Software Testing and Validation A.A. 2022/2023 Corso di Laurea in Informatica

The NuSMV Model Checker

Igor Melatti

#### Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica



- We saw the theoretical algorithm for CTL model checking
  - we said it was not effective, as it required  ${\cal S}$  and  ${\cal R}$  to be in RAM
- Actually, there are methodologies which are able to fit S and R in RAM, also for industrial-sized models
- The "father" of the model checkers using such technologies is SMV
  - Symbolic Model Verifier
  - it has then been refactored as NuSMV
- This set of techniques is referred to as *symbolic model checking* 
  - Murphi and SPIN style is dubbed explicit model checking



- In order to understand how symbolic model checking works, we need some preliminaries
- ROBDDs
  - needed to actually fit S and R in RAM
- $\mu$ -calculus
  - together with fixpoint computation
  - extension of  $\lambda$ -calculus
  - needed to efficiently implement CTL and LTL model checking using ROBDDs



## ROBDD

- Reduced Ordered (Complemented Edges) Binary Decision Diagrams
  - sometimes called simply OBDDs, and even BDDs
  - here we stick to the precise notation, by also outlining the differences
- Let us start with the basis: BDD
- A BDD is a data structure representing a boolean function
  - of course, OBDDs and ROBDDs are data structure as well
  - we will define them in the following



### **Boolean Functions**

- In our setting a boolean function is  $f: \mathbb{B}^n \to \mathbb{B}$ 
  - where  $\mathbb{B}=\{0,1\}$  is the set of boolean values
  - 0 stands for false, 1 for true
  - thus, our boolean functions have *n* boolean variables as arguments
  - and return a single boolean value
- Examples:
  - 0 and 1 are boolean functions with n = 0
  - complementation  $(f(x) = \neg x)$  and identity (f(x) = x) are boolean functions with n = 1
  - AND (f(x, y) = x ∧ y), OR (f(x, y) = x ∨ y) are boolean functions with n = 2
  - generally speaking, there are 2<sup>2<sup>n</sup></sup> different boolean functions of *n* boolean variables



• Roughly speaking, if you have f(x) = x + 1 with  $x \in \mathbb{R}$ , you can only represent f through its computation

• rules s.t., given x, you compute x + 1

- For boolean functions, the explicit tabular representation is also possible (*truth table*)
  - a table with n + 1 columns
  - first *n* columns are for variables values
  - last column is for function value
  - of course, you need 2<sup>n</sup> rows



| p | q | F <sup>0</sup> | NOR <sup>1</sup> | <mark>#</mark> 2 | ¬p³ | <b>≁</b> ,4 | <b>¬q</b> <sup>5</sup> | XOR <sup>6</sup> | NAND <sup>7</sup> | AND <sup>8</sup> | XNOR <sup>9</sup> | <b>q</b> <sup>10</sup> | → <sup>11</sup> | p <sup>12</sup> | ←13 | OR <sup>14</sup> | T <sup>15</sup> |
|---|---|----------------|------------------|------------------|-----|-------------|------------------------|------------------|-------------------|------------------|-------------------|------------------------|-----------------|-----------------|-----|------------------|-----------------|
| т | т | F              | F                | F                | F   | F           | F                      | F                | F                 | т                | т                 | т                      | т               | т               | Т   | т                | т               |
| т | F | F              | F                | F                | F   | Т           | т                      | т                | т                 | F                | F                 | F                      | F               | т               | Т   | т                | т               |
| F | т | F              | F                | т                | т   | F           | F                      | т                | т                 | F                | F                 | т                      | т               | F               | F   | т                | Т               |
| F | F | F              | т                | F                | т   | F           | т                      | F                | т                 | F                | т                 | F                      | т               | F               | т   | F                | т               |

- A truth table must take into account all possible values for all its *n* arguments
- Which leads to a  $O(2^n)$  RAM required
  - even with optimizations (e.g., only 1 column is actually needed)
- One could represent functions with CNF or DNF, but they are difficult to manipulate
  - furthermore, not canonical: there may be multiple CNFs of DNFs for the same function

## Boolean Functions for Model Checking

- In Model Checking algorithms, the following operations are needed:
  - compute the returned value for a given tuple of values  $b_1, \ldots, b_n$ 
    - could be ok for truth tables
  - test of equivalence between boolean functions  $f_1 \equiv f_2$ 
    - not ok for truth tables
    - needs canonicity
  - compute the representation of a logical combination of boolean functions
    - e.g.: given the representation of  $f_1, f_2$ , compute the representation of  $f_1 \wedge f_2$

DISIM

- not ok for truth tables
- Goal: find a representation able to fulfill such requirements
  - while possibly requiring less than  $O(2^n)$

## **Binary Decision Diagrams**

- Roughly speaking, it is a connected DAG (Directed Acyclic Graph), i.e., a tree
  - only one root
  - each internal node has two successors
  - nodes are labeled by boolean variables
  - edges are labeled by boolean values
  - only two leaves, labeled with boolean values



