
Software Testing and Validation
A.A. 2023/2024

Corso di Laurea in Informatica

CTL and LTL Model Checking Algorithms

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Theoretic vs. Practical Algorithms

Model Checking problem:

input: a KS S = ⟨S , I ,R, L⟩ and a formula φ
output: true iff S |= φ, ⟨false, c⟩ otherwise, being c a
counterexample

Depending on φ being LTL or CTL, different algorithms must
be provided

We will first show the “theoretical” algorithm for CTL

classical approach: both S and R fit into RAM

Then, we will see how they can be efficiently implemented

LTL: SPIN and NuSMV
CTL: NuSMV

CTL Theoretic Algorithm

CTL is based on state formulas, i.e., φ holds depending on the
state we are considering

this also holds for subformulas of φ, e.g., AFAGp has one
subformula AGp

Since we have the full state space S , we label all states s ∈ S
with (sub)formulas holding in s

not only the reachable states: all of them

Then, we use subformulas labeling to decide higher formulas
labelling

Thus, we compute λ : S → 2CTL, being CTL the set of all
CTL formulas

At the end, S |= φ iff ∀s ∈ I . φ ∈ λ(s)

CTL Theoretic Algorithm

Consider the abstract syntax tree of φ, call it ϕ

Start from the leaves in ϕ, which must be an atomic
proposition p or true

∀s ∈ S . p ∈ λ(s) ⇔ p ∈ L(s)
∀s ∈ S . true ∈ λ(s)

Then go upwards in ϕ, using, for each node, the labeling of
the sons

∀s ∈ S . ¬Φ ∈ λ(s) ⇔ Φ ̸∈ λ(s)
∀s ∈ S . Φ1 ∧ Φ2 ∈ λ(s) ⇔ (Φ1 ∈ λ(s) ∧ Φ2 ∈ λ(s))
∀s ∈ S . EXΦ ∈ λ(s) ⇔ (∃s ′ : (s, s ′) ∈ R ∧ Φ ∈ λ(s ′))

CTL Theoretic Algorithm: Φ1EUΦ2 ∈ λ(s)

We already have λ−1({Φ1}) and λ−1({Φ2})
All states satisfying Φ2 are ok, let T be the set of such states

Then, backward visit of the state space of S, starting from T

The backward visit stops when Φ1 does not hold

Complexity is O(|S |+ |R|)

CTL Theoretic Algorithm: Φ1EUΦ2 ∈ λ(s)

labels CheckEU(KS S, formula Φ1EUΦ2, labels λ)
{

let S = ⟨S , I ,R, L⟩;
T = {s ∈ S | Φ2 ∈ λ(s)};
foreach s ∈ T

λ(s) = λ(s) ∪ {Φ1EUΦ2};
while (T ̸= ∅) {

let s be s.t. s ∈ T ;

T = T \ {s};
foreach t ∈ {t | (t, s) ∈ R} {

i f Φ1EUΦ2 ̸∈ λ(t) ∧ Φ1 ∈ λ(t) {

/* Φ1EUΦ2 ̸∈ λ(t): visited states check */

λ(t) = λ(t) ∪ {Φ1EUΦ2};
T = T ∪ {t};

} } }

return λ;
}

CTL Theoretic Algorithm: EGΦ ∈ λ(s)

We already have λ−1({Φ}): this defines a subKS S ′ of S
λ−1({Φ}) contains all states in which Φ holds

Then, compute the non-trivial strongly connected components
(SCCs) of S ′

inside such components, Φ holds on all states on all paths
however, if we think back to S , on all states on some paths
non-trivial: more than one state, otherwise...

Finally, label with EGΦ all s in such SCCs, plus all backward
reachable t ∈ S ′

so we move on states for which Φ holds...

