Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

o We saw the theoretical algorithm for CTL model checking
o we said it was not effective, as it required S and R to be in
RAM
Actually, there are methodologies which are able to fit S and
R in RAM, also for industrial-sized models

©

©

The “father” of the model checkers using such technologies is
SMV

o Symbolic Model Verifier

o it has then been refactored as NuSMV

This set of techniques is referred to as symbolic model
checking

©

o Murphi and SPIN style is dubbed explicit model checking

| UNIVERSITA DISIM
| DEGLI STUDI unes s
DELLAQUILA

o In order to understand how symbolic model checking works,
we need some preliminaries
o ROBDDs
o needed to actually fit S and R in RAM
o p-calculus

o together with fixpoint computation
o extension of A-calculus
o needed to efficiently implement CTL and LTL model checking

using ROBDDs
R) oavensima bow
\ | BECEAGUIA i

o Reduced Ordered (Complemented Edges) Binary Decision
Diagrams
o sometimes called simply OBDDs, and even BDDs
o here we stick to the precise notation, by also outlining the
differences
o Let us start with the basis: BDD

o A BDD is a data structure representing a boolean function
o of course, OBDDs and ROBDDs are data structure as well

o we will define them in the following
SV 7= - oo
. R i

o In our setting a boolean function is f : B” — B
o where B = {0, 1} is the set of boolean values
o 0 stands for false, 1 for true
o thus, our boolean functions have n boolean variables as
arguments
o and return a single boolean value
o Examples:
o 0 and 1 are boolean functions with n =0
o complementation (f(x) = —x) and identity (f(x) = x) are
boolean functions with n =1
o AND (f(x,y) =xAy), OR (f(x,y) = x V y) are boolean
functions with n = 2
o generally speaking, there are 22" different boolean functions of

n boolean variables % _
S o B
\ DELL'AQUILA Sy

o Roughly speaking, if you have f(x) = x + 1 with x € R, you

can only represent f through its computation
o rules s.t., given x, you compute x + 1

o For boolean functions, the explicit tabular representation is
also possible (truth table)

a table with n+ 1 columns

first n columns are for variables values

last column is for function value

of course, you need 2" rows

© © 0 o

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

nm om A4 ®

g| F® NOR' | «2 | -p? =+ | -q5 | XOR® | NAND? AND® XNOR® | q'0 —11|pi2| 13 ggM 115
T||F F F| F|F|F F F T T Tl 7| 1 |7
F F F F F T T T T F F F F T T T T
T F F T T E F T T E F T T E F T T
F F T F T E T [T F T F T F T F T

o A truth table must take into account all possible values for all
its n arguments
o Which leads to a O(2") RAM required
o even with optimizations (e.g., only 1 column is actually
needed)

o One could represent functions with CNF or DNF, but they are
difficult to manipulate

o furthermore, not canonical: there may be m le\n(.:,NFS Q o
DNFs for the same function / BEARIA :

o In Model Checking algorithms, the following operations are

needed:
o compute the returned value for a given tuple of values
bi,..., b,

o could be ok for truth tables

o test of equivalence between boolean functions i = £,
o not ok for truth tables
o needs canonicity

o compute the representation of a logical combination of
boolean functions
o e.g.: given the representation of fi, f,, compute the
representation of A A f
o not ok for truth tables

o Goal: find a representation able to fulfill such requirements
o while possibly requiring less than O(2") lf%J BT “”

AQUILA

o Roughly speaking, it is a connected DAG (Directed Acyclic
Graph), i.e., a tree

© ©6 06 0 o

only one root

each internal node has two successors
nodes are labeled by boolean variables
edges are labeled by boolean values

only two leaves, labeled with boolean values

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

_“\
_/ 1
"""'i

- b
S/
K&‘/(‘]X |

0 1

Represented function: f(a, b, c,d) = ab + acd + abcd
o recall that + is OR, - is AND, ~ is negation

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

o ABDD is a tuple B=(V, E,r,V, var,low, high) where:
o V is a finite set of nodes containing two special nodes 0 and 1
o ECV x Vis a set of edges s.t.:
o there are no cycles, i.e., for all path m = v, ..., v, where
Vi=0,...,n.vi€ VandVi=0,...,n—1. (vj,vi;1) € E, we
have that i # j implies v; # v;
o let S(v) ={w € V| (v,w) € E} be the set of successors of v
o each internal node has exactly two successors, i.e.,
Vv e V\{0,1}. |S(v)| =2
o 0 and 1 are terminal nodes, i.e., Vv € {0,1}. |S(v)| =0
o r € Vistheroot (i.e., Vv € V. (v,r) ¢ E)
o low, high : V — V is the labeling of edges
o the labeling must be consistent with E, i.e.,

