
Software Testing and Validation
A.A. 2024/2025

Corso di Laurea in Informatica

Testing within the Software Process

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica



Quality Planning

That is: embed testing in the software design process

“quality” in the sense of errors being discovered and corrected
both functional and non-functional errors

Quality planning involves deciding in advance when and how
to perform testing

of course, intertwined with the overall software design process

Incremental development: a first draft is initially written and
then continuously revised

again, the same usually happens for the software design process

Better solution is to appoint someone for the software quality
process



IBM CleanRoom Process Model



IBM CleanRoom Process Model

Developed in the 1980s

Involves two cooperating teams:

the development team is responsible for the software design
and implementation
the quality team is responsible to find errors and certify that
the system is being developed in the right way

Five major activities, continuously revised:

specification: required behavior of the system (development
team) and usage scenarios for test suites (quality team)
planning: design and update development and the quality plan
design and verification: system increments are developed and
certified
quality certification: test the system w.r.t. the specification
feedback: both for errors (quality → development) and also for
the whole process if the error rate increases too much



Extreme Programming Process Model



Extreme Programming Process Model

The extreme programming methodology emphasizes:
global vision and communication over structured organization
frequent changes over big releases
continuous testing and analysis over separation of roles and
responsibilities
continuous feedback over traditional planning

User stories: requirements from customers
test cases corresponding to scenarios in user stories serve as
partial specifications

Test-first: test cases specifications are built before the actual
code to test

Pair programming: developers work in pairs, incrementally
developing and testing a module

For each release, run all the tests devised up to that point:
kind of merging of unit testing with integration and system
testing



Traditional V Model



Traditional V Model

Four degrees of granularity in testing:

module or unit: each part of program agains its specifications
integration: checks compatibility among selected modules
system: checks whole system against specifications
acceptance: checks whole system w.r.t user needs (validation)

Integration faults: faulty specifications or implementations of
interfaces, resource usage, or required properties

Integration errors may reveal something flawn also at unit
testing

In other cases, side-effects of module faults may become
apparent only in integration test

“Incompatible” components: when they do not work together
for some reason

Integration tests focus on checking compatibility between
module interfaces



Integration Faults

Inconsistent interpretation of parameters or values
ok if taken separately, not ok when together
typical case: different units used in different methods, e.g.,
meters vs feet

Violations of value domains or of capacity or size limits
violation of (implicit) assumptions on ranges of values or sizes
buffer overflow

Side-effects on parameters or resources
two modules writing on the same file

Missing or misunderstood functionality
a module expects another module to return something, but it
is something else
e.g., Web hits counted per unique IP address or per request

Nonfunctional problems
e.g., missed deadlines due to module call

Dynamic mismatches
e.g., polymorphic calls bound to the wrong method



Integration Testing Strategies

First thing to be decided: the sequence of modules integration
to be tested

A,B and then B,C ,D? or C ,E first?
Better to follow the build plan: test modules integration as
soon as they are ready

often, the viceversa also holds, i.e., integration testing drives
build plan

In any case, an incremental strategy is followed
when all modules are present, we have system testing
even with incremental strategies, some modules may not be
available, thus scaffolding is needed for drivers and stubs

Sometimes, the big bang strategy may be used: directly go
with system testing

all modules are available
good for budget
not good for early errors discovery, which is however a problem
for budget...
desperate tester strategy



Integration Testing Strategies

So, let’s go back to incremental integration testing; we have
two possibilities:

structural oriented:

order of integration is based on hierarchical structure in the
design

feature oriented: derive the order of integration from
characteristics of the application

more “important” and “critical” modules are tested first
includes threads and critical modules testing strategies

Within structural testing, both bottom-up and top-down
strategies are possible

basing on the use/include hierarchy
especially ok if the build plan follows the same order

Sandwitch or backbone strategy: both bottom-up and
top-down

start from both ends and go towards the middle



Integration Testing Strategies: Example

Use/Include hierarchy from a class diagram



Integration Testing Strategies: Example

Top-down:

1 Integrate CustomerCare with Customer; use stubs for Account
and Order

2 Add Account

3 Add Order and Package, stubbing Model and Component
4 Add Model, Slot, and Component in this order

drivers are built only in the first step, then incrementally
updated

Bottom-up:

1 Integrate Slot with Component, using drivers for Model and
Order

2 Add Model and Order, using a driver for Package
3 Add Package, Account, Customer and CustomerCare

no stub need in any point



Integration Testing Strategies: Example

Sandwitch: suppose we are reusing existing modules for Model,
Slot and Component, and developing CustomerCare and Customer
as part of an early prototype