Complexity is again O(|S |+ |R|)

CTL Theoretic Algorithm: EGΦ ∈ λ(s)

labels CheckEG(KS S, formula EGΦ, labels λ)
{

let S = ⟨S , I ,R, L⟩;
S ′ = {s ∈ S | Φ ∈ λ(s)}; R ′ = {(s, t) ∈ R | s, t ∈ S ′};
A = SCC(S ′,R ′); T = ∪A∈A s.t. |A|>1A;
foreach s ∈ T , λ(s) = λ(s) ∪ {EGΦ};
while (T ̸= ∅) {

let s be s.t. s ∈ T ;

T = T \ {s};
foreach t ∈ {t | (t, s) ∈ R ′} {

i f EGΦ ̸∈ λ(t) { /* since (t, s) ∈ R ′, Φ ∈ λ(t) */

λ(t) = λ(t) ∪ {EGΦ};
T = T ∪ {t};

} } }

return λ;
}

CTL Theoretic Algorithm: Complexity

Complexity is:

O(|S |) for boolean combinations and atomic propositions
O(|S |) also for EXΦ
O(|S |+ |R|) for EGΦ and Φ1 EU Φ2

Since this must be done for every subformula of φ, the overall
complexity is O((|S |+ |R|)|φ|)

|φ| is the number of nodes of the abstract syntax tree of φ

Linear in the size of the input, if one of the two is fixed... is
this as good as it seems?

Alas no: state space explosion hits exactly in |S | and |R|
|φ| is typically low for real-world properties to be verified

CTL Model Checking Algorithm Running Example

φ = EFAFp =
true EU(¬(EG¬p))
Leaves of φ AST are true and
p, thus:
∀i ∈ {0, 2, 4}. λ(si) =
{true, p}
∀i ∈ {1, 3, 5, 6}. λ(si) =
{true},

CTL Model Checking Algorithm Running Example

φ = true EU(¬(EG¬p))
Going up one level:
∀i ∈ {0, 2, 4}. λ(si) =
{true, p}
∀i ∈ {1, 3, 5, 6}. λ(si) =
{true,¬p},
Going up two levels:
CheckEG(S, EG¬p, λ)

CTL Theoretic Algorithm: EGΦ ∈ λ(s)

labels CheckEG(KS S, formula EGΦ, labels λ)
{

let S = ⟨S , I ,R, L⟩;
S ′ = {s ∈ S | Φ ∈ λ(s)}; R ′ = {(s, t) ∈ R | s, t ∈ S ′};
A = SCC(S ′,R ′); T = ∪A∈AA;
foreach s ∈ T , λ(s) = λ(s) ∪ {EGΦ};
while (T ̸= ∅) {

let s be s.t. s ∈ T ;

T = T \ {s};
foreach t ∈ {t | (t, s) ∈ R ′} {

i f EGΦ ̸∈ λ(t) {

λ(t) = λ(t) ∪ {EGΦ};
T = T ∪ {t};

} /* if */ } /* foreach */ } /* while */

return λ;
}

CTL Model Checking Algorithm Running Example

φ = true EU(¬(EG¬p))
CheckEG(S, EG¬p, λ)
S ′ = {s1, s3, s5, s6}
There are no non-trivial SCC on
S ′

Thus T = ∅ and λ does not
change

CTL Model Checking Algorithm Running Example

φ = true EU(¬(EG¬p))
∀i ∈ {0, 2, 4}. λ(si) =
{true, p}
∀i ∈ {1, 3, 5, 6}. λ(si) =
{true,¬p},
Going up one more level:
∀i ∈ {0, 2, 4}. λ(si) =
{true, p,¬(EG¬p)}
∀i ∈ {1, 3, 5, 6}. λ(si) =
{true,¬p,¬(EG¬p)}

CTL Model Checking Algorithm Running Example

φ = true EU(¬(EG¬p))
Finally, call CheckEU(S,
true EU(¬(EG¬p), labels

λ)
T = S , as all states are labelled
with true EU(¬(EG¬p)
Thus, all states must be la-
belled with φ

CTL Theoretic Algorithm: Φ1EUΦ2 ∈ λ(s)

labels CheckEU(KS S, formula Φ1EUΦ2, labels λ)
{

let S = ⟨S , I ,R, L⟩;
T = {s ∈ S | Φ2 ∈ λ(s)};
foreach s ∈ T

λ(s) = λ(s) ∪ {Φ1EUΦ2};
while (T ̸= ∅) {

let s be s.t. s ∈ T ;

T = T \ {s};
foreach t ∈ {t | (t, s) ∈ R} {

i f Φ1EUΦ2 ̸∈ λ(t) ∧ Φ1 ∈ λ(t) {

λ(s) = λ(s) ∪ {Φ1EUΦ2};
T = T ∪ {t};

} } }

return λ;
}

CTL Model Checking Algorithm Running Example

φ = true EU(¬(EG¬p))
∀i ∈ {0, 2, 4}. λ(si) =
{true, p,¬(EG¬p), φ}
∀i ∈ {1, 3, 5, 6}. λ(si) =
{true,¬p,¬(EG¬p), φ}
Since φ ∈ λ(s0), we have that
S |= φ

LTL Model Checking Algorithm

Many LTL algorithms exist, we will directly see the most
efficient one

Surprising fact: not only LTL is not included inside CTL, it is
also more difficult to check!

Namely, whilst CTL model checking is in P, LTL model
checking is PSPACE-complete

no, PSPACE is not “good” as P is: NP ⊆ PSPACE

Efficient algorithms for LTL run in O((|S |+ |R|)2|φ|)
In practice, this is not much worse than CTL model checking

the real problem is O(|S |+ |R|)
φ is usually small, it is difficult to come up with lengthy
formulas

LTL Model Checking Algorithm

The idea is simple: first translate φ into a special automaton
A(φ)

Then, visit both S and A(φ), one step at a time

equivalent to verify to Cartesian product S ×A(φ)

If some special node is found, we have a counterexample for φ

Otherwise, S |= φ

Such algorithm may be implemented on-the-fly, thus instead
of a KS we have an NFSS

no need to have S and R in memory before starting

Büchi Automaton

A (non-deterministic) Büchi Automaton (BA) is a 5-tuple
A = ⟨Σ,Q, δ,Q0,F ⟩ where:

Σ is the alphabet, i.e., a finite set of symbols
Q is the finite set of states
δ ⊆ Q × Σ× Q is the transition relation
Q0 ⊆ Q are the initial states
F ⊆ Q are the final states

With respect to a KS, we also have final states and edges are
labeled with symbols from an alphabet

the labeling L is also missing in BAs
however, we will see that AP is linked to Σ

Büchi Automaton

BAs are not different from well-known automata in
computational theory

finite state automata (FSA) are essentially equal in the
definition

The difference is in the language they accept

FSA: a word w is recognized if, by walking inside the FSA
through symbols in w , a final state is reached
this implies that |w | < ∞
the set of all recognized w may be infinite, but each w is finite

A BA recognize a(n infinite) language of infinite words

each word w has an infinite number of symbols

Language Accepted by Büchi Automata

Let w = w0w1 . . . be an infinite string s.t. ∀i . wi ∈ Σ

w ∈ Σω

The BA A accepts w iff there exists a path π = q0w0q1w1 . . .
s.t.

∀i . qi ∈ Q ∧ wi ∈ w ∧ (qi ,wi , qi+1) ∈ δ
q0 ∈ Q0

if I = {i | qi ∈ F}, then |I | = ∞
otherwise stated: π goes through a final state infinitely often
(or almost always)
this is where the definition differs from FSAs, where π is finite
and its final state must be in F

L(A) is the set of infinite words recognized by A
Languages recognized by a BA are called ω-regular

recall that FSA recognize regular languages

Büchi Automata Examples

Final states are those with thicker boundaries, initial states are
pointed to by an arrow

This recognizes the language b∗aω

Note that a∗ is a language (infinite set of finite words)
containing ε, a, aa, aaa, . . .

Note that aω is a single infinite word aaaaaaa . . .