## **Binary Decision Diagrams**



Represented function:  $f(a, b, c, d) = ab + \bar{a}cd + a\bar{b}cd$ 

• recall that + is OR,  $\cdot$  is AND,  $\overline{\cdot}$  is negation



- A BDD is a tuple  $\mathcal{B} = \langle V, E, r, \mathcal{V}, var, low, high \rangle$  where:
  - V is a finite set of nodes containing two special nodes  $\mathbf{0}$  and  $\mathbf{1}$
  - $E \subseteq V \times V$  is a set of edges s.t.:
    - there are no cycles, i.e., for all path  $\pi = v_0, \ldots, v_n$ , where  $\forall i = 0, \ldots, n$ .  $v_i \in V$  and  $\forall i = 0, \ldots, n-1$ .  $(v_i, v_{i+1}) \in E$ , we have that  $i \neq j$  implies  $v_i \neq v_j$
    - let  $S(v) = \{w \in V \mid (v, w) \in E\}$  be the set of successors of v
    - each internal node has exactly two successors, i.e.,  $\forall v \in V \setminus \{0, 1\}$ . |S(v)| = 2
    - **0** and **1** are *terminal nodes*, i.e.,  $\forall v \in \{0,1\}$ . |S(v)| = 0
  - $r \in V$  is the root (i.e.,  $\forall v \in V$ .  $(v, r) \notin E$ )
  - $\text{low}, \text{high}: V \to V$  is the labeling of edges
    - the labeling must be consistent with E, i.e.,  $\forall v \in V$ . low(v), high $(v) \in S(v)$



- A BDD is a tuple  $\mathcal{B} = \langle V, E, r, \mathcal{V}, var, low, high \rangle$  where:
  - $\bullet \ \mathcal{V}$  is a finite set of boolean variables
    - thus, the boolean function represented by  ${\mathcal B}$  will depend on variables in  ${\mathcal V}$
    - it may be a subset of  ${\mathcal V}$
  - ${\scriptstyle \bullet \ } {\rm var}: {\it V} \rightarrow {\it V}$  is the labeling of nodes
- A maximal path in  ${\mathcal B}$  starts from r and ends up either in  ${\mathbf 0}$  or  ${\mathbf 1}$
- $\bullet$  The semantics of  ${\cal B}$  is the boolean function represented by  ${\cal B}$ 
  - ${\scriptstyle \bullet}\,$  intuitively, we follow all maximal paths which end up in 1
  - o formally: next slide



## **BDDs: Semantics**

- Given a BDD  $\mathcal{B} = \langle V, E, r, \mathcal{V}, var, low, high \rangle$ , we recursively define the semantics of each node  $v \in V$ 
  - each node may be seen as the root of a subtree...
  - $\bullet\,$  notation:  $[\![v]\!]_{\mathcal{B}},$  or simply  $[\![v]\!]$  when  $\mathcal{B}$  is understood
- Terminal nodes denote the boolean constants:  $[\![0]\!] = {\rm false}, [\![1]\!] = {\rm true}$
- For internal nodes  $v \in V \setminus \{0, 1\}$ , semantics is defined as  $\llbracket v \rrbracket = \operatorname{var}(v)\llbracket \operatorname{high}(v) \rrbracket + \overline{\operatorname{var}(v)}\llbracket \operatorname{low}(v) \rrbracket$ 
  - recall that + is OR,  $\cdot$  is AND,  $\overline{\cdot}$  is negation
- The semantics of  $\mathcal B$  is of course  $[\![r]\!]$



## Canonicity of BDDs

- $\bullet$  For a given BDD  ${\cal B},$  we have a unique represented boolean function
- Given a boolean function f, there is a BDD  $\mathcal{B}$  representing f, i.e.,  $[\![r]\!]_{\mathcal{B}} = f$
- However, there may be a BDD B' ≠ B s.t. [[r']]'<sub>B</sub> = f as well
  thus, BDDs are not canonical
- Thus, ROBDDs are introduced: by setting limitations, they achieve canonicity
  - for a boolean function *f*, there exists a *unique* ROBDD representing *f*
- Furthermore, for increasing efficiency, complemented edges are introduced
  - number of nodes is reduced



# OBDDs

An OBDD (Ordered BDD)

 $\mathcal{B} = \langle V, E, r, \mathcal{V}, var, low, high, ord \rangle$ , is a BDD with an additional ord function

- Namely,  $\operatorname{ord} : \mathcal{V} \to \{1, \dots, |\mathcal{V}|\}$
- The following properties must hold
  - ord is injective, i.e.,  $\forall v, w \in \mathcal{V}$ . ord $(v) = \operatorname{ord}(w) \to v = w$
  - ${\ensuremath{\, \circ }}$  note that this implies that  ${\rm ord}$  is indeed bijective...
  - defines an *ordering* on variables in  $\mathcal{V}$ , e.g., if  $\operatorname{ord}(v) = 10$  then v is the tenth variable
  - Given a path  $\pi$  on  $\mathcal{B}$ , variables on nodes follow  $\operatorname{ord}$
  - i.e.,  $\forall \pi = v_0, \ldots, v_n$  s.t.  $\forall i = 0, \ldots, n. v_i \in V$  and  $\forall i = 0, \ldots, n-1. (v_i, v_{i+1}) \in E$  and  $v_n \notin \{0, 1\}$ , we have that i < j implies  $\operatorname{ord}(\operatorname{var}(v_i)) < \operatorname{ord}(\operatorname{var}(v_j))$