1 Integrating CustomerCare and Customer, with stubs for
Account and Order

2 Integrate Model, Slot and Component with Order, using
drivers for Customer and Package

3 Integrate Account with Customer, and Package with Order,
before finally integrating the whole prototype system.



Feature-Oriented Integration Testing Strategies

Thread testing: choose one functionality and pick the
interested modules

not necessarily “threads” as in parallel programming

Critical module integration testing: first test modules that
represent a risk for the project

modules may be sorted basing on the risk they pose in case of
failure
both external risks (e.g., safety) and internal risks (e.g.,
missing project deadlines) must be considered

Feature-oriented testing is more expensive than
structural-oriented testing

used for bigger projects



Components and Frameworks

Component reusable unit of deployment and composition

may be used many times by different teams
may have an internal state
may be composed by many objects
may use persistent storage
may require some communication layer (not
simply method calls)

Component contract or interface describes component access
points and parameters

also specifies functional and non-functional
component behaviour
also specifies required (assumed) conditions
sometimes also called API (Application Program
Interface)



Components and Frameworks

Framework micro-architecture or skeleton of an application

easy to add application-specific functionality or
configuration-specific components
may be seen as a circuit board with empty slots
for components
not to be confused with design patterns:

patterns are logical design fragments,
frameworks are concrete elements of the
application
frameworks often implement patterns

Component-based system system built by assembling software
components

connected by a framework or specific code

COTS Commercial Off-The-Shelf (component): built to be
sold to other developers



Testing for Components and Frameworks

Component built for general use are typically more complex
than components built ad-hoc for a given application

Main problem: developers do not know the context in which
their component will be used

may be used also if it does not perfectly fit

Of course, better to start with applications of typical usage

Possible uses may be classifed in scenarios



System, Acceptance and Regression Testing

All of them look at the whole software to be delivered

System testing: integration testing with all components
available

also including properties about the whole system

Acceptance testing: aka validation

instead of checking specifications, ask the final users

Regression testing: check if, when going from an old release
to a new one, some errors have been introduced

code modifications may produce failures not experienced in
previous releases



System, Acceptance and Regression Testing



System Testing

Ideally, no scaffolding: based on observable evidence of the
whole system

design and implementation are not important, it must work
more: it must be independent on design and implementation

However, some scaffolding may be needed to test controllers

a simulator is (initially) used instead of the system to be
controlled

... or to keep track of the test results (e.g., in a DB)

System test suites may contain some test suites used for
integration or even unit test

especially true if testing was feature oriented
structural testing is not good for system testing, as it is not
independent on the implementation



System Testing

How to obtain test suites independent on the
design/implementation:

give the task to a different team
design system tests very early, before any design choice has
been done

Agile software development: develop a new functionality as
soon as it is specified

in between specification and implementation, derive test cases

System testing only looks at system-wide properties and usage
scenarios

each desired behaviour must be taken into account by at least
one test case

Additional test cases can be added during development if
unforeseen observable failures happen

also considering final users annotations
intertwined with acceptance and regression testing



System Testing

The type of properties we want in system testing are the
harder to evaluate

often non-functional: low latency, system response, mean time
between failures
also functional like security or safety

For security or safety, better use model checking

for security, have another team try to breach the system...

Performance testing: outside the scope of this course

Note that the environment is important

impractible for a fast-response system to withstand too many
request

Stress test: repeat tests many times



System Testing: Fuzzing

Especially useful when the system is a server

that is: in a never-ending loop, check if there is some request
and, if it is the case, handle it
example: any Internet-based service such as Web, email etc.
also ok for non-server software which request inputs at
different stages of execution
e.g., highly interactive software

Fuzzing consist in feeding illegal inputs only

and to feed them with high frequency

Often combined with instrumented software to measure
coverage (fuzzing coverage) and with Property-based Testing

it would be difficult to generate correct outputs to be
checked...

This can be seen as a special type of stress test



All Testing



Acceptance Testing

Tries to ask the question: “Should we release the product?”

To this aim, we may:

still perform some dedicated testing, in addition to system
testing
ask the users (validation)

easy for very specialized software commissioned by a small
group of users
otherwise, a specific organization must be set up

Dedicated testing for acceptance: must be separated from
system testing

unit, integration and system testing: expose as many failures
as possible
acceptance testing: understand if it is useful for the final user



Acceptance Testing: Validation

Validation: directly ask users

Two main workhorses: alpha and beta testing

as it may be guessed, alpha refers to early development releases
where very few testing has been carried out
beta is for more advanced development phases of a release

Alpha testing may be performed by the software company

Beta testing is usually performed by volunteering final users

note that beta testing is not organized
i.e., final users simply use the product, and report failures to
developers
if different categories of final users are present, choose at least
a representative in each category
in some sense, the users themselves are sampling their
operational profiles
some scaffolding to send feedback is necessary



Acceptance Testing

Operational profiles: statistical models of usage

available from previous similar projects
e.g., how a new DBMS will be used should not be different
from how old ones were used

Sensitivity testing: identify parameters of operational profiles
and determine which are the important ones

repeat many times statistical testing, each time varying some
parameters
e.g., vary the incoming load to see the effect in system
throughput

This kind of validation is somewhat “statistical”: we want a
“measure” of the product reliability



Early Acceptance Testing: Usability

Alpha and beta testing are for the final product, but users
may be involved earlier

especially for the usability of the software

Exploratory testing: investigate the “mental model” of end
users

especially for GUI: first present a very simplified version and
see what users choose first
useful when designing a product for a new population

Comparison testing: evaluate different options

observe users reactions to different proposals
again, early stages of software design
mainly to refine interaction patterns



Early Acceptance Testing: Usability

Validation testing: assess overall usability

identify difficulties and obstacles for final users
time to perform tasks
error rate

Overall, usability testing go through:
preparation:

define the objectives of the session
identify the items to be tested
select a representative population of end users
plan the required actions

execution:

execute planned actions in a controlled environment

review and analysis

plan changes, if required



Acceptance Testing: About Final Users

Users time is very expensive

Number of users must be chosen accordingly to project
budget

representative of users classes, if any
questionnaires should be prepared, also to verify class
belonging
opinions from different classes of users could be weighted
differently

Alpha and beta testing are at users premises

Especially for usability, testing for users is instead in a
controlled environment

users are given tasks to be completed
their interactions are recorded, sometimes in a light (mouse
clicks) sometimes in a heavy (eye tracking and similar) way



Acceptance Testing: About Final Users

Accessibility: usability for users with disabilities

legally required in some application domains
e.g., Web sites of public institutions
we also have a standard: Web Content Accessibility Guidelines
(WCAG)



Regression Testing

Software applications are almost never built once and for all

New releases may be required because of:

removing faults (or security errors)
changing some functionalities (including changes in the code
only)
adding new functionalities
removing old functionalities
porting the system to a new platform
extending interoperability

Where there are changes, there is trouble!

May be needed to restart the whole testing phase, from unit
to acceptance



Regression Testing



Regression Testing

The smallest change may affect other software parts in
unintended ways

e.g., a guard added to an array to fix an overflow problem may
cause a failure when the array is used in other contexts
e.g., porting the software to a new platform may expose a
latent fault
e.g., even compiling some C code with optimization options
may cause previously undected errors

Regression: when a new release of the system introduces new
errors in previously working parts

thus we want nonregression to happen

Of course, this should be achieved at design time, but wanting
is not achieving

Thus, we need (non)regression testing



Regression Testing Techniques

Solution 0: for a new release, retest all

this is ok if we only changed the implementation of some
methods
or if we made a porting
for any other modification, old test cases may not work any
more
in that case, try to select a working test cases subset, if any

Solution 1: if we have scaffolding able to interpret test case
specifications, we simply modify the scaffolding

e.g.: if we modify the collapsing strings example by adding the
further input k in a new release, we may still adapt the “old”
test cases generator
still a problem for new functionalities
also for old ones, but removing is easier than designing new
test cases



Regression Testing Techniques

Note that some test cases may become redundant

especially for structural testing: e.g., two tests covering
different paths now cover the same path
may become redundant also for changes in the testing itself
e.g., in the partition method, we change the partition, causing
two previously different tests to be now on the same partition

Redundant test cases do not reduce the overall effectiveness
of tests, but impact on the cost-benefits trade-off

unlikely to reveal faults
augment the costs of test execution and maintenance

However, redundant test cases are typically kept

may become helpful in successive versions of the software

Documentation is important, must include testing info



Regression Testing Techniques

Often the retest all, even if “corrected”, is not viable for the
excessive cost

large software may need to be tested in many different
platforms
or however need scarce resources, e.g. users testing or
time-to-market

Is it possible to reduce the size of the tests to be performed?

e.g.: we changed the window management, no need to recheck
file usage



Regression Testing Techniques

Regression test selection techniques are based on either:

code: select a test case if it exercises a portion of the code
that has been modified
specification: select a test case if it is relevant to a portion of
the specification that has been changed

Code-based selection may be done automatically

especially ok for unit testing, not for integration or system
testing
not ok if changes are huge

Specification-based selection work well for all types of testing

provided that specification are well written
partly automatable if specifications are very well written and
organized



Regression Testing Techniques

CFG regression test selection: based on differences between
the two CFGs

before and after the change
of course, we are in some unit for which the CFG can be
produced
differences: missing nodes or edges, but also in single nodes
annotations
for changes in single statements
added nodes: selection may be useless, as there were not
previous test cases...

Requires to record the path exercised by the tests

must be done automatically

Selects (past) tests exercising modified CFG parts



CFG Regression Test Selection



CFG Regression Test Selection

We may discard TC1
If we only look at X and Y, we may also discard TC6 and TC7



Regression Testing Techniques

Data flow regression test selection: based on differences
between the DU pairs

before and after the change, again in some given unit
differences: DU pairs may be deleted, added, or modified
(definition and/or use were moved)
for added ones, selection only is useless...

Specification-based test selection techniques do not require
recording the control flow