a BDD B′ ̸= B s.t. Jr ′K′B = f as well

thus, BDDs are not canonical

Thus, ROBDDs are introduced: by setting limitations, they
achieve canonicity

for a boolean function f , there exists a unique ROBDD
representing f

Furthermore, for increasing efficiency, complemented edges are
introduced

number of nodes is reduced

OBDDs

An OBDD (Ordered BDD)
B = ⟨V ,E , r ,V, var, low,high, ord⟩, is a BDD with an
additional ord function

Namely, ord : V → {1, . . . , |V|}
The following properties must hold

ord is injective, i.e., ∀v ,w ∈ V. ord(v) = ord(w) → v = w
note that this implies that ord is indeed bijective...
defines an ordering on variables in V, e.g., if ord(v) = 10 then
v is the tenth variable
Given a path π on B, variables on nodes follow ord
i.e., ∀π = v0, . . . , vn s.t. ∀i = 0, . . . , n. vi ∈ V and
∀i = 0, . . . , n − 1. (vi , vi+1) ∈ E and vn /∈ {0, 1}, we have that
i < j implies ord(var(vi)) < ord(var(vj))

COBDDs

A COBDD (Complemented edges OBDD)
B = ⟨V ,E , r ,V, var, low,high, ord,flip⟩, is a BDD with an
additional flip : V → {0, 1}
For an internal node v , if flip(v) holds then the else edge of v
is complemented

There is now only one terminal node 1
0 is not needed because of complementation

Semantics changes, also a flipping bit b ∈ {0, 1} is necessary

Terminal node denote the boolean constants: J1, bK = b̄

For internal nodes v ∈ V \ {1}, semantics is defined as
Jv , bK = var(v)Jhigh(v), bK + var(v)Jlow(v), b ⊕ flip(v)K
Semantics of B is Jr , flip(r)K

ROBDDs

A ROBDD (Reduced OBDD) B is a COBDD with the least
number of nodes

among the ones representing the same boolean function

From now on, as usual in the literature, we will use OBDD as
synonym for ROBDD

Efficient algorithms (O(n), being n the number of nodes)
exist to compute the AND and the OR of two OBDDs

negation is O(1): just complement flip(r)!

Typically implemented with hash tables of already computed
ROBDDs

speedup computations
equality check is O(1): just compare r and r ′

Furthermore: multi-rooted DAG can be used to represent
multiple functions, sharing some nodes

Other Important OBDD Operations

Application: given the OBDD for f (x1, . . . , xi , . . . , xn),
compute the OBDD for f (x1, . . . , 0, . . . , xn) or
f (x1, . . . , 1, . . . , xn)

sometimes also written f (x1, . . . , xn)|xi=0 or f (x1, . . . , xn)|xi=1

Shannon expansion: for every boolean function f ,
f (x1, . . . , xn) = x̄i f (x1, . . . , xn)|xi=0 + xi f (x1, . . . , xn)|xi=1

Given f (x , y), compute the OBDD for:

existentialization: ∃x : f (x , y) ≡ f (0, y) + f (1, y)
universalization: ∀x . f (x , y) ≡ f (0, y) · f (1, y)
both generalized to multiple variables x1, . . . , xn

Given f (x), g(x), h(x), compute the OBDD for ITE (f , g , h)

ITE stands for if-then-else
thus, ITE (f , g , h) = fg + f̄ h

OBDD and Model Checking

OBDDs extremely good in representing characteristic
functions of finite sets

the characteristic function χ : U → {0, 1} of a set X ⊆ U is
defined as

χ(x) =

{
1 if x ∈ X
0 otherwise

If U is finite, then each element x ∈ U may be encoded using
n = ⌈log(|X |)⌉ boolean variables x1, . . . , xn
Thus, χ may be represented by an OBDD on x1, . . . , xn

as for Model Checking, we may represent S , Reach(S), R, ...
R will need 2n variables!
CTL Model Checking algorithm becomes feasible!

for many interesting real-sized systems, S , Reach(S), R will
now fit in RAM

OBDD and Model Checking

The most difficult part is to derive the OBDD for R directly
from the model specification

i.e., from the model checker input language
it would be rather difficult to do it with SPIN

especially because it has a dynamic state space

also the one for Murphi would require some effort
S is easy, you only have to look at global variables

not in SPIN...

NuSMV input language is tailored to be easily translated into
OBDDs

also into CNF, as we will see...