Vv € V.low(v), high(v) € S(v) o
1¥J ey N

o ABDD is a tuple B= (V, E,r,V,var,low, high) where:
o V is a finite set of boolean variables
Qo

thus, the boolean function represented by B will depend on
variables in V

it may be a subset of V
o var: V — Vis the labeling of nodes

*]

o A maximal path in B starts from r and ends up either in 0 or 1
o The semantics of B is the boolean function represented by B

o intuitively, we follow all maximal paths which end up in 1
o formally: next slide

o Given a BDD B = (V,E,r,V,var,low, high), we recursively
define the semantics of each node v € V

o each node may be seen as the root of a subtree...

o notation: [v]z, or simply [v] when B is understood
Terminal nodes denote the boolean constants:
[0] = false, [1] = true
o For internal nodes v € V' \ {0, 1}, semantics is defined as

[v] = var(v)[high(v)] + var(v)[low(v)]

o recall that + is OR, - is AND, ~ is negation

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

©

o The semantics of B is of course [r]

o For a given BDD B, we have a unique represented boolean
function

o Given a boolean function f, there is a BDD B representing f,
i.e., [[r]]g =f
o However, there may be a BDD B’ # B s.t. [r']z = f as well
o thus, BDDs are not canonical
o Thus, ROBDDs are introduced: by setting limitations, they
achieve canonicity
o for a boolean function f, there exists a uniqgue ROBDD
representing f

o Furthermore, for increasing efficiency, complemented edges are
introduced

o number of nodes is reduced %\ pveRTs m .
\ DELL'AQUILA Sy

o An OBDD (Ordered BDD)
B=(V,E, r,V, var,low, high, ord), is a BDD with an
additional ord function
o Namely, ord : V — {1,...,|V|}
o The following properties must hold
o ord is injective, i.e., Vv,w € V. ord(v) = ord(w) = v =w
o note that this implies that ord is indeed bijective...
o defines an ordering on variables in V, e.g., if ord(v) = 10 then
v is the tenth variable
o Given a path 7 on B, variables on nodes follow ord
o e, Vr=v,...,Vps.t. Vi=0,...,n. v € Vand
Vi=0,...,n—1.(viviy1) € E and v, ¢ {0,1}, we have that

i < j implies ord(var(v;)) < ord(var(v;)) | /-!\ -

©

A COBDD (Complemented edges OBDD)
B=(V,E, r,V, var,low, high, ord, flip), is a BDD with an
additional flip: V — {0, 1}
o For an internal node v, if flip(v) holds then the else edge of v
is complemented
o There is now only one terminal node 1
o 0 is not needed because of complementation
o Semantics changes, also a flipping bit b € {0,1} is necessary
o Terminal node denote the boolean constants: [1,b] = b

o For internal nodes v € V' \ {1}, semantics is defined as
[v, b] = var(v)[high(v), b] + var(v)[low(v), b @ flip(v)]

o Semantics of B is [r, flip(r)] %
. A it

©

A ROBDD (Reduced OBDD) B is a COBDD with the least
number of nodes

o among the ones representing the same boolean function
o From now on, as usual in the literature, we will use OBDD as
synonym for ROBDD

o Efficient algorithms (O(n), being n the number of nodes)
exist to compute the AND and the OR of two OBDDs

o negation is O(1): just complement flip(r)!

o Typically implemented with hash tables of already computed
ROBDDs

o speedup computations
o equality check is O(1): just compare r and r’

o Furthermore: multi-rooted DAG can be used_te.represent
. . . | | UNIVERSITA DISIM
multiple functions, sharing some nodes OB/ Bt s

o Application: given the OBDD for f(x1,...,Xj,...,Xn),
compute the OBDD for f(xi,...,0,...,x,) or
f(xa, ..., 1,...,xn)

o sometimes also written f(xi,...,Xs)|x=0 Of F(X1,...,%n)|x=1
o Shannon expansion: for every boolean function f,
F(x1y .oy Xn) = XiF (X1, ooy Xn)|xmo + XiF (X1, -y Xn)|x=1

