Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

o Explicit and symbolic model checking are good, but many
systems cannot be checked by neither

o RAM and/or execution time are over soon

o Symbolic model checking directly makes use of boolean
formulas through OBDDs
o What about using CNF, so that SAT solvers can be
employed?
o modern SAT solvers are pretty good in many practical

instances
o notwithstanding the SAT problem is of course still

NP-complete
O/ Beiaiont i

o One big problem: computing quantization, AND, OR and
negation of a CNF is not straightforward

o especially because instances from Model Checking are HUGE
o also checking equivalence of two CNF is not trivial, as CNF is
not canonical

o However, if we set a limit k to the length of paths
(counterexamples), then most of this is not needed any more
o copy R for k times, with small adjustments

o This is actually bug hunting: if the result is PASS, then there
is not an error within k steps

o but there could be one at k +1...
o however, this is better than simple testing, as errors within k

steps can be ruled out e
\ RESHLRTNE! ;

In Bounded Model Checking (BMC) we are given a KS
S =(S,I,R,L), an LTL formula ¢, and k € N (also called
horizon)

©

o Let us consider the LTL property ¢ = Gp, being p € AP

o We want to find counterexamples (if any) of length exactly k

o If x=xi,...,x, with n = [log, |S|], let us consider
20,k
o S [« Gp iff the following CNF is unsatisfiable:
k—1 o
1(xXO) A\ R, xUHDY A =p(xK))
i=0

o otherwise, a satisfying assignment is a coun%amp‘f@ .

o Note that each x(7) encloses n boolean variables, thus we have
n(k + 1) boolean variables in our SAT instance

o the longest our horizon, the biggest our SAT instance
o Note that / and R must be in CNF, which is not difficult
o NuSMV does this pretty well

o It is straightforward to modify the previous formula to detect
counterexamples of length at most k

o However, it is usually preferred to perform BMC with
increasing values for k

o practically, till when the SAT solver goes out of computational
resources
o some approaches exist to estimate the d/ameter of a KS...

‘\\I\IRSH A DIsiM,
BEGLISTUDI et
DEL

©

In order to perform BMC of a generic LTL property, we need
to introduce LTL bounded semantics

o Sk ¢ iff Vi € Path(S). 7 =« ¢
o so that, for any k, S =k ¢ implies S = ¢
o For a given m, m =4 ¢ iff 1,0 =4 ¢, which is usually
re-written as m =9 ¢
o For a given 7, we only consider 7|x; then, either 7|, contains
a self loop (i.e., it is lasso-shaped) or not
o recall that 7|, contains k transitions and k + 1 states

o 7 is lasso-shaped iff 7 = po®
there exists | < k s.t. p=n|;—1 and o = #(l)...7w(k)
p is empty for | =0

mis a (k,/)-loop (more generally, a k-loop)

of course, R(w(k),n(/)) must hold \%‘ B m ‘

© 06 0 o

o Let L(m, I, k) hold iff m has a (k, /)-lasso
o Let L(m, k) hold iff m has a (k,/)-lasso for some | < k

o If L(m, k) holds, we may consider 7(i) for i > k

o this is possible because we know 7 to have a lasso
o namely, if L(m,/, k) holds, then
i+1 if i < k

succ(i) = (i mod k) + 1 otherwise

.—)._—)0—).- == -}‘_—>.
i / i

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

©

Vr € Path(S),i < k. 7 =) true

o m =i piff pe L(r(i))
(*] W}:L S ANDy iff T ':;(q)l/\ﬂ":’;(b,
o m |~ iff m £
: T if L(m, k)
= Xo = k - ’
° { i<kATE® otherwise
ol ®1Ud, =

Am > i T EP G AVI < j< m.ow) & if L(m, k)
Ji<m<k: ﬂ}:f(”d>2/\Vi§j<m.7r}:Jk¢'1 otherwise

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Vi>imE & if L(n,k)
ff otherwise
. . > .' [.
ol Fb— 3‘]._1.7T}:Jkd). |fL(7r?k)
Ji<j<k.mkE, ® otherwise
o note that Gp # —(F—p) with bounded semantics!

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Similarly to safety properties, for an LTL formula ¢, S =« ¢
iff the following formula is unsatisfiable:

k—1 k
(XA A R XTENA((SL()ATI2)V (LU, KAL)
i=0 1=0

o to be translated into a CNF before being passed to a SAT
solver
o L(/, k) and L(k) do not depend on a 7: they represent the
possibility that a path is a lasso

o Thus, L(/, k) = R(x), x") and L(k) =/ L(I, k)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Formula is unsatisfiable for SAT solver:
k

k—1
1XNA A RD XTFNA(SLOAT=IN)V (/LU KAL)
i=0 =0

o We now have to define [¢]%, [¢]2,
o [¢]% is in AND with =L(k), thus for lasso-free path
o [l is in AND with L(k), thus for (k,/)-loops

o So that LTL bounded semantics is retained
o for lasso shaped cases, we may look at what is before i when

translating [}
AR/ Bl e

o [true]} = [[trueﬂ};,, = tt

o [pl = [pl}, = p(x")

o [-®]} =[]}

° [[“DM,/ = ﬁ[[q’ﬂ?(,/

o [®1 A &) = [®1]] A [@2]

o [®1 APy, = [Pl A [P
P [elt ifi<k

o [Xeli = { ff otherwise

o [Xo, = [@]3”

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o [o1Ud]) = Vi ([0 A N2 [91]5)
o recall that 3is OR and V is AND

