Software Testing and Validation A.A. 2023/2024 Corso di Laurea in Informatica

CTL and LTL Model Checking Algorithms

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

- Model Checking problem:
 - input: a KS $\mathcal{S} = \langle S, I, R, L \rangle$ and a formula φ
 - output: true iff $S \models \varphi$, $\langle \text{false}, c \rangle$ otherwise, being c a counterexample
- Depending on φ being LTL or CTL, different algorithms must be provided
- We will first show the "theoretical" algorithm for CTL
 - classical approach: both S and R fit into RAM
- Then, we will see how they can be efficiently implemented
 - LTL: SPIN and NuSMV
 - CTL: NuSMV

CTL Theoretic Algorithm

- CTL is based on state formulas, i.e., φ holds depending on the state we are considering
 - this also holds for subformulas of φ , e.g., **AFAG***p* has one subformula **AG***p*
- Since we have the full state space S, we label all states s ∈ S with (sub)formulas holding in s
 - not only the reachable states: all of them
- Then, we use subformulas labeling to decide higher formulas labelling
- Thus, we compute $\lambda:S \to 2^{\mathrm{CTL}}$, being CTL the set of all CTL formulas
- At the end, $\mathcal{S} \models \varphi$ iff $\forall s \in I. \ \varphi \in \lambda(s)$

- ${\, {\rm o} \,}$ Consider the abstract syntax tree of $\varphi,$ call it ϕ
- Start from the leaves in φ, which must be an atomic proposition p or true

•
$$\forall s \in S. \ p \in \lambda(s) \Leftrightarrow p \in L(s)$$

•
$$\forall s \in S$$
. true $\in \lambda(s)$

• Then go upwards in ϕ , using, for each node, the labeling of the sons

•
$$\forall s \in S$$
. $\neg \Phi \in \lambda(s) \Leftrightarrow \Phi \notin \lambda(s)$

- $\forall s \in S. \ \Phi_1 \land \Phi_2 \in \lambda(s) \Leftrightarrow (\Phi_1 \in \lambda(s) \land \Phi_2 \in \lambda(s))$
- $\forall s \in S. \ \mathsf{EX}\Phi \in \lambda(s) \Leftrightarrow (\exists s' : (s,s') \in R \land \Phi \in \lambda(s'))$

CTL Theoretic Algorithm: $\Phi_1 \mathbf{EU} \Phi_2 \in \lambda(s)$

- We already have $\lambda^{-1}(\{\Phi_1\})$ and $\lambda^{-1}(\{\Phi_2\})$
- All states satisfying Φ_2 are ok, let T be the set of such states
- Then, backward visit of the state space of S, starting from T
- The backward visit stops when Φ_1 does not hold
- Complexity is O(|S| + |R|)

CTL Theoretic Algorithm: $\Phi_1 \mathbf{EU} \Phi_2 \in \lambda(s)$

```
labels CheckEU(KS S, formula \Phi_1 \mathbf{EU} \Phi_2, labels \lambda)
{
    let \mathcal{S} = \langle S, I, R, L \rangle;
    T = \{s \in S \mid \Phi_2 \in \lambda(s)\};
    foreach s \in T
        \lambda(s) = \lambda(s) \cup \{\Phi_1 \mathbf{E} \mathbf{U} \Phi_2\};
    while (T \neq \emptyset) {
        let s be s.t. s \in T;
        T = T \setminus \{s\};
        for each t \in \{t \mid (t,s) \in R\} {
             if \Phi_1 \mathbf{EU} \Phi_2 \not\in \lambda(t) \land \Phi_1 \in \lambda(t) {
                 /* \Phi_1 \mathbf{EU} \Phi_2 \not\in \lambda(t): visited states check */
                \lambda(t) = \lambda(t) \cup \{\Phi_1 \mathbf{E} \mathbf{U} \Phi_2\};
                T = T \cup \{t\};
            1 1 1
    return \lambda;
}
```

CTL Theoretic Algorithm: **EG** $\Phi \in \lambda(s)$

- We already have $\lambda^{-1}(\{\Phi\})$: this defines a subKS \mathcal{S}' of \mathcal{S}
 - $\lambda^{-1}(\{\Phi\})$ contains all states in which Φ holds
- Then, compute the *non-trivial* strongly connected components (SCCs) of \mathcal{S}'
 - $\bullet\,$ inside such components, Φ holds on all states on all paths
 - however, if we think back to S, on all states on some paths
 - non-trivial: more than one state, otherwise...
- Finally, label with $\mathbf{EG}\Phi$ all s in such SCCs, plus all backward reachable $t \in S'$

 $\bullet\,$ so we move on states for which Φ holds...

