
Software Testing and Validation
A.A. 2024/2025

Corso di Laurea in Informatica

Bounded Model Checking

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Towards Bounded Model Checking

Explicit and symbolic model checking are good, but many
systems cannot be checked by neither

RAM and/or execution time are over soon

Symbolic model checking directly makes use of boolean
formulas through OBDDs

What about using CNF, so that SAT solvers can be
employed?

modern SAT solvers are pretty good in many practical
instances
notwithstanding the SAT problem is of course still
NP-complete

Towards Bounded Model Checking

One big problem: computing quantization, AND, OR and
negation of a CNF is not straightforward

especially because instances from Model Checking are HUGE
also checking equivalence of two CNF is not trivial, as CNF is
not canonical

However, if we set a limit k to the length of paths
(counterexamples), then most of this is not needed any more

copy R for k times, with small adjustments

This is actually bug hunting: if the result is PASS, then there
is not an error within k steps

but there could be one at k + 1...
however, this is better than simple testing, as errors within k
steps can be ruled out

Bounded Model Checking of Safety Properties

In Bounded Model Checking (BMC) we are given a KS
S = ⟨S , I ,R, L⟩, an LTL formula φ, and k ∈ N (also called
horizon)

Let us consider the LTL property φ = Gp, being p ∈ AP

We want to find counterexamples (if any) of length exactly k

If x = x1, . . . , xn with n = ⌈log2 |S |⌉, let us consider
x (0), . . . , x (k)

S |=k Gp iff the following CNF is unsatisfiable:

I (x (0)) ∧
k−1∧
i=0

R(x (i), x (i+1)) ∧ ¬p(x (k))

otherwise, a satisfying assignment is a counterexample

Bounded Model Checking of Safety Properties

Note that each x (i) encloses n boolean variables, thus we have
n(k + 1) boolean variables in our SAT instance

the longest our horizon, the biggest our SAT instance

Note that I and R must be in CNF, which is not difficult

NuSMV does this pretty well

It is straightforward to modify the previous formula to detect
counterexamples of length at most k

However, it is usually preferred to perform BMC with
increasing values for k

practically, till when the SAT solver goes out of computational
resources
some approaches exist to estimate the diameter of a KS...

LTL Bounded Model Checking

In order to perform BMC of a generic LTL property, we need
to introduce LTL bounded semantics

S |=k φ iff ∀π ∈ Path(S). π |=k φ
so that, for any k , S |=k φ implies S |= φ

For a given π, π |=k φ iff π, 0 |=k φ, which is usually
re-written as π |=0

k φ

For a given π, we only consider π|k ; then, either π|k contains
a self loop (i.e., it is lasso-shaped) or not

recall that π|k contains k transitions and k + 1 states

π is lasso-shaped iff π = ρσω

there exists l ≤ k s.t. ρ = π|l−1 and σ = π(l) . . . π(k)
ρ is empty for l = 0
π is a (k , l)-loop (more generally, a k-loop)
of course, R(π(k), π(l)) must hold

LTL Bounded Semantics for π |=i
k φ

Let L(π, l , k) hold iff π has a (k, l)-lasso

Let L(π, k) hold iff π has a (k, l)-lasso for some l ≤ k

If L(π, k) holds, we may consider π(i) for i > k

this is possible because we know π to have a lasso
namely, if L(π, l , k) holds, then

succ(i) =

{
i + 1 if i < k
(i mod k) + l otherwise

LTL Bounded Semantics for π |=i
k φ

∀π ∈ Path(S), i ≤ k . π |=i
k true

π |=i
k p iff p ∈ L(π(i))

π |=i
k Φ1 ∧ Φ2 iff π |=i

k Φ1 ∧ π |=i
k Φ2

π |=i
k ¬Φ iff π ̸|=i

k Φ

π |=i
k XΦ =

{
π |=i+1

k Φ if L(π, k)

i < k ∧ π |=i+1
k Φ otherwise

π |=i
k Φ1 U Φ2 ={

∃m ≥ i : π |=m
k Φ2 ∧ ∀i ≤ j < m. π |=j

k Φ1 if L(π, k)