NuSMV

SMV (Symbolic Model Verifier): McMillan implementation of
the ideas in the famous paper “Symbolic model checking:
1020 states and beyond”

McMillan PhD dissertation about SMV is one of the most
important dissertations in Computer Science

SMV has been then re-written and standardized by the
research group in Trento (also Genova and CMU
collaborated), thus becoming NuSMV

the engine is still McMillan’s work
code has been nearly entirely commented, and made more
readable
some features has been added: interactive mode, bounded
model checking
OBDDs are handled via the CUDD library (by F. Somenzi at
Colorado University)

NuSMV Input Language

Taken from examples/smv-dist/short.smv

MODULE main

VAR

request : {Tr, Fa}; -- same as saying boolean

-- (stand for True and False)

state : {ready, busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready & (request = Tr): busy;

1 : {ready,busy};

esac;

SPEC

AG((request = Tr) -> AF state = busy)

NuSMV Input Language

One module, there may be more, but one of them must be
named main

Module variables are those declared with VAR

Base types are like Murphi ones: enumerations and integer
subranges, plus the word type (i.e., an array of bits)

Arrays are possible, but can be indexed only with constants

Structures are modeled through modules

That is, each module has its variables (fields of a structure)
and may be instantiated many times

NuSMV Input Language

ASSIGN section specifies (indirectly; it is also possible to it
directly, as we will see) the set I (via init) and the relation R
(via next)

as in Murphi, there expressions which are essentially
guard/action
differently from Murphi, each action deals with one variable
only

the guard may be defined on any other variable (and it is
typically the case)

if something is not specified, then it is understood to be
non-deterministic

NuSMV Input Language: ASSIGN

E.g., in short.smv initial states are those in which state is
ready and request may be either Tr or Fa

Thus, there are 2 initial states I = {⟨ready, Tr⟩, ⟨ready, Fa⟩},
which may be represented with ⟨ready,⊥⟩
Also next(request) is not specified; before analyzing what
does this mean, let us see next(state)

The case expression works as follows: the first condition C
which is evaluated to true is fired, other true guards possibly
following C are ignored

NuSMV Input Language: ASSIGN

This allows to put 1 (i.e., true) as the last guard, representing
the “default” case

NuSMV also checks if a case expression is exhaustive in its
conditions, as this allows it to assume that T is total

Note that the last condition on state leads to a
non-deterministic transition: if the first guard is false, then
state may take any value between ready e busy, that is any
value in its domain

In general, any subset of the variabe domain may be used

NuSMV Input Language: ASSIGN

request is completely non-deterministic, as it does not occur
in any next

I.e., if other rules tells that the system may go from s to t and
(request = Fa) ∈ L(t), then there exists a transition from s
to t ′ with (request = Tr) ∈ L(t ′) and
L(t) \ {(request = Fa)} = L(t ′) \ {(request = Tr)}
Simply stated, if the system may go from s to t and request

has a value v in t, then the system may also go from s to t ′

s.t. t and t ′ only differ in the value of request, which is
different from v

By combining all non-determinism in this example, the Kripke
structure defined here excludes just two transitions

Automata for short.smv: I and R

bs, Tr

rd, Tr

bs, Fa

rd, Fa

OBDDs for short.smv: R

Straight lines are then-edges
Dashed lines are else-edges
Dotted lines are complemented-else-edges
request.0 “false” edge corresponds to Tr

 request.0

 state.0

 next(state.0)

 Trans

0x22

0x21

1

0x20

OBDDs for short.smv: I

 state.0

 Init

0x6

1

NuSMV Input Language

Taken from examples/smv-dist/short.smv

MODULE main

VAR

request : {Tr, Fa}; -- same as saying boolean

-- (stand for True and False)

state : {ready, busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready & (request = Tr): busy;

1 : {ready,busy};

esac;

SPEC

AG((request = Tr) -> AF state = busy)

NuSMV Input Language

MODULE main

VAR

request : {Tr, Fa};

state : {ready, busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready & (request = Tr): busy;

TRUE : ready;

esac;

SPEC

AG((request = Tr) -> AF state = busy)

OBDDs for short.smv: R

 request.0

 state.0

 next(state.0)

 Trans

0x22

0x21

1

0x20

OBDDs for short.soloready.smv: R

 request.0

 state.0

 next(state.0)

 Trans

0x22

0x21

0x20

1

NuSMV Input Language

MODULE main

VAR

request : {Tr, Fa};

state : {ready, busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready & (request = Tr): busy;

TRUE : ready;

esac;

next(request) := request;

SPEC

AG((request = Tr) -> AF state = busy)

OBDDs for short.soloready.req const.smv: Reach

 request.0

 state.0

 Reach

0x2b

0x2a

1

OBDDs Pros and Cons

MODULE main

VAR

m1 : 0..15; -- m1.0 is MSB!

m2 : 0..15;

m3 : 0..30;

ASSIGN

next(m3) := m1 + m2;

SPEC

AG(m3 <= 30);

OBDDs Pros and Cons

MODULE main

VAR

m1 : 0..15;

m2 : 0..15;

m3 : 0..30;

ASSIGN

next(m3) := case

m1*m2 <= 30: m1*m2;

TRUE: m3;

esac;

SPEC

AG(m3 <= 30);

OBDDs for Adder and Multiplier: I

This is a set with 16 · 16 · 31 = 7936 elements
Just one node to represent it...