# COBDDs

- A COBDD (Complemented edges OBDD)
   B = ⟨V, E, r, V, var, low, high, ord, flip⟩, is a BDD with an additional flip : V → {0,1}
- For an internal node v, if flip(v) holds then the else edge of v is complemented
- ${\scriptstyle \bullet}\,$  There is now only one terminal node 1
  - ${\scriptstyle \bullet} {\ 0}$  is not needed because of complementation
- Semantics changes, also a flipping bit  $b \in \{0,1\}$  is necessary
- ullet Terminal node denote the boolean constants:  $[\![\mathbf{1},b]\!]=ar{b}$
- For internal nodes  $v \in V \setminus \{\mathbf{1}\}$ , semantics is defined as  $\llbracket v, b \rrbracket = \operatorname{var}(v)\llbracket \operatorname{high}(v), b \rrbracket + \operatorname{var}(v)\llbracket \operatorname{low}(v), b \oplus \operatorname{flip}(v) \rrbracket$
- Semantics of  $\mathcal{B}$  is  $[\![r, flip(r)]\!]$

## **ROBDDs**

- A ROBDD (Reduced OBDD)  ${\cal B}$  is a COBDD with the least number of nodes
  - among the ones representing the same boolean function
- From now on, as usual in the literature, we will use OBDD as synonym for ROBDD
- Efficient algorithms (*O*(*n*), being *n* the number of nodes) exist to compute the AND and the OR of two OBDDs

• negation is O(1): just complement flip(r)!

- Typically implemented with hash tables of already computed ROBDDs
  - speedup computations
  - equality check is O(1): just compare r and r'
- Furthermore: multi-rooted DAG can be used to represent multiple functions, sharing some nodes

### Other Important OBDD Operations

- Application: given the OBDD for f(x<sub>1</sub>,...,x<sub>i</sub>,...,x<sub>n</sub>), compute the OBDD for f(x<sub>1</sub>,...,0,...,x<sub>n</sub>) or f(x<sub>1</sub>,...,1,...,x<sub>n</sub>)
  - sometimes also written  $f(x_1, \ldots, x_n)|_{x_i=0}$  or  $f(x_1, \ldots, x_n)|_{x_i=1}$
  - Shannon expansion: for every boolean function f,  $f(x_1,...,x_n) = \bar{x}_i f(x_1,...,x_n)|_{x_i=0} + x_i f(x_1,...,x_n)|_{x_i=1}$
- Given f(x, y), compute the OBDD for:
  - existentialization:  $\exists x : f(x,y) \equiv f(0,y) + f(1,y)$
  - universalization:  $\forall x. f(x, y) \equiv f(0, y) \cdot f(1, y)$
  - both generalized to multiple variables  $x_1, \ldots, x_n$
- Given f(x), g(x), h(x), compute the OBDD for ITE(f, g, h)
  - ITE stands for if-then-else
  - thus,  $ITE(f, g, h) = fg + \bar{f}h$



## OBDD and Model Checking

- OBDDs extremely good in representing *characteristic functions* of finite sets
  - the characteristic function  $\chi: U \to \{0,1\}$  of a set  $X \subseteq U$  is defined as

$$\chi(x) = \begin{cases} 1 & \text{if } x \in X \\ 0 & \text{otherwise} \end{cases}$$

- If U is finite, then each element  $x \in U$  may be encoded using  $n = \lceil \log(|X|) \rceil$  boolean variables  $x_1, \ldots, x_n$
- Thus,  $\chi$  may be represented by an OBDD on  $x_1, \ldots, x_n$ 
  - as for Model Checking, we may represent S,  $\operatorname{Reach}(S)$ , R, ...
  - R will need 2n variables!
  - CTL Model Checking algorithm becomes feasible!
    - for many interesting real-sized systems, *S*, Reach(*S*), *R* will now fit in RAM

## OBDD and Model Checking

- The most difficult part is to derive the OBDD for *R* directly from the model specification
  - i.e., from the model checker input language
  - it would be rather difficult to do it with SPIN
    - especially because it has a dynamic state space
  - also the one for Murphi would require some effort
  - S is easy, you only have to look at global variables
    - not in SPIN...
- NuSMV input language is tailored to be easily translated into OBDDs
  - also into CNF, as we will see...



# NuSMV

- SMV (Symbolic Model Verifier): McMillan implementation of the ideas in the famous paper "Symbolic model checking: 10<sup>20</sup> states and beyond"
  - McMillan PhD dissertation about SMV is one of the most important dissertations in Computer Science
- SMV has been then re-written and standardized by the research group in Trento (also Genova and CMU collaborated), thus becoming NuSMV
  - the engine is still McMillan's work
  - code has been nearly entirely commented, and made more readable
  - some features has been added: interactive mode, bounded model checking
  - OBDDs are handled via the CUDD library (
     Somenzi Colorado University)

```
Taken from examples/smv-dist/short.smv
MODULE main
VAR.
  request : {Tr, Fa}; -- same as saying boolean
                      -- (stand for True and False)
  state : {ready, busy};
ASSIGN
  init(state) := ready;
  next(state) := case
                   state = ready & (request = Tr): busy;
                   1 : {ready, busy};
                 esac;
SPEC
  AG((request = Tr) -> AF state = busy)
```

## NuSMV Input Language

- One *module*, there may be more, but one of them must be named main
- Module variables are those declared with VAR
- Base types are like Murphi ones: enumerations and integer subranges, plus the word type (i.e., an array of bits)
- Arrays are possible, but can be indexed only with constants
- Structures are modeled through modules
  - That is, each module has its variables (fields of a structure) and may be instantiated many times



- ASSIGN section specifies (indirectly; it is also possible to it directly, as we will see) the set *I* (via init) and the relation *R* (via next)
  - as in Murphi, there expressions which are essentially guard/action
  - differently from Murphi, each action deals with *one variable only* 
    - the guard may be defined on any other variable (and it is typically the case)
  - if something is not specified, then it is understood to be non-deterministic



- E.g., in short.smv initial states are those in which state is ready and request may be either Tr or Fa
- Thus, there are 2 initial states  $I = \{ \langle ready, Tr \rangle, \langle ready, Fa \rangle \}$ , which may be represented with  $\langle ready, \bot \rangle$
- Also next(request) is not specified; before analyzing what does this mean, let us see next(state)
- The case expression works as follows: the first condition *C* which is evaluated to true is fired, other true guards possibly following *C* are ignored



## NuSMV Input Language: ASSIGN

- This allows to put 1 (i.e., true) as the last guard, representing the "default" case
- NuSMV also checks if a case expression is exhaustive in its conditions, as this allows it to assume that *T* is total
- Note that the last condition on state leads to a non-deterministic transition: if the first guard is false, then state may take any value between ready e busy, that is any value in its domain
- In general, any subset of the variabe domain may be used



## NuSMV Input Language: ASSIGN

- request is completely non-deterministic, as it does not occur in any next
- I.e., if other rules tells that the system may go from s to t and  $(\text{request} = \text{Fa}) \in L(t)$ , then there exists a transition from s to t' with  $(\text{request} = \text{Tr}) \in L(t')$  and  $L(t) \setminus \{(\text{request} = \text{Fa})\} = L(t') \setminus \{(\text{request} = \text{Tr})\}$
- Simply stated, if the system may go from s to t and request has a value v in t, then the system may also go from s to t' s.t. t and t' only differ in the value of request, which is different from v
- By combining all non-determinism in this example, the Kripke structure defined here excludes just two transitions

#### Automata for short.smv: I and R





#### OBDDs for short.smv: R



#### OBDDs for short.smv: /







```
Taken from examples/smv-dist/short.smv
MODULE main
VAR.
  request : {Tr, Fa}; -- same as saying boolean
                      -- (stand for True and False)
  state : {ready, busy};
ASSIGN
  init(state) := ready;
  next(state) := case
                   state = ready & (request = Tr): busy;
                   1 : {ready, busy};
                 esac;
SPEC
  AG((request = Tr) -> AF state = busy)
```

```
MODULE main
VAR.
  request : {Tr, Fa};
  state : {ready, busy};
ASSIGN
  init(state) := ready;
  next(state) := case
                       state = ready & (request = Tr): busy;
                       TRUE : ready;
                    esac;
SPEC
  AG((request = Tr) -> AF state = busy)
                                                     UNIVERSITÀ
DEGLI STUDI
DELL'AQUILA
                                                                 DISIM
```

#### OBDDs for short.smv: R



#### OBDDs for short.soloready.smv: R



```
MODULE main
VAR.
  request : {Tr, Fa};
  state : {ready, busy};
ASSIGN
  init(state) := ready;
  next(state) := case
                    state = ready & (request = Tr): busy;
                    TRUE : ready;
                  esac;
  next(request) := request;
SPEC
  AG((request = Tr) -> AF state = busy)
                                                         DISIM
```

#### OBDDs for short.soloready.req\_const.smv: Reach




```
MODULE main
VAR
    m1 : 0..15; -- m1.0 is MSB!
    m2 : 0..15;
    m3 : 0..30;
ASSIGN
    next(m3) := m1 + m2;
SPEC
    AG(m3 <= 30);</pre>
```



```
MODULE main
VAR.
 m1 : 0..15;
 m2 : 0..15;
 m3 : 0..30;
ASSIGN
  next(m3) := case
    m1*m2 <= 30: m1*m2;
    TRUE: m3;
  esac;
SPEC
```

$$AG(m3 <= 30);$$



This is a set with  $16 \cdot 16 \cdot 31 = 7936$  elements Just one node to represent it...





### OBDDs for Adder: R



### OBDDs for Multiplier: R





- Number of variables is 13 for both models
  - 4 each for m1 and m2, plus 5 for m3
- Number of BDD nodes:
  - adder: 47
  - multiplier: 538



- No magic: SAT could be solved using OBDDs
  - just represent the instance with an OBDD and check if it is different from 0
  - very roughly speaking: if it were possible to solve it "efficiently" in this way, P=NP...
- Thus, there are boolean functions for which OBDDs representation is exponential, regardless of variable ordering
  - one example is the multiplier seen above
- It is not possible to say if OBDDs will be a good way to represent a problem, before trying it
  - for the adder, it is much more efficient
- Furthermore, finding a variable order in order to minimize the OBDD representation for a given function is an NP-complete problem

- This also holds for Model Checking in general
- Not possible to say a-priori if a system will fit in the available resources when using a model checker
  - RAM and computation time
- Also, it is not possible to decide which model checker is better
  - explicit (Murphi-or-SPIN like) or symbolic (NuSMV like)?
- However, we are going to see some guidelines
  - as for OBDDs: a good ordering is to interleave present and future variables
  - variable ordering: if OBDDs grow, the model checker can try a different variable ordering



```
MODULE counter_cell(carry_in)
VAR value : boolean;
ASSIGN
  init(value) := 0;
  next(value) := (value + carry_in) mod 2;
DEFINE carry_out := value & carry_in;
MODULE main
VAR.
  bit0 : counter_cell(1);
  bit1 : counter_cell(bit0.carry_out);
  bit2 : counter_cell(bit1.carry_out);
```

