Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

T
(VHDL, Verilog, C, C++) (
Java, MathLab, Simulink, ...) / \\

~— — ~

BAD

Model Checker

(Equivalent to
Exhaustive testing)

v Counlerelemple
Ie. sequence of events
(states) leading to an
undesired state.

-
FAIL ~_|
// .

PASS

Le. no sequence of
events (states) can
possibly lead to an
undesired state.

—

T DISIM
upI pimerio i
QUILA

An approximate answer
BUG HUNTING: Testing + Simulation

Input sequence
(stimulus)

~..u(3) u(2) u(1) u(0)

N,

System (Model)

Compute output by
Simulation or by running the actual

system when possible

%

Define initial state + parameters

y - Observer

Output sequence

y(0) y(1) y(2) y(3) ...

™~
\\,\p\}}ycks that output sequence 91(/// DisM.

o Model Checking main difficulty:

o choose the most suitable model checker

o understand the system and model it within the model checker
input language

o understand the properties of the system and specify them
within the model checker temporal logic

o Testing main difficulty: which inputs should | use?
o slightly less difficult: how do | observe/check the result?
o also running tests may be an issue
o Recall that inputs are theoretically infinite and practically too
many
o a function taking an input integer...
o thus also important: which input coverage am.l achieving

| UNIVERSITA DISIM
| DEGLI STUDI unes s
DELL'AQUILA]

o There are exeptions:
o programs without inputs

o e.g.: always returns the same constant, or a constant
depending on previous executions
o but one input is always present: launch the system...

o programs taking enumerated inputs only
o e.g.: a function taking two booleans
o In the vast majority of cases, too many inputs to consider
them all, must somehow select a “meaningful” subset
o i.e., so that errors, if present, are likely to be detected

o No general tools available, only some methodologies (good
practices)

or System Under Verification (SUV)
o could also be a part of a “program”
o could also be a system with many processes
A set of inputs, execution conditions, PASS/FAIL
criterion
o input is anything the program to be tested can
get
o command-line arguments, files, interrupts,
mouse coordinates, sensors...
o execution condition: information on the test
execution
o typically, input timing: whether all input must
be provided at the start or not
o e.g., a sequence of interrupts with given timing
o PASS/FAIL: some way to chec
o e.g.: output must be equal t %
result)

A formal or informal description of a test
case

o “the input is two words” — a valid test case will
be “goodbye all”

a set of test cases
running the test cases on the program
a property for test case specifications
o e.g., “all words must be 7 letters long”
some property a test suite must fulfill

o e.g., “all test cases must contain at least 30
inputs”
o could also be seen as a set of test obligations

o namely, the adequacy criterionris-sea‘tisfied if
every test obligation is satisfied%éﬁ‘f‘l%\st :

test case in the suite

Smallest unit of work in the program

o typically (but not always) close to single
functions or single classes
o here, “unit of work” roughly refers to:

o the smallest increment by which a software
system grows or changes

o the smallest unit that appears in a project
schedule and budget

o the smallest unit that may reasonably be
associated with a suite of test cases (unit
testing)

Mathematical concept (set of pairs)

Syntactical function in Java language

o works with all other Ianguages,j‘%@"fﬁﬁ :

Some functionality of the
program which can be isolated from the other
functionalities

o not necessary at code level: here, it is testing
level

0 e.g., a program or a function may be able to
both sort and merge files

o however, sorting and merging may be ITF

o granularity depends on the program: from
individual functions, to features of an integrated
system composed of many programs

o going through individual classes and libraries

o when detected at unit testing, an ITF is usually

a function/method or a class, %ﬁg@gﬂly @ pow
testing exists... 2 ‘

Q The tester engineer (TE) must develop:

o a set of test case specifications

o test adequacy for the overall test suite
Q TE generates the test cases from the test case specifications
Q TE runs the test and collect the results

o test are instrumented so as to also check adequacy criteria

Q |If adequacy criteria are not met, revise test case specifications
going back to step 1

Q Developers correct all discovered errors and TE starts again
from 3

o no need to wait for the step 4: as soon as an error is
discovered, it can be corrected

o it may happen that specifications should be u d‘ ated too
back to step 1 % BT m

public static String collapseSpaces(String argStr)

{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cldx = 0 ; cldx < argStr.length(); cldx++)

{
char ch = argStr.charAt(cldx);
if(ch!=" 7 ||last!=" ")
{
argBuf.append(ch);
last = ch;
}
}

z

return argBuf.toString(); 5 BEAGHEN g

We have a function taking one string s as an input and returning a
string s’ as an output.

Informally: s’ is the same as s, but consecutive spaces are
collapsed into one space.

Formally: let S={(i,k) |si=""A(i>1—=s_1# ""YANk>
1A /\ﬁ;%s,ur,, ="'}, Let

S = {(.K) | 36,K) € S AJ = i — S ppes | eplk — D} Let
o(S,)) = Z(i,k)es | i<j(k -1).

Then, forall j=1,....[s| = > yes(k = 1), 5} = Sji0(57)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Test case specification 1: all input should be at least 10
characters long

o Test case specification 2: all input should contain at least 3
spaces

o Test obligation 1 (black-box): the test suite should contain an
empty string

o Test obligation 2 (white-box): in the if, the first clause
should always evaluate to true and the second to false at least
once (and/or viceversa)

o We generate the test suite following specifications

o We check if obligations are ok N

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

()

©

©

Test obligation (coverage): all statements should be executed
at least once

What happens if the code has some unreachable code? No
test suite is adequate!

Quantitative measures could be used
Suppose an adequacy criterion generates n obligations...

. if m of such obligations are met by the test suite, then it is

10077% adequate
% AT -

o Typically, we do not only have a program: we also have a
functional specification of its behaviour

o in some logic, or even in natural language (starting comments
of a function...)

o requirements are expressed by users and specified by software
engineers

o Functional specifications are the base for functional testing

o More precisely, functional test case design is about deriving
test cases from functional specifications

o The structure of the program is completely ignored

o e.g., “all ifs must be evaluated at least once” is not
functional testing

o Also called black-box testing
o Cheaper than white-box or glass-box testing % T

o Functional testing techniques in brief:
o input: program specification
o output: test cases specification
o Core of the methodology: partitioning the possible behaviors
of the program into a finite number of homogeneous classes
o not an actual partition, as they may overlap
o “homogeneous” in a broad sense, depends on the program
o often requires to integrate program specifications, good for
project documentation!

o Human effort required, similar to modeling in model checking

o in few cases, if program specifications are already formal, the
work is easier
o e.g., a model checking specification may be directly translated

in test cases j | nrversima osm
\ / BECHIA Eis

o A function with 2 32-bit integers has 254 ~ 102! possible
different inputs

o Given budget limitations, only an extremely tiny fraction of
inputs may be tested
o limitations are both in money and time

o Random sampling: choose test cases from a random
distribution
o of course, depending on the program specifications
o e.g., for a function taking 3 floating points and a string, we
sample from R3 x A*, if A is the alphabet
o To do: build a program that generate test cases by sampling
the given input space
o by definition of test case, this must also incjude a function tq
check the result %‘ puysesrTh :

DELL'AQUILA

o Suppose that we have to test an ITF with 3 inputs: an integer
i, a floating point f, and a string s

o Suppose that testing budget allows testing to last T seconds,
and that each run of the ITF requires t seconds: then,

T

R = |+] runs are allowed

o we are posponing the problem of checking the result
o Example of test case specification: for each variable,
S = L\g/ﬁj independent and equally spaced samples are taken
o for i, take all values fromZ ={m+jl|j=0,...,S—1},

being m (M) the minimum (maximum) value for i and
/= |52
o same for f
o for s, first decide some maximum length M, then take all
values from & = {RandomStr(jf) | j =0,...,5 — 1}, being
I = |%| and RandomStr(d) a function creé%hhs&ﬂng “” :

BRI
d with random printable characters “

o Further example: for i and f, use some §' >> S, e.g.,
S’ =100S
o thus obtainingZ ={m+jl|j=0,...,5" — 1}, being m (M)
the minimum (maximum) value for i and / = | =™ |
o then, choose at random S (different) elements from 7

o A similar reasoning may be applied for the string s, by e.g.

o using S’ = kS, k > 1, instead of S to obtain S and then
sampling from S or
o generating k random strings for each different size d

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Simply random is not a good choice, better a kind of
“guided” random
o Best way to guide is perform partitioning of input space
o not an actual partition: the union is the whole, but partitions
may have some non-null intersection
o however, “partitioning” is standard terminology for testing
o Typical desired property: there does not exist a partition
containing both failure and non-failure inputs

o In fact, by random sampling from each partition, we will for
sure consider all failure inputs

o partition of failure inputs only — some failure will be detected

o Of course, the property is desirable but impossible to obtain in

the general case f s .
\ DELL +

All inputs that lead to a failure belong to at least one class that
contains only inputs that lead to failures

Suppose that one more input failure is added: is the desired
property ok? if not, how to modify the partition to ensure it again?

©

Partition testing. any method that partition the input spaces
in a finite number of partitions as seen above

Functional testing: partition testing where the partition
algorithm is based on the program specification

o also called specification-based partition testing
Generating test cases is more expensive: we also have to
guarantee they belong to partitions

o pure random does not check this, thus it is simpler
Fewer test cases generated in the same amount of money and
time

However, it is typically more effective in finding failures

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Ideally: all partitions are all-failure or all-non-failure
o Impossible to fully obtain such property, so how to at least
come close?
o could be ok if all failing inputs belong to at least one class that
contains only failing inputs
o Experience is needed
o learning to detect which classes of test case are “more alike”
than others
o in the sense that failure-prone test cases are likely to be
concentrated in some classes
o The less the partitions, the closer to pure random testing

o having few partitions may be a good trade-off given testing

budget =iz
| ‘ UNIVERSITA DIsIM
\ / DEGLI STUDI e anin

o ldea: divide brain-intensive from automatable steps
o Many problems to overcome
o a particular functional testing technique may be effective only
for some kinds of software
o or may require a given specification style
o The following is a general pattern of activities that captures
the essential steps in different functional test design
techniques

o In this way, relations among the techniques may become
clearer

o Furthermore, the test designer may gain insights into adapting

and extending these techniques da .
% S @ ‘
\ DELL'AQUILA Sy

(Independently Testable Feature j

&
o (\@%

o
@a“" ° s/

Brute Represemalwe Values Mode\

Force

Testing

enerat
Test Case

o]

UNIVERSITA
J DEGLILSTUD!
DELL'AQUILA

Scaffolding

DISIM

o ldentify Independently Testable Features

o web page specification: search the DB, update the DB, provide
info from the DB

o sub-functionalities: edit a pattern to search the DB, provide a
form for registering, ...

o rather than having a test case for multiple functionalities, it is
better to devise separate test cases for each functionality of
the system

o different from module decomposition: program users
perspective vs. developers

o recall that a program user may also be another program
o requires detailed specification
o Thus step 1 is to identify “separated” features

o lack of documentation may make this difficult

o thus, we are actually partitioning the input & Y 2,25, 5aid -
before \ < / DELUAQUILA oot

o For each ITF identified, a number of inputs are needed

o e.g., a registration on a Web page (single ITF) needs name,
surname, age, ...
o in some cases, some input may be hidden and must be
explicited
o e.g., when checking if some name is in a database, the input is
not only the name, but also the database!
o For each of such inputs, a choice is needed between:
Q identify representative values
o meaningful fixed values for inputs are directly enumerated

Q build a model

o some model is built which generates values for input
o e.g., a grammar may be built, defining the valid values

o also an algorithm could be written <1
%‘ N =
\ DELL'AQUILA Sy

o Combine the values of the different inputs involved

o if all of them have been enumerated in the previous step, the
Cartesian product may be used
o however, this works for few inputs with few values, as the size
explodes
o e.g., 6 inputs with 6 values each results in about 50k tests
o Thus, we need something more clever:

o detect illegal combinations
o select a practical and meaningful subset of legal combinations

o Example: 2 input numbers representing length of a string and
number of special characters
o the 0 length 4+ more than 1 special character is illegal

o It could be straightforward to think that illegal combinations
of inputs must be always ruled out

o However, illegal combinations often have to be tested as well

o We may consider two possible cases:

QO the ITF is for the “general public”
Q the ITF is an API, to be invoked by programs

o As for case 1, illegal combinations should always be tested

HI, THIS 1S

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'5 SCHOOL.

OH, DERR - DID HE
BREAK SOMETHING?

IN F\ wnv

i

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

~ OH. YES LITTILE
BOBRY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.
g‘ AND T HOPE
~~ YOUVE LEARNED
+ TOSANMIZE YOUR
DATABASE INPUTS.

DISIM

o We may consider two possible cases:
Q the ITF is for the “general public”
Q the ITF is an API, to be invoked by programs
o As for case 1, illegal combinations should always be tested
o generic users may easily feed “wrong” inputs
o an error must be returned, not a failure!
o As for case 2, it depends
o if the ITF is for internal use only, and some assurance of
compliance is present from the specifications, we may rule out
the illegal combination
o otherwise, generic programs may be as generic users...

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

General techniques reducing Cartesian products do not exist

©

Insights may be present in the documentation/specification

©

Typical strategies include:

o considering a subset of each ITF
o considering exhaustive combinations only for selected pairs

The output is a test case specification, but may also be
directly a test case

o also an algorithm could be viewed as a test case specification

©

©

Finally, generate the test case and instantiate (i.e., run) it

o select one or more test cases for each test case specification
o scaffolding for the actual run, we will be back on this

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

o Describes the methodologies to obtain the general approach
for functional testing described above
o Two main techniques may be employed

o Category-Partition Testing
o Catalog-Based Testing

o A third technique only deals with the combinatorial part, thus
may be applied to both: Pairwise Combination Testing

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Suppose we have selected an ITF and one parameter of such
ITF

o We have to list all of its categories

o some characteristic which may differentiate among possible
inputs for that parameter

o e.g.: for a string, its length, or the number of special characters

o e.g., for an integer, being positive or negative

o categories may be defined also for combinations of parameters
(environmental conditions)

o e.g.: for a parameter string (pattern) to be found in a text:
number of occurrences

o in some cases, the “expected result” category could be added

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Then, we partition each category into choices
o in the testing sense: different partitions may have non-empty
intersections
o This is done by providing general and coincise rules to each
category
o e.g., the length of a string may be 0, 1, between 5 and 20,
greater than 50
o e.g., an integer may be negative, 0 or strictly positive
o Defining and using properties might help for impossible
combinations
o e.g., if the length of a string is 0 the property may be
“property:Empty”
o e.g., if the number of special characters is 1, it may be applied

Only x‘if:NOnEmpty” %‘WH“HH US'A
\ | BECEAQUIEA o

public static String collapseSpaces(String argStr)

{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cldx = 0 ; cldx < argStr.length(); cldx++)

{
char ch = argStr.charAt(cldx);
if(ch!=" 7 ||last!=" ")
{
argBuf.append(ch);
last = ch;
}
}

z

return argBuf.toString(); 5 BEAGHEN g

We have a function taking one string s as an input and returning a
string s’ as an output.