• Complexity is again O(|S| + |R|)

CTL Theoretic Algorithm: **EG** $\Phi \in \lambda(s)$

}

```
labels CheckEG(KS \mathcal{S}, formula \mathbf{EG} \Phi, labels \lambda) {
```

let
$$S = \langle S, I, R, L \rangle$$
;
 $S' = \{s \in S \mid \Phi \in \lambda(s)\}; R' = \{(s, t) \in R \mid s, t \in S'\};$
 $\mathcal{A} = SCC(S', R'); T = \bigcup_{A \in \mathcal{A} s.t. \mid A \mid > 1} A;$
foreach $s \in T$, $\lambda(s) = \lambda(s) \cup \{EG\Phi\};$
while $(T \neq \emptyset)$ {
let s be $s.t. s \in T;$
 $T = T \setminus \{s\};$
foreach $t \in \{t \mid (t, s) \in R'\}$ {
if $EG\Phi \notin \lambda(t) \{ /* since(t, s) \in R', \Phi \in \lambda(t) */\lambda(t) = \lambda(t) \cup \{EG\Phi\};$
 $T = T \cup \{t\};$
 $\}$ }
return λ ;

CTL Theoretic Algorithm: Complexity

• Complexity is:

- O(|S|) for boolean combinations and atomic propositions
- O(|S|) also for **EX** Φ
- O(|S| + |R|) for **EG** Φ and Φ_1 **EU** Φ_2
- Since this must be done for every subformula of φ, the overall complexity is O((|S| + |R|)|φ|)

 $\bullet \ |\varphi|$ is the number of nodes of the abstract syntax tree of φ

- Linear in the size of the input, if one of the two is fixed... is this as good as it seems?
- Alas no: state space explosion hits exactly in |S| and |R|
 - $\bullet ~|\varphi|$ is typically low for real-world properties to be verified

900

CTL Theoretic Algorithm: **EG** $\Phi \in \lambda(s)$

```
labels CheckEG(KS \mathcal{S}, formula EG\Phi, labels \lambda) {
```

let
$$S = \langle S, I, R, L \rangle$$
;
 $S' = \{s \in S \mid \Phi \in \lambda(s)\}$; $R' = \{(s, t) \in R \mid s, t \in S'\}$;
 $\mathcal{A} = \operatorname{SCC}(S', R')$; $T = \bigcup_{A \in \mathcal{A}} A$;
foreach $s \in T$, $\lambda(s) = \lambda(s) \cup \{ EG\Phi \}$;
while $(T \neq \emptyset)$ {
let s be $s.t. s \in T$;
 $T = T \setminus \{s\}$;
foreach $t \in \{t \mid (t, s) \in R'\}$ {
if $EG\Phi \notin \lambda(t) \in \{LG\Phi\}$;
 $T = T \cup \{t\}$;
 $\} /* if */ \} /* foreach */ \} /* while */$
return λ ;

$$\begin{split} \varphi &= \operatorname{true} \operatorname{\mathsf{EU}}(\neg(\operatorname{\mathsf{EG}}\neg p)) \\ \text{Finally, call CheckEU}(\mathcal{S}, \\ \operatorname{true} &\operatorname{\mathsf{EU}}(\neg(\operatorname{\mathsf{EG}}\neg p), \operatorname{labels} \\ \lambda) \end{split}$$

T = S, as all states are labelled with true **EU**(\neg (**EG** \neg *p*) Thus, all states must be labelled with φ

CTL Theoretic Algorithm: $\Phi_1 \mathbf{EU} \Phi_2 \in \lambda(s)$

```
labels CheckEU(KS S, formula \Phi_1 \mathbf{EU} \Phi_2, labels \lambda)
ſ
    let \mathcal{S} = \langle S, I, R, L \rangle;
    T = \{s \in S \mid \Phi_2 \in \lambda(s)\};
    foreach s \in T
        \lambda(s) = \lambda(s) \cup \{\Phi_1 \mathbf{E} \mathbf{U} \Phi_2\};
    while (T \neq \emptyset) {
        let s be s.t. s \in T;
        T = T \setminus \{s\};
        foreach t \in \{t \mid (t, s) \in R\} {
             if \Phi_1 \mathbf{EU} \Phi_2 \not\in \lambda(t) \land \Phi_1 \in \lambda(t) {
                \lambda(s) = \lambda(s) \cup \{\Phi_1 \mathbf{E} \mathbf{U} \Phi_2\};
                T = T \cup \{t\};
            } } }
    return \lambda;
}
```