SPEC AG(!bit3.carry\_out)



#### Counter Cell





- 2 modules, main and counter\_cell
- Main *instantiates* the module counter\_cell for 3 times
- This is an hardware-like instantiation: the main module contains 3 equal copies of the counter\_cell module, the only difference being the lines in input
- Note that this means the module main will have 3 copies of variable value



- Note that carry\_out (being inside a DEFINE section) is not a variable, as it is only a shortcut for the expression it defines
  - i.e., there will not be a corresponding variable in the OBDD
  - and indeed, it is not declared as a variable...
- Hence, bit0 will always sum 1 to its internal variable, and bit1 will sum 1 only if bit0 will generate a carry
- The main module defines a counter from 0 to 7



```
MODULE user(semaphore)
VAR.
  state : {idle, entering, critical, exiting};
ASSIGN
  init(state) := idle;
  next(state) :=
    case
      state = idle: entering;
      state = entering & !semaphore: critical;
      state = critical: {critical, exiting};
      state = exiting: idle;
      TRUE : state;
    esac;
```



```
next(semaphore) :=
   case
   state = entering: TRUE;
   state = exiting: FALSE;
   TRUE: semaphore;
```

esac;



```
MODULE main
VAR.
  semaphore : boolean;
  proc1 : process user(semaphore);
  proc2 : process user(semaphore);
ASSIGN
  init(semaphore) := FALSE;
SPEC
  AG(!(proc1.state = critical & proc2.state = critical))
LTLSPEC
  G F proc1.state = critical
```

- In the previous examples, all variables were evolving at the same time
- There is a global clock as in a synchronous digital circuit: given the current value for all variables in the current clock tick, in the next clock tick all variables may change their variables at the same time (synchronously: hardware parallel execution)
- In this example, instead, instantations are processes
- I.e., just one variable at a time may change; other variables are forced to stay fixed
- No dynamic process spawning as in SPIN: the number of processes is known from the beginning



- Synchronous vs. asynchronous systems
- In asynchronous systems, there is essentially one (implicit) additional module, which acts as a scheduler
- This is indeed what the verification algorithm does
- Each process is automatically provided with an additional variable running which is true iff that process is currently running



```
MODULE inverter(input)
VAR.
  output : boolean;
ASSIGN
  init(output) := 0;
  next(output) := !input;
MODULE main
VAR.
  gate1 : process inverter(gate3.output);
  gate2 : process inverter(gate1.output);
  gate3 : process inverter(gate2.output);
```

SPEC

AG(!gate2.output | !gate3.output)



#### Inverter Cell





Using Direct specification it is possible to define non-total transition relations or empty initial states set

```
MODULE inverter(input)
VAR
   output : boolean;
INIT
   output = 0
TRANS
   next(output) = !input
```



Without processes, is it equivalent?

MODULE main
VAR
gate1 : inverter(gate3.output);

- gate2 : inverter(gate1.output);
- gate3 : inverter(gate2.output);



# NuSMV As A Tool

- NuSMV is provided with an interactive shell, as there are many tasks it may accomplish (simulation, many verification options); see user maual from chapter 3, especially Figure 3.1 at page 87
- Differently from explicit model checkers, no need to give separate commands to generate a file to be compiled and executed: all is represented as OBDDs, you only have to use them properly
- Executing a non-interactive verification in NuSMV is the same as giving the following list of interactive commands
- 1. read\_model reads and stores the syntactic structure of the input model
  - no OBDDs here: tree-like structure, but representing the syntactic structure of the input (abstract syntax tree)

DISIM

# NuSMV As A Tool

- 2. flatten\_hierarchy (recursively) brings inside main all modules instantiated by main
  - very similar to the unfolding we mentioned for Murphi and SPIN: for such explicit model checkers, this was only needed for theoretical purposes, in order to define the Kriepke structure of an input model
  - here, it must be actually performed in the source code of NuSMV, in order to then be able to encode R and I as OBDDs
  - to this aim, there must be only one module, the main, containing all variables coming from the modules it instantiates (to be applied recursively)
  - note that, again, this resembles digital circuits, where such a flattening is a natural operation
  - this could entail adding a scheduler module if processes are used

# NuSMV As A Tool

- 3. encode\_variables for each variable x with domain D s.t. |D| > 2, NuSMV defines  $x_1 \dots, x_m$  boolean variables with  $m = \lfloor \log_2 |D| \rfloor + 1$ ; it also defines the encoding for constants used in the input models
- 4. build\_flat\_model combines the result of the preceding operations to obtain the flattenized and boolenized syntactic structure which represents the Kriepke structure defined by the input model
- 5. build\_model from the syntactic structure to OBDDs for *R* ed *I* (plus other ones)
- 6. check\_ctlspec (or check\_ltlspec, or both, depending on what you have to verify); it starts the actual verification

• we will be back soon on these last 2 steps



## From Syntactic Structure to OBDDs

- How does build\_model work?
- All operations must be implemented bitwise (*bit-vector*)
  - this means that we have to build the corresponding digital circuit, remember the Digital Systems Design course?
  - if we have to implement a sum between two variables encoded with maximum 4 bits (note that result is on 5 bits):