Informally: s’ is the same as s, but consecutive spaces are
collapsed into one space.

Formally: let S={(i,k) |si=""A(i>1—=s_1# ""YANk>
1A /\ﬁ;%s,ur,, ="'}, Let

S = {(.K) | 36,K) € S AJ = i — S ppes | eplk — D} Let
o(S,)) = Z(i,k)es | i<j(k -1).

Then, forall j=1,....[s| = > yes(k = 1), 5} = Sji0(57)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Suppose we are performing black-box unit testing; in such a
case, we are forced to consider this function as an ITF
o inputs are already identified: exactly one string
o thus, no problems for combinations...

o Let us begin with the characteristics of our lone input
(categorization phase)

length

number of spaces

number of occurrences of consecutive spaces

expected result

min and max number of consecutive spaces

number of consecutive starting/trailing spaces

number of special characters

spaces only -

-, = - A e “l\[ERSITA DISIM
o For the partitioning phase, see cases,colla‘% xLsi G

© © ©6 06 ©6 © o0 o

We have a function taking one string s and an integer n > 2 as an
input and returning a string s’ as an output.

Informally: s’ is the same as s, but k consecutive spaces, s.t.
k > n, are collapsed into one space.

Formally let S={(i,k)|si=""ANi>1—s1#""Y)Nk>
n/\/\ “isitn ="'} Let

— {0 130, K) € S A =i — Sses | sen(k — D} Let
U(Saj) = Z(i,k)es | i<j(k -1).
Then, forall j=1,....[s| = > ; yes(k = 1), 5} = Sji0(57)

‘ UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o For the Category-Partition, let us begin with the
characteristics of the input k (s is as in the previous example)

o interval
o domain

o if the input is provided via a GUI, it could be not an integer...

o We also have environmental characteristics, i.e., which look at
both inputs

o number of k consecutive spaces occurring in s
o expected result

o For the partitioning phase, see cases_collapse_k.xls

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

class Roots {
double root_one, root_two;
int num_roots;
public roots(double a, double b, double c) {
double q;
double r;
// Apply the textbook quadratic formula:
// Roots = -b +- sqrt(b™2 - 4ac) / 2a
q=b*b- 4"a‘c;
if(q>08&8&al=0){
HIfb°2 > 4ac, there are two distinct roots
num_roots = 2;
r = (double) Math.sqrt(q) ;
rootone = ((0-b) +r)/(2*a);
roottwo = ((0-b) - r)/(2*a);
} else if (g==0) { /# (BUG HERE)
// The equation has exactly one root
num_roots = 1;
root_one = (0-b)/(2*a);
roottwo = root.one;
} else {
// The equation has no roots if b2 < 4ac
num_roots = 0;
root.one = -1;
roottwo =-1;
}
}
public int num_roots() { return num_roots; }
public double firstroot() { return root_one; }
public double second_root() { return root_two; }

DISIM

We have a function taking three floating point numbers a, b, c. It
returns three floating point numbers n, r1, 1.

Formally: n is the number of roots of the equation
ax?+bx+c=0. If n=1, then r, = r» is the root, if n = 2 then
r1 > r» are the two roots, if n =0 then rp = rn = —1.

With details: let R = {x € R | ax?> + bx + ¢ = 0} and

A = b?> — 4ac. Then, n = |R|. Furthermore, for A =0, n =1 and
R ={¢}, n = rn = &. Furthermore, for A >0, n =2 and

R ={&,&}, n =& n =& with n > rp. Finally, for A <0,

n=0R=gand n=n=-1.
) Bl e

o For the Category-Partition, let us begin with the
characteristics of our three inputs separately (categorization
phase)

o interval
o domain
o validity
o As for the environment:
o interval for A

o For the partitioning phase, see cases_roots.xls

| UNIVERSITA DISIM
\ | DEGLI STUDI e
\ / DELL'AQUILA
4

©

Suppose we have selected an ITF and its parameters

©

Three steps:

Q Identify variables, definitions, preconditions, postconditions
and operations on ITF parameters from the specification
Q Derive a first set of test case specifications from the items
identified above
© Complete the test case specifications using catalogs
o Catalogs are built over time and experience, help in identify
values for a specific class
o each software house (and developer/test engineer) has its own
o e.g., when an integer is involved, always include a test with
that integer equal to 0

©

Catalog-Based Testing is a good technique also without
catalogs

o on the contrary, using catalog only may not A‘gqcm |d““]

o catalogs may also be used in Category-Partition Testing

Boalean
[ivout] True

[in‘out] se
Enumeration

[ivout]l Each enumerated value

fin] Some value outside the enumerated set
Range L.

fin] L— 1 (the element imme:

[ivout] L (the lower boundy

[ivout] A value between £ and U

[iveut] U (the upper bound)

finl U+1 (the clement immediately fo

Numeric Gonstant €
[ivout] € (the constant value)

finl €1 (the element immediately preceding the constant value)
fin] €+ 1 (the element immediately following the constant valuey
finl Any other constant compatible with C

Non-Numeric Canstant C
[inout] C ithe constant value)
fin] Any other constant compatible with €
fin] Some other compatible value

Sequence
[ivout] Empty
fivout] A single element
[inout] More than one element
[inout] Maximum length (if bounded) or very long
finl Longer than maximum kength (if bounded)
fin] Incomectly terminated

Scan with action on elements P

fin} P oceurs at beginning of sequence

fin] P occurs in interior of sequence

[in] P oceurs at end of sequence

fin] PP oceurs contiguously

[in] P does not oceur in sequence

fin] pP where p is a proper prefix of P

fin] Proper prefix p occurs at end of sequence

tely preceding the lower bound)

owing the upper hound)

DISIM

o From initial specification of a unit to elementary items of
basic types:

conditions on input which must be true before
invoking the unit test

o may be checked by the unit itself (validated
preconditions)...
o or by the outside caller (assumed preconditions)
result of execution
input, output or intermediate
performed on input and/or intermediate values
shorthands in the specification

o We want to partition the input domain, and we use the
previously collected information for this purpose
o for each validated precondition P, we have two classes of
inputs: inputs in which P holds, and inputs in which P does
not hold
o a single validated precondition may be split in two or more
parts, if it involves ANDs or ORs
o for each assumed precondition P, we only consider input
satisfying P
o otherwise, unit behaviour is typically undefined
o if a postcondition has a guard, consider the guard as a
validated precondition
o if a definition involving variables has a guard, consider the

guard as a validated precondition -
|) oavensima o
.. 4 =5

o Generate additional test case specifications from variables and
operations

o This is done using a pre-existing catalog, to be sequentially
scanned:

o for each catalog entry, analyze all elementary items and
possibly add cases

o A catalog is typically organized with an entry for each type of

variable or operation

o Inside each entry, a distinction is made between input, output
or input/output variables
o Then, a suggestion on values to be considered is provided

o Different catalogs may be used by different companies
o also, in the same company for different appl\ b;n”dmmaim ‘

ELLAQUILA

public static String collapseSpaces(String argStr)

{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cldx = 0 ; cldx < argStr.length(); cldx++)

{
char ch = argStr.charAt(cldx);
if(ch!=" 7 ||last!=" ")
{
argBuf.append(ch);
last = ch;
}
}

z

return argBuf.toString(); 5 BEAGHEN g

We have a function taking one string s as an input and returning a
string s’ as an output.

Informally: s’ is the same as s, but consecutive spaces are
collapsed into one space.

Formally: let S={(i,k) |si=""A(i>1—=s_1# ""YANk>
1A /\ﬁ;%s,ur,, ="'}, Let

S = {(.K) | 36,K) € S AJ = i — S ppes | eplk — D} Let
o(S,)) = Z(i,k)es | i<j(k -1).

Then, forall j=1,....[s| = > yes(k = 1), 5} = Sji0(57)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o For the Catalog-based Testing, let us begin with the
elementary items:

o Variables
o s: input string
o s’: output string

o Definitions
o a “space” corresponds to ASCII code 0x20

o Assumed Preconditions:

o s is a NULL-terminated string of characters

o Validated Preconditions: NONE
A [— s
. FR e

Continuing from the previous slide:
o Postconditions:

o if s does not contain occurrences of n > 2 consecutive spaces,
s'=s
o otherwise:
o for any two non-space characters a, b at position i < j in s,
both a, b are also in s at positions i’ < j’
o the same holds for space characters, provided they are not
preceded or followed by other space characters
o for all maximal substrings of n > 2 spaces at position i in s,
there will be a single space in s’ at position i < i

o Operations

o scan s, searching for consecutive spaces
o build a new string containing the result

o modify a string by deleting some spaces insi%ﬂ pvRsiTA m ‘
\ DELL'AQUILA o

o We now generate test case specifications, by also specifying
from where they come
o POST1: without consecutive spaces, s’ = s

o TC-POST1-1: s does not contain consecutive spaces
o TC-POST1-2: s contains n > 2 consecutive spaces

o POST2: with consecutive spaces, in s’ they are replaced by
single spaces
o we will obtain the same as before, thus we can skip

o We are now ready to apply the catalog

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Boalean
[ivout] True

[in‘out] se
Enumeration

[ivout]l Each enumerated value

fin] Some value outside the enumerated set
Range L.

fin] L— 1 (the element imme:

[ivout] L (the lower boundy

[ivout] A value between £ and U

[iveut] U (the upper bound)

finl U+1 (the clement immediately fo

Numeric Gonstant €
[ivout] € (the constant value)

finl €1 (the element immediately preceding the constant value)
fin] €+ 1 (the element immediately following the constant valuey
finl Any other constant compatible with C

Non-Numeric Canstant C
[inout] C ithe constant value)
fin] Any other constant compatible with €
fin] Some other compatible value

Sequence
[ivout] Empty
fivout] A single element
[inout] More than one element
[inout] Maximum length (if bounded) or very long
finl Longer than maximum kength (if bounded)
fin] Incomectly terminated

Scan with action on elements P

fin} P oceurs at beginning of sequence

fin] P occurs in interior of sequence

[in] P oceurs at end of sequence

fin] PP oceurs contiguously

[in] P does not oceur in sequence

fin] pP where p is a proper prefix of P

fin] Proper prefix p occurs at end of sequence

tely preceding the lower bound)

owing the upper hound)

DISIM

o “Enumeration” may be applied to the definition, thus
o TC-DEF-1: s contains a space
o already inside TC-POST1-2, we may skip this
o TC-DEF-1: s does not contain a space
o Also “Non-numeric Constant” may be applied to the
definition
TC-DEF-2: s contains a TAB
TC-DEF-3: s contains a CR
TC-DEF-4: s contains a LF
TC-DEF-5: s contains a CR+LF

© © 0 o

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o “"Sequence” may be applied to our string s, thus:

o TC-VAR1-1: s is the empty string
o s is a string with only one character, i.e.:

© 06 06 06 0 ©

TC-VAR1-2-1:
TC-VAR1-2-2:
TC-VAR1-2-3:
TC-VAR1-2-4:
TC-VAR1-2-5:
TC-VAR1-2-6:

S
S
S
S
S

S

is a TAB

isa CR

isa LF

is a CR+LF (ok, two characters)

is a special character different from above
is a non-special character

o TC-VAR1-3: s has length > 1
o TC-VAR1-4: s has a very high length, say > 1000
o if this is an HTML page, with a limit on s, try a length greater

than that limit

o “"Operation” may be applied to our operation, thus:
o TC-0P-1: s begins with two spaces
o TC-0P-2: s contains two spaces
o might correct TC-POST1-2, so as n > 2

TC-0P-3: s ends with two spaces
o TC-0P-4: s contains 4 spaces

o might correct TC-POST1-2,soas n >2An# 4
o TC-0P-5: s contains 3 spaces
© might correct TC-POST1-2, so as n > 5
TC-0P-6: s ends with one space

©

©

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

We have a function taking one string s and an integer n > 2 as an
input and returning a string s’ as an output.

Informally: s’ is the same as s, but k consecutive spaces, s.t.
k > n, are collapsed into one space.

Formally let S={(i,k)|si=""ANi>1—s1#""Y)Nk>
n/\/\ “isitn ="'} Let

— {0 130, K) € S A =i — Sses | sen(k — D} Let
U(Saj) = Z(i,k)es | i<j(k -1).
Then, forall j=1,....[s| = > ; yes(k = 1), 5} = Sji0(57)

‘ UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Let us add elementary items for input k:
o Add variable: k, as the input number of consecutive spaces
o Add assumed precondition: k € Z
o might not be true if this is an HTML form...
Validated Preconditions: k > 2
Postconditions (updated):

©

©

o if s does not contain occurrences of n > k consecutive spaces,
s’'=s
o if s contains occurrences of n > k consecutive spaces, s’ is
initially equal to s, then all n > k consecutive spaces are
replaced with one space only
Operations (updated):
o scan s, searching for at least k consecutive spaces

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

TC-POST1-1: s does not contain n > k consecutive spaces
TC-POST1-2: s contains n > k consecutive spaces
TC-POST3-1: k < 2

TC-POST3-2: k > 2

TC-VAR2-1: k=1

TC-VAR2-2: k=2

TC-VAR2-3: k > 2

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

class Roots {
double root_one, root_two;
int num_roots;
public roots(double a, double b, double c) {
double q;
double r;
// Apply the textbook quadratic formula:
// Roots = -b +- sqrt(b™2 - 4ac) / 2a
q=b*b- 4"a‘c;
if(q>08&8&al=0){
HIfb°2 > 4ac, there are two distinct roots
num_roots = 2;
r = (double) Math.sqrt(q) ;
rootone = ((0-b) +r)/(2*a);
roottwo = ((0-b) - r)/(2*a);
} else if (g==0) { /# (BUG HERE)
// The equation has exactly one root
num_roots = 1;
root_one = (0-b)/(2*a);
roottwo = root.one;
} else {
// The equation has no roots if b2 < 4ac
num_roots = 0;
root.one = -1;
roottwo =-1;
}
}
public int num_roots() { return num_roots; }
public double firstroot() { return root_one; }
public double second_root() { return root_two; }

DISIM

We have a function taking three floating point numbers a, b, c. It
returns three floating point numbers n, r1, 1.

Formally: n is the number of roots of the equation
ax?+bx+c=0. If n=1, then r, = r» is the root, if n = 2 then
r1 > r» are the two roots, if n =0 then rp = rn = —1.

With details: let R = {x € R | ax?> + bx + ¢ = 0} and

A = b?> — 4ac. Then, n = |R|. Furthermore, for A =0, n =1 and
R ={¢}, n = rn = &. Furthermore, for A >0, n =2 and

R ={&,&}, n =& n =& with n > rp. Finally, for A <0,

n=0R=gand n=n=-1.
) Bl e

o VAR1, VAR2, VAR3: a, b, c
o VAR4, VAR5, VARG: n,n,
o DEF1: A = b? — 4ac
o PRE1, PRE2, PRE3 (assumed or validated): a,b,c € R
o POST1: if A<O0,then n=0,n=rn=-1
o POST2: if A=0,then n=1and rp = r» are s.t.
arf +brn+c=0
o POST3: if A >0, then n=2 and, Vr € {n, n},
ar’ +br+c=0

o OP1: compute A

o OP2, OP3: compute —2EVA -[li |

©

From POST1: A <0, A>0

From POST2: A =0, A #0

From POST3: A >0, A <0

Thus, TC-POST-1, TC-POST-2, TC-POST-3:
A<0,A=0,A>0

o If PRE1 is validated (same for PRE2, PRE3):

o TC-PRE1-1: a contains multiple dots

o TC-PRE1-2: a contains multiple E

o TC-PRE1-3: a is bigger than maximum long double (if
applicable)

o TC-PRE1-4: a > 0 is lower than long double epsilon (if
applicable)

o TC-PRE1-5: a contains alphabetic characters{different from
‘ UNIVERSITA DIsIM
E/e) O/ bt e

©

©

©

o Suppose that we have a set of test cases specifications
generated by Category-Partition or Catalog-based Testing

o Pure Category-Partition or Catalog-based Testing considers all
possible combinations of test case specifications

o Easily, the number of resulting combinations may be
intractably high

o similar to the state space explosion problem in model checking

o Some adjustment may be performed by applying some
“reasonable” constraint

o Pairwise Combination Testing offers a systematic way to cut

the number of resulting combinations
j» Ae “ UNIVERSITA DISIM
AR/ Bl g

, T, “single" test cases specifications

o Suppose we have T7,
(test factors)
o each test factor T; has |T;| different choices
o e.g., in the collapsing spaces example, we have
|Tlength| = 4’7 |Tspaces‘ = 57 ‘ ToccConsSp| =3

o may also work with “raw” test cases
o Then, the number of combined test case specifications is

[IiL: 1Tl
o With pairwise combination testing, they are usually equal to
| Tm| - | Tml, being Tp,, Tar the two bigger sets

o a generic formula for the size is not available
o however, effective tools are available to generate test cases

o see, e.g., https://github.com/microsoft/pict
%!\H.LQQ f o
\ / BECEAQUILA i

o It has been shown that this is a practical go

testing

https://github.com/microsoft/pict

o The following properties must be true for the Pairwise Testing
result RC [}, T;

Qo

o

Vi<i<j<n V¥(vi,w)eT;xT;,3I(wi,...,w,) € R s.t.
wi=wvi AW =wv,

that is: for any possible choice of two test factors, all possible
pairs of values are present in the result

orthogonal arrays: all pairs are covered the same number of
times

for (vi,w) € T; x T, let C(vi,v2) = {(wy,...,w,) € Rs.t.
Wi =vi Awj = W}

then, dp s.t.,, for all (vi,w) € T; x T}, |[C(vi,v2)| =p

o May be generalized to kK < n

o

[+]

[+]

consider k-tuples instead of pairs
R=TIr, Tiifonlyif n =k

o Some Category-Partition-like constraint may still be applied
on the result b he @ -

this is what also pict allows to do

o Functional testing is mainly black-box: no need of seeing the
actual software

o If the source code is available, something may be done to add
some more test cases
o not necessarily the full “program”, also some model may be
sufficient
o e.g., a control flow graph

o Typical question: did we cover all relevant parts of the

E¥\ UNIVERSITA .@ Disim
\ | BECEAGUILA o i

o If some statement has never been executed during all tests,
that is typically not good
o This happens if the statement is executed only if C holds, and
for all test cases C does not hold
o inside an if, but it is not the only case
o may be a while, or after a return...
o Of course, it may happen that a statement will never be
executed at all (unreachable code)
o Of course, having all statements executed does not guarantee
errors are cought

o it may be the case that only given inputs trigger a failure
o or the implementation may be faulty w.r.t. the specification,
not considering some cases

o so, structural testing typically comp/ements%ﬁm@“lqtes -

o One major usage of structural testing is to define adequacy
criteria

o That is: suppose we have already generated a test suite for
our ITF

o Is this test suite adequate w.r.t. some measurable criteria?

o In the following, we will mainly provide definitions for
meaningful criteria which exploits program source code
(mainly its CFG)

o lIs it possible to reverse this reasoning? That is:

Q we select an adequacy criterion
Q we generate test case specifications which pass the criterion

Q we generate test cases fulfilling the test cas%ciﬁcation.
oNIvERSITA @ -
\ / DEGLI STUDI ento di
\ DELL'AQUILA Sy

o The step 3 above is all but simple

o As an example, some adequacy criteria require to make a
given condition true or false
o a condition may be used by an if or a while
o Of course, in the general case this is an undecidable problem
o that is: given a program and a condition inside it, make the
condition be true/false
o some of the difficulties: it may be the case that the variables
are changed before arriving to the condition, thus a reverse
engineering is required
o the condition may involve a function call
o the condition may be unreachable for the selected values

o Human effort is required, or sub-optimal solugjpas must be
accepted & i

Faults are in statements
o also including expression evaluations

()

o A fault in a statement cannot be revealed without executing
the faulty statement

A test suite T for a program P satisfies the statement
adequacy criterion for P, iff, for each statement S of P, there
exists at least one test case in T that causes the execution of

S

©

o i.e., every node in the control flow graph of P is visited by
some execution path exercised by a test case in T

()

If not all statements, let us measure how many of them:
statement coverage Cs = Zexecd statm

#all statm e
‘ J DRSS
\ BECLAOUIA ;

o If the CFG is provided, then "blocks” are considered instead
of “statements”
o depending on CFG granularity
o If Css(T), Csp(T) are statement and block coverage for a test
suite T, and CSs(Tl) > CSS(TQ), then CSb(Tl) > CSb(TQ)
o there is a kind of monotonicity
o On the other hand, test suites with fewer test cases may
achieve a higher coverage than test suites with more

o e.g., because the input is a string, so having just few long
strings may be enough, whilst having many short strings may

miss some statement
\ J BECHIEL i

o Suppose we have a code and a test suite, how can we actually
measure statement coverage?

o We have to instrument the code: see collapse_spaces. java

o It may also be done by existing tools: e.g., CTC++
o works for C, C++ and Java
o commercial product, works on all platforms
o enhanced compiler: you invoke CTC++ compiler and run the
executable as many times you want
o CTCH+ additional tools are available to analyze coverages
o not only statement coverage, also the following ones

o As far as the lecturer knows, no free-to-use tools exists for

code coverage instrumentation o
f%j‘ Ly B,

o If statement coverage is full, this means that all conditions are
evaluated at least once

o However, this does not imply that all branches are considered

o a branch is an edge between two blocks, traversed iff some
condition holds

o That is, that all conditions are evaluated at least once true
and at least once false

o In fact, an else may be missing, thus a perfect statement
coverage test suite may not consider the condition being false

o This may be a problem in many cases

o T satisfies the branch adequacy criterion for P iff, for each
branch B of P, there exists at least one test case in T that
causes execution of B

o In the CFG, all edges must be exercised by some test case in T

o Branch coverage ratio: Cg = %

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o If conditions are composed by multiple atomic propositions,
branch coverage could be not enough

o e.g., a condition AA B, with A always true, may pass the
branch coverage criterion...
o Thus, we want all atomic propositions in all conditions to be
evaluated at least once true and at least once false

o T satisfies the condition adequacy criterion for P iff, for each
basic condition C in P, C has a true outcome in at least one
test case and a false outcome in at least one test case in T

o Cannot be directly observed in CFGs

#resulting truth values
2#&11 bablC conditions

o Basic condition coverage ratio: Cgc =

We already saw that branch coverage does not imply
condition coverage

Neither the viceversa holds: for example, A A B may be
exercised by A=1,B=0and A=0,B =1, which is ok for
condition but not for branch

Branch and condition adequacy criterion: satisfied only if both
condition and branch coverage are satisfied

Both coverage ratios can be considered

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

©

A more “natural” way to deal with both branch and condition
coverage
Compound condition adequacy criterion: obtain the abstract

evaluation tree of each expression, then each path of such tree
must be covered

o in an abstract evaluation tree (AET), internal nodes are
labeled with conditions, while edges and leaves are labeled
with true or false

o it is the same as OBDDs, with conditions instead of variables

Thus, there must be a test case specification for each path
from the root to a leaf to satisfy the adequacy criterion

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

In the worst case, it is exponential

ANBANCADANE

Compound condition for AABACADANE

Test Case
(1)
(2)
(3)
(4)
(5)
(6)

a
True
True
True
True

True
False

b
True
True
True
True

False

C
True
True
True

False

d
True
True
False

e
True
False

| UNIVERSITA Disi
\ | DEGLI STUDI unes s
\ DELLAQUILA !

((AVB)ANC)VD)ANE

FALSE TRUE -

Compound condition for (((AV B)AC)V D)ANE

Test Case a b c d e
(1) | True - True - True
(2) | False | True True - True
(3) | True - False | True | True
(4) | False | True | False | True | True
(5) | False | False - True | True
(6) | True - True - False
(7) | False | True True - False
(8) | True - False | True | False
(9) | False | True | False | True | False
(10) | False | False - True | False
(11) | True - False | False -
(12) | False | True | False | False — e
(13) | False | False - False - AR @ S

o Compound condition may require 2V test cases, if there are N
conditions

o Compound condition heavily depends on the structure itself of
the condition

o AANBA CA DA E requires 6 test cases
o (((Av B)AC)V D) A E requires 13 test cases

o Modified Condition/Decision Coverage (MC/DC) overcomes
this problem

o It may be proved that, if N is the number of basic condition,
then at most N + 1 test cases are needed for MC/DC testing

o Thus, (((AV B)A C)V D) A E requires 6 test cases

o Can be computed automatically, given the abstract evaluation

tree K
. . . IR Bl e
o Required by many testing standards, e.g., in Aytation

o Condition: atomic proposition
o no boolean operators occur
oeg:ac<=b
o Decision: a whole boolean expression
o a boolean combination of conditions
o Properties to be satisfied for the MC/DC adequacy criterion:
o each decision in the program under test has taken all possible
outcomes at least once
o each condition in a decision has taken all possible outcomes at
least once
o each condition in a decision affects independently and correctly
the outcome of this decision

Compound condition for AABACADANE

Test Case a b C d e
(1) | True | True | True | True | True
(2) | True | True | True | True | False
(3) | True | True | True | False -
(4) | True | True | False - -
(5) | True | False - - -
(6) | False - - - -

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

Compound condition for (((AV B)AC)V D)ANE

Test Case a b c d e
(1) | True - True - True
(2) | False | True True - True
(3) | True - False | True | True
(4) | False | True | False | True | True
(5) | False | False - True | True
(6) | True - True - False
(7) | False | True True - False
(8) | True - False | True | False
(9) | False | True | False | True | False
(10) | False | False - True | False
(11) | True - False | False -
(12) | False | True | False | False — e
(13) | False | False - False - AR @ S

MC/DC condition for (((AV B)AC)V D)AE

a b C d e Decision
(1) | True - True - True True
(2) | False | True | True - True True
3) | True - False | True | True True
(6) | True - True - False False
(11) | True - False | False - False
(13) | False | False - False - False

Each condition in a decision has taken all possible outcomes at

least once — simply look at columns

Each condition in a decision affects independently and correctly the
outcome of this decision — row pairs corresponding.to underlined

items only differs for exactly one condition (the u m;‘ié'fd,{)bn“ 5

GenMCDCCases (D) {
v,C < compoundCondition(D);

// C: set of conditions on which D depends
ok + J;

for each condition CeC {
for each pair (i,j)e|y|?i<j {
let r,r» be the j and j-th row of ~;
// recall that don’t cares match all
if (v(n,C) #v(r2,C) A D(n)# D(r2) A
VC' eC.C'#C—v(n,C)=7(n,C)) {
ok « ok U {n,n};
break;

}
}

return v \ rows not in ok;

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Suppose we have the CFG of a program: we may consider
paths in it

o starting from the root and having some finite length
o finite length is required as testing must provide an answer at
some time...
o Path adequacy criterion: for each path p of P, there exists at
least one test case in T that causes the execution of p

o That is, every path p is exercised by a test case in T

#execd paths
#all paths

o If the CFG has loops, the denominator is infinite, thus Cp =0
o all non-trivial CFGs have loops...