o Given f(x,y), compute the OBDD for:
o existentialization: 3x : f(x,y) = f(0,y) + f(1,y)
o universalization: Vx. f(x,y) = f(0,y) - f(1,y)
o both generalized to multiple variables xi, ..., x,
o Given f(x),g(x), h(x), compute the OBDD for ITE(f, g, h)

o ITE stands for if—then—else_
o thus, ITE(f,g,h)=fg+fh PR

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o OBDDs extremely good in representing characteristic
functions of finite sets

o the characteristic function x : U — {0,1} of aset X C U is

defined as
(x) = 1 ifxeX
XXI=3 0 otherwise

o If U is finite, then each element x € U may be encoded using
n = [log(|X|)| boolean variables xi, ..., x,
o Thus, x may be represented by an OBDD on xi, ..., x,

o as for Model Checking, we may represent S, Reach(S), R, ...
o R will need 2n variables!
o CTL Model Checking algorithm becomes feasible!
o for many interesting real-sized systems, S, Reach(S), R will
now fit in RAM [s

| DEGLI STUDI
DELL'AQUILA

o The most difficult part is to derive the OBDD for R directly
from the model specification

o i.e., from the model checker input language
o it would be rather difficult to do it with SPIN

o especially because it has a dynamic state space

o also the one for Murphi would require some effort
o S is easy, you only have to look at global variables

o not in SPIN...
o NuSMV input language is tailored to be easily translated into

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o also into CNF, as we will see...

o SMV (Symbolic Model Verifier): McMillan implementation of
the ideas in the famous paper “Symbolic model checking:
10%° states and beyond”

o McMillan PhD dissertation about SMV is one of the most
important dissertations in Computer Science

o SMV has been then re-written and standardized by the
research group in Trento (also Genova and CMU
collaborated), thus becoming NuSMV

o the engine is still McMillan's work

o code has been nearly entirely commented, and made more
readable

o some features has been added: interactive mode, bounded
model checking

o OBDDs are handled via the CUDD library (WE: Som §n2| o
Colorado University) / BN Sl

Taken from examples/smv-dist/short.smv

MODULE main
VAR
request : {Tr, Fa}; -- same as saying boolean
-- (stand for True and False)
state : {ready, busy};
ASSIGN
init(state)
next(state)

ready;

case
state = ready & (request = Tr): busy;
1 : {ready,busy};

esac;

SPEC

AG((request = Tr) -> AF state = busy) % e

One module, there may be more, but one of them must be
named main

Module variables are those declared with VAR

Base types are like Murphi ones: enumerations and integer
subranges, plus the word type (i.e., an array of bits)

Arrays are possible, but can be indexed only with constants

Structures are modeled through modules
o That is, each module has its variables (fields of a structure)

and may be instantiated many times
B) B 2

o ASSIGN section specifies (indirectly; it is also possible to it
directly, as we will see) the set / (via init) and the relation R
(via next)

o as in Murphi, there expressions which are essentially
guard/action

o differently from Murphi, each action deals with one variable
only

o the guard may be defined on any other variable (and it is
typically the case)

o if something is not specified, then it is understood to be

non-deterministic
\ / DEGLI STUDI ence dettn
\ DECLL STU0! ;

()

E.g., in short.smv initial states are those in which state is
ready and request may be either Tr or Fa

Thus, there are 2 initial states | = {(ready, Tr), (ready,Fa)},
which may be represented with (ready, 1)

Also next (request) is not specified; before analyzing what
does this mean, let us see next (state)

The case expression works as follows: the first condition C
which is evaluated to true is fired, other true guards possibly

following C are ignored
s gf i e

This allows to put 1 (i.e., true) as the last guard, representing
the “default” case

NuSMV also checks if a case expression is exhaustive in its
conditions, as this allows it to assume that T is total

Note that the last condition on state leads to a
non-deterministic transition: if the first guard is false, then
state may take any value between ready e busy, that is any
value in its domain