## From Syntactic Structure to OBDDs

- Analogously, you can represent other arithmetic operations (subtract, multiply, divide)
- With other simple digital circuits, also equality and ordering can be easily implemented
  - e.g., next(a) = b + c is translated in this way:
  - multiple OBDDs are used to sum all bits of b and c
  - an OBDD *B* is created which is true iff all variables of next(a) are equal to such OBDDs
  - e.g., next(a) = case a < b: b + c; TRUE : a is
    translated in this way:</pre>
  - again we have B as before, plus an OBDD C which is true if a
     b
  - then, NuSMV computes the OBDD ITE(C, B, a)

- From a NuSMV model  $\mathcal{M}$  (defined with the ASSIGN section) to the corresponding Kriepke structure  $\mathcal{S} = (S, I, R, L)$ 
  - $V = \langle v_1, \dots, v_n \rangle$  is the set of variables defined inside the main module of  $\mathcal{M}$ , with domains  $\langle D_1, \dots, D_n \rangle$ 
    - note that each D<sub>i</sub> may be the instantiation of other modules
    - in which case, again, all variables must be considered as *unfolded*
    - that is, if a variable v is the instantiation of a module with k variables, then v counts as k variables instead of one
    - if one of such k variables is another instantiation, this procedure must be recursively repeated
    - NuSMV calls this operation hierarchy flattening
    - essentially, it is the same as for records in Murphi
    - simple types are the recursion base step



- $S = D_1 \times \ldots \times D_n$  (as in Murphi)
- I is defined by looking at init predicates
  - $s \in I$  iff, for all variables  $v \in V$ ,  $s(v) \in init(v)$ 
    - note that, by NuSMV syntax, each init(v) is actually a set (possibly a singleton)
  - if init(v) is not specified in  $\mathcal{M}$ , then any value for v is ok: in this case, formally, if  $s \in I$ , then also  $s' \in I$  being  $s'(v') = s(v') \forall v' \neq v$



#### From a NuSMV Description to KS

- R is defined by looking at next predicates
  - we assume all next predicates to be defined by the case construct (if not, simply assume it is the case construct with just one TRUE condition)
  - for each (flattened) variable v, we name  $g_1(v), \ldots g_{k_v}(v)$  the conditions (guards) of the case for next(v), and  $a_1(v), \ldots a_{k_v}(v)$  the resulting values (actions) of the case for next(v)
  - note that, by NuSMV syntax, each a<sub>i</sub>(v) is actually a set (possibly a singleton)
  - $(s, s') \in R$  iff, for all variables  $v \in V$ , if  $g_i(s(v)) \land \forall j < i \neg g_j(s(v))$  then  $s'(v) \in a_i(v)$
  - that is, s may go in s' iff, for all variables v, if the values of v in s satisfy the guard  $g_i$  (and none of the preceding guards for the same variable), then the value of v in s' is one of the values specified by the case for guard  $g_i$
  - note that, in doing this, you also have to resolve inputs for modules

- $AP = \{(v = d) \mid v = v_i \in V \land d \in D_i\}$
- $(v = d) \in L(s)$  iff variable v has value d in s
- $\bullet\,$  If, instead, the NuSMV model  ${\cal M}$  is defined with the TRANS section, then
  - $V = \langle v_1, \dots, v_n \rangle$  is the set of variables as above and  $S = D_1 \times \dots \times D_n$
  - I is defined by looking at INIT section
    - $s \in I$  iff, for all variables  $v \in V$  and for all INIT sections  $\mathcal{I}$ ,  $\mathcal{I}(s(v))$  holds
  - R is defined by looking at TRANS section
    - $(s, s') \in R$  iff, for all variables  $v \in V$  and TRANS sections T, T(s(v), s'(v)) holds



- In a nutshell: using f(x) has some drawbacks
  - you are forced to name a function (f in the example above)
  - it is not always clear if a letter is a parameter or an argument
  - it is not computationally clear what happens for multiple inputs
    - f(x, y): do you have to provide both x, y, otherwise you get an error?
    - as an alternative, you may provide just one argument, and obtain a new function
    - e.g. f(x, y) = x + y, we have that f(x, 4) is a function on x



- Instead of writing f(x) = E(x), for some expression E(x), we write λx.E(x)
  - if you want, you can name a function  $f(x) = \lambda x.E(x)$
- λ(x, y).x + y: both argument must be given, otherwise it is an error
- $\lambda x \lambda y.x + y$ : if you provide x = 4 only, you get a function  $\lambda y.4 + y$
- If an OBDD contains variables x<sub>1</sub>,..., x<sub>n</sub>, then it represent some function λx<sub>1</sub>...λx<sub>n</sub>. E(x<sub>1</sub>,..., x<sub>n</sub>)



## $\mu$ -calculus: Fixpoints

- In a nutshell: we have a set L with an ordering  $\leq$ 
  - $\leq$  could be partial, i.e., not defined on some pair  $(l_1, l_2) \in L \times L$
  - L, ≤ is a complete lattice if any subset A ⊆ L has a greatest lower bound and a least upper bound in L