A form of path coverage may be achieved w&% eI che'
BEHLRTE! s

o Path coverage is defined as Cp =

©

o Loop boundary adequacy criterion: for each loop p in P
containing a loop /, the following holds

o in at least one execution, control reaches the loop, and then
the loop control condition evaluates to False the first time it is
evaluated

o in at least one execution, control reaches the loop, and then
the body of the loop is executed exactly once before control
leaves the loop

o in at least one execution, the body of the loop is repeated
more than once

o Thus, we execute 0, 1 or many times the loop

o The intuition is that the loop boundary coverage criteria

reflect a deeper structure in the design of a program
% /BT i

Linear Code Sequence and Jump (LCSAJ): a body of code
through which the flow of control may proceed sequentially,
terminated by a jump in the control flow

©

We may define sequences of LCSAIs
o sequences of length 1 are almost equivalent to branch coverage
(excluding some ill-based code)
TERpy, for N > 1, is the Test Effectiveness Ratio

o TER; = Ts (statements)

o TER,; = Tg (branches)
° TER,‘+2 _ #execd i consecutive LCSAJs

#all i consecutive LCSAJs
TERy =1 implies TER; =1 forall i < N
o TER; with 7 > 3 only required by very critical systems

LDRAcover: commercial tool also consideringah&SAJs. o

©

©

©

©

EGLISTUDI
DELL'AQUILA

o Cyclomatic testing, based on the definition of basis set
o let P be the set of all paths
o B C P is a basis set iff, for all p € P, p is the concatenation

of some g € B
o it can be proved that |[B| = e —n+2c

o e, n are number of edges and nodes
o c is the number of strongly connected components

o for a procedure, just connect the exit back to the entry to
obtainc=1so0 |B|=e—n+2
o this is the cyclomatic complexity of the program
o Cyclomatic testing: exercise every path in the basis set at
least once

o The previous techniques are ok for single procedures/functions

o When it comes to integration or system testing, it is needed
to put the single pieces together

o Call coverage: exercise all different calls to C

o calling the same procedure twice in different points counts as
two

o Good news: if C is called by A and B only, and statement
coverage of A and B has already been completed, then we are
done!

o Bad news: for procedures with side effects, call sequences are
Important

o especially true for object oriented programming, we will be
back on this | | s o
\ L'AQUI o

Test coverage criterion A subsumes test coverage criterion B iff,
for every program P, every test set satisfying A with respect to P
also satisfies B with respect to P.

<

T

w

E

5 Path Testing

o

<

o

=

w

g Boundary interior testing Compound condition testing
T

=

<

o

w

= Cyclomatic testing MC/DC testing
[$)

o

<

o

5

g LCSAJ testing Branch and condition testing
a

Branch testing

Loop boundary testing Statement testing

\ UNIVERSIT. DisiM
mummn
Basic condition testing DELLAQUIL :

©

©

©

()

Again, white-box: it aids path coverage
o paths are selected basing on how one syntactic element can
affect the computation of another
o criteria based on control structure alone fail on considering
data interactions

Computing the wrong value leads to a failure only when that
value is subsequently used

Data flow testing ensures that each computed value is
actually used

Thus, paths more likely to lead to failures are considered

o Data flow testing is based on definition-use pair
o recall: a definition writes a value in a variable, a use reads a

value from a variable
o a definition-use pair consider a definition and a following use

which is not killed by another definition
o Each definition-use pair defines a definition-clear path
o there may be several uses after the definition
o A static data flow analyzer is needed
o for not-too-big procedures, manual instrumentation is also

possible
\ / DEGLI STUDI ienze delln

©

()

All DU pairs adequacy criterion: each DU pair must be
exercised in at least one program execution

o an erroneous value in a definition might be revealed only by its
use
A test suite T for a program P satisfies the all DU pairs
adequacy criterion iff, for each DU pair (d, u) of P, at least

one test case in T exercises (d, u)

P _ #execd DU pairs
Unsurprisingly, Cpy = Yl DU pairs

Finer than statement and branch coverage

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

int cgi_decode(char *encoded, char *decoded) {
char *eptr = encoded;
char *dptr = decoded;
int ok=0;
while (*eptr) {
char c;
= "eplr;

if(c=="+"){ /*Case1: +'maps to blank ”/
dptr=" 75
}elseif (c=="%"){/* Case 2: '%xx'is hex for character xx */
int digit_high = Hex.Values[*(++eptr)];
int digitlow = Hex Values[*(++eptn)];
if (digithigh == -1 || digitow
/* *dptr=
ok=1; /* Bad return code */
}else {
*dptr = 16" digit_high + digit_low;
}
} else { /* Case 3: All other characters map to themselves */
*dptr = *eptr;
}
++dptr;
++eplr;
}
dptr="\0"; / Null terminator for string */
return ok;

DISIM

1 20-22 23 36-37

> True
*ep; .
) i

False

[int cgi_decode(char *e, *d) }

15-17

char *ep =e. False
int ok = 0;

ep++;
int dh = HV[*ep];
ep++;

int dl = HV[*ep];
if (dh ==

Variable Definitions Uses

encoded 14 15

decoded 14 16

*eptr 15, 25,26,37 18, 20, 25, 26, 34
eptr 15,25, 26,37 15, 18, 20, 25, 26, 34, 37
*dptr 16, 23,31, 34, 36,39 40

dptr 16 36 16, 23, 31, 34, 36, 39
ok 17,29 40

c 20 22,24

digit_high 25 27,31

digit_low 26 27, 31

Hex_Values - 25,26

One error:

no use of *dptr

at line 40 (actually, no use at all)

List of all DU-pairs:

Qo

Qo

Qo

Qo

encoded — {(14, 15)}
decoded — {(14, 16)}
dptr — {(16, 36), (36, 36)}

eptr — {(26, 37), (25, 26), (15, 37), (37, 25), (15, 25), (37,
37)}

*eptr — {(37, 26), (37, 25), (15, 18), (37, 34), (37, 19-20),
(15, 25), (15, 26), (15, 34),

¢ — {(19-20, 22), (19-20, 24)} (15, 19-20), (37, 18)}
digit_low — {(26, 31), (26, 27-2)}

digit_high — {(25, 27—1), (25, 31)} %

All DU paths adequacy criterion: for each DU pair, each of
the corresponding DU paths must be exercised in at least one
program execution

o if the path contains a loop, discard the loop (simple path)

A test suite T for a program P satisfies the all DU paths
adequacy criterion iff, for each DU pair (d, u) of P and simple

path p from d to u, at least one test case in T exercises p

P _ #execdDU simple paths
Unsurprlsmgly, CDUP — #all DU simple paths

Of course, subsumes the all DU pairs coverage criterion

o One DU pair for variable eptr is (15, 37)
o For the all DU-pair criterion, it is enough that at least one
test case traverses both line 15 and line 37

o For the all DU-paths criterion, this is not enough as there are
2 paths going from 15 to 37

o one in which the current character is 4+, and another in which
it is neither 4+ nor %

o Thus, there must be a test case for the first path and another
for the second

o Of course, there are actually infinite paths, but the criterion

do not consider loops
j» Ae “ UNIVERSITA DISIM
A B g

All definitions adequacy criterion: for each definition, at least
one corresponding use must be exercised in at least one
program execution

A test suite T for a program P satisfies the all definitions
adequacy criterion iff, for each definition d of P, there exists a
DU pair (d, u) s.t. at least one test case in T exercises (d, u)

__ #covered definition
— #all definitions

Of course, it is subsumed by both the all DU pairs and all DU

paths coverage criterion
E% UNIVERSITA DIsIM
AR/ Bl g

Unsurprisingly, Cp

o Kind of black-box testing, where specifications have some
special form

o or it is possible to extract a model from specifications

o similar to model checking, but model is then used for testing
o Used to aid black-box approaches to identify

o meaningful values

o (additional) constraints

o (additional) significant combinations

o especially useful for integration and system testing

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Two types of models:
o formal, i.e., with a precise syntax and semantics
o finite state machines (usually) and grammars
o test cases may be automatically generated
o semiformal

o state diagrams, class diagrams and finite state machines
(sometimes)
o automation must be used with some care

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Models may describe:
o input structure

o especially for grammars
o typically formal models, thus used to directly generate test
cases

o desired behaviour for the program, or a part of it

o discrepancies from the model can be used as an implicit fault
model to help identify boundary and error cases

o We will consider the 4 models named above
o for each model, let us see how to generate test cases from

each of them
\ Beci sTunt 2

o Common for control and reactive systems, such as

o embedded systems (StateChart), communication protocols
(SDL), menu-driven applications
o typically multiprocess or multithread

o Many systems actually have infinite states, but often are
approximable with a finite state machine as well

o for real, a port receiving a string message should have infinite
states...

o Transitions are usually guarded by conditions or input events
o conditions may be regarded as particular input events

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Wait for
retuming

NO
Maintenance

a . b #e
P o 02 o | . retum
o or, o
n‘a“‘i, s e (coy, '_%6(, ,
[\

Maintenance
{no warranty)

Wait for

request at

maintenance station
or by express courier
contract number’

%,
2
2y
ET g, W
z 8 e Qe
2

Wait for Repair -]
acceptance etation) P P epaire
<,
* 2
o % &
s, S
component %, &
arrives (a) %é % o
#
R &
i epair
E!:J"a“utgm lack component (b] (regional é?\'
’ headquarters) $
&

component

arrives (b) c
5 3
unable to repair o, 28
(not US or EU resident) " B &
%o, Sa Z
component @/7/{ 2| universiT,
’ | DEGLI STUDI
arrives () © DELL'AQUIL

Repair
(main
headquarters)

DISIM

o Sometimes they are not memoryless as they should be

o transitions from a state must only depend on the starting state
o instead, often it depends also on the path leading to the state

(memory)
o e.g., "Wait for component” need to remember which
component...
o Some outgoing transitions may be missing, i.e. some input is
not considered from some state
o Three possible cases:
o don't care transition, that input is impossible in that state,
e.g., because of some physical constraint
o error transition, goes to some common error-handling
procedure
o self transition
°

Though they may be “completed”, also a ser%ﬂf‘ il ,HFSS““ ‘

be useful

©

Each transition should be covered
o could be seen as a (precondition, postcondition) pair...

o Transition coverage: all transitions are covered

#execd transitions
#all transitions

Looks similar to white-box testing, but here:
o it may be applied in advance, thus you decide an acceptable
C, and generate test case specifications accordingly
o this is not directly a CFG, as it may represent something at
much more higher level: ok also for integration or system
testing

o Unsurprisingly, Cr =

©

o Final result is test cases specifications involving transitions
o obtaining test cases could be not simple

o depends on the specific program under test’%m,w\ m
OB B

Wait for
retuming

NO
Maintenance

a . b #e
P o 02 o | . retum
o or, o
n‘a“‘i, s e (coy, '_%6(, ,
[\

Maintenance
{no warranty)

Wait for

request at

maintenance station
or by express courier
contract number’

%,
2
2y
ET g, W
z 8 e Qe
2

Wait for Repair -]
acceptance etation) P P epaire
<,
* 2
o % &
s, S
component %, &
arrives (a) %é % o
#
R &
i epair
E!:J"a“utgm lack component (b] (regional é?\'
’ headquarters) $
&

component

arrives (b) c
5 3
unable to repair o, 28
(not US or EU resident) " B &
%o, Sa Z
component @/7/{ 2| universiT,
’ | DEGLI STUDI
arrives () © DELL'AQUIL

Repair
(main
headquarters)

DISIM

T-Cover States numbers refer to
TC-1 0-2-4-1-0 Figure 14.2. For example,
TC-2 0-5-2-4-5-6-0 TC-1 represents the path
TC-3 0-3-5-9-6-0 (0,2), (2,4), (4,1), (1,0).
TC-4 0-3-5-7-5-8-7-8-9-7-9-6-0

Though the book says it is complete, it is not: coverage is approx.
95% as transition (8, 6) is missing

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o For small FSS, also paths may be considered, especially if they
are semiformal

o single state path coverage criterion: all non-loop paths

o single transition path coverage criterion: all paths in which
each transition is taken just once

o interior boundary loop coverage: for all loops, exercise the loop
the minimum, the maximum, and some intermediate number
of times

o the corresponding coverage ratios may be defined

o Especially useful when states do not fully describe the system
status

Wait for
retuming

NO
Maintenance

a . b #e
P o 02 o | . retum
o or, o
n‘a“‘i, s e (coy, '_%6(, ,
[\

Maintenance
{no warranty)

Wait for

request at

maintenance station
or by express courier
contract number’

%,
2
2y
ET g, W
z 8 e Qe
2

Wait for Repair -]
acceptance etation) P P epaire
<,
* 2
o % &
s, S
component %, &
arrives (a) %é % o
#
R &
i epair
E!:J"a“utgm lack component (b] (regional é?\'
’ headquarters) $
&

component

arrives (b) c
5 3
unable to repair o, 28
(not US or EU resident) " B &
%o, Sa Z
component @/7/{ 2| universiT,
’ | DEGLI STUDI
arrives () © DELL'AQUIL

Repair
(main
headquarters)

DISIM

T-Cover States numbers refer to

TC-1 0-2-4-1-0 Figure 14.2. For example,
TC-2 0-5-2-4-5-6-0 TC-1 represents the path
TC-3 0-3-5-9-6-0 (0,2),(2,4), (4,1), (1,0).
TC4 0-3-5-7-5-8-7-8-9-7-9-6-0

o single state path coverage criterion: e.g., 0-2-4-5-6 is missing

o single transition path coverage criterion: e.g., 0-2-4-1-0-5-2 is
missing

o interior boundary loop coverage: e.g., 0-2-4-1-0-2-4-1 is
missing

o Augmented DFS in which:

o each time an already visited state is reached, the entire stack
is output, plus the visited state

o maintain a set of all transitions visited

o assume you have the set of all transitions

o when the coverage is enough, stop the DFS

o Of course, not on-the-fly, the graph is in memory in advance

o not a problem, these are man-made (relatively) small models
o composition between different FSMs is rarely used

o Augmented DFS in which:

o each time an already visited state is reached, the entire stack
is saved in a set P

o the visited state is appended only if it is not already in the
stack

o post-process P so that w € P implies VpinP.7 is not a prefix of

p
o output P

o might stop before if coverage is already enough

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Augmented DFS in which:
o visited states check is replaced with visited transitions check
o each time an already visited transition is reached, the entire
stack is saved in a set P
o the visited transition is appended only if it is not already in
the stack
o post-process P so that m € P implies VpinP.7 is not a prefix of
0
o output P
o might stop before if coverage is already enough

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Augmented DFS in which:

o visited states check is replaced with visited transitions check
o each time an already visited transition is reached, the entire
stack is saved in a set P

o the visited transition is appended only if it is not already in
the stack

o post-process P so that m € P implies VpinP.7 is not a prefix of
p

o further post-process P so that, for each m € P, the suffix for =
which is a loop is detected

o repeat such loop as many times as given

©

©

()

©

()

FSMs may be useful also for generating inputs values

In this case, they are designed by the test engineers and used
as a model for generating the inputs
Useful for sequences of inputs, thus either:
o strings, which includes files and DB contents
o some software service continuously accepting inputs (e.g.,
controllers or servers in client-server model)
o in this latter case, also the input timing may be output
o could also be used online, instead of performing a
pre-computation

Alternative to Category-Partition and Catalog-Based Testing

Similar to generating from a grammar (see b% hema,

Any printable space

exit

space

space

Any printable

exit

NIVERSITA DISIM
GLI STUDI 0
LLUAQUILA

o Sometimes it could be possible to derive a grammar from
specifications

o regular expressions or annotated context-free grammars (in
BNF, Backus-Naur Form)
o it could be already present as such: e.g., to describe a search
pattern
o XML schema may be easily translated into BNF
o Very good to represent inputs of varying and unbounded size,
with recursive structures

o Want a test case? simply generate a string from the grammar!

o Similar to a walk in a graph: how to choose from many
possible grammar productions?

Advanced search: The Advanced search function allows for searching elements in the Web site
database.

The key for searching can be:

a simple string, i.e., a simple sequence of characters
a compound string, i.e.,

e astring terminated with character *, used as wild character, or

e a string composed of substrings included in braces and separated with com-
mas, used to indicate alternatives

a combination of strings, i.e., a set of strings combined with the Boolean operators
NOT, AND, OR, and grouped within parentheses to change the priority of oper-
ators.

Examples:

laptop The routine searches for string “laptop”

{DVD*,CD*} The routine searches for strings that start with substring “DVD” or “CD”
followed by any number of characters.

NOT (C2021%) AND C20* The routine searches for strings that start with substring
“C20” followed by any number of characters, except substring “21.” @ oism

\\/@3/ DELL AQUILA

(search) ::= (search) (binop) (term) | {search) | (term)
(binop) ::: |[or]

(term) = (regexp) | (search)

(regexp) = Char (regexp) | Char ||{|{choices) |

(choices) ::= (regexp) | (regexp) [(choices)

<search>

<search> <binop> <term>

not <search> and (<search>)
<telm> <search> <bin‘op> <term>
<rengp> <telm> o‘r <reg‘exp>
Char <||’egexp> <rege‘xp> Cr‘mr
{<cho‘ices>} Cl‘lar

<regexp>, <choices>

* <regexp>

Char

DISIM

<?xml version="1. 0" encoding="1S0-8859-1" ?>
<xsd:schema xmIns:xsd="http: //www.w3.0rg/2000/08 /XMLSchema" >

< xsd:annotation>>
<xsd:documentation>
Chipmunk Computers - Product Configuration Schema
Copyright 2001 D. Seville, Chipmunk Computers Inc.
</xsd:documentation>
< /xsd:annotation>

<xsd:element name="Mode 1" type="ProductConfigurationType"/>

<xsd:complexType name="ProductConfigurationType">
<xsd:attribute name="model Number"
type="xsd:string" use="required"/>
<xsd:element name="Component "
minoccurs=" 0" maxoccurs="unbounded" >
<xsd:sequence> B
<xsd:element name="Component Type" type="string"/> ‘
<xsd:element name="ComponentvValue" type="string"/>

Model) = (modelNumber) {compSequence) {optCompSequence)

Component) (compSequence) \
OptionalComponent) (optCompSequence) \

ComponentType) (ComponentValue)

compSequence) =

optCompSeqitence) :=

e

(

(

(

(Component) =
(OptionalComponent) ::= {ComponentType)
(modelNumber)
(ComponentType)

(

ComponentValue)

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

o Productions may be different and guide the choice
o want many short test cases? choose production with many
non-terminals first
o want few long test cases? choose production with few
non-terminals first
o of course, there are intermediate cases
o Production adequacy criterion: each production must be

exercised at least once in generating the test case

__ #execd productions
o of course, CP ~ #all productions

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Boundary condition grammar-based adequacy criterion: each
production must be exercised at least m and at most M times
in generating the test case

o productions must be labeled by bounds

o Probabilistic grammar-based adequacy criterion: a probability
is attached to each production

o generation follows the given probability

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Model

compSeql limit=16
compSeq2
optCompSeq1 limit=16
optCompSeq2

Comp

OptComp

modNum

CompTyp

CompVal

(Model) ::= (modelNumber) (compSequence) (optCompSequence)
(compSequence) ::= (Component) (compSequence)

(compSequence)

(optCompSequence) ::= (OptionalComponent) (optCompSequence)
(optCompSequence)

(Component) ::= (ComponentType) (ComponentValue)

(Optional Component) ::= (ComponentType)

(modelNumber)

(ComponentType)

(ComponentValue)

DISIM

o From a functional specification to a decision table
o Possible intermediate step: from the specification, write a
Boolean formula
o first order logic: boolean combinations of propositions
o To be done when a (part of a) specification is clearly based on
some complex Boolean formula

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Pricing: The pricing function determines the adjusted price of a configuration for a particular
customer. The scheduled price of a configuration is the sum of the scheduled price of
the model and the scheduled price of each component in the configuration. The adjusted
price is cither the scheduled price, if no discounts are applicable, or the scheduled price
less any applicable discounts.

There are three price schedules and three corresponding discount schedules, Business,
Educational, and Individual. The Business price and discount schedules apply only if the
order is to be charged to a business account in good standing. The Educational price and
discount schedules apply to educational institutions. The Individual price and discount
schedules apply to all other customers. Account classes and rules for establishing business
and educational accounts are described further in [....]

A discount schedule includes up to three discount levels, in addition to the possibility of
“no discount.” Each discount level is characterized by two threshold values, a value for
the current purchase (configuration schedule price) and a cumulative value for purchases
over the preceding 12 months (sum of adjusted price).

Educational prices The adjusted price for a purchase charged to an educational account in good
standing is the scheduled price from the educational price schedule. No further discounts
apply.

Busines

account discounts Business discounts depend on the size of the current purchase as
well as business in the preceding 12 months. A tier 1 discount is applicable if the sched-
uled price of the current order exceeds the tier 1 current order threshold, or if total paid
invoices to the account over the preceding 12 months exceeds the tier 1 year cumulative
value threshold. A tier 2 discount is applicable if the current order exceeds the tier 2 cur-
rent order threshold, or if total paid invoices to the account over the preceding 12 months
exceeds the tier 2 cumulative value threshold. A tier 2 discount is also applicable if both
the current order and 12 month cumulative payments exceed the tier 1 thresholds.

Individual discounts Purchase by individuals and by others without an established account in
good standing is based on current value alone (not on cumulative purchases). A tier 1
individual discount is applicable if the scheduled price of the configuration in the current
order exceeds the tier 1 current order threshold. A tier 2 individual discount is applicable
if the scheduled price of the configuration exceeds the tier 2 current order threshold.

Special-price nondiscountable offers Sometimes a complete configuration is offered at a spe- I\ijzii’\{ D“S‘T 2

cial, non-discountable price. When a special, nondiscountable price is available for a

configuration, the adjusted price is the nondiscountable price or the regular price after

any applicable discounts, whichever is less.

Output is "no discount” IFF

(
A
A
v
A
A
A

individual account

current purchase > tier | individual threshold

special offer price < individual scheduled price)
business account

current purchase > tier 1 business threshold

current purchase > tier 1 business yearly threshold
special offer price < business scheduled price)

Corresponds to fourth column in the first table and second column
in the second table (next slide)

Education Individual
EduAc T T F F F F F F
BusAc - - F F F F F F
CP>CTl | - - F F T T
YP>YTI | - - - - - - - -
CP>CT2 | - - - - F F T T
YP>YT2 | - - - - - - - -
SP > Sc F T F T - - - -
SP =Tl - - - - F T - -
SP > T2 - - - - - - F T
Out Edu | SP ND | SP | TI | SP| T2 | SP
Business
EduAc - - - - - - - - - - - -
BusAc T T T T T T T T T T T T
CP>CTl | F F T T F F T T - - - -
YP>YTI | F F F F T T T T - - - -
CP>CT2 | - - F F - - - - T T - -
YP>YT2 |- |- |- |- |E|E |- |- |- |- |T|T
SP > Sc FE |1 |- |- |- |- |-1-1-71-1-"/1-
SP>TI | - S 5 < I I < s A I I IO P
SP>T2 |- - - - |- |F T |F T |F|T
Out ND | SP | TL | SP | T1 | SP| T2 | SP | T2 | SP | T2 | SP
Constraints
at-most-one(EduAc, BusAc) at-most-one(YP < YT1, YP > YT2) IS .
YP>YT2=YP>YTI at-most-one(CP < CT1, CP > CT2) S
CP>CT2 = CP>CTIl at-most-one(SP < T1, SP > T2)

SP > T2 = SP>TI1

Abbreviations

EduAc
BusAc
CP > CTlI
YP > YTI
CP > CT2
YP > YT2
SP > Sc
SP>TI1
SP > T2

Educational account

Business account

Current purchase greater than threshold 1

Year cumulative purchase greater than threshold 1
Current purchase greater than threshold 2

Year cumulative purchase greater than threshold 2
Special Price better than scheduled price

Special Price better than tier 1

Special Price better than tier 2

Edu
ND
Tl
T2
SP

Educational price
No discount

Tier 1

Tier 2

Special Price

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o A decision table directly corresponds to a Boolean formula of
the form A (A2, 8i)) — v = x)
o v is a variable representing the output of some part of the
program, and x; the desired outcome
o typically, some enumerated value
o n+ 1 columns, m-+1 rows

o first column lists all “basic conditions” by,..., by
o last row is for values of v
o other heading are possible to ease table understanding

o each f3;; is either

o bj, if the entry i, in the table is T
o —b;, if the entry 7,/ in the table is F
o void, if the entry i, in the table is don’t care

o easy to transform in conjunctive normal form:

n i e
N (Vjma By Vv = i) SRE) =
o each column i (rule) corresponds to AT, 3; BB vi'=5;) s

o Tables are typically augmented with constraints
o other Boolean formulas on b;, typically excluding invalid
combinations
o most typical constraint are abbreviated, e.g., at-most-one or
exactly one
o Thus, the overall formula is
AN ((AZ1Big) = v =xi) A N1 Ci
o e.g., if C; is an at-most-one(B) constraint, being
B C {bl,...,bm}, then C; = /\Zzl Zj | beB Dj’e <1
o A new table can be written by taking into account the
additional constraints
o essentially, this entails fixing some don’t cares

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Education

Individual

EduAc T T
BusAc - -
CP>CTL | - -
YP>YTI | - -
CP>CT2 | - -
YP>YT2 | - -
SP > Sc F T
SP > Tl - -
SP > T2 - -

F
F

F
F

Out Edu | SP

Business

EduAc

BusAc

CP>CT1
YP > YTI1
CP>CT2
YP>YT2 | - -
SP > Sc F T
SP > Tl - -
SP > T2 - -

mma
mme

RSN

e

=}

N

&1

-

Out ND | SP

Tl

SP

Constraints

at-most-one(EduAc, BusAc)

YP>YT2= YP>YTI
CP>CT2=CP>CTI1
SP > T2 = SP>TIl

at-most-one(YP < YT1, YP > YT2)
at-most-one(CP < CT1, CP > CT2)

at-most-one(SP < T1, SP > T2)

E.g.:. BusAc
to F in the
first table

o Basic condition adequacy criterion: one test case specification
for each column in the table.
o don't cares replaced with any value, but without violating the
additional constraints
o unless the table has already been completed
o Compound condition adequacy criterion: one test case
specification for each combination of truth values of basic
conditions
o entails 2™ test cases specification, only for small tables
o recall: m is the number of table rows
o table is used only to compute the corresponding output value

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

Modified Condition/Decision Criterion (MC/DC)

o similar, but not the same to the structural approach with the
same name
o indeed, it cannot be the same as the result is not a boolean...

o First, some new columns must be added to the original table
o but if they are already present, you can skip them

()

For each column ¢ and for each b; in ¢ which is not don't
care:
o obtain a new column equal to ¢, but where b; is negated w.r.t.
c

©

Finally, one test case specification for each resulting column
o similar to the basic condition, but on the augmented table

| UNIVERSITA DIsiM,
\ DEGLI STUDI o
\ DELL'AQUILA

Education Individual
EduAc T T F F F F F F
BusAc - - F F F F F F
CP>CTl | - - F F T T
YP>YTI | - - - - - - - -
CP>CT2 | - - - - F F T T
YP>YT2 | - - - - - - - -
SP > Sc F T F T - - - -
SP =Tl - - - - F T - -
SP > T2 - - - - - - F T
Out Edu | SP ND | SP | TI | SP| T2 | SP
Business
EduAc - - - - - - - - - - - -
BusAc T T T T T T T T T T T T
CP>CTl | F F T T F F T T - - - -
YP>YTI | F F F F T T T T - - - -
CP>CT2 | - - F F - - - - T T - -
YP>YT2 |- |- |- |- |E|E |- |- |- |- |T|T
SP > Sc FE |1 |- |- |- |- |-1-1-71-1-"/1-
SP>TI | - S 5 < I I < s A I I IO P
SP>T2 |- - - - |- |F T |F T |F|T
Out ND | SP | TL | SP | T1 | SP| T2 | SP | T2 | SP | T2 | SP
Constraints
at-most-one(EduAc, BusAc) at-most-one(YP < YT1, YP > YT2) IS .
YP>YT2=YP>YTI at-most-one(CP < CT1, CP > CT2) S
CP>CT2 = CP>CTIl at-most-one(SP < T1, SP > T2)