 Init

TRUE

OBDDs for Adder: R

 next(m3.4)

 m1.3

 m2.3

 next(m3.3)

 m1.2

 m2.2

 next(m3.2)

 m1.1

 m2.1

 next(m3.1)

 m1.0

 m2.0

 next(m3.0)

 Trans

0x61

0x600x57

0x5b 0x5f0x55 0x56

0x54

1

0x5a 0x5e

0x530x4a 0x5d0x59

0x4e0x58 0x52 0x5c0x490x48

0x47 0x4d 0x51

0x460x3d 0x500x4c

0x410x4b 0x45 0x4f0x3c 0x3b

0x440x3a 0x40

0x3f 0x390x36 0x43

0x34 0x370x3e 0x420x38

0x35

OBDDs for Multiplier: R

 m3.4

 next(m3.4)

 m1.3

 m2.3

 m3.3

 next(m3.3)

 m1.2

 m2.2

 m3.2

 next(m3.2)

 m1.1

 m2.1

 m3.1

 next(m3.1)

 m1.0

 m2.0

 m3.0

 next(m3.0)

 Trans

0x7cf

0x7ce 0x71b

0x71e 0x7cd 0x71a 0x6b8

0x7190x6db0x71d

1

0x764 0x7cc 0x6b70x695

0x718 0x6fd

0x6b60x6a8

0x6da

0x7250x763 0x6940x67f0x7cb 0x79e

0x71c 0x79f0x7ca 0x693 0x68c 0x6b5 0x6b00x67e0x644 0x6a10x6a70x724 0x7230x7620x745 0x79d 0x781

0x692 0x68b0x6b4 0x6af0x7170x7610x6c9 0x6a00x722 0x6ec 0x6fc 0x6a60x79c0x6d9 0x744 0x649 0x67d0x643 0x6290x7c9 0x780

0x7160x7090x7c8 0x7b3 0x6eb0x6fb 0x6a20x7210x6d2 0x6d8 0x79b 0x68f

0x691

0x646 0x6480x7600x755 0x737 0x743 0x6b3 0x68a

0x627

0x6a50x77f 0x6ae0x67c 0x65f 0x6330x642 0x6280x5f90x6c2 0x6c8 0x6990x69f

0x7150x70f0x6d1

0x79a 0x790

0x6ea 0x6e4

0x7bd 0x7c7

0x702 0x708

0x75f 0x6a40x65e0x754 0x6b2

0x6c1 0x6c70x6d7

0x6ad0x68e0x736

0x632

0x6180x6630x742

0x641

0x77e 0x773

0x6450x6f40x6fa

0x6980x69e0x67b 0x5ce0x5f80x720 0x689 0x6840x6590x7b2 0x7a8

0x6470x77d0x776 0x662 0x6970x7b40x7bc 0x68d 0x688 0x65d0x65c0x7a90x7b1 0x6070x617 0x5c60x5cd 0x626 0x6200x6b1 0x6ac0x7a70x7a6 0x7990x7930x739 0x741 0x7be0x7c6 0x6510x6580x7320x735 0x7530x748 0x6900x784 0x78f0x71f 0x772 0x770 0x6860x67a0x66f 0x5e60x5f7 0x6830x661 0x69d 0x69b 0x6aa0x6a30x75e0x758

0x6e60x6e9 0x6850x6870x707 0x6250x63a 0x6790x7b0 0x5cc0x6c6 0x738 0x6a90x6ab0x6bf 0x6c0 0x7140x6d3 0x75d 0x5e0 0x5e50x7570x6d6 0x6f30x7830x6c3 0x740 0x5f6 0x5eb0x70e 0x640 0x6ee0x78e0x65b 0x600 0x6060x701 0x771 0x6e20x616 0x60b0x69c0x66e0x731 0x6600x7bb 0x6820x6f9 0x6f6 0x6960x69a0x5c50x798 0x76f 0x6e30x6d0 0x6cb 0x77c0x7a50x7c5 0x62e 0x6310x752 0x61f0x734 0x6500x775 0x7920x747 0x657