Thus, b∗aω = {aω, baω, bbaω, . . .}
That is: a finite number of b’s, followed by infinite a’s

Büchi Automata Examples

This recognizes the language (a+ b)∗bω

That is, (a+ b)∗bω = {bω, abω, ababω, abbabbbabω, . . .}
That is: any finite sequence of a and b, followed by infinite b’s

Cannot be recognized by a deterministic BA!

instead, deterministic FSAs recognize the same languages of
non-deterministic FSAs

Büchi Automata and LTL Properties

Also LTL properties are related to infinite words

recall that a model σ is an infinite sequence of truth
assignments to all p ∈ AP
by adapting LTL semantics about π |= φ, we can define
whether σ |= φ

we replace a path state π(i) with the set Pi ⊆ AP s.t.
Pi = {p ∈ AP | p ∈ L(π(i))}

Thus, an LTL property recognizes a language
L(φ) = {σ ∈ (2AP)ω | σ |= φ}

sometimes, we use φ and P = L(φ) interchangeably
Furthermore, the “infinitely often” part recalls the LTL
formula GFp

Also the “eventually forever” FGp is important

Büchi Automata and LTL Properties

Let φ be an LTL formula, and let L(φ) be the set of models
of φ. Then, there exists a BA Aφ s.t. L(Aφ) = L(φ)

it is easy to show that the vice versa does not hold

We skip the proof, but:

of course, we have Σ = 2AP

the size of Aφ, i.e., the number of states, is 2O(|φ|)

since we typically verify small properties, this is ok

There exist tools performing such translation

inside SPIN model checker, using option -f

Büchi Automata Examples

Büchi automaton for FGp:

Büchi automaton for GFp:

LTL Model Checking: Automata-Theoretic Solution

Given S, φ decide if S |= φ

Consider S as a BA where F = S

Then, S |= φ ≡ L(S) ⊆ L(φ)
Furthermore, ≡ L(S) ∩ L(¬φ) = ∅
Finally, ≡ L(S ×A(¬φ)) = ∅
The last step is the one which is actually computed

Complexity is O(|S| · |A(¬φ)|) = O(|S| · 2|φ|)

On-the-Fly LTL Model Checking for L(S ×A(¬φ)) = ∅

The graph to be visited is defined as G = (V ,E) where:
V = S × Q

thus, each state is a pair with a state from S and a state from
A(¬φ)

((s, q), (s ′, q′)) ∈ E iff (s, s ′) ∈ R and ∃p ∈ L(s ′) : δ(q, p, q′)

thus, Σ = AP

On such G , we must find acceptance cycles

an acceptance state is (s, q) s.t. q ∈ F
we have an acceptance cycle if (s, q) is an acceptance state
and it is reachable from itself

If an acceptance cycle is found, we have a counterexample
and S ̸|= φ

If the visit of G terminates without finding one, S |= φ

On-the-Fly LTL Model Checking

No need for S ,Q,R, δ to be in RAM from the beginning

similar to Murphi: we have a next function directly derived
from the input model
also A(φ) is described by a suitable language

Depth-First Visit, easily and efficiently adaptable for finding
acceptance cycles

Namely, Nested Depth-First Visit: one for exploring
S ×A(φ), the other to detect cycles

the two searches are interleaved

If an acceptance cycle is found, the DFS stack contains the
counterexample

Nested DFS for LTL Model Checking

DFS(KS_BA SA, state (s, q), bool n, state a) {

let SA = ⟨SA, IA,RA, LA⟩;
foreach (s ′, q′) ∈ SA s.t. ((s, q), (s ′, q′)) ∈ RA {

i f (n ∧ (s, q) == a)

exit reporting error;

i f ((s ′, q′,n) ̸∈ T) {

T = T ∪ {(s ′, q′,n)};
DFS(SA, (s ′, q′), n, a);

i f (¬n ∧ (s ′, q′) is accepting) {

DFS(SA, (s ′, q′), true , (s ′, q′));
} } } }

LTLMC(KS S, LTL φ) {

A = BA_from_LTL(φ); T = ∅;

let S = ⟨S , I ,R, L⟩, A = ⟨Σ,Q, δ,Q0,F ⟩;
foreach s ∈ I , q ∈ Q0

DFS(S ×A, (s, q), fa l se , null);

}