In general, any subset of the variabe domain may be used

o request is completely non-deterministic, as it does not occur
in any next

o l.e., if other rules tells that the system may go from s to t and
(request = Fa) € L(t), then there exists a transition from s
to t’ with (request = Tr) € L(t') and
L(t) \ {(request =Fa)} = L(t') \ {(request = Tr)}

o Simply stated, if the system may go from s to t and request
has a value v in t, then the system may also go from s to t/
s.t. t and t’ only differ in the value of request, which is
different from v

o By combining all non-determinism in this example, the Kripke

structure defined here excludes just two tran%ns

rd, Tr™ rd, Fa :>

Cbs, T

bs, Fa :>
| UNIVERSITA DISIM
\ / DEGLI STUDI parimento d i
\ DELL'AQUILA 2

Straight lines are then-edges
Dashed lines are else-edges

Dotted lines are complemented-else-edges Trans
request.0 “false” edge corresponds to Tr

request.0

state.0

next(state.0)

state.0

DISIM

Taken from examples/smv-dist/short.smv

MODULE main
VAR
request : {Tr, Fa}; -- same as saying boolean
-- (stand for True and False)
state : {ready, busy};
ASSIGN
init(state)
next(state)

ready;

case
state = ready & (request = Tr): busy;
1 : {ready,busy};

esac;

SPEC

AG((request = Tr) -> AF state = busy) % e

MODULE main
VAR
request : {Tr,
state : {ready
ASSIGN
init(state) :=
next (state)

SPEC
AG((request =

Fa};
, busyl};

ready;

case
state = ready & (request = Tr): busy;
TRUE : ready;

esac;

Tr) -> AF state = busy) _

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

request.0

state.O

next(state.0)

Trans

DISIM

Trans

request.0

state.0

next(state.0)

DISIM

MODULE main
VAR
request : {Tr, Fa};
state : {ready, busy};
ASSIGN
init(state) := ready;
next (state)

case
state = ready & (request = Tr): busy;
TRUE : ready;

esac;
next (request) := request;

SPEC

AG((request = Tr) -> AF state = busy) ’%m.w\ m ‘

Reach

request.0

state.0

DISIM

MODULE main
VAR
ml : 0..15; -- m1.0 is MSB!
m2 : 0..15;
m3 : 0..30;
ASSIGN
next(m3) := ml + m2;

SPEC
AG(m3 <= 30);

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

MODULE main
VAR
ml : 0..15;
m2 : 0..15;
m3 : 0..30;
ASSIGN
next (m3) := case
ml*m2 <= 30: ml*m2;
TRUE: m3;
esac;

SPEC

AG(m3 <= 30); %
A/ B e

This is a set with 16 - 16 - 31 = 7936 elements
Just one node to represent it...

Init

TRUE

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

next(m3.4)

w13

next(m3.3)

m12

m2.2

next(m3.2)

mi1

m2.1

noxt(m3.1)

mL.0

m2.0

next(m3.0)

DISIM

| UNIVERSITA DISIM
\ | DEGLISTUDI pinero d e
DELL'AQUILA]

o Number of variables is 13 for both models
o 4 each for m1 and m2, plus 5 for m3
o Number of BDD nodes:

o adder: 47
o multiplier: 538

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o No magic: SAT could be solved using OBDDs

o just represent the instance with an OBDD and check if it is
different from 0
o very roughly speaking: if it were possible to solve it
“efficiently” in this way, P=NP...
o Thus, there are boolean functions for which OBDDs
representation is exponential, regardless of variable ordering
o one example is the multiplier seen above
o It is not possible to say if OBDDs will be a good way to
represent a problem, before trying it
o for the adder, it is much more efficient

o Furthermore, finding a variable order in order to minimize the
OBDD representation for a given function is an NP-complete
problem b ZE

DELL'AQUILA

©

This also holds for Model Checking in general

©

Not possible to say a-priori if a system will fit in the available
resources when using a model checker

o RAM and computation time

©

Also, it is not possible to decide which model checker is better
o explicit (Murphi-or-SPIN like) or symbolic (NuSMV like)?
o However, we are going to see some guidelines

o as for OBDDs: a good ordering is to interleave present and
future variables
o variable ordering: if OBDDs grow, the model checker can try a

different variable ordering
U/ Bl i

MODULE counter_cell(carry_in)
VAR value : boolean;
ASSIGN

init(value) := 0;
next(value) := (value + carry_in) mod 2;
DEFINE carry_out := value & carry_in;

MODULE main

VAR
bit0 : counter_cell(1);
bitl : counter_cell(bit0.carry_out);
bit2 : counter_cell(bitl.carry_out);

SPEC AG(!bit3.carry_out) =¥s‘i:ﬁ:‘ﬁkiiiiv‘¢ :

.

COUNTER

o

COUNTER

o

COUNTER

'

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ / DELL'AQUILA
bty /

©

©

©

©

2 modules, main and counter_cell

Main instantiates the module counter_cell for 3 times

This is an hardware-like instantiation: the main module
contains 3 equal copies of the counter_cell module, the
only difference being the lines in input

Note that this means the module main will have 3 copies of
variable value

o Note that carry_out (being inside a DEFINE section) is not a
variable, as it is only a shortcut for the expression it defines

o i.e., there will not be a corresponding variable in the OBDD
o and indeed, it is not declared as a variable...

o Hence, bit0 will always sum 1 to its internal variable, and
bit1l will sum 1 only if bitO will generate a carry

o The main module defines a counter from 0 to 7

MODULE user (semaphore)

VAR
state : {idle, entering, critical, exiting};
ASSIGN
init(state) := idle;
next(state) :=
case

state = idle: entering;

state = entering & !semaphore: critical;
state = critical: {critical, exiting};
state = exiting: idle;

TRUE : state;

esac; ‘¥\ S
\ / DEGLI STUDI ence dettn
\ B ;

next (semaphore) :=
case
state = entering: TRUE;
state = exiting: FALSE;
TRUE: semaphore;
esac;

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

MODULE main
VAR
semaphore : boolean;
procl : process user(semaphore);
proc2 : process user (semaphore);
ASSIGN
init (semaphore)

FALSE;

SPEC
AG(!(procl.state = critical & proc2.state = critical))

LTLSPEC

G F procl.state = critical ’%m.w\ m
. g e

o In the previous examples, all variables were evolving at the
same time

o There is a global clock as in a synchronous digital circuit:
given the current value for all variables in the current clock
tick, in the next clock tick all variables may change their
variables at the same time (synchronously: hardware parallel
execution)

o In this example, instead, instantations are processes

o l.e., just one variable at a time may change; other variables
are forced to stay fixed

o No dynamic process spawning as in SPIN: the number of

processes is known from the beginning SR .
\ t BESHERE! @ r

Synchronous vs. asynchronous systems

In asynchronous systems, there is essentially one (implicit)
additional module, which acts as a scheduler

This is indeed what the verification algorithm does

Each process is automatically provided with an additional
variable running which is true iff that process is currently
running

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

MODULE inverter (input)
VAR

output : boolean;
ASSIGN

init (output)

next (output)

0;
linput;

MODULE main

VAR
gatel : process inverter(gate3.output);
gate2 : process inverter(gatel.output);
gate3 : process inverter(gate2.output);

SPEC % e -
AG('gate2.output | !gate3.output) e ‘

IVERSITA DISIM

SLISTUDI
L'AQUILA

Using Direct specification it is possible to define non-total
transition relations or empty initial states set

MODULE inverter (input)

VAR

output : boolean;
INIT

output = 0
TRANS

next (output) = !input

Without processes, is it equivalent?

MODULE inverter (input)
VAR

output : boolean;
ASSIGN

init (output)

next (output)

0;
!input union output;
-- or {!input, output}

MODULE main
VAR
gatel : inverter(gate3.output);

gate2 : inverter(gatel.output); i
gate3 : inverter(gate2.output); “%’i:z\:if"\?ﬂ‘?i “” :

o NuSMV is provided with an interactive shell, as there are
many tasks it may accomplish (simulation, many verification
options); see user maual from chapter 3, especially Figure 3.1
at page 87

o Differently from explicit model checkers, no need to give
separate commands to generate a file to be compiled and
executed: all is represented as OBDDs, you only have to use
them properly

o Executing a non-interactive verification in NuSMV is the same
as giving the following list of interactive commands

o 1. read_model reads and stores the syntactic structure of the
input model

o no OBDDs here: tree-like structure, but re ting the -
syntactic structure of the input (abstract ss%ytlreel A R

0 2. flatten hierarchy (recursively) brings inside main all
modules instantiated by main

o

very similar to the unfolding we mentioned for Murphi and
SPIN: for such explicit model checkers, this was only needed
for theoretical purposes, in order to define the Kriepke
structure of an input model

here, it must be actually performed in the source code of
NuSMV, in order to then be able to encode R and / as OBDDs
to this aim, there must be only one module, the main,
containing all variables coming from the modules it
instantiates (to be applied recursively)

note that, again, this resembles digital circuits, where such a
flattening is a natural operation

this could entail adding a scheduler module if.processes a

re
used %‘ g ot
\ DELL'AQUILA 2

©

3. encode_variables for each variable x with domain D s.t.
|D| > 2, NuSMV defines xj ..., xm boolean variables with

m = [log, |D|| + 1; it also defines the encoding for constants
used in the input models