0x5c4

0x5c3

0x6360x6390x63c 0x5ff 0x5fa0x6bb0x6be 0x6f20x5cb0x76e0x774 0x6240x7a4 0x72a

0x5ca

0x782 0x6150x7000x673 0x746 0x6560x5ef0x5f5 0x63f0x6e50x70d0x70a 0x6f8 0x6ed0x6c5 0x6f50x733 0x62c0x66d 0x756 0x680 0x61e 0x5e8 0x5ea0x65a0x64e0x730 0x6080x60a0x710 0x713 0x5d7 0x5df 0x6810x5e40x703 0x7060x62d 0x6e10x621 0x6050x74c0x751 0x78d0x797 0x61b0x7b5 0x7ba0x6cd0x6cf 0x6ca 0x791 0x6780x77b 0x6e80x7af 0x7aa 0x64f 0x6680x6d5 0x75c 0x6300x73a 0x73f0x7bf 0x7c4

0x5fe0x5de0x6670x64d 0x6550x672

0x635

0x623 0x5d6 0x5bd

0x6d4 0x70c 0x6f00x62b0x6cc

0x5ee

0x63b

0x5d90x7680x7a3

0x62f

0x5c8 0x60f0x614 0x61a0x74b

0x6ba 0x6f1

0x7c3 0x788

0x712 0x638 0x63e0x6bd

0x729 0x6770x66c

0x5e3 0x6f7

0x76d

0x604

0x78c0x7ae 0x72f 0x61d0x5f4

0x5e70x6c4

0x750 0x75b

0x5e90x6de0x6ff 0x6e0

0x73e

0x609

0x796

0x705

0x77a

0x6ce 0x6e7

0x7b9

0x789 0x78b 0x6190x5ed0x7b8 0x7b6 0x6650x6660x622 0x5dd 0x60d 0x60e 0x5d10x5d50x5f10x5f3 0x7ab0x7ad 0x7670x766 0x5bc0x5c70x7a00x7a2 0x75a 0x7590x72e 0x72c 0x5fd0x7c2 0x7c0 0x5db0x5ec 0x653 0x6540x76a 0x76c 0x5bf0x5c20x5c9 0x61c0x676 0x675 0x5b60x5d80x727 0x7280x64c 0x64a 0x66a0x66b 0x6120x6130x7490x74a 0x7940x7950x73c0x73d 0x7850x787 0x7780x7790x6710x6700x74f 0x74d

0x6ef0x769 0x7770x711

0x5b8

0x5be0x5fb0x5d0

0x5c0

0x5dc 0x6fe0x6bc 0x72d 0x6030x6110x6dd 0x6df0x74e 0x5da0x6b90x72b 0x5f20x637

0x5cf

0x73b 0x5c10x62a

0x5bb

0x63d 0x634 0x60c0x704 0x7b7 0x6690x6520x5fc 0x5d20x70b0x5e2 0x765 0x5f0 0x5b70x5d4 0x78a0x7a1 0x76b0x7c1 0x7860x64b 0x664 0x6740x726 0x7ac

0x5d3 0x6020x6010x610 0x6dc

0x5ba

0x5e1

OBDDs Pros and Cons

Number of variables is 13 for both models

4 each for m1 and m2, plus 5 for m3

Number of BDD nodes:

adder: 47
multiplier: 538

OBDDs Pros and Cons

No magic: SAT could be solved using OBDDs

just represent the instance with an OBDD and check if it is
different from 0
very roughly speaking: if it were possible to solve it
“efficiently” in this way, P=NP...

Thus, there are boolean functions for which OBDDs
representation is exponential, regardless of variable ordering

one example is the multiplier seen above

It is not possible to say if OBDDs will be a good way to
represent a problem, before trying it

for the adder, it is much more efficient

Furthermore, finding a variable order in order to minimize the
OBDD representation for a given function is an NP-complete
problem

OBDDs Pros and Cons

This also holds for Model Checking in general

Not possible to say a-priori if a system will fit in the available
resources when using a model checker

RAM and computation time

Also, it is not possible to decide which model checker is better

explicit (Murphi-or-SPIN like) or symbolic (NuSMV like)?

However, we are going to see some guidelines

as for OBDDs: a good ordering is to interleave present and
future variables
variable ordering: if OBDDs grow, the model checker can try a
different variable ordering

NuSMV Input Language

MODULE counter_cell(carry_in)

VAR value : boolean;

ASSIGN

init(value) := 0;

next(value) := (value + carry_in) mod 2;

DEFINE carry_out := value & carry_in;

MODULE main

VAR

bit0 : counter_cell(1);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

SPEC AG(!bit3.carry_out)

Counter Cell

1

COUNTER COUNTER COUNTER

NuSMV Input Language

2 modules, main and counter cell

Main instantiates the module counter cell for 3 times

This is an hardware-like instantiation: the main module
contains 3 equal copies of the counter cell module, the
only difference being the lines in input

Note that this means the module main will have 3 copies of
variable value

NuSMV Input Language

Note that carry out (being inside a DEFINE section) is not a
variable, as it is only a shortcut for the expression it defines

i.e., there will not be a corresponding variable in the OBDD
and indeed, it is not declared as a variable...

Hence, bit0 will always sum 1 to its internal variable, and
bit1 will sum 1 only if bit0 will generate a carry

The main module defines a counter from 0 to 7

NuSMV Input Language

MODULE user(semaphore)

VAR

state : {idle, entering, critical, exiting};

ASSIGN

init(state) := idle;

next(state) :=

case

state = idle: entering;

state = entering & !semaphore: critical;

state = critical: {critical, exiting};

state = exiting: idle;

TRUE : state;

esac;

NuSMV Input Language

next(semaphore) :=

case

state = entering: TRUE;

state = exiting: FALSE;

TRUE: semaphore;

esac;

NuSMV Input Language

MODULE main

VAR

semaphore : boolean;

proc1 : process user(semaphore);

proc2 : process user(semaphore);

ASSIGN

init(semaphore) := FALSE;

SPEC

AG(!(proc1.state = critical & proc2.state = critical))

LTLSPEC

G F proc1.state = critical

NuSMV Input Language

In the previous examples, all variables were evolving at the
same time

There is a global clock as in a synchronous digital circuit:
given the current value for all variables in the current clock
tick, in the next clock tick all variables may change their
variables at the same time (synchronously: hardware parallel
execution)

In this example, instead, instantations are processes

I.e., just one variable at a time may change; other variables
are forced to stay fixed

No dynamic process spawning as in SPIN: the number of
processes is known from the beginning

NuSMV Input Language

Synchronous vs. asynchronous systems

In asynchronous systems, there is essentially one (implicit)
additional module, which acts as a scheduler

This is indeed what the verification algorithm does

Each process is automatically provided with an additional
variable running which is true iff that process is currently
running

NuSMV Input Language

MODULE inverter(input)

VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := !input;

MODULE main

VAR

gate1 : process inverter(gate3.output);

gate2 : process inverter(gate1.output);

gate3 : process inverter(gate2.output);

SPEC

AG(!gate2.output | !gate3.output)

Inverter Cell

NuSMV Input Language

Using Direct specification it is possible to define non-total
transition relations or empty initial states set

MODULE inverter(input)

VAR

output : boolean;

INIT

output = 0

TRANS

next(output) = !input

NuSMV Input Language

Without processes, is it equivalent?

MODULE inverter(input)

VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := !input union output;

-- or {!input, output}

MODULE main

VAR

gate1 : inverter(gate3.output);

gate2 : inverter(gate1.output);

gate3 : inverter(gate2.output);

NuSMV As A Tool

NuSMV is provided with an interactive shell, as there are
many tasks it may accomplish (simulation, many verification
options); see user maual from chapter 3, especially Figure 3.1
at page 87

Differently from explicit model checkers, no need to give
separate commands to generate a file to be compiled and
executed: all is represented as OBDDs, you only have to use
them properly

Executing a non-interactive verification in NuSMV is the same
as giving the following list of interactive commands

1. read model reads and stores the syntactic structure of the
input model

no OBDDs here: tree-like structure, but representing the
syntactic structure of the input (abstract syntax tree)

NuSMV As A Tool

2. flatten hierarchy (recursively) brings inside main all
modules instantiated by main

very similar to the unfolding we mentioned for Murphi and
SPIN: for such explicit model checkers, this was only needed
for theoretical purposes, in order to define the Kriepke
structure of an input model
here, it must be actually performed in the source code of
NuSMV, in order to then be able to encode R and I as OBDDs
to this aim, there must be only one module, the main,
containing all variables coming from the modules it
instantiates (to be applied recursively)
note that, again, this resembles digital circuits, where such a
flattening is a natural operation
this could entail adding a scheduler module if processes are
used

NuSMV As A Tool

3. encode variables for each variable x with domain D s.t.
|D| > 2, NuSMV defines x1 . . . , xm boolean variables with
m = ⌊log2 |D|⌋+ 1; it also defines the encoding for constants
used in the input models

4. build flat model combines the result of the preceding
operations to obtain the flattenized and boolenized syntactic
structure which represents the Kriepke structure defined by
the input model

5. build model from the syntactic structure to OBDDs for R
ed I (plus other ones)

6. check ctlspec (or check ltlspec, or both, depending
on what you have to verify); it starts the actual verification

we will be back soon on these last 2 steps

From Syntactic Structure to OBDDs

How does build model work?