• 
$$\sup A = \min\{\xi \in L \mid \forall \alpha \in A. \ \alpha \leq \xi\}$$

• inf 
$$A = \max\{\xi \in L \mid \forall \alpha \in A. \ \xi \leq \alpha\}$$



• Let  $I = \{0, \dots, 10\}$ , then  $2^I, \subseteq$  is a complete lattice

- e.g.,  $\{0,1,2\} \leq \{0,1,2,3\},$  whilst  $\{0,1,2\}, \{0,1,3\}$  cannot be compared
- sup{{0,1,2}, {0,1,3}} = min{ $\xi \in 2^{I} \mid \forall \alpha \in \{0,1,2\}, \{0,1,3\}.\alpha \subseteq \xi\}$  = min{{0,1,2,3},...,I} = {0,1,2,3}
- $\inf\{\{0,1,2\},\{0,1,3\}\} = \max\{\xi \in 2^{I} \mid \forall \alpha \in \{0,1,2\},\{0,1,3\}.\xi \subseteq \alpha\} = \max\{\{0,1\},\dots,\varnothing\} = \{0,1\}$
- $2^{I}, \subseteq$  is always a complete lattice, if I is a finite set

• sup 
$$J = \bigcup_{\xi \in J} \xi$$
, inf  $J = \bigcap_{\xi \in J} \xi$ 

• at the worst, sup J = I and inf  $J = \emptyset$ 



- Suppose you have a function T : L → L. An element ξ ∈ L is a fixpoint of T iff T(ξ) = ξ
- Given a *T*, there may be several fixpoints: we are interested in the maximum or the minimum of such fixpoints
  - notation  $\mu T$  and  $\nu T$
  - where typically  ${\cal T}$  is expressed with a  $\lambda$  notation
  - $\mu T \equiv x \text{ s.t. } T(\xi) = \xi \land \forall \rho \in L. T(\rho) = \rho \to \xi \le \rho$
  - $\nu T \equiv x \text{ s.t. } T(\xi) = \xi \land \forall \rho \in L. T(\rho) = \rho \rightarrow \rho \leq \xi$



Let T : 2<sup>I</sup> → 2<sup>I</sup> be defined as T(ξ) = ξ, or better T ≡ λξ.ξ
we have μT = Ø, νT = I
Let T ≡ λξ.Ø
we have μT = νT = Ø
Let T ≡ λξ. ξ ∪ {10}
we have μT = {10}, νT = I
Let T ≡ λξ. ξ \ {10}
we have νT = {0,...,9}, μT = Ø


- We define sets by their characteristic function, thus let us rewrite the previous examples
  - thus the  $\xi$  in  $\lambda\xi$  is a function  $\xi: I \to \{0, 1\}$
  - it represents a set X, thus  $\xi(x) = 1$  iff  $x \in X$
- $T \equiv \lambda \xi. \xi$  is ok also if  $\xi$  is a characteristic function
- $T \equiv \lambda \xi. \emptyset$  could be rewritten as  $T \equiv \lambda \xi. \lambda x. 0$

• 
$$T \equiv \lambda \xi. \xi \cup \{10\}$$
 could be rewritten as  
 $T \equiv \lambda \xi. \lambda x. [x = 10 \rightarrow 1] \land [x \neq 10 \rightarrow \xi(x)]$   
•  $\mu T \equiv \lambda x. x = 10, \nu T \equiv \lambda x. 1$ 

• 
$$T \equiv \lambda \xi. \xi \setminus \{10\}$$
 could be rewritten as  
 $T \equiv \lambda \xi. \lambda x. [x = 10 \rightarrow 0] \land [x \neq 10 \rightarrow \xi(x)]$   
•  $\nu T \equiv \lambda x. x \neq 10, \mu T \equiv \lambda x.0$ 



- We deal with monotonic (i.e., increasing or decreasing) *T*, thus fixpoints always exists
  - $\xi \leq \rho \rightarrow T(\xi) \leq T(\rho)$ , *T* monotonically increasing
  - $\xi \leq \rho \rightarrow T(\rho) \leq T(\xi)$ , T monotonically decreasing
- Previous examples are all monotonic
- By Knaster-Tarski theorem, μT = inf{ξ | T(ξ) ≤ ξ}
  analogously, νT = sup{ξ | T(ξ) > ξ}



## Computation of Fixpoints in CTL Model Checking

- Given a KS S = (S, I, R, L), we want to label states, i.e., to identify subsets of S
  - those for which a given labeling holds
  - labels are CTL/LTL subformulas
- Thus,  $L = 2^{S}$ ,  $\leq$  is  $\subseteq$  and  $T : 2^{S} \rightarrow 2^{S}$ 
  - in the following,  $x = x_1, \ldots, x_n$  with  $n = \lceil \log |S| \rceil$
  - characteristic functions of subsets of S
- For  $k \ge 1$ , let  $T^k(\xi) = T(T^{k-1}(\xi))$ , with  $T^1 = T$
- For least fixpoints, start with Ø, and apply T since T<sup>k</sup>(Ø) = T<sup>k−1</sup>(Ø)
- For greates fixpoints, start with S, and apply T since  $T^{k}(S) = T^{k-1}(S)$
- At most, k = |S|



## $\mu$ -calculus: Fixpoints

- The "really interesting" fixpoints are those which are recursively defined
  - typically, basing on some other already defined sets, i.e., characteristic functions
  - e.g.,  $T \equiv \lambda \xi . \lambda x. f(x) \lor \xi(x)$ , where  $f : S \to \{0, 1\}$  is known
  - thus, the compactly-written least and greatest fixpoints are  $\mu Q.\lambda x.f(x) \lor Q(x)$  and  $\nu Q.\lambda x.f(x) \lor Q(x)$