4. build flat model combines the result of the preceding
operations to obtain the flattenized and boolenized syntactic
structure which represents the Kriepke structure defined by
the input model

5. build model from the syntactic structure to OBDDs for R
ed | (plus other ones)

6. check_ctlspec (or check_ltlspec, or both, depending
on what you have to verify); it starts the actual verification

o we will be back soon on these last 2 steps %‘ pvERSITA m .
\ DELLAQUILA e

o How does build model work?
o All operations must be implemented bitwise (bit-vector)

o this means that we have to build the corresponding digital
circuit, remember the Digital Systems Design course?

o if we have to implement a sum between two variables encoded
with maximum 4 bits (note that result is on 5 bits):

A-e
B S
Cir MsB
_[As
Cout ‘i—{c\“\zﬁ;; 2l &
:Iu

VERSITA

DISIM
LISTUDI pimerio i

-4
@

o Analogously, you can represent other arithmetic operations
(subtract, multiply, divide)

o With other simple digital circuits, also equality and ordering
can be easily implemented

o

e.g., next(a) = b + c is translated in this way:

o multiple OBDDs are used to sum all bits of b and ¢
o an OBDD B is created which is true iff all variables of

next(a) are equal to such OBDDs

e.g., next(a) = case a < b: b + c; TRUE : ais
translated in this way:

again we have B as before, plus an OBDD C which is true if a
<b

then, NuSMV computes the OBDD ITE(C, B, a)

‘ UNIVERSITA DISIM
DEGLI STUDI porumen i e
BECEAGUI]

o From a NuSMV model M (defined with the ASSIGN section)
to the corresponding Kriepke structure S = (S,/, R, L)
o V =(wv,...,v,) is the set of variables defined inside the main
module of M, with domains (Dx,..., Dy)
o note that each D; may be the instantiation of other modules
o in which case, again, all variables must be considered as
unfolded
o that is, if a variable v is the instantiation of a module with k
variables, then v counts as k variables instead of one
o if one of such k variables is another instantiation, this
procedure must be recursively repeated
o NuSMYV calls this operation hierarchy flattening
o essentially, it is the same as for records in Murphi

o simple types are the recursion base step
\ / DEGLI STUDI ienze delln
\ DELL'AQUILA 2

0 S=Dj x...x Dy (asin Murphi)
o [is defined by looking at init predicates
o s € [iff, for all variables v € V, s(v) € init(v)
o note that, by NuSMV syntax, each init(v) is actually a set
(possibly a singleton)
o if init(v) is not specified in M, then any value for v is ok: in

this case, formally, if s € /, then also s’ € I being
sS'(v)=s(v)W £ v

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o R is defined by looking at next predicates

o we assume all next predicates to be defined by the case
construct (if not, simply assume it is the case construct with
just one TRUE condition)

o for each (flattened) variable v, we name gi(v),...gx, (v) the
conditions (guards) of the case for next (v), and
a1(v),...ak, (v) the resulting values (actions) of the case for
next (v)

o note that, by NuSMV syntax, each a;(v) is actually a set
(possibly a singleton)

o (s,s') € R iff, for all variables v € V, if
gi(s(v)) AVj < ingj(s(v)) then s'(v) € a;i(v)

o thatis, s may go in s’ iff, for all variables v, if the values of v
in s satisfy the guard g; (and none of the preceding guards for
the same variable), then the value of v in &’ is one of the
values specified by the case for guard g; M\mw\ o

o note that, in doing this, you also have to re “I‘H‘bift‘s fo. o
modules

o AP={(v=d)|v=vie VAde D}

o (v =d) € L(s) iff variable v has value d in s

o If, instead, the NuSMV model M is defined with the TRANS
section, then

o V =(v,...,v,) is the set of variables as above and
S=D;x...xD,
o [is defined by looking at INIT section
o s € | iff, for all variables v € V and for all INIT sections Z,
Z(s(v)) holds
o R is defined by looking at TRANS section
o (s,s’) € Riff, for all variables v € V and TRANS sections T,

