
Software Testing and Validation
A.A. 2022/2023

Corso di Laurea in Informatica

Testing Preliminaries

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

From Formal Verification to Testing

Main analogies: both formal verification and testing are about
checking some properties of a system

easiest property: does the system output the correct answer for
a given input?
other properties: does it deadlock? does it run within given
deadlines?

Main difference: formal verification requires a formal model of
the system and a specification of the properties in some
temporal logic

in some cases, the model can be automatically built (e.g., for
hardware verification)

Testing requires the current version of the actual software

as for the property, no need that any temporal logic is used,
though it may help
a simulator may be used for some physical components

From Formal Verification to Testing

Thus, testing is typically applied late in the design process

you need actual software, which is typically developed after
architectural design and so on
at least for complex software projects

However, if the software design process is well organized,
testing may also be applied much early

e.g.: some components may be fully developed before others
as soon as they are developed, they may be tested
this is actually what it should be always done
the technique allowing this is called scaffolding

From Formal Verification to Testing

So, no models in testing? NO!

you may not have a model of the system itself, but models
however play an important role
in some cases, also a model of the system is available, why not
to use it?

Models in testing are typically used:

to generate inputs
to guide in generating inputs
to undestand if a testing phase is “adequate” or not

What about algorithms?

no “real” algorithms are used in testing
forget µ-calculus or nested DFS or so on
though, as we will see, some algorithms may be helpful,
exactly as for the models

From Model Checking...

... to Testing

Basic Notions on Testing

No need of complex algorithms as in model checking: simply
execute the system and see what happens

Does this mean testing is easy? Obviously, NO!

Main difficulties:

find a “good” subset of the possibly infinite inputs
which is the share of inputs you are using (coverage)?
running tests has a cost: consider project budget
integrate testing within software process
“execute the system”: not always straightforward (scaffolding)
“see what happens”: to be done automatically when possible
(oracles)
no general tool is available

Testing Timeline

Model Checking is only performed for mission- or
safety-critical systems with medium-high budget

Testing is always performed on any software
from cli-based computer-science-first-year projects to airport
management system

Let us consider complex projects: the following types of
testing can be performed

1 unit testing: test simple functions/classes first
2 integration testing: put some meaningful subsets of

functions/classes together and test them
3 system testing: test the whole system

last step of integration...

4 acceptance testing (validation): test the whole system with the
final users

5 regression testing: how to re-test the system when new
releases are issued

code (and possibly specifications) is modified

Testing Timeline

Testing Timeline

Some of these steps may be deleted

for cli-based computer-science-first-year projects, unit testing is
enough
for medium-size projects, integration testing and system
testing may coincide
for a personal software, validation is straightforward as
developers and final users coincide

Not necessarily in cascade

errors discovered in later steps typically cause earlier steps to
be re-run
sometimes not only re-running, but also devising new inputs
could be required

If errors are discovered, develpers have to fix them; then,
re-run testing

Testing Main Techniques

Two main overall methodologies:
functional testing: tester knows specs but not the code

also known as black-box testing

structural testing: tester exploits code knowledge

also known as white-box testing
includes data-flow testing

Orthogonal techniques:
combinatorial testing

given some values for single inputs, obtain a full input

model-based testing

extract inputs from models of software
special case: fault-based testing

test execution: not always straightforward

Applicable to all types of testing, from unit to acceptance

Basic Notions on Testing

Testing is not only for software: nearly all products must be
tested before being sold

i.e., stressed in a controlled environment

Typically, the testing phase is standardized for a given product

always repeated for some randomly chosen instance of the
product
e.g., take a smartphone from a selling pack and drop it from
10m

For products which are not built in series, testing must be
individual

race cars, houses, etc.

Of course, some guidelines may be available

e.g., testing of houses in a seismic environment

Basic Notions on Software Testing

Software is among the most difficult things to be checked

it is virtually always “customized”, thus each software needs its
own testing phase

There are guidelines, some of which will be covered in this
course

Some difficulties:

only errors presence can be proved
cost

it is easy to make some simple tests
it may be enough for very-non-critical software
for most software, a tradeoff is needed between testing cost
and software criticality

Basic Notions on Software Testing

Some difficulties (continued):
non-linearity

if you successfully test an elevator to be able to carry 1000 kg,
then it will be ok with 900 kg or less
if you successfully test a sorting procedure with 1000
elements, it may fail with 2 elements
if you make a small modification to a pair of glasses, you do
not need to run full design test from scratch
if you make a small modification to a software (e.g., a security
update), it may cause some failure in other previously tested
parts of the software

Six Principles for Testing (and Verification)