∃i ≤ m ≤ k : π |=m
k Φ2 ∧ ∀i ≤ j < m. π |=j

k Φ1 otherwise

LTL Bounded Semantics for π |=i
k φ

π |=i
k GΦ =

{
∀j ≥ i . π |=j

k Φ if L(π, k)
ff otherwise

π |=i
k FΦ =

{
∃j ≥ i . π |=j

k Φ if L(π, k)

∃i ≤ j ≤ k. π |=j
k Φ otherwise

note that Gp ̸≡ ¬(F¬p) with bounded semantics!

Bounded Model Checking of LTL Properties

Similarly to safety properties, for an LTL formula φ, S |=k φ
iff the following formula is unsatisfiable:

I (x (0))∧
k−1∧
i=0

R(x (i), x (i+1))∧((¬L(k)∧J¬φK0k)∨(
k∨

l=0

L(l , k)∧J¬φK0k,l))

to be translated into a CNF before being passed to a SAT
solver

L(l , k) and L(k) do not depend on a π: they represent the
possibility that a path is a lasso

Thus, L(l , k) = R(x (k), x (l)) and L(k) =
∨k

l=0 L(l , k)

Bounded Model Checking of LTL Properties

Formula is unsatisfiable for SAT solver:

I (x (0))∧
k−1∧
i=0

R(x (i), x (i+1))∧((¬L(k)∧J¬φK0k)∨(
k∨

l=0

L(l , k)∧J¬φK0k,l))

We now have to define JφK0k , JφK0k,l
JφK0k is in AND with ¬L(k), thus for lasso-free path
JφK0k,l is in AND with L(k), thus for (k , l)-loops

So that LTL bounded semantics is retained

for lasso shaped cases, we may look at what is before i when
translating JφKik

Bounded Model Checking of LTL Properties

JtrueKik = JtrueKik,l = tt

JpKik = JpKik,l = p(x (i))

J¬ΦKik = ¬JΦKik
J¬ΦKik,l = ¬JΦKik,l
JΦ1 ∧ Φ2Kik = JΦ1Kik ∧ JΦ2Kik
JΦ1 ∧ Φ2Kik,l = JΦ1Kik,l ∧ JΦ2Kik,l

JXΦKik =

{
JΦKi+1

k if i < k
ff otherwise

JXΦKik,l = JΦKsucc(i)k,l

Bounded Model Checking of LTL Properties

JΦ1UΦ2Kik =
∨k

j=i (JΦ2K
j
k ∧

∧j−1
m=iJΦ1Kmk)

recall that ∃ is OR and ∀ is AND...

JΦ1UΦ2Kik,l =
∨k

j=i (JΦ2K
j
k,l ∧

∧j−1
m=iJΦ1Kmk,l)∨∨i−1

j=l (JΦ2K
j
k,l ∧

∧k
m=iJΦ1Kmk,l ∧

∧j−1
m=lJΦ1Kmk,l)

note that the second big OR is not empty only if l ≤ i − 1, i.e.,
if the loop starts before i
thus, it deals with the case in which we have to “imagine” the
infinite path

for the lasso-shaped case, bounded and unbounded semantics
must be equivalent

essentially, it also adds the case in which Φ2 does not hold
from i to k, but it holds before, in the loop part
of course, Φ1 must hold from i to k and till Φ2

Bounded Model Checking of LTL Properties

JGΦKik = ff

“globally” cannot be guaranteed without loops!