LTL Model Checking Algorithm

- Many LTL algorithms exist, we will directly see the most efficient one
- Surprising fact: not only LTL is not included inside CTL, it is also more difficult to check!
- Namely, whilst CTL model checking is in P, LTL model checking is PSPACE-complete

 ${\, \bullet \,}$ no, PSPACE is not "good" as P is: NP \subseteq PSPACE

- Efficient algorithms for LTL run in $O((|S| + |R|)2^{|\varphi|})$
- In practice, this is not much worse than CTL model checking
 - the real problem is O(|S| + |R|)
 - φ is usually small, it is difficult to come up with lengthy formulas

- The idea is simple: first translate φ into a special automaton *A*(φ)
- Then, visit both S and A(φ), one step at a time
 equivalent to verify to Cartesian product S × A(φ)
- If some special node is found, we have a counterexample for arphi
- Otherwise, $\mathcal{S} \models \varphi$
- Such algorithm may be implemented on-the-fly, thus instead of a KS we have an NFSS
 - no need to have S and R in memory before starting

Büchi Automaton

- A (non-deterministic) Büchi Automaton (BA) is a 5-tuple $\mathcal{A} = \langle \Sigma, Q, \delta, Q_0, F \rangle$ where:
 - Σ is the *alphabet*, i.e., a finite set of symbols
 - Q is the finite set of states
 - $\delta \subseteq Q \times \Sigma \times Q$ is the transition relation
 - $Q_0 \subseteq Q$ are the initial states
 - $F \subseteq Q$ are the final states
- With respect to a KS, we also have final states and edges are labeled with symbols from an alphabet
 - the labeling L is also missing in BAs
 - however, we will see that AP is linked to Σ

- BAs are not different from well-known automata in computational theory
 - finite state automata (FSA) are essentially equal in the definition
- The difference is in the language they accept
 - FSA: a word *w* is recognized if, by walking inside the FSA through symbols in *w*, a final state is reached
 - this implies that $|w| < \infty$
 - the set of all recognized w may be infinite, but each w is finite
- A BA recognize a(n infinite) language of *infinite* words
 - each word w has an infinite number of symbols

Language Accepted by Büchi Automata

- Let $w = w_0 w_1 \dots$ be an infinite string s.t. $\forall i. w_i \in \Sigma$
 - $w \in \Sigma^{\omega}$
- The BA A accepts w iff there exists a path π = q₀w₀q₁w₁... s.t.
 - $\forall i. q_i \in Q \land w_i \in w \land (q_i, w_i, q_{i+1}) \in \delta$
 - $q_0 \in Q_0$

• if
$$I = \{i \mid q_i \in F\}$$
, then $|I| = \infty$

- otherwise stated: π goes through a final state *infinitely often* (or *almost always*)
- this is where the definition differs from FSAs, where π is finite and its final state must be in ${\it F}$
- $\mathcal{L}(\mathcal{A})$ is the set of infinite words recognized by \mathcal{A}
- Languages recognized by a BA are called ω -regular
 - recall that FSA recognize regular languages

Büchi Automata Examples

- Final states are those with thicker boundaries, initial states are pointed to by an arrow
- This recognizes the language b^*a^ω
- Note that a* is a language (infinite set of finite words) containing ε, a, aa, aaa, ...
- Note that a^{ω} is a single infinite word *aaaaaaa*....
- Thus, $b^*a^\omega = \{a^\omega, ba^\omega, bba^\omega, \ldots\}$
- That is: a finite number of b's, followed by infinite a's

Büchi Automata Examples

- This recognizes the language $(a + b)^* b^\omega$
- That is, $(a + b)^* b^\omega = \{b^\omega, ab^\omega, abab^\omega, abbabbbab^\omega, \ldots\}$
- That is: any finite sequence of a and b, followed by infinite b's
- Cannot be recognized by a deterministic BA!
 - instead, deterministic FSAs recognize the same languages of non-deterministic FSAs