T(s(v),s’(v)) holds
% e ‘
A DELL'AQUILA Sy

o Ina

nutshell: using f(x) has some drawbacks

o you are forced to name a function (f in the example above)
o it is not always clear if a letter is a parameter or an argument
o it is not computationally clear what happens for multiple

inputs
o f(x,y): do you have to provide both x, y, otherwise you get
an error?
o as an alternative, you may provide just one argument, and
obtain a new function
o e.g. f(x,y) = x+y, we have that f(x,4) is a function on x

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Instead of writing f(x) = E(x), for some expression E(x), we
write Ax.E(x)

o if you want, you can name a function f(x) = Ax.E(x)

A(x,y).x + y: both argument must be given, otherwise it is
an error

AxAy.x + y: if you provide x = 4 only, you get a function
Ay4+y
If an OBDD contains variables xi, ..., xp, then it represent

some function Axy ... Axp. E(x1,...,Xn)
A) e R

o In a nutshell: we have a set L with an ordering <

o < could be partial, i.e., not defined on some pair (h,h) € Lx L
o L,<is a complete lattice if any subset A C L has a greatest
lower bound and a least upper bound in L
supA=min{é € L |Vaec A a<¢}
inffA=max{{ €L |Vae A £ <a}

©

©

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Let / = {0,...,10}, then 2/, C is a complete lattice
o e.g., {0,1,2} <{0,1,2,3}, whilst {0,1,2},{0,1,3} cannot be
compared
o sup{{0,1,2},{0,1,3}} = min{¢ € 2/ |Va €
{0,1,2},{0,1,3}.a C €} = min{{0,1,2,3},...,/} =
{0,1,2,3}
o inf{{0,1,2},{0,1,3}} = max{¢ € 2! |Va €
{0,1,2},{0,1,3}.¢ C a} = max{{0,1},..., 2} = {0,1}
o 2/, C is always a complete lattice, if / is a finite set
o supJ =Ugey & infJ=Ngey €
o at the worst, supJ =/ and infJ =&

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Suppose you have a function T : L — L. An element £ € L is
a fixpoint of T iff T(§) =¢

o Given a T, there may be several fixpoints: we are interested in
the maximum or the minimum of such fixpoints

notation uT and v T

where typically T is expressed with a A notation

puT =xst. T()=EAVpeL.T(p)=p—E<p

vT =xst. T()=EEAVpe L T(p)=p—p<¢

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

(*]
*]
*]
o

©

©

©

Let T :2' — 2/ be defined as T (&) =&, or better T = M\¢.€
o we have uT =2, vT =1
Let T = X0
o we have uT =vT =g
Let T = A¢. U {10}
o we have uT = {10},vT =/
Let T = A& €\ {10}
o we have vT ={0,...,9}, uT =2

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

©

We define sets by their characteristic function, thus let us
rewrite the previous examples

o thus the £ in X{ is a function £ : | — {0,1}

o it represents a set X, thus £(x) =1iff x € X

©

T = M€ is ok also if ¢ is a characteristic function
T = X¢.9 could be rewritten as T = A§.Ax.0
o T = X.£U {10} could be rewritten as
T =X Ax[x =10 — 1] A [x # 10 — £(x)]

o uT =Xxx=10,vT = Ax.1
T = X.£\ {10} could be rewritten as
T =X Ax[x =10 — 0] A [x # 10 — &(x)]

o vT =Xxx#10,uT = Ax.0

()

©

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

o We deal with monotonic (i.e., increasing or decreasing) T,
thus fixpoints always exists

0 £ <p—T(§) < T(p), T monotonically increasing
0o £ <p— T(p) < T(E), T monotonically decreasing

o Previous examples are all monotonic
o By Knaster-Tarski theorem, uT = inf{{ | T(&) < &}
o analogously, v T =sup{¢ | T(§) > &}