All operations must be implemented bitwise (bit-vector)

this means that we have to build the corresponding digital
circuit, remember the Digital Systems Design course?
if we have to implement a sum between two variables encoded
with maximum 4 bits (note that result is on 5 bits):

From Syntactic Structure to OBDDs

Analogously, you can represent other arithmetic operations
(subtract, multiply, divide)

With other simple digital circuits, also equality and ordering
can be easily implemented

e.g., next(a) = b + c is translated in this way:
multiple OBDDs are used to sum all bits of b and c

an OBDD B is created which is true iff all variables of
next(a) are equal to such OBDDs
e.g., next(a) = case a < b: b + c; TRUE : a is
translated in this way:
again we have B as before, plus an OBDD C which is true if a
< b

then, NuSMV computes the OBDD ITE (C ,B, a)

From a NuSMV Description to KS

From a NuSMV model M (defined with the ASSIGN section)
to the corresponding Kriepke structure S = (S , I ,R, L)

V = ⟨v1, . . . , vn⟩ is the set of variables defined inside the main
module of M, with domains ⟨D1, . . . ,Dn⟩

note that each Di may be the instantiation of other modules
in which case, again, all variables must be considered as
unfolded
that is, if a variable v is the instantiation of a module with k
variables, then v counts as k variables instead of one
if one of such k variables is another instantiation, this
procedure must be recursively repeated
NuSMV calls this operation hierarchy flattening
essentially, it is the same as for records in Murphi
simple types are the recursion base step

From a NuSMV Description to KS

S = D1 × . . .× Dn (as in Murphi)

I is defined by looking at init predicates
s ∈ I iff, for all variables v ∈ V , s(v) ∈ init(v)

note that, by NuSMV syntax, each init(v) is actually a set
(possibly a singleton)

if init(v) is not specified in M, then any value for v is ok: in
this case, formally, if s ∈ I , then also s ′ ∈ I being
s ′(v ′) = s(v ′)∀v ′ ̸= v

From a NuSMV Description to KS

R is defined by looking at next predicates
we assume all next predicates to be defined by the case
construct (if not, simply assume it is the case construct with
just one TRUE condition)
for each (flattened) variable v , we name g1(v), . . . gkv (v) the
conditions (guards) of the case for next(v), and
a1(v), . . . akv (v) the resulting values (actions) of the case for
next(v)
note that, by NuSMV syntax, each ai (v) is actually a set
(possibly a singleton)
(s, s ′) ∈ R iff, for all variables v ∈ V , if
gi (s(v)) ∧ ∀j < i¬gj(s(v)) then s ′(v) ∈ ai (v)
that is, s may go in s ′ iff, for all variables v , if the values of v
in s satisfy the guard gi (and none of the preceding guards for
the same variable), then the value of v in s ′ is one of the
values specified by the case for guard gi
note that, in doing this, you also have to resolve inputs for
modules

From a NuSMV Description to KS

AP = {(v = d) | v = vi ∈ V ∧ d ∈ Di}
(v = d) ∈ L(s) iff variable v has value d in s

If, instead, the NuSMV model M is defined with the TRANS
section, then

V = ⟨v1, . . . , vn⟩ is the set of variables as above and
S = D1 × . . .× Dn

I is defined by looking at INIT section

s ∈ I iff, for all variables v ∈ V and for all INIT sections I,
I(s(v)) holds

R is defined by looking at TRANS section

(s, s ′) ∈ R iff, for all variables v ∈ V and TRANS sections T ,
T (s(v), s ′(v)) holds

λ-calculus: Representing Functions

In a nutshell: using f (x) has some drawbacks

you are forced to name a function (f in the example above)
it is not always clear if a letter is a parameter or an argument
it is not computationally clear what happens for multiple
inputs

f (x , y): do you have to provide both x , y , otherwise you get
an error?
as an alternative, you may provide just one argument, and
obtain a new function
e.g. f (x , y) = x + y , we have that f (x , 4) is a function on x

λ-calculus: Representing Functions

Instead of writing f (x) = E (x), for some expression E (x), we
write λx .E (x)

if you want, you can name a function f (x) = λx .E (x)

λ(x , y).x + y : both argument must be given, otherwise it is
an error

λxλy .x + y : if you provide x = 4 only, you get a function
λy .4 + y

If an OBDD contains variables x1, . . . , xn, then it represent
some function λx1 . . . λxn. E (x1, . . . , xn)

µ-calculus: Fixpoints

In a nutshell: we have a set L with an ordering ≤
≤ could be partial, i.e., not defined on some pair (l1, l2) ∈ L×L
L,≤ is a complete lattice if any subset A ⊆ L has a greatest
lower bound and a least upper bound in L
supA = min{ξ ∈ L | ∀α ∈ A. α ≤ ξ}
inf A = max{ξ ∈ L | ∀α ∈ A. ξ ≤ α}