JGΦKik,l =
∧k

j=min{i ,l}JΦKjk,l
but if we have a loop, it is sufficient to have Φ globally inside
the loop
plus the prefix, if any

JFΦKik =
∨k

j=iJΦKjk
JFΦKik,l =

∨k
j=min{i ,l}JΦKjk,l

no problem for “eventually”

Also R should be given, no more expressible using U

Bounded Model Checking in NuSMV

The following sequence is as before:
1 read model
2 flatten hierarchy
3 encode variables

Then, build boolean model instead of build flat model

it uses a different representation, better suited for BMC

Then, bmc setup instead of build model

instead of creating OBDDs, computes I (x (0)) ∧ R(x (0), x (1)),
ready to be unfolded

Bounded Model Checking in NuSMV

Finally, check ltlspec bmc -k k

for k times, creates the input for SAT and invokes the SAT
solver
if an error is found, it may stop before k
option -o of check ltlspec bmc also dumps the SAT
instance in DIMACS format
this also entails negating the given LTL formula
“corrected”, more intuitive semantics: Gp is true on a
non-lasso π if ∀1 ≤ i ≤ k .p(π(i)) holds

Bounded Model Checking of Programs

Till now, we had to write a model of the system under
verification (SUV)

There are some cases in which we can use the actual SUV,
with little or no instrumentation

it is possible to translate a digital circuit to a NuSMV
specification in a completely automated way (not difficult to
imagine how...)
here, we want to deal with a rather surprising application of
BMC: model checking a C program!

CBMC is a model checker performing BMC of C programs
with little or no instrumentation

thus, the input for CBMC is a C program (possibly with some
added statements)
an integer k may be required too
again, output is PASS or FAIL (with a counterexample)

We now give the main ideas of how it works

CBMC

CBMC

CLI Front End No GUI, you have to invoke CBMC from a shell

one mandatory argument: the C file
-h or --help for a complete list of options

C Parser the standard system parser, e.g., gcc

this includes the preprocessor for define and
other macros

Type Checking for all symbols (constants, variables and
functions), keep track of the corresponding types
including the number of bits needed

CBMC

GOTO Conversion for our purposes, we skip this

used to optimize the symbolic execution part on
loops

Static Analysis & Instrumentation resolve function pointers

replaced with a case over all possible functions
as a result, we have a static call graph
generally speaking, static analysis is a further
methodology for software verification
hybrid between model checking and proof
checkers
here it is used in a lightweight way
instrumentation: some assertions for invalid
pointer operations and memory leaks are
automatically added

CBMC: Symbolic Execution

It is composed of two parts: loop unwinding and Static Single
Assignment (SSA) form

An additional parameter k is needed as the unwinding number

CBMC may also try some heuristics to guess the maximum
unwinding for each loop

If many loops are present, it is possible to set different
unwinding numbers for each loop

The unwinding number is usually interpreted as mandatory:
an assert is added at the end

It is possible to avoid this with option --partial-loops

CBMC: Loop Unwinding with k = 3

while (x <= 4) {

y += f(3);

x++;

}

if (x <= 4) {

y += f(3);

x++;

if (x <= 4) {

y += f(3);

x++;

if (x <= 4) {

y += f(3);

x++;

/* with --partial-loops

this is not added */

assert(!(x <= 4));

}

}

}

CBMC: SSA

Each assignment is treated separately, generating a copy of
the left side

If we only have n assignments, then n is our bound for BMC

if such assignments are inside a loop with unwinding k, then
the size is kn
generally speaking, you have to sum on all loops and all
loop-free assignments

CBMC: SSA and Pointers

What abount pointers? e.g.,

int *p = malloc(n*sizeof(int));

p[n] = 0;

p[0] = 1;

They become functions:
λx . 0 if x = n else (1 if x = 0 else ⊥)

Then, it is similar to the assignment on x4 in the previous slide

CBMC: CNF Convertion

The idea is again to have a CNF
I (x (0)) ∧

∧k−1
i=0 R(x (i), x (i+1)) ∧

∧
i=a ¬pi (x (α(i)))

a is the number of assertions, and α(i) tells on which variables
is defined the i-th assertion
of course, digital circuit logics (and ITE...) have to be used

CBMC