° [[¢1U¢2ﬂk/—vj /([[¢2ﬂk//\/\ [[cbl]]k/) '
VJ':/ ([[¢2]]k,/ N Am:iﬂ¢1ﬂk,/ A /\J,;zll[[q)l]m/)

o note that the second big OR is not empty only if / <i—1, i.e,
if the loop starts before i

o thus, it deals with the case in which we have to “imagine” the
infinite path

o for the lasso-shaped case, bounded and unbounded semantics
must be equivalent

o essentially, it also adds the case in which ®, does not hold
from i to k, but it holds before, in the loop part

o of course, ®; must hold from i to k and till ¢,

._)._).Q. ‘ ‘ UNIVERSITA DISIM
. \ | bEG) -
| i k\ A DELL'AQUILA :

©

[[GCD]H(=ff
o “globally” cannot be guaranteed without loops!
) B :
[GP]L s = Aj—mingin [®Tk

o but if we have a loop, it is sufficient to have ® globally inside
the loop
o plus the prefix, if any

[Foli = VoL,
[Fol, = \/_;'(:min{i,l} [®T.

o no problem for “eventually”

©

©

©

©

Also R should be given, no more expressible using U

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o The following sequence is as before:

O read_model
Q flatten hierarchy
O encode_variables
o Then, build_boolean_model instead of build_flat_model

o it uses a different representation, better suited for BMC

o Then, bmc_setup instead of build model
o instead of creating OBDDs, computes /(x(®) A R(x(©), x(1)),

ready to be unfolded
B) B 2

o Finally, check_1tlspec_bmc -k k

o

for k times, creates the input for SAT and invokes the SAT
solver

o if an error is found, it may stop before k
o option -o of check_1tlspec_bmc also dumps the SAT

instance in DIMACS format

o this also entails negating the given LTL formula
o ‘“corrected”, more intuitive semantics: Gp is true on a

non-lasso 7 if V1 < i < k.p(w(i)) holds

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Till now, we had to write a model of the system under
verification (SUV)

o There are some cases in which we can use the actual SUV,
with little or no instrumentation
o it is possible to translate a digital circuit to a NuSMV
specification in a completely automated way (not difficult to
imagine how...)
o here, we want to deal with a rather surprising application of
BMC: model checking a C program!
o CBMC is a model checker performing BMC of C programs
with little or no instrumentation
o thus, the input for CBMC is a C program (possibly with some
added statements)
o an integer k may be required too

o again, output is PASS or FAIL (with a coun%ﬂamp‘lu) m ‘

o We now give the main ideas of how it works

Command Line

Front End
C Parser | Type Checking |—{ GOTQ Conversion |—> Static Analw-s &
Instrumentation
]
+
. . Counterexample
Symbolic Execution —{ CNF Conversion |— SAT Solver — unAn;ZI:sis P

DISIM

No GUI, you have to invoke CBMC from a shell

o one mandatory argument: the C file
o -h or —-help for a complete list of options

the standard system parser, e.g., gcc

o this includes the preprocessor for define and
other macros

o for all symbols (constants, variables and
functions), keep track of the corresponding types
o including the number of bits needed

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

for our purposes, we skip this

o used to optimize the symbolic execution part on
loops

resolve function pointers

o replaced with a case over all possible functions

o as a result, we have a static call graph

o generally speaking, static analysis is a further
methodology for software verification

o hybrid between model checking and proof
checkers

o here it is used in a lightweight way

o instrumentation: some assertions for invalid

pointer operations and memory
automatically added “i"”\"““”* =

o It is composed of two parts: loop unwinding and Static Single
Assignment (SSA) form
o An additional parameter k is needed as the unwinding number

o CBMC may also try some heuristics to guess the maximum
unwinding for each loop

o If many loops are present, it is possible to set different
unwinding numbers for each loop

o The unwinding number is usually interpreted as mandatory:
an assert is added at the end

o It is possible to avoid this with option —-partial-loops

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

while (x <= 4) {
y += £(3);
X++;

b

if (x <= 4) {
y += £(3);
X++;
if (x <= 4) {
y += £(3);
X++;
if (x <= 4) {
y += £(3);
X++;
/* with --partial-loops
this is not added */
assert (! (x <= 4));

} | UNIVERSITA DISIM
\ | DEGLI STUDI ity e
} \ DELL'AQUILA !

o Each assignment is treated separately, generating a copy of
the left side
o If we only have n assignments, then n is our bound for BMC
o if such assignments are inside a loop with unwinding k, then
the size is kn
o generally speaking, you have to sum on all loops and all
loop-free assignments

X1=X0+¥0;
s if(x1!=1)
. if(x!=
if(x!=1)
X2=2;
x=2;
else
else -
X3=x1+1;
xX++;
x4=(x1!=1) TX2:X3;
aSSEI‘t(X<=3) ; UNIVERSITA DIsIM
assert (x4<=3); BrETSHEY o

o What abount pointers? e.g.,

int *p = malloc(n*sizeof (int));
pln]l = 0;
plo] = 1;

o They become functions:
Ax. 0if x =nelse (1if x =0else L)

o Then, it is similar to the assignment on x4 in the previous slide

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o The idea is again to have a CNF
1(xO) A NZg ROAD XUFIY AN, =pi(x2()
o ais the number of assertions, and «a(/) tells on which variables
is defined the i-th assertion
o of course, digital circuit logics (and ITE...) have to be used

X1=X0+Yo;
if (x1!1=1)
_ C := x1=x0+y0 A
X9=2;
1 X2=2 A
e.se — x3=x1+1 A
x3=x1+1; ®4=(x1=1)7%2: X3
P:=x4 <3
x4=(x '=1) ?x0:%3; =
assert (x4¢=3);

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

Command Line

Front End
C Parser | Type Checking |—{ GOTQ Conversion |—> Static Analw-s &
Instrumentation
]
+
. . Counterexample
Symbolic Execution —{ CNF Conversion |— SAT Solver — unAn;ZI:sis P

DISIM