µ-calculus: Fixpoints

Let I = {0, . . . , 10}, then 2I ,⊆ is a complete lattice

e.g., {0, 1, 2} ≤ {0, 1, 2, 3}, whilst {0, 1, 2}, {0, 1, 3} cannot be
compared
sup{{0, 1, 2}, {0, 1, 3}} = min{ξ ∈ 2I | ∀α ∈
{0, 1, 2}, {0, 1, 3}.α ⊆ ξ} = min{{0, 1, 2, 3}, . . . , I} =
{0, 1, 2, 3}
inf{{0, 1, 2}, {0, 1, 3}} = max{ξ ∈ 2I | ∀α ∈
{0, 1, 2}, {0, 1, 3}.ξ ⊆ α} = max{{0, 1}, . . . ,∅} = {0, 1}

2I ,⊆ is always a complete lattice, if I is a finite set

sup J = ∪ξ∈J ξ, inf J = ∩ξ∈J ξ
at the worst, sup J = I and inf J = ∅

µ-calculus: Fixpoints

Suppose you have a function T : L → L. An element ξ ∈ L is
a fixpoint of T iff T (ξ) = ξ

Given a T , there may be several fixpoints: we are interested in
the maximum or the minimum of such fixpoints

notation µT and νT
where typically T is expressed with a λ notation
µT ≡ x s.t. T (ξ) = ξ ∧ ∀ρ ∈ L.T (ρ) = ρ → ξ ≤ ρ
νT ≡ x s.t. T (ξ) = ξ ∧ ∀ρ ∈ L.T (ρ) = ρ → ρ ≤ ξ

µ-calculus: Fixpoints

Let T : 2I → 2I be defined as T (ξ) = ξ, or better T ≡ λξ.ξ

we have µT = ∅, νT = I

Let T ≡ λξ.∅
we have µT = νT = ∅

Let T ≡ λξ. ξ ∪ {10}
we have µT = {10}, νT = I

Let T ≡ λξ. ξ \ {10}
we have νT = {0, . . . , 9}, µT = ∅

µ-calculus: Fixpoints

We define sets by their characteristic function, thus let us
rewrite the previous examples

thus the ξ in λξ is a function ξ : I → {0, 1}
it represents a set X , thus ξ(x) = 1 iff x ∈ X

T ≡ λξ.ξ is ok also if ξ is a characteristic function

T ≡ λξ.∅ could be rewritten as T ≡ λξ.λx .0

T ≡ λξ.ξ ∪ {10} could be rewritten as
T ≡ λξ.λx .[x = 10 → 1] ∧ [x ̸= 10 → ξ(x)]

µT ≡ λx .x = 10, νT ≡ λx .1

T ≡ λξ.ξ \ {10} could be rewritten as
T ≡ λξ.λx .[x = 10 → 0] ∧ [x ̸= 10 → ξ(x)]

νT ≡ λx .x ̸= 10, µT ≡ λx .0

µ-calculus: Fixpoints

We deal with monotonic (i.e., increasing or decreasing) T ,
thus fixpoints always exists

ξ ≤ ρ → T (ξ) ≤ T (ρ), T monotonically increasing
ξ ≤ ρ → T (ρ) ≤ T (ξ), T monotonically decreasing

Previous examples are all monotonic

By Knaster-Tarski theorem, µT = inf{ξ | T (ξ) ≤ ξ}
analogously, νT = sup{ξ | T (ξ) ≥ ξ}

Computation of Fixpoints in CTL Model Checking

Given a KS S = (S , I ,R, L), we want to label states, i.e., to
identify subsets of S

those for which a given labeling holds
labels are CTL/LTL subformulas

Thus, L = 2S , ≤ is ⊆ and T : 2S → 2S

in the following, x = x1, . . . , xn with n = ⌈log |S |⌉
characteristic functions of subsets of S

For k ≥ 1, let T k(ξ) = T (T k−1(ξ)), with T 1 = T

For least fixpoints, start with ∅, and apply T since
T k(∅) = T k−1(∅)

For greates fixpoints, start with S , and apply T since
T k(S) = T k−1(S)

At most, k = |S |

µ-calculus: Fixpoints

The “really interesting” fixpoints are those which are
recursively defined

typically, basing on some other already defined sets, i.e.,
characteristic functions
e.g., T ≡ λξ.λx .f (x) ∨ ξ(x), where f : S → {0, 1} is known
thus, the compactly-written least and greatest fixpoints are
µQ.λx .f (x) ∨ Q(x) and νQ.λx .f (x) ∨ Q(x)
e.g., T ≡ λξ.λx .f (x) ∧ ξ(x)
e.g., T ≡ λξ.ξ(x)