Sensitivity

problem: many errors may not be “observable”
e.g., a buffer overflow in C/C++ may or may not cause a
failure in the running process
sensitivity asks that errors or faults in the software always
result in observable failures
especially hits in code design/implementation: add assertions
or similar code fragments

or use languages with dynamic checks such that Java, Python
or Rust

as for verification, model checking is actually more suited for
sensitivity

Six Principles for Testing (and Verification)

Redundancy

in a broad sense: having some behavior that depend on
something other
you declare an ‘intent”, so we can test if the intent is fulfilled
typed languages are a type of redundancy by intent

e.g., you declare something to be integer and you can raise an
error if instead there is a float

as for actual testing: check if an implementation is ok w.r.t.
its specification is actually a type of redundancy
specifications should be written so as to ease automatic testing
or manual inspection

Six Principles for Testing (and Verification)

Restriction

your desired property is too difficult to attain?
restrict it, i.e., try with something easier

but however meaningful

or divide the problem (see serialization example at page 35)
again, it is mainly for software design than testing

Six Principles for Testing (and Verification)

Partition

divide and conquer (divide et impera)
decompose the problem to be tested
the very fact that many different testing techniques exists, and
may be employed on the same software, it is a matter of
partition

unit testing, functional testing, structural testing...

also making a model of the system is a partitioning technique

from “does this software satisfy my property?”...
to “does this model satisfy my property?” and “does this
model faithfully represent the software?”

Six Principles for Testing (and Verification)

Visibility

very similar to observability
again, mainly a design issue to ease testing
Typical example: base program information on textual files
rather than binary files

low performance degradation, but much better readability and
capability of testing

e.g., HTTP exchange information as text
e.g., Unix-based OSs use text files for configuration

Six Principles for Testing (and Verification)

Feedback

learn to build better testing phase from previous testing phase

Software Process

Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

software process contains: requirement analysis and
specification, software design, implementation, validation and
verification
organized in many ways

Testing (and verification in general) cannot be simply done at
the end

Software Process

Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

software process contains: requirement analysis and
specification, software design, implementation, validation and
verification
organized in many ways

Testing (and verification in general) cannot be simply done at
the end

Software Process

Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

software process contains: requirement analysis and
specification, software design, implementation, validation and
verification
organized in many ways

Testing (and verification in general) cannot be simply done at
the end

Software Process

Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

software process contains: requirement analysis and
specification, software design, implementation, validation and
verification
organized in many ways

Testing (and verification in general) cannot be simply done at
the end

Software Process: Testing

Completeness important class of faults are suitably targeted

“important” depends on what you are building
e.g., if C/C++ is used, beware of memory leaks

Timeliness discover errors as soon as possible

error in coding revealed at unit testing OK
error in coding revealed at system integration
BAD
error in coding discovered by final user VERY
BAD
error in the system specifications discovered in
system acceptance test CATASTROPHE

Cost effectiveness achieve completeness and timeliness within
budget

on the whole process: do not repeat heavy tasks
because of errors

Software Quality Through Testing

Process visibility: progress must be easily detectable

This entails that quality goals must be clearly stated and
refined

Goals are measured on software product qualities, which may
be:

internal: only visible to the software developers and designers

e.g.: maintainability, reusability, traceability

external: also visible to final users

e.g.: throughput, latency, usability
summing up, either dependability or usefulness goals
dependability: does it have (functional) faults?
usefulness: provided it is dependable, does it have other
(typically non-functional) faults?
e.g.: bad user interface, software is too slow, etc

Software Dependability

Simplest dependability property: correctness
all behaviors of the software are as specified

Reliability: statistical approximation of correctness
if not all behaviors are ok, then at least, e.g., 90% of them are
often specified w.r.t. a particular usage profile
the same program can be more or less reliable depending on
how it is used
a possible formal definition: percentage of successful

operations in a given period 100|S|
|S|+|F |

S is the set of all operations which succeed in the given period

Robustness: correct and reliable only within some defined
operational limits

if there is a failure only because of a 100x load, the system is
however robust

Safety: nothing bad occurs
of course, must be defined w.r.t. some property
e.g.: there is never more than one process in the critical section

Software Reliability: Other Possibile Definitions

Availability: reliability when failures duration is important

may be defined as 100 u
u+d

u: software is up and accepting requests
d : software is down and not accepting requests
typically, u + d = 1 day, or 1 week

MTBF: Mean Time Between Failures

may be defined as 1
|F |

∑
f∈F |f |

F is the set of all failures in the given period (1 day, 1 week...)
for a failure f ∈ F , |f | is the duration, i.e., time required for
fixing f
more detailed than availability: e.g., it distinguishes from 30
failures of 1 minute and 1 failure of 30 minutes

Software Dependability