• e.g., 
$$T \equiv \lambda \xi . \lambda x . f(x) \wedge \xi(x)$$

• e.g., 
$$T \equiv \lambda \xi. \xi(x)$$

- Not immediately clear what they do, but by the Knaster-Tarski theorem and the previous reasoning, we may apply the following algorithms
  - least fixpoints  $\mu$  are computed for increasing  ${\cal T}$
  - greatest fixpoints u are computed for decreasing T
  - viceversa are trivial:  $\mu T$  is  $\lambda x.0$  for decreasing T and  $\nu T$  is  $\lambda x.1$  for increasing T

```
OBDD lfp(MuFormula T) /* \mu Z.T(Z) */
ſ
  Q = \lambda x. 0:
  Q' = T(Q);
  /* T clearly says where Q must be replaced */
  /* e.g.: if \mu Z. \lambda x. f(x) \vee Z(x), then
      Q' = \lambda x. f(x) \wedge Q(x) */
  while (Q \neq Q') {
    Q = Q';
    Q' = T(Q);
  }
  return Q; /* or Q', they are the same... */
}
```



```
OBDD gfp(NuFormula T) /* \nu Z.T(Z) */

{

Q = \lambda x.1;

Q' = T(Q);

while (Q \neq Q') {

Q = Q';

Q' = T(Q);

}

return Q;

}
```



- The idea is to compute the set of reachable states, and check if for all of them *p* holds
- Reach =  $\mu Z$ .  $\lambda x$ .  $[I(x) \lor \exists y : (Z(y) \land R(y, x))]$ 
  - of course, we get an OBDD on x as a result
  - recall that x (and y) is a vector of all boolean variables
- $\forall x \in S$ . Reach $(x) \rightarrow p(x)$ 
  - computationally easier: check that  $\operatorname{Reach}(x) \wedge \neg p(x) = 0$
  - otherwise, we have a reachable state for which *p* does not hold...



- All CTL formulas can be reduced to 3: EXf, f EU g, EGf
  - all other formulas may be reduced to these three, using negation and other boolean combinations
  - with OBDDs, we can do all such things!
- Given OBDDs for f (and g), we compute the OBDD representing **EX**f, f **EU** g, **EG**f

• that is, the OBDD for the set  $X = \{s \in S \mid S, s \models \mathsf{EX}f\}$  etc

• Let it be B: then, simply check  $\neg B(x) \wedge I(x) = 0$ 

• recall that  $\mathcal{S} \models \Phi$  iff  $\forall s \in I. \ \mathcal{S}, s \models \Phi$ 

 EXf does not require a fixpoint computation: it is equivalent to (the OBDD representing) λx. ∃y : R(x, y) ∧ f(y)



- For f EU g, recall that it is equivalent to the CTL formula g ∨ (f ∧ EX(f EU g))
- Thus,  $f \in U g = \mu Z$ .  $\lambda x. g(x) \lor (f(x) \land \in XZ(x)) = \mu Z$ .  $\lambda x. g(x) \lor (f(x) \land (\exists y : R(x, y) \land Z(y)))$ 
  - note that  $g(x) \lor (f(x) \land \mathsf{EX}Z(x))$  is increasing, i.e. for  $Z_1 \subseteq Z_2$  we have that  $(g(x) \lor (f(x) \land \mathsf{EX}Z_1(x)) \to (g(x) \lor (f(x) \land \mathsf{EX}Z_2(x)))$
- Analogously:  $\mathbf{EG}f = f \land \mathbf{EX}(\mathbf{EG}f)$ , thus  $\mathbf{EG}f = \nu Z. \ \lambda x. \ f(x) \land \mathbf{EX}Z(x) = \nu Z. \ \lambda x. \ f(x) \land (\exists y : R(x, y) \land Z(y))$ 
  - note that  $f(x) \wedge \mathbf{EX}Z(x)$  is decreasing, i.e. for  $Z_1 \subseteq Z_2$  we have that  $(f(x) \wedge \mathbf{EX}Z_2(x)) \rightarrow (f(x) \wedge \mathbf{EX}Z_1(x))$



## CTL Model Checking

```
bool checkCTL(KS S, CTL \varphi) {
   let \mathcal{S} = \langle S, I, R, L \rangle;
    B = \text{LblSt}(\varphi);
    return \lambda x. I(x) \wedge \neg B(x) = \lambda x. 0;
}
OBDD LblSt(CTL \varphi) { /* also S = \langle S, I, R, L \rangle */
  if (\exists p \in AP. \varphi = p) return \lambda x. p(x);
 else if (\varphi = \neg \phi) return \lambda x. \neg \texttt{LblSt}(\phi)(x);
  else if (\varphi = \phi_1 \land \phi_2)
   return \lambda x.LblSt(\phi_1)(x)\wedgeLblSt(\phi_2)(x);
 else if (\varphi = \mathbf{E} \mathbf{X} \phi)
   return \lambda x. \exists y : R(x, y) \land \texttt{LblSt}(\phi)(y);
  else if (\varphi = \mathbf{E}\mathbf{G}\phi)
    return gfp(\nu Z. \lambda x. LblSt(\phi)(x) \wedge (\exists y : R(x, y) \wedge Z(y)));
  else if (\varphi = \phi_1 \mathbf{EU} \phi_2)
   return lfp(\mu Z. \lambda x. \text{LblSt}(\phi_2)(x))
       (LblSt (\phi_1)(x) \land (\exists y : R(x, y) \land Z(y)));
}
```