Not immediately clear what they do, but by the
Knaster-Tarski theorem and the previous reasoning, we may
apply the following algorithms

least fixpoints µ are computed for increasing T
greatest fixpoints ν are computed for decreasing T
viceversa are trivial: µT is λx .0 for decreasing T and νT is
λx .1 for increasing T

Computation of Least (Minimum) Fixpoint

OBDD lfp(MuFormula T) /* µZ .T (Z) */

{

Q = λx . 0;
Q ′ = T (Q);
/* T clearly says where Q must be replaced */

/* e.g.: if µZ . λx . f (x) ∨ Z (x), then

Q ′ = λx . f (x) ∧ Q(x) */

while (Q ̸= Q ′) {

Q = Q ′;

Q ′ = T (Q);
}

return Q; /* or Q ′, they are the same ... */

}

Computation of Greatest (Maximum) Fixpoint

OBDD gfp(NuFormula T) /* νZ .T (Z) */

{

Q = λx . 1;
Q ′ = T (Q);
while (Q ̸= Q ′) {

Q = Q ′;

Q ′ = T (Q);
}

return Q;

}

Symbolic Model Checking of AGp

The idea is to compute the set of reachable states, and check
if for all of them p holds

Reach = µZ . λx . [I (x) ∨ ∃y : (Z (y) ∧ R(y , x))]

of course, we get an OBDD on x as a result
recall that x (and y) is a vector of all boolean variables

∀x ∈ S . Reach(x) → p(x)

computationally easier: check that Reach(x) ∧ ¬p(x) = 0
otherwise, we have a reachable state for which p does not
hold...

Symbolic CTL Model Checking

All CTL formulas can be reduced to 3: EXf , f EU g , EGf
all other formulas may be reduced to these three, using
negation and other boolean combinations
with OBDDs, we can do all such things!

Given OBDDs for f (and g), we compute the OBDD
representing EXf , f EU g , EGf

that is, the OBDD for the set X = {s ∈ S | S, s |= EXf } etc

Let it be B: then, simply check ¬B(x) ∧ I (x) = 0

recall that S |= Φ iff ∀s ∈ I . S, s |= Φ

EXf does not require a fixpoint computation: it is equivalent
to (the OBDD representing) λx . ∃y : R(x , y) ∧ f (y)

Symbolic CTL Model Checking

For f EU g , recall that it is equivalent to the CTL formula
g ∨ (f ∧ EX(f EU g))

Thus, f EU g = µZ . λx . g(x) ∨ (f (x) ∧ EXZ (x)) =
µZ . λx . g(x) ∨ (f (x) ∧ (∃y : R(x , y) ∧ Z (y)))

note that g(x) ∨ (f (x) ∧ EXZ (x)) is increasing, i.e. for
Z1 ⊆ Z2 we have that
(g(x) ∨ (f (x) ∧ EXZ1(x)) → (g(x) ∨ (f (x) ∧ EXZ2(x))

Analogously: EGf = f ∧ EX(EGf), thus
EGf = νZ . λx . f (x) ∧ EXZ (x) = νZ . λx . f (x) ∧ (∃y :
R(x , y) ∧ Z (y))

note that f (x) ∧ EXZ (x) is decreasing, i.e. for Z1 ⊆ Z2 we
have that (f (x) ∧ EXZ2(x)) → (f (x) ∧ EXZ1(x))

CTL Model Checking

bool checkCTL(KS S, CTL φ) {

let S = ⟨S , I ,R, L⟩;
B = LblSt(φ);
return λx . I (x) ∧ ¬B(x) = λx . 0;

}

OBDD LblSt(CTL φ) { /* also S = ⟨S , I ,R, L⟩ */

i f (∃p ∈ AP. φ = p) return λx . p(x);
e l se i f (φ = ¬ϕ) return λx . ¬LblSt(ϕ)(x);
e l se i f (φ = ϕ1 ∧ ϕ2)

return λx .LblSt(ϕ1)(x)∧LblSt(ϕ2)(x);
e l se i f (φ = EXϕ)
return λx . ∃y : R(x , y)∧LblSt(ϕ)(y);

e l se i f (φ = EGϕ)
return gfp(νZ . λx . LblSt(ϕ)(x) ∧ (∃y : R(x , y) ∧ Z (y)));

e l se i f (φ = ϕ1 EU ϕ2)

return lfp(µZ . λx . LblSt(ϕ2)(x)∨
(LblSt(ϕ1)(x) ∧ (∃y : R(x , y) ∧ Z (y))));

}