Büchi Automata and LTL Properties

- Also LTL properties are related to infinite words
 - recall that a model σ is an infinite sequence of truth assignments to all $p \in AP$
 - by adapting LTL semantics about $\pi \models \varphi$, we can define whether $\sigma \models \varphi$
 - we replace a path state π(i) with the set P_i ⊆ AP s.t.
 P_i = {p ∈ AP | p ∈ L(π(i))}
- Thus, an LTL property recognizes a language $\mathcal{L}(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$

 ${\scriptstyle \bullet }$ sometimes, we use φ and ${\it P}={\cal L}(\varphi)$ interchangeably

- Furthermore, the "infinitely often" part recalls the LTL formula **GF***p*
- Also the "eventually forever" FGp is important

- Let φ be an LTL formula, and let L(φ) be the set of models of φ. Then, there exists a BA A_φ s.t. L(A_φ) = L(φ)
 - it is easy to show that the vice versa does not hold
- We skip the proof, but:
 - of course, we have $\Sigma = 2^{AP}$
 - the size of \mathcal{A}_{φ} , i.e., the number of states, is $2^{O(|\varphi|)}$
 - since we typically verify small properties, this is ok
- There exist tools performing such translation
 - inside SPIN model checker, using option -f

Büchi Automata Examples

Büchi automaton for **FG***p*:

Büchi automaton for **GF***p*:

LTL Model Checking: Automata-Theoretic Solution

- Given \mathcal{S}, φ decide if $\mathcal{S} \models \varphi$
- Consider S as a BA where F = S
- Then, $\mathcal{S}\models arphi\equiv\mathcal{L}(\mathcal{S})\subseteq\mathcal{L}(arphi)$
- Furthermore, $\equiv \mathcal{L}(\mathcal{S}) \cap \mathcal{L}(\neg \varphi) = arnothing$

• Finally,
$$\equiv \mathcal{L}(\mathcal{S} imes \mathcal{A}(\neg arphi)) = arnothing$$

- The last step is the one which is actually computed
- Complexity is $O(|\mathcal{S}| \cdot |\mathcal{A}(\neg \varphi)|) = O(|\mathcal{S}| \cdot 2^{|\varphi|})$

On-the-Fly LTL Model Checking for $\mathcal{L}(\mathcal{S} imes \mathcal{A}(eg arphi)) = arnothing$

- The graph to be visited is defined as G = (V, E) where:
 - $V = S \times Q$
 - thus, each state is a pair with a state from ${\mathcal S}$ and a state from ${\mathcal A}(\neg\varphi)$
 - $((s,q),(s',q')) \in E$ iff $(s,s') \in R$ and $\exists p \in L(s') : \delta(q,p,q')$ • thus, $\Sigma = AP$
- On such G, we must find acceptance cycles
 - an acceptance state is (s,q) s.t. $q \in F$
 - we have an *acceptance cycle* if (*s*, *q*) is an acceptance state and it is reachable from itself
- If an acceptance cycle is found, we have a counterexample and $\mathcal{S} \not\models \varphi$
- If the visit of G terminates without finding one $\mathcal{S} \models \varphi$

- No need for S, Q, R, δ to be in RAM from the beginning
 - similar to Murphi: we have a next function directly derived from the input model
 - ${\scriptstyle \bullet }$ also ${\cal A}(\varphi)$ is described by a suitable language
- Depth-First Visit, easily and efficiently adaptable for finding acceptance cycles
- Namely, *Nested* Depth-First Visit: one for exploring $\mathcal{S} \times \mathcal{A}(\varphi)$, the other to detect cycles
 - the two searches are interleaved
- If an acceptance cycle is found, the DFS stack contains the counterexample

Nested DFS for LTL Model Checking

DFS(KS_BA
$$SA$$
, state (s,q) , bool n, state a) {
let $SA = \langle S_A, I_A, R_A, L_A \rangle$;
foreach $(s',q') \in S_A$ s.t. $((s,q), (s',q')) \in R_A$ {
if $(n \land (s,q) == a)$
exit reporting error;
if $((s',q',n) \notin T)$ {
 $T = T \cup \{(s',q',n)\}$;
DFS(SA , (s',q') , n, a);
if $(\neg n \land (s',q')$ is accepting) {
DFS(SA , (s',q') , true, (s',q'));
} } }
LTLMC(KS S , LTL φ) {
 $A = BA_from_LTL(\varphi)$; $T = \emptyset$;
let $S = \langle S, I, R, L \rangle$, $A = \langle \Sigma, Q, \delta, Q_0, F \rangle$;
foreach $s \in I, q \in Q_0$
DFS($S \times A$, (s,q) , false, null);
}

DISIM Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica