Software Testing and Validation A.A. 2024/2025 Corso di Laurea in Informatica

Bounded Model Checking

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

- Explicit and symbolic model checking are good, but many systems cannot be checked by neither
 - RAM and/or execution time are over soon
- Symbolic model checking directly makes use of boolean formulas through OBDDs
- What about using CNF, so that SAT solvers can be employed?
 - modern SAT solvers are pretty good in many practical instances
 - notwithstanding the SAT problem is of course still NP-complete

Towards Bounded Model Checking

- One big problem: computing quantization, AND, OR and negation of a CNF is not straightforward
 - especially because instances from Model Checking are HUGE
 - also checking equivalence of two CNF is not trivial, as CNF is not canonical
- However, if we set a limit k to the length of paths (counterexamples), then most of this is not needed any more

• copy R for k times, with small adjustments

- This is actually *bug hunting*: if the result is PASS, then there is not an error within *k* steps
 - but there could be one at k + 1...
 - however, this is better than simple testing, as errors within k steps can be ruled out

Bounded Model Checking of Safety Properties

- In Bounded Model Checking (BMC) we are given a KS
 S = ⟨S, I, R, L⟩, an LTL formula φ, and k ∈ N (also called *horizon*)
- Let us consider the LTL property $\varphi = \mathbf{G} p$, being $p \in AP$
- We want to find counterexamples (if any) of length exactly k
- If $x = x_1, ..., x_n$ with $n = \lceil \log_2 |S| \rceil$, let us consider $x^{(0)}, ..., x^{(k)}$
- $S \models_k \mathbf{G}p$ iff the following CNF is unsatisfiable:

$$I(x^{(0)}) \wedge \bigwedge_{i=0}^{k-1} R(x^{(i)}, x^{(i+1)}) \wedge \neg p(x^{(k)})$$

otherwise, a satisfying assignment is a counterexample

Bounded Model Checking of Safety Properties

- Note that each $x^{(i)}$ encloses *n* boolean variables, thus we have n(k + 1) boolean variables in our SAT instance
 - the longest our horizon, the biggest our SAT instance
- Note that I and R must be in CNF, which is not difficult
 - NuSMV does this pretty well
- It is straightforward to modify the previous formula to detect counterexamples of length *at most k*
- However, it is usually preferred to perform BMC with increasing values for k
 - practically, till when the SAT solver goes out of computational resources
 - some approaches exist to estimate the diameter of a KS...

LTL Bounded Model Checking

• In order to perform BMC of a generic LTL property, we need to introduce *LTL bounded semantics*

•
$$\mathcal{S} \models_k \varphi$$
 iff $\forall \pi \in \operatorname{Path}(\mathcal{S}). \pi \models_k \varphi$

- so that, for any k, $\mathcal{S} \models_k \varphi$ implies $\mathcal{S} \models \varphi$
- For a given π , $\pi \models_k \varphi$ iff π , $0 \models_k \varphi$, which is usually re-written as $\pi \models_k^0 \varphi$
- For a given π, we only consider π|_k; then, either π|_k contains a self loop (i.e., it is *lasso-shaped*) or not

• recall that $\pi|_k$ contains k transitions and k+1 states

- π is lasso-shaped iff $\pi = \rho \sigma^{\omega}$
 - there exists $l \leq k$ s.t. $\rho = \pi|_{l-1}$ and $\sigma = \pi(l) \dots \pi(k)$
 - ρ is empty for I = 0
 - π is a (k, l)-loop (more generally, a k-loop)
 - of course, $R(\pi(k), \pi(l))$ must hold

- Let $L(\pi, I, k)$ hold iff π has a (k, I)-lasso
- Let $L(\pi, k)$ hold iff π has a (k, l)-lasso for some $l \leq k$
- If $L(\pi, k)$ holds, we may consider $\pi(i)$ for i > k
 - $\,{\scriptstyle \bullet}\,$ this is possible because we know π to have a lasso
 - namely, if $L(\pi, I, k)$ holds, then

$$succ(i) = \begin{cases} i+1 & \text{if } i < k \\ (i \mod k) + l & \text{otherwise} \end{cases}$$

•
$$\forall \pi \in \operatorname{Path}(S), i \leq k. \pi \models_k^i \text{ true}$$

• $\pi \models_k^i p \text{ iff } p \in L(\pi(i))$
• $\pi \models_k^i \Phi_1 \land \Phi_2 \text{ iff } \pi \models_k^i \Phi_1 \land \pi \models_k^i \Phi_2$
• $\pi \models_k^i \neg \Phi \text{ iff } \pi \nvDash_k^i \Phi$
• $\pi \models_k^i X \Phi = \begin{cases} \pi \models_k^{i+1} \Phi & \text{if } L(\pi, k) \\ i < k \land \pi \models_k^{i+1} \Phi & \text{otherwise} \end{cases}$
• $\pi \models_k^i \Phi_1 \mathbf{U} \Phi_2 = \begin{cases} \exists m \geq i : \pi \models_k^m \Phi_2 \land \forall i \leq j < m. \pi \models_k^j \Phi_1 & \text{if } L(\pi, k) \\ \exists i \leq m \leq k : \pi \models_k^m \Phi_2 \land \forall i \leq j < m. \pi \models_k^j \Phi_1 & \text{otherwise} \end{cases}$

LTL Bounded Semantics for $\pi \models^i_k \varphi$

•
$$\pi \models_{k}^{i} \mathbf{G} \Phi = \begin{cases} \forall j \ge i. \ \pi \models_{k}^{j} \Phi & \text{if } L(\pi, k) \\ ff & \text{otherwise} \end{cases}$$

• $\pi \models_{k}^{i} \mathbf{F} \Phi = \begin{cases} \exists j \ge i. \ \pi \models_{k}^{j} \Phi & \text{if } L(\pi, k) \\ \exists i \le j \le k. \ \pi \models_{k}^{j} \Phi & \text{otherwise} \end{cases}$
• note that $\mathbf{G} p \not\equiv \neg(\mathbf{F} \neg p)$ with bounded semantics!

Bounded Model Checking of LTL Properties

 Similarly to safety properties, for an LTL formula φ, S ⊨_k φ iff the following formula is unsatisfiable:

$$I(x^{(0)}) \wedge \bigwedge_{i=0}^{k-1} R(x^{(i)}, x^{(i+1)}) \wedge ((\neg L(k) \wedge \llbracket \neg \varphi \rrbracket_{k}^{0}) \vee (\bigvee_{l=0}^{k} L(l, k) \wedge \llbracket \neg \varphi \rrbracket_{k,l}^{0}))$$

- to be translated into a CNF before being passed to a SAT solver
- L(I, k) and L(k) do not depend on a π: they represent the possibility that a path is a lasso

• Thus,
$$L(I, k) = R(x^{(k)}, x^{(I)})$$
 and $L(k) = \bigvee_{I=0}^{k} L(I, k)$

• Formula is unsatisfiable for SAT solver:

$$I(x^{(0)}) \wedge \bigwedge_{i=0}^{k-1} R(x^{(i)}, x^{(i+1)}) \wedge ((\neg L(k) \wedge \llbracket \neg \varphi \rrbracket_k^0) \vee (\bigvee_{l=0}^k L(l,k) \wedge \llbracket \neg \varphi \rrbracket_{k,l}^0))$$

- We now have to define $\llbracket \varphi \rrbracket_k^0, \llbracket \varphi \rrbracket_{k,I}^0$
 - $\llbracket \varphi \rrbracket_k^0$ is in AND with $\neg L(k)$, thus for lasso-free path
 - $\llbracket \varphi \rrbracket_{k,l}^0$ is in AND with L(k), thus for (k, l)-loops

So that LTL bounded semantics is retained

- for lasso shaped cases, we may look at what is before i when translating $[\![\varphi]\!]_k^i$

•
$$\llbracket \operatorname{true} \rrbracket_{k}^{i} = \llbracket \operatorname{true} \rrbracket_{k,l}^{i} = tt$$

• $\llbracket p \rrbracket_{k}^{i} = \llbracket p \rrbracket_{k,l}^{i} = p(x^{(i)})$
• $\llbracket \neg \Phi \rrbracket_{k}^{i} = \neg \llbracket \Phi \rrbracket_{k,l}^{i}$
• $\llbracket \neg \Phi \rrbracket_{k,l}^{i} = \neg \llbracket \Phi \rrbracket_{k,l}^{i}$
• $\llbracket \Phi_{1} \land \Phi_{2} \rrbracket_{k}^{i} = \llbracket \Phi_{1} \rrbracket_{k}^{i} \land \llbracket \Phi_{2} \rrbracket_{k,l}^{i}$
• $\llbracket \Phi_{1} \land \Phi_{2} \rrbracket_{k,l}^{i} = \llbracket \Phi_{1} \rrbracket_{k,l}^{i} \land \llbracket \Phi_{2} \rrbracket_{k,l}^{i}$
• $\llbracket \mathbf{X} \Phi \rrbracket_{k}^{i} = \begin{cases} \llbracket \Phi \rrbracket_{k}^{i+1} & \text{if } i < k \\ ff & \text{otherwise} \end{cases}$
• $\llbracket \mathbf{X} \Phi \rrbracket_{k,l}^{i} = \llbracket \Phi \rrbracket_{k,l}^{succ(i)}$

Bounded Model Checking of LTL Properties

•
$$\llbracket \Phi_1 \mathbf{U} \Phi_2 \rrbracket_k^i = \bigvee_{j=i}^k (\llbracket \Phi_2 \rrbracket_k^j \wedge \bigwedge_{m=1}^{j-1} \llbracket \Phi_1 \rrbracket_k^m)$$

• recall that
$$\exists$$
 is OR and \forall is AND...

•
$$\llbracket \Phi_1 \mathbf{U} \Phi_2 \rrbracket_{k,l}^i = \bigvee_{j=i}^k (\llbracket \Phi_2 \rrbracket_{k,l}^j \land \bigwedge_{m=i}^{j-1} \llbracket \Phi_1 \rrbracket_{k,l}^m) \lor \bigvee_{j=l}^{i-1} (\llbracket \Phi_2 \rrbracket_{k,l}^j \land \bigwedge_{m=i}^k \llbracket \Phi_1 \rrbracket_{k,l}^m \land \bigwedge_{m=l}^{j-1} \llbracket \Phi_1 \rrbracket_{k,l}^m)$$

- note that the second big OR is not empty only if *l* ≤ *i* − 1, i.e., if the loop starts *before i*
- thus, it deals with the case in which we have to "imagine" the infinite path
 - for the lasso-shaped case, bounded and unbounded semantics must be equivalent
- essentially, it also adds the case in which Φ₂ does not hold from *i* to *k*, but it holds before, in the loop part
- of course, Φ_1 must hold from *i* to *k* and till Φ_2

Bounded Model Checking of LTL Properties

- $\llbracket \mathbf{G} \Phi \rrbracket_k^i = ff$
 - "globally" cannot be guaranteed without loops!

•
$$\llbracket \mathbf{G} \Phi \rrbracket_{k,l}^{i} = \bigwedge_{j=\min\{i,l\}}^{k} \llbracket \Phi \rrbracket_{k,l}^{j}$$

- $\bullet\,$ but if we have a loop, it is sufficient to have Φ globally inside the loop
- plus the prefix, if any

•
$$\llbracket \mathbf{F} \Phi \rrbracket_k^i = \bigvee_{j=i}^k \llbracket \Phi \rrbracket_k^j$$

 ${\scriptstyle \bullet}\,$ Also ${\bf R}$ should be given, no more expressible using ${\bf U}$

Bounded Model Checking in NuSMV

- The following sequence is as before:
 - 🔕 read_model
 - Ilatten_hierarchy
 - 🥥 encode_variables
- Then, build_boolean_model instead of build_flat_model
 - it uses a different representation, better suited for BMC
- Then, bmc_setup instead of build_model
 - instead of creating OBDDs, computes I(x⁽⁰⁾) ∧ R(x⁽⁰⁾, x⁽¹⁾), ready to be unfolded

Bounded Model Checking in NuSMV

- Finally, check_ltlspec_bmc -k k
 - for k times, creates the input for SAT and invokes the SAT solver
 - if an error is found, it may stop before k
 - option -o of check_ltlspec_bmc also dumps the SAT instance in DIMACS format
 - this also entails negating the given LTL formula
 - "corrected", more intuitive semantics: Gp is true on a non-lasso π if ∀1 ≤ i ≤ k.p(π(i)) holds

Bounded Model Checking of Programs

- Till now, we had to write a model of the system under verification (SUV)
- There are some cases in which we can use the actual SUV, with little or no instrumentation
 - it is possible to translate a digital circuit to a NuSMV specification in a completely automated way (not difficult to imagine how...)
 - here, we want to deal with a rather surprising application of BMC: model checking a C program!
- CBMC is a model checker performing BMC of C programs with little or no instrumentation
 - thus, the input for CBMC is a C program (possibly with some added statements)
 - an integer k may be required too
 - again, output is PASS or FAIL (with a countercample)
- We now give the main ideas of how it works

CLI Front End No GUI, you have to invoke CBMC from a shell

- one mandatory argument: the C file
- -h or --help for a complete list of options
- C Parser the standard system parser, e.g., gcc
 - this includes the preprocessor for define and other macros
- Type Checking for all symbols (constants, variables and functions), keep track of the corresponding types
 - including the number of bits needed

GOTO Conversion for our purposes, we skip this

• used to optimize the symbolic execution part on loops

Static Analysis & Instrumentation resolve function pointers

- replaced with a case over all possible functions
- as a result, we have a static call graph
- generally speaking, static analysis is a further methodology for software verification
- hybrid between model checking and proof checkers
- here it is used in a lightweight way
- instrumentation: some assertions for invalid pointer operations and memory taks are automatically added

DISIM

CBMC: Symbolic Execution

- It is composed of two parts: loop unwinding and Static Single Assignment (SSA) form
- An additional parameter k is needed as the *unwinding number*
 - CBMC may also try some heuristics to guess the maximum unwinding for each loop
- If many loops are present, it is possible to set different unwinding numbers for each loop
- The unwinding number is usually interpreted as mandatory: an assert is added at the end
- It is possible to avoid this with option --partial-loops

CBMC: Loop Unwinding with k = 3

CBMC: SSA

- Each assignment is treated separately, generating a copy of the left side
- If we only have n assignments, then n is our bound for BMC
 - if such assignments are inside a loop with unwinding k, then the size is kn
 - generally speaking, you have to sum on all loops and all loop-free assignments

$$\begin{array}{c} x=x+y; \\ \text{if}(x!=1) \\ x=2; \\ \text{else} \\ x++; \\ \text{assert}(x<=3); \end{array} \rightarrow \begin{array}{c} x_1=x_0+y_0; \\ \text{if}(x_1!=1) \\ x_2=2; \\ \text{else} \\ x_3=x_1+1; \\ x_4=(x_1!=1)?x_2:x_3; \\ \text{assert}(x_4<=3); \end{array}$$

• What abount pointers? e.g.,

```
int *p = malloc(n*sizeof(int));
p[n] = 0;
p[0] = 1;
```

- They become functions: $\lambda x. 0 \text{ if } x = n \text{ else } (1 \text{ if } x = 0 \text{ else } \bot)$
- Then, it is similar to the assignment on x_4 in the previous slide

CBMC: CNF Convertion

• The idea is again to have a CNF $I(x^{(0)}) \land \bigwedge_{i=0}^{k-1} R(x^{(i)}, x^{(i+1)}) \land \bigwedge_{i=2} \neg p_i(x^{(\alpha(i))})$

- *a* is the number of assertions, and $\alpha(i)$ tells on which variables is defined the *i*-th assertion
- of course, digital circuit logics (and ITE...) have to be used

x ₁ =x ₀ +y ₀ ; if(x ₁ !=1)	$C := \mathbf{x}_1 = \mathbf{x}_0 + \mathbf{y}_0$
x ₂ =2; else x ₃ =x ₁ +1;	$\rightarrow \begin{array}{c} x_1 & x_1 & y_0 & y_0 \\ x_2 = 2 & \wedge \\ x_3 = x_1 + 1 & \wedge \\ x_4 = (x_1 ! = 1)? x_2 : x_3 \end{array}$
$x_4=(x_1!=1)?x_2:x_3;$ assert(x ₄ <=3);	$P:=\mathtt{x}_4\leq\!\!3$