SP > T2 = SP>TI1

SP | T2

T1

SP

Tl

SP

SP

ND

SP

SP

SP

Edu

SP | T2

SP

T1

Edu

SP

SP

ND

T2

SP

SP

T
F
F

F
F

Edu

F

T
T

SP | T2

EduAc

BusAc

CP > CT1
YP > YTI

CP > CT2

=YT2

SP > Sc

SP>TI

SP>T2

Out

EduAc

BusAc

CP > CT1
YP > YTI
CP > CT2

>YT2

SP > Sc

SP > Tl

SP>T2

Out

o Sometimes it could be possible to derive a control flow graph
from specifications

o often with coarse granularity, e.g., nodes are single
computations or computation steps
o example: interactions with a database
o as opposed to before, where CFG is extracted from code
o The statement adequacy criterion becomes node adequacy
criterion

o The branch adequacy criterion does not change name

o Otbher criteria seen for code control flow graphs may be
applied as well

o however, statement and branch are usually ok at this

ranularit -
g€ Y | [o
. R i

There is a very simple way: inputs are linked to branches

o Thus, test case specification will be of the form:

o “make this condition be true/false”
o “make this enumeration be equal to this value”

As usual, choose actual values to “realize” such test cases will
not be easy

o very program-dependent

However, it could account for executions which could be

missed by functional or structural testing
j» NE “l\l\lk%!l\ DISIM
A/ Bl e

/s

Process shipping order

)
(_CostOfGoods < MinOrder

(imernationa shipping address domestic\v

preferred shipping method = air
freight OR expedited air freigh

preferred shipping method = land freight OR

expedited land freight OR overnight air

yes
hcredit card

alculate intemnational shipping charge (calculate domestic shipping charge)
total charge = goods + shipping
no individual customer no:

method of payment

obtain credit card data: number, name on card, expiration date)

r—(billing address = shipping address

yes

payment status = valid
enter order
prepare receipt

invalid order

invoice

DISIM

T-node

Case | Too Ship Ship Cust Pay Same ccC
small where method type method addr valid

TC-1 | No Int Air Bus CcC No Yes

TC-2 | No Dom Air Ind CC - No (abort)

Abbreviations:

Too small CostOfGoods < MinOrder ?

Ship where Shipping address, Int = international, Dom = domestic

Ship how Air = air freight, Land = land freight

Cust type Bus = business, Edu = educational, Ind = individual

Pay method CC = credit card, Inv = invoice

Same addr Billing address = shipping address ?

CC Valid Credit card information passes validity check?

| UNIVERSITA
\ | DEGLI STUDI
\ DELLAQUILA

T-branch
Case | Too Ship Ship Cust Pay Same CC
small where method type method addr valid
TC-1 | No Int Air Bus CcC No Yes
TC-2 | No Dom Land - - - -
TC-3 | Yes - - - - - -

TC-4 No Dom Air - - - -
TC-5 No Int Land — - - —

TC-6 No - - Edu Inv - -

TC-7 | No - - - CcC Yes -

TC-8 No - - - CC - No (abort)

TC-9 No - - - CC - No (no abort)
Abbreviations:

Too small CostOfGoods < MinOrder ?

Ship where Shipping address, Int = international, Dom = domestic

Ship how Air = air freight, Land = land freight

Cust type Bus = business, Edu = educational, Ind = individual

Pay method CC = credit card, Inv = invoice o
Same addr Billing address = shipping address ? e

CC Valid Credit card information passes validity check?

o Of course, white-box testing...
o Conceptually, same as procedural software

Q generate functional tests from specification
Q add selected structural test cases
Q work from unit testing (typically, single classes...) and
small-scale integration testing toward larger integration
@ system testing
o However, some techniques are tailored for OO software, to
tackle OO software peculiarities
o short methods (e.g., getters and setters)
o sequences of same-class methods calls are important
o polymorphism, dynamic binding, generics, overloading...

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

State-dependent behaviour
o values for attributes of classes are important
o inputs of methods do not tell the full story
o often, methods may have no inputs at all!

0 e.g., the is_right method of the Triangle class does not
have inputs

o but the result depends on the current values of the attributes

o thus, testing for is_right does require generating input
values, even if it does not have any input

Encapsulation

Qo

suppose a scale method is present in class Triangle: how
to check if the result is ok?

as another example, suppose the Triangle class had
coordinates of points (as private)

suppose a rotate method is present

using some external class for testing, how to check the result
of rotate, given that attributes are private?

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o How to cope with these former problems?

o Solution 1: modify the code

add friend functions (only C++, not available in Java)
add getter and/or setter methods

make (some) members public

should be avoided, unless such modifications are kept in
production

o tested and released code should be the same

© 06 0 o

o Solution 2: consider sequences of calls

o very program-dependent
o if not possible, then there is some error for sure...

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Inheritance

o here the problem is: supposing | tested the super class, should
| test all methods in the subclass?

o new methods: of course, test is required

o overridden inherited methods: same as new methods

o

@ non-

©

©

©

however, may call ancestor in some cases, for which re-test
could be avoided

overridden inherited methods:

most does not require re-test

however, in some cases re-test is needed

e.g., for side effects: a protected member of the super class
may be used in the method, and be modified by the subclass...

may entail generating new test cases [~ = - m
\ % J B! i

Polymorphism

class Anima
public void anim
System.out.printl e imal e

ic void main(String[] args

Animal myAnimal
Animal myPig =
Animal myDog = new
myAnimal imals
myPig.animal

myDog. ani

DISIM

Polymorphism and dynamic binding
o polymorphism: seems to call superclass methods, but subclass
methods are invoked

o dynamic binding: again, which function is called is not known
at compilation time

o Java: using reflection or lambdas
o C++: using pointers (and lambdas)

o need to test the same method on different class instances

o actually same as for inherited overridden methods, but

invocation is different
j» Ae “ UNIVERSITA DISIM
O/ Bt o

may need to be tested
o cannot be instantiated: only (non-abstract)
subclasses may
o thus, contexts might be created for testing
purposes only
functions with same name but different arguments
o consider all possibilities
functions and classes where arguments/return
types are parameters
o consider all possibilities, given testing budget

additional (exceptional) control flow

o

o design test cases to raise excep%m.‘w .

Actual Needs and Deli d
Constraints N User Acceptance (alpha, beta test) PZ(I:\Ir’g:e
System System Test System
Specifications Integration
Analysis /
\'—| Review
Subsystem Integration Test Subsystem
Design/Specs
<ﬂ Analysis /
Review
~ Unit/Component| /-—— Unit/
Specs Module Test | Components

A&T Activities that
require specific
approaches for OO SW

User review of external behavior as itis

determined or bel

comes visible

DISIM

Mainly 3 stages, from single class to system integration
o intraclass: testing each class in isolation
o also called unit testing
o interclass: testing class integration
o also called integration testing

o system and acceptance: independent of design

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Repeat the following for each class:

o if it is abstract, derive a set of instantiations

o if not available, do this for testing only
o for each method in the class, determine whether to test it or
not

including constructors and inherited methods
do not consider polymorphism or dynamic binding here
inheritance allows re-use of test cases
inheritance allows to skip testing of some methods

inheritance allows to skip testing of some inputs of some
methods

© ©6 ©6 0 o

o for the more complex methods in the class, design tests as for
procedural software

o may entail considering some members as fu%\ inputs m ‘
\ DELL'AQUILA Sy

Repeat the following for each class (continued):
o derive test cases basing on a state machine model of the class
behaviour, if available
o that is: consider sequence of calls to the class methods
o state and transition coverage for testing
o kind of black-box (functional) testing inside white-box testing
o generate additional test cases considering structural testing
techniques
o again for sequences of calls
o methods may be added/removed in implementation w.r.t.
specification
o derive test cases for exception handling
o both exceptions which are only thrown and exceptions which
are caught and handled
o derive test cases for polymorphic methods andsfor generi
o as for abstract classes: may require to |nsta%é \legﬁ\pe:@m

for testing purposes only

o Inheritance cannot introduce errors per se
o though it is the base for polymorphism

o However, it can be exploited to understand when tests can be
reused

©

To this aim, distinguish methods of a subclass in:
o new: not present in the superclass

o present = same name & same parameters (implies same
return)

o recursive: present in the superclass and left unchanged
o redefined: present in the superclass and body changed

Also distinguish if the method was abstract in the superclass
o abstract new, recursive, redefined N

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

o To start with, you always begin testing from the superclass

o if a hierarchy is present, go to the higher superclass
o class diagram is needed

o Thus, recursive methods need not to be retested

o abstract recursive only tested with stubs, as an implementation
is lacking

o (Abstract) redefined and new methods always need to be
retested

o for non-abstract redefined, it may be possible to skip some
inputs
o To keep track of what to retest, a testing history table may be
used

o When a new subclass is considered, the table_is.scanned to
. . | | UNIVERSITA DISIM
understand which methods needs retesting |) uiliil @ g

o Testing history tables are organized as follows:
rows are methods

[+}
o columns are of 4 types:
o intraclass functional
o intraclass structural (not for abstract)
o interclass functional (not for local)
o interclass structural (not for local or abstract)
o “local” methods are those which only call other methods of
the same class
o entries are the corresponding test set, plus a flag

o executable/not executable

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

/** One line item of a customer order (abstract). */
public abstract class Lineltem

/** The order this Lineltem belongs to. */
protected Order order;

/** Constructor links item to owning order. Must call in subclasses. */
public Lineltem(Order _order) { order = _order; }

/** Stock-keeping unit (sku) is unique key to all product databases. */
public String sku;

/** Number of identical units to be purchased. */
public int units=1;

/** Has this line item passed all validation tests? */
public abstract boolean validitem();

/** Price of a single item. */
public abstract int getUnitPrice(AccountType accountType);

/** Extended price for number of units */
public int getExtendedPrice(AccountType accountType)
{ return units * this.getUnitPrice(accountType);

// Dimensions for packing and shipping (required of all top-level items)
/** Weight in grams "/

public abstract int getWeightGm().

/** Height in centimeters */

public abstract int getHeightCm();

/** Width in Centimeters. */

public abstract int getWidthCm();

/** Depth in Centimeters */

public abstract int getDepthCm(); DISIM_

Method H Intra funct ‘ Intra struct H Inter funct ‘ Inter struct
Lineltem (TSL,Y) (TSL,Y) (TSt3,Y) | {TSia,Y)
validltem (TS,1,N) {(—,—) (—,—) {(—,—)
getUnitPrice {T'Sgup1,N) {(—,—) (TSgup3,N) {(—,—)
getExtendedPrice (TSexp1.Y) | (TSexp2,Y) (TSexp3,Y) | (TSexps,Y)
getWeightGm (T'Sewg1,N) (=) (== (=)
getHeightCm (TSenc1,N) {(—,—) (—,—) {(—,—)
getWidthCm (TSgwc1,N) {(—,—) (—,—) {(—,—)
getDepthCm TSty | ()))

Legend: (T'S;,B) refers to test set [, to be executed if B =Y.

(—,—) means no applicable tests.

Of course, to test the two with Y a subclass is needed, possibly

only for testing purposes

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

/** One line item of a customer order (abstract). */
public abstract class Lineltem

/** The order this Lineltem belongs to. */
protected Order order;

/** Constructor links item to owning order. Must call in subclasses. */
public Lineltem(Order _order) { order = _order; }

/** Stock-keeping unit (sku) is unique key to all product databases. */
public String sku;

/** Number of identical units to be purchased. */
public int units=1;

/** Has this line item passed all validation tests? */
public abstract boolean validitem();

/** Price of a single item. */
public abstract int getUnitPrice(AccountType accountType);

/** Extended price for number of units */
public int getExtendedPrice(AccountType accountType)
{ return units * this.getUnitPrice(accountType);

// Dimensions for packing and shipping (required of all top-level items)
/** Weight in grams "/

public abstract int getWeightGm().

/** Height in centimeters */

public abstract int getHeightCm();

/** Width in Centimeters. */

public abstract int getWidthCm();

/** Depth in Centimeters */

public abstract int getDepthCm(); DISIM_

public abstract class Compositeltem extends Lineltem {

e
* A composite item has some unifying name and base price
* (which might be zero) and has zero or more additional parts,
* which are themselves line items.
i

private Vector parts = new Vector();

e
* Constructor from Lineltem, links to an encompassing Order.
i

public Compositeltem(Order _order) {

super(_order);

public int getUnitPrice(AccountType accountType) {
Pricelist prices = new Pricelist();
int price = prices.getPrice(sku, accountType);
for (Enumeration e = parts.elements(); e.hasMoreElements();)

Lineltem i = (Lineltem) e.nextElement();
price += i.getUnitPrice(accountType);

return price;

DISIM

Method H Intra funct ‘ Intra struct H Inter funct ‘ Inter struct
Lineltem TS, Y) | (TSim.Y) (TSi3.Y) | (TSpa.¥)
validltem {TSy1,N) {(—,—) (—,—) {(—,—)
getUnitPrice (TS,up1,N) (—,—) (T'Seup3:N) {(—,—)
getExtendedPrice (TSexp1,Y) (TSexp2,Y) (TSexp3,Y) | {T'Sgxps,Y)
getWeightGm (TSewa1,N) {(—,—) (—,—) {(—,—)
getHeightCm ({TSenc1,N) (—,—) (—,—) {(—,—)
getWidthCm TSewerN) (=) (== (=)
getDepthCm {T'Sepc1,N) {(—,—) (—,—) {(—,—)
Legend: (TS;,B) refers to test set I, to be executed if B =Y.

(—,—) means no applicable tests.