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Given a KS § = (5,1, R, L), we want to label states, i.e., to
identify subsets of S

o those for which a given labeling holds
o labels are CTL/LTL subformulas

o Thus, L=2%5 <isCand T:25 —2°

o in the following, x = x1,...,x, with n = [log|S|]
o characteristic functions of subsets of S

o For k>1,let TK(¢) = T(TK1(€)), with T1 =T

o For least fixpoints, start with &, and apply T since
(@)= T"(2)

o For greates fixpoints, start with S, and apply T since
TH(S) = T' ()

o At most, k = [5| 1%" ISR |

o The “really interesting” fixpoints are those which are
recursively defined

o typically, basing on some other already defined sets, i.e.,
characteristic functions

o eg., T =X Ax.f(x)VE(x) where f: S — {0,1} is known

o thus, the compactly-written least and greatest fixpoints are
nQAx.f(x)V Q(x) and vQ.Ax.f(x) V Q(x)

o e.g., T =N Ax.f(x)NE(x)

o eg, T=X.£(x)

o Not immediately clear what they do, but by the
Knaster-Tarski theorem and the previous reasoning, we may
apply the following algorithms

o least fixpoints p are computed for increasing T
o greatest fixpoints v are computed for decreasing T

o viceversa are trivial: uT is Ax.0 for decreas :‘\a‘nlqm ——
Ax.1 for increasing T ”" o

0BDD 1fp(MuFormula T) /* uZ.T(Z) */

{

Q = Mx.0;
Q = T(Q);
/% T clearly says where Q must be replaced */
/* e.g.: if pZ. Ax.f(x)VZ(x), then
Q =X f(x)ANQ(x) */
while (Q# Q) {

Q = Q;
Q' = T(Q);
}
return Q; /* or Q, they are the same... */

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

0BDD gfp(NuFormula T) /* vZ.T(Z) */
{
Q = M. 1;
Q = T(Q);
while (Q# Q') {
Q= Q5
QI = T(Q);
}

return Q;

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o The idea is to compute the set of reachable states, and check
if for all of them p holds
o Reach = uZ. Ax. [I(x) V3y : (Z(y) A R(y,x))]
o of course, we get an OBDD on x as a result
o recall that x (and y) is a vector of all boolean variables
o Vx € 5. Reach(x) — p(x)

o computationally easier: check that Reach(x) A —p(x) =0
o otherwise, we have a reachable state for which p does not

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

©

All CTL formulas can be reduced to 3: EXf, f EU g, EGf

o all other formulas may be reduced to these three, using
negation and other boolean combinations
o with OBDDs, we can do all such things!

Given OBDDs for f (and g), we compute the OBDD
representing EXf, f EU g, EGf

o that is, the OBDD for the set X = {s € S| S,s = EXf} etc
Let it be B: then, simply check =B(x) A I(x) =0
o recallthat S =@ iff Vs e . S,s = @

EXf does not require a fixpoint computation: it is equivalent
to (the OBDD representing) Ax. 3y : R(x,y) A f(y)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

©

©

©

o For f EU g, recall that it is equivalent to the CTL formula
gV (f NEX(f EU g))
o Thus, f EU g = uZ. Ax. g(x) Vv (f(x) N EXZ(x)) =
pnZ. Ax. g(x)V (F(x) A 3y : R(x,y) A Z(y)))
o note that g(x) V (f(x) A EXZ(x)) is increasing, i.e. for
Zy C Z> we have that
(g(x) v (f(x) NEXZi(x)) — (g(x) V (f(x) A EXZ3(x))
o Analogously: EGf = f A EX(EG(), thus
EGf =vZ. Ax. f(x) NEXZ(x) =vZ. Ax. f(x) A (3y :
R(x,y) A Z(y))
o note that f(x) A EXZ(x) is decreasing, i.e. for Z; C Z we
have that (f(x) A EXZy(x)) — (f(x) A EXZ1(x))

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

bool checkCTL(KS S, CTL ¢) {

let S=(S,I,R,L);

B = LblSt(p);

return Ax. /[(x) A—=B(x) = Ax. 0;
}
0BDD LblSt(CTL ¢) { /* also S=(S,,R L) */
if (Ip€ AP.p=p) return Ax. p(x);

else if (p=-¢) return Ax. -LblSt (¢)(x);
else if (p=a¢1Ap2)

return Ax.LblSt (¢1) (x)ALb1St (#2)(x);

else if (p=EX¢)

return Ax.3Jy: R(x,y)ALblSt () (y);

else if (¢ =EG¢)

return gfp (vZ. Ax. Lb1St (@) (x)A(Jy : R(x,y) ANZ(y))) ;
else if (p=¢; EU ¢y)

return 1fp(uZ. Ax. Lb1St (¢r) (x)V % o— m |
(Lb1St (b)) (x)A By : R(x, y)AZ(y))); & " ‘