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

Method [Intra funct | Intrastruct [Inter funct | Inter struct
Lineltem TSNy | (TSa,Ny || TSimN) | (TSua,N)
validltem (TS,11,N) (=,—) (—=,—-) (—,—)
getUnitPrice TSqur1,Y) | (TS ¥) || TSqura,¥) | (TSgpss¥)
getExtendedPrice || (TSgxpi,N) | (TSexp2,N) || (TSexp3,N) | (T'Sgxps;N)
seWeightGm | (TavatM) | (o) | o) | (oo
getHeightCm (TSgrici,N) (=,-) (—,-) (—,—)
getWidthCm (T'Sgwci1,N) (=) (=-) (=)
getDepthCm (TSepci:N) (=-) (== (=)
Compositeltem (TSga YY) | (TSpypn.Y) (TSeazY) | (TSpys.Y)

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

Repeat the following for each class:

o if it is abstract, derive a set of instantiations

o if not available, do this for testing only
o for each method in the class, determine whether to test it or
not

including constructors and inherited methods
do not consider polymorphism or dynamic binding here
inheritance allows re-use of test cases
inheritance allows to skip testing of some methods

inheritance allows to skip testing of some inputs of some
methods

© ©6 ©6 0 o

o for the more complex methods in the class, design tests as for
procedural software

o may entail considering some members as fu%\ inputs m ‘
\ DELL'AQUILA Sy

Repeat the following for each class (continued):
o derive test cases basing on a state machine model of the class
behaviour, if available
o that is: consider sequence of calls to the class methods
o state and transition coverage for testing
o kind of black-box (functional) testing inside white-box testing
o generate additional test cases considering structural testing
techniques
o again for sequences of calls
o methods may be added/removed in implementation w.r.t.
specification
o derive test cases for exception handling
o both exceptions which are only thrown and exceptions which
are caught and handled
o derive test cases for polymorphic methods andsfor generi
o as for abstract classes: may require to |nsta%é \legﬁ\pe:@m

for testing purposes only

Two cases:
@ no state machine in specification, thus draw one from informal
specifications
o done for testing only, may need remapping for method names
o state machine diagram present in specification
o typically a UML statechart, may be more complicated because
of:
o superstates: to be replaced with a flattening
o considering all ingoing and outgoing transitions...
o in both cases, transitions in state machine diagram are usually
labeled with class methods
o thus, we obtain test cases based on sequences of calls

o some sense, it is more than unit testing... o
O Bt i

From Informal Specs to Transition Coverage
An Informal Specification of Class Slot

Slot represents a configuration choice in all instances of a particular model of computer.
It may or may not be implemented as a physical slot on a bus. A given model may have
zero or more slots, each of which is marked as required or optional. If a slot is marked as
“required,’ it must be bound to a suitable component in all legal configurations.

Class Slot offers the following services:

Incorporate: Make a slot part of a model, and mark it as either required or optional. All
instances of a model incorporate the same slots.
Example: We can incorporate a required primary battery slot and an optional sec-
ondary battery slot on the Chipmunk C20 laptop that includes two battery slots. The
C20 laptop may then be sold with one battery or two batteries, but it is not sold
without at least the primary battery.

Bind: Associate a compatible component with a slot. Example: We can bind slot primary
battery to a Blt4, BIt6, or BIt8 lithium battery or to a Bcdm4 nickel cadmium battery.
We cannot bind a disk drive to the battery slot.

Unbind: The unbind operation breaks the binding of a component to a slot, reversing the
effect of a previous bind operation.

IsBound: Returns true if a component is currently bound to a slot, or false if the slot is @ Disim

currently empty.
-

isBound
Not present Unbound Bound isBound
bind
unBind

TC-1: incorporate, isBound, bind, isBound
TC-2: incorporate, unBind, bind, unBind, isBound
Transition coverage = 100%

noModelSelected

selectModel(model)

deselectModel()
send modelDB: getModel(modellD, this)

/ modelSelected

addComponent(slot, component)

removeComponent(slot)

rKil fi ti
send modelDB: findComponent(workingConfiguration

send slot:bind() send slot:unbind()

isLegalConfiguration()
[legalConfig = true]

addComponent(slot, component) removeComponent(slot)

send modelDB: get_component()

send slot:bind send slot:unbind()

validConfiguration

addComponent etc are self-loops

noModelSelected

selectModel(model) deselectModel()

addComponent(slot, component) removeComponent(slot)

workingConfiguration /

———isLegalConfiguration()
[legalConfig=false]

deselectModel()

addComponent(slot, component)
addComponent(slot, component)
removeComponent(slot)

)/

validConfiguration

removeComponent(slot)

addComponent(slot, component

~——isLegalConfiguration()
[legalConfig=true]

Actions omitted for brevity
Two deselectModel, one selectModel

DISIM

Test Case TCy

selectModel(M1)
addComponent(S1,C1)
addComponent(S2,G2)
isLegalConfiguration()

Test Case TCp

selectModel(M1)
addComponent(S1,G1)
addComponent(S2,G2)
addComponent(S3,G3)
deselectModel(
selectModel(M1)
addComponent(S1,C1)
isLegalConfiguration()

Test Case TCp

selectModel(M1)
deselectModel()
selectModel(M2)
addComponent(S1,C1)
addComponent(S2,C2)
removeComponent(S1)
isLegalConfiguration()

Test Case TCg

selectModel(M1)
addComponent(S1,C1)
addComponent(52,C2)
addComponent(S3,C3)
removeComponent(S2)
addComponent(S2,C4)
isLegalConfiguration()

Test Case TC

selectModel(M1)
addComponent(S1,C1)
removeComponent(S1)
addComponent(S1,C2)
isLegalConfiguration()

| | UNIVERSITA pisim
\ | DEGLI STUDI
\ DELL'AQUILA ,

) remove
I

item
erderlnProgress

remove
item

get
discount

5_days

suspend

1 schedule
cancel
(no_charge) t

cancel
(no_charge)

DISIM

delivered

Test Case 7C,
add.ftem)
acd_item()
packagel)
et shipping cost(
get discount()
purchasef)

Test Case 7Cpy
addtem()
add jtem()
package()
get.shipping_cost()
get.discount()
purchas:
place.order()

package()
get.shipping.cost()
get.discount()

Test Case 7€
add.tem()
add._tem()
package()
et shipping cost()

address unknown()

Test Case TCy
a0d teml)
add itemi)
remove ftem()
add_itemi)
package()
get.shipping.cost()
get discount()

urchase()

place_order()
24 hours()

purchasel)
place_order()

Test Case T'Cy

package()
get.shippingcos()
get.discount)
purchase()
place_order()
schedule)
5.days()

‘address-unknown()

Test Case TC;
i

additem) 24_hours()
additem) 5.days()
package () schedulel)
gelshipping.cost) s
gt discourt) doliver()
purchase()
place.oder()
add_item()
package ()
getshipping.cost()
getdiscount()
purchase()
place.oder()
Test Case 7C
add_tom()
add.tom) Test Case T'C;
packagel) addtom)
get.shipping.cosi() add tom)
get.discount() package()
purchase() get.shipping.costl)
place.order() getdiscount()
sehodule() purchase ()
suspend() placo.ordor()
5 days() schedule()
schedule() cancel()
ship()
daliver()

get.shipping.cost()
get.discount()
purchase)
place_order()
schedule()
24 hours()
cancel(y

DISIM

Repeat the following for each class:

o if it is abstract, derive a set of instantiations

o if not available, do this for testing only
o for each method in the class, determine whether to test it or
not

including constructors and inherited methods
do not consider polymorphism or dynamic binding here
inheritance allows re-use of test cases
inheritance allows to skip testing of some methods

inheritance allows to skip testing of some inputs of some
methods

© ©6 ©6 0 o

o for the more complex methods in the class, design tests as for
procedural software

o may entail considering some members as fu%\ inputs m ‘
\ DELL'AQUILA Sy

Repeat the following for each class (continued):
o derive test cases basing on a state machine model of the class
behaviour, if available
o that is: consider sequence of calls to the class methods
o state and transition coverage for testing
o kind of black-box (functional) testing inside white-box testing
o generate additional test cases considering structural testing
techniques
o again for sequences of calls
o methods may be added/removed in implementation w.r.t.
specification
o derive test cases for exception handling
o both exceptions which are only thrown and exceptions which
are caught and handled
o derive test cases for polymorphic methods andsfor generi
o as for abstract classes: may require to |nsta%é \legﬁ\pe:@m

for testing purposes only

©

()

©

©

Integrate “black-box" testing: did we miss something?
Intraclass CFG

o CFGs for each method, connected by calls
For each add member value, consider all DU pairs in the
intraclass CFG
New test cases are of the form:

o start with a constructor
o pass through the definition
o end with the use without going through any other definition

All DU pairs adequacy criterion is typically used

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

@5 D)

(e
Eore = sowend (29) G
IR (oo gavvatel oo e) (25)
(22) T)

oG lnder S T (a7 (e removecemponeni nisonded) (&)
T)
=

s s (%)
Falser s
bind (5; False

(ou modein) (21)
1

(GperDBI)

™y
(59

(et () @
oo

(o eonpont ity (D)]
G () (e () oo (£2)

D)
TS D)
@)
e
T) @= &

e

if (legalConfig) (7.2 .
e
(s (o7
(EheckConfigurtion(); Fase (D) D)
meioos (D)

Gt s (19)

DISIM

Faise

oaConiaams (52)

©

Derive test cases basing on a state machine model of the class
behaviour, if available

o that is: consider sequence of calls to the class methods

o state and transition coverage for testing

o kind of black-box (functional) testing inside white-box testing

©

Generate additional test cases considering structural testing
techniques
o again for sequences of calls
o methods may be added/removed in implementation w.r.t.
specification

©

Derive test cases for exception handling

o both exceptions which are only thrown and exceptions which
are caught and handled

Derive test cases for polymorphic methods a r generies _
o instantiate a superclass in all possible ways \ A%,/ St S

©

o Exceptions are by themselves an help to testing
o in procedural programming, overlooking error codes returned
by functions ofter occurs
o exceptions handling mitigates this problem, as an exception is
certain to interrupt normal control flow
o cost: implict control flows are added
o Building a CFG with exceptions is impracticable
o also complicated by the fact that exception binding for

handlers is dynamic
\ / DEGLI STUDI ienze delln
\ RESHLRTNE! ;

Techniques by Exception type:
o Program errors (bad subscript or casts etc)
o can usually by discarded: we are already looking for them in
the previous steps
o if a custom handler is present, test it by creating a class which
forces the given error (stub)
o Abnormal cases (memory exhausted, file not present etc)
o raise them and check the handler if present
o again, a stub might be necessary
o Exception propagation
o A calls B which raises E, but A does not handle E
o E will go up in the calls stack, till when an handler is found (if
not, the application is closed, which is bad)

o check at least some of such exception chain%} pvRsiTA m -
DELL'AQUILA Sy

©

©

If the possible morphs or binding are just a few, simply
consider them all
However, in some cases there may be many combinations

o cases explosion, cannot be considered exhaustively
You may need to imagine possible instations if you are testing
a library rather than a complete program

A variation of Pairwise Testing may be used!

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

ic void main(String args
Animal myAnimal = new Anim

Animal myPig = new g
Animal myDog = new Dog

myAnimal
myPig.anim
myDog. anim

DISIM

3 points of choice:
o instantion of Credit
o instantion of Account

o instantion of CreditCard
abstract class Credit {

abstract boolean validateCredit(Account a, int amt, CreditCard c);

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

15 vs 45 (exhaustive)

Account Credit creditCard
USAccount EduCredit VISACard
USAccount BizCredit AmExpCard
USAccount individualCredit | ChipmunkCard
UKAccount EduCredit AmExpCard
UKAccount BizCredit VISACard
UKAccount individualCredit | ChipmunkCard
EUAccount EduCredit ChipmunkCard
EUAccount BizCredit AmExpCard
EUAccount individualCredit | VISACard
JPAccount EduCredit VISACard
JPAccount BizCredit ChipmunkCard
JPAccount individualCredit | AmExpCard
OtherAccount | EduCredit ChipmunkCard
OtherAccount | BizCredit VISACard
OtherAccount | individualCredit | AmExpCard

| | UNIVERSITA
{ | DEGLI STUDI
\ DELLAQUILA

o “Generics” in Java, “templates” in C++

o typical example: an array where the type of each entry may be

decided when instantiating the object

o Only class instantiations can be tested

o as for abstract methods

o cannot know in advance which type will be used

o thus, some reasonable forecast should be used

o use Pairwise Testing if the parametric types are more than one
o Testing may be split in two parts:

o showing that some instantiation is correct
o showing that all permitted instantiations behave “identically”

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

Identify which classes should be tested together (cluster)

o typically, because they call each other methods

o either statically (on the class) or dynamically (on classes
instances)

o The previous step is to be performed incrementally:

o if a cluster of 5 classes is identified, first consider pairs, then
triplets, etc

o we may say that OO helps in identifying units for unit and
integration testing...

©

Functional test for the given cluster
o also considering data flow between calls

©

Integrate the previous intraclass exception handling test cases
with interclass exception handling test cases _

. | he “l\l\ll?\l!\ DISIM
Same for the polymorphism % ReGH STl S

()

o Two main workhorses: use/include relation and
sequence/collaboration diagrams

o Use/include is very simple to derive from UML Class
Diagrams

o

typically drawn with simple vertical lines: the class on the top
depends on the one on the bottom

o Once you have it, simply start testing from the bottom

[+]

classes which does not depend on any other else with classes
which only depend on those

difficult to generalize, experience helps

need to select a subset of interactions among the possible
combinations of method calls and class states

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

1 0.

Ij‘ltl . 1
USAccount OtherAccount))
[customercare] ir
[|

[[9paccount | [EvAccount | [ukAccount |

1 1

[moden] [siows

[|
[

[componentos|

pisim
NN N Lo

CSVdb

CustomerCare

1

Customer

Package

JPAccount

EUAccount

UKAccount

USAccount

OtherAccount

Order

—

Meodel

PriceList

Component

ModelDB

Slot C:

DB

SlotDB

NIVERSITA DISIM

©

©

()

©

©

Sequence diagrams may be used to design test which cover all
possible exchanges

Furthermore, some interaction in the sequence diagram may
be replaced by another, to check if errors are handled correctly

State diagrams should cover all possible behaviours
Instead, sequence diagrams are a selection made by designers
Thus, they are very valuable for testing

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

tDB

ChiComp:Ci

lotDB

ChiSlat

lot

C20slot

found
T S

nent

Com

7

1

1

1

|

|

|

|

1

i
extract(C20)

C20Com;

ChiMod: ModelDB
T
I
I
|
I

getModel(C20)

S
A

C20:Model
T
I
|

selectModel()
addComponent(HDE0)
tail
addComponent(HD20)
success

0:Order
T
i

o Classification of methods as:

o inspectors: only read the class state
o modifiers: only write the class state

o inspectors/modifiers: both

o getters are inspectors, setters are modifiers

o ‘“class state”: at least one variable in the class state

o By going bottom-up in the whole class dependencies:
o invocations of modifier methods and inspector/modifiers of

leaf classes are considered as definitions
o invocations of inspectors and inspector/modifiers in other

classes are treated as uses
\ / DEGLI STUDI ence dettn
\ B :

o Proceed as in definition-use pairs

o That is: we want the raw inputs
o Keeping specification and generation separate aids in reducing
impact of small changes in the software development

o Some test case specifications are relatively simple to be
completed

o e.g., those coming from partition/category method
o sometimes, they are already with raw inputs

o Others may require some other effort

o e.g. “a sorted sequence, length greater than 2, with items in
ascending order with no duplicates”

o Two or more test cases specifications may be dependent on

each other e
l%l N |

o A very general case specifications may be difficult to be
implemented
o e.g., “traverse these transitions in this program state machine”
— find the data which cause that transitions
o model checking may be used!
o say the transitions are impossible and collect the
counterexample...

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Though it is indecidable, some tools are actually able to
output test cases for code

o typically, for C code
o typically, incomplete tools, but better than nothing

o CBMC: given a C code, generates test cases for some types of
coverage
o especially MC/DC
o free, for any platform

o Reactis: given a C code, generates test cases for all types of
coverage

o commercial, for Windows

o Unit testing only, with some support for call coverage

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Executing tests is not always straightforward
o General goal: once we have test cases, we should perform the
last steps as automatically as possible
o not always possible or practical, e.g., if we want to check a
GUI...
o Mastering the following techniques is important:
o creating scaffolding for test execution
o (automatically) distinguishing between correct and incorrect

results
o run-time support for generating and managing test data

o e.g., a database storing information about each test case

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Literally, the temporary structures erected around a building
during construction or maintenance

o Practically, it is any software which is developed to test some
other software

a software for scaffolding of Java programs is, e.g., JUnit

similar tools exist for other languages, e.g., phpUnit

o for more complex testing, developing a dedicated software may

be needed

could require an high cost, up to half of the code developed for

the entire project

©

©

©

o Deciding to create a new software for scaffolding or not
depends budget

o Scaffolding may be divided into:

for calling programs

for functions called by the program
for the overall testing environment

to check results

adding statements for

monitoring/measuring
create a database to record info like:

Qo

o

©

test suites for different program releases
how many times (across different program
releases) a test case has been executed and
with which result

test suite creators

o We want to test from early stages: very few components will
be available
o may be avoided if design takes testing into consideration, so
components are implemented in an order which enables testing
o cannot be done in all cases
o Stubs replace (unavailable) portions of the program to be
tested
o are “abstractable” ones in a given testing stage: instead of
actually calling a DB, we return some fixed values...
o Easiest form of stub: mock
o replace a function with another function taking the same
parameters and outputting a fixed value
o “output” in a broad sense: also print a string or set global
variables

o in many cases, mock can be generated auto b,alHy 'ﬁrom
source code <

o For many cases, input for some ITF is provided from the
beginning
o as in the examples of the collapsing spaces and the roots of a
second degree equation

o Then, we simply have to wait for the ITF to return its output

o In such cases, a driver is needed to run the software with the
given input

o The best solution is to embed in the driver a test cases
specification interpreter

o In such a way, a driver is able to run each separate test case

o Program-dependent, though automatable for unit testing

(egV JUnIt) >%\\I\IR\H\ Us'A
. R =

o What about the cycle needed to take each test case T in the
test suite S and run the driver on T7 We need test harnesses
o They are responsible also for:
o checking the result, if oracles are used

o easing the results check, if oracles cannot be used
o we will be back on oracles
o any further input coming from the environment and not
provided since the beginning
o e.g., a controller for an airplane reads air speed every t
milliseconds: the test harness must provide such info
o e.g., a network traffic generator to check a Web application

resilience
\ / DEGLI STUDI ence dettn
\ TR :

o also part of test case specification

o Again part of scaffolding (harness): how to check results of
test cases?
o human intervention to be avoided whenever possible:
expensive and unreliable
o unless we are testing usability of GUIs...

o A test oracle is something distinguishing correct from
uncorrect test results
o automated test oracles: it is a software
o Partial oracle: one with false positives
o sometimes good because cost-effective, especially for early
testing

o Oracle with false negatives: to be avoided

negative : | veares
\ DELL'AQUILA

o requires manual inspection to understand it is.a true or falsi
| DISIM

o Comparison-based oracles
o test cases are (input, output) pairs, so oracle simply check if
result is equal to expected output
o may be not bit-to-bit equal and still be ok
o this is typically the case for test harness
o How to have correct (input, output) pairs?
o could seem a self-referencing solution...
o depends on the application and the problem
o Solution 1: create an output and produce a corresponding
input
o sorting: create a sorted list and permute it...
o needs some adjustment w.r.t. Category-Partition and
Catalog-based Testing
o e.g.: for the collapsing spaces, first generate a single-spaced

string, and then repeat some spaces... =~
o e.g.: for the equation roots, generate at ran%s riarb am

then compute ¢ = —(ar? + bry)...

o Solution 2: use some other software
o may be already available, but not usable in production code
o e.g., due to intellectual rights, or because it is too slow
o may be written by test engineers
o e.g., for the collapsing spaces, a (slower) function may be
written by only looking at the specification
o the important thing is that it is independent by the program to
be tested
o not necessarily better: it may be ok if both the program and
the oracle fail rarely enough
o in such a way, there is time to inspect both programs to see

which is right whenever the output differs
% By M

o but failures must be independent

Solution 3: use humans, but only once
Especially ok for visual responses of graphical interfaces

The human judges the output, and its evaluation is recorded
together with the input

Starting from that point, any other re-execution of the test
remembers the human evaluation

Not always simple or cost-effective: small differences in a
graphical interface should be ok but may trigger a false

negative

o Oracles need not to be comparison-based: we may implement
some software able to check the output

o using specifications, of course
o Checking if an output is correct is often easier than producing
it
o e.g., routing problem, but also the collapsing spaces and 2nd
order equation roots computation we saw before...
o Special case of partial oracles: drop optimality

o e.g., in optimal routing problem, we only check if the output
route is correct, not if it is optimal
o often combined with comparison-based oracle:
o cheap, partial oracle for large test suite
o heavy test suite with precomputed outputs/ﬂor a subset of the

suite | I s
\ / DEGLI STUDI ence dettn
\ REQLLSTuD! ;

o Self-checks: assertions in the code

o typically from the original designers, but could be added by
testers

o better an assertion failure than a BSoD
o Lightweight assertions may be left in production code
o so, usable for testing

o Heavyweight assertions may be left in code and compiler
directives can be used to optimize them out

o use them in testing, then strip them out

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Test Case

Test Input

Test Harness
with Comparison Based
Oracle

Expected Output

Compare

Program
Under Test

Test Harness

Test Case

Program

* Notification :

i Under Test
; Test Input : naer 1es R ,
3 i ‘ Self-checks : ailure

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

Stubs only needed if we want to test a part of the program
when some other related part is not ready

©

Drivers actually launch the experiments
o not different from procedural testing

©

Oracles are more difficult than procedural testing due to
incapsulation

©

Technique one: allow oracle to read private members
o or add getters and setters
o not a good idea: tested and delivered software would be
different!
o exploit language features: friend classes in C++
o or package visibility in Java (also putting oracles in the same

package) %\ - -
A) B r

o Technique two: consider equivalence between objects
o especially useful for arrays and similar
o an array is similar to a linked list: important is that they have
the same values...
o the oracle uses the equivalent data structure, if the original one
is not available bacause private
o One sequence of method invocations is equivalent to another
if the two sequences lead to the same object state

o This does not necessarily mean that their concrete

representation is bit-for-bit equal
j’ e “ UNIVERSITA DISIM
A/ Bl e

.) Scenario TCg Scenario TCg>
Test ::z;{ﬁ;el " selectModel(M2) selectModel(M2)
addCom on(em)SW I addComponent(S1,C1) addComponent(S1,C1)
P (51,01) isLegalConfiguration() addComponent(S2,C2)

addComponent(S2,C2)
isLegalConfiguration()
deselectModel()
selectModel(M2)
addComponent(S1,C1)
isLegalConfiguration()

isLegalConfiguration()

EQUIVALENT NON-EQUIVALENT

DISIM

©

Have a human inspect the code
o of course, the code must be inspectable
o something could be done also automatically, see, e.g., lint and
purify
o Not too much, it is boring
o two hours a day
o valuable for juniors, they see production code
o reinspection is as hard as the first one

©

Organize the work, perform the work, speak with developers

©

Perform the work: typically with checklists

©

Pair programming in Agile method: inspection included in
implementation phase)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Java ChecKlist: Level 1 inspection (single-pass read-through, context independent)

FEATURES (where 10 look and how to check):
liem (what to check)

FILE HEADER: Are the following items included and consistent?

comments|

‘Author and current mamntainer identity

Cross reference to design entil

Overview of package structure, i the class is the
principal entry point of a package

FILE FOOTER: Does it include the following items?

comments|

Revision fog to manimum of 1 year or at least (0
most recent point release, whichever is longer

IMPORT SECTION: Are the following requirements satisjied?

comments|

Bricl comment on cach import with the exception
of standard set: java.io *, java.util *

Each imported package corresponds © a depen-
dence in the design documentation

CLASS DECLARATION: Are the following requirements satisfied”

Comments.

“The visibility marker matches the design document

“The construcior is explicit (if the class is not sfafic)

The visibility of the class is consistent wilh (he de-
sign document

CLASS DECLARATION JAVADOC: Does the Javadoc header include;

Comments

One sentence summary of class functionality

Guaranteed invariants (for data structure classes)

instructions

CLASS: Are names compliant with the following rules?

comments|

Cluss or mmierface: Capitalized Wi EachIncrnal-
WordCapitalized

Special case: If class and interface have sume base
name, distinguish s ClassNamelfe and Class-
Namelmpl

Exceplion: ClassNameEndsWilhExcepion

Constants (Final):
ALL_CAPS_WITH_UNDERSCORES

Ficld name: caps AfierFirstWord,
name must be meaningful outside of context

IDIOMATIC METHODS: Are namies compliant with the following rules?

comments|

Method name: capsAfterFirstword
Local variables: capsAfterFirstWord
Name may be short (e.g., i for an integer) if scope
of declaration and use s less than 30 lines

DISIM

Factory method for X: newX

Converter (0 X: X

Gelter for atribule - getX0;

Selter for attribute x: void selX

Java Checklist: Level 2 inspection (comprehensive review in context)

URES (where (0 look and how o check):
Item (what to check)

DATA STRUCTURE CLASSES: Are the following mquire.
ments satisfied?

comments

e class keeps a design secrel

e substitalion principle i respected: Instanceof class canbe used
in any context allowing instance of superelass or interface

Methods are correcily classified as constructors, modifiers, and ob-
servers

here is an abstract model for understanding bel

avior

he structural invariants are documented

FUNCTIONAL (STATELESS) CLASSES: Are the following

requirements satisfied?

comments

The substitution principle i respected: Instance of class can be used
in any context allowing instance of superclass or interface

METHODS: Are the following requirements satisfied ?

comments

he method semantics are consistent with similarly named meth-
“put” method should be semantically consistent
with “put” methods in standard data structure libraries

Usage examples are provided for nontrivial methods

FIELDS: Are the following requirements satisfied?

comments

The field is necessary (cannol be a method-local variable)

Visibility & protected or prvate, or there is an adequate and docu-
mented rationale for public access

Comment deseribes the purpose and of the field

Any constraints or invariants are documented in either field or class

DESIGN DECISION.
fied?

Are the following v quirements satis

comments

Each design decision 1s hidden in one class o @ minimum number
of closely related and co-located c!

sses

ses cncapsulating a design decision do not unnecessaril
pend on other design decisions

de-

Adequate usage examples are provided, particularly of idiomatic
sequences of method calls

d referenced where appropriate

Design patiems are use

TTa patiern s
pattern

The code o s (o the

o Of course, the overall testing strategy must be documented
o exactly as it is the case for software

o For software development, you have many frameworks
available
o UML diagrams or similar

o There does not exist a testing equivalent

o Different companies represent their testing strategy using
proprietary methods

o We can however say which elements are typically present in a

testing strategy or test plan
\ / BECEAQUILA e

o System Under Verification

o may be composed by many subsystems
o includes at least one between code and documentation

o Testing objectives and rationale

o which parts should be checked first and/or more thoroughly
o Scope and limitation of the test plan

o you cannot test everything

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Sources of expertise for test planning and execution
o both economic and technical

o Sources of test data
o may be automatically (randomly or deterministically)
generated, taken from some Web site and/or book, etc

o Test environments and their management
o scaffolding description

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Testing strategy
o given a development stage...
o early, first prototype, first release, etc
o ... decide which testing methodology use

o static testing, white-box testing, black-box testing,
performance testing

o could also take into account not only the application, but its
environment, e.g., connectivity

o Overall testing schedule

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o For each development phase defined in the testing strategy,
document the following:
o the development phase
o early, first prototype, first release, etc
o requirements for starting testing
o e.g.: software have successfully compiled
o requirements for ending testing
o e.g.: 10% coverage acquired, all test passed
o test case specifications

o together with writing schedule, executing schedule and
analysis/reporting schedule

o will be back later on this

o core of the testing phase

o Many items will need refinement during the process itself, due
to:

o errors being discovered at high stage: correcting them cause
changes in lower stages, also testing is affected

o same for modifications not strictly coming from errors

o new releases of software

o for early drafts of the test plan, there may not be enough
information, thus many draft releases are needed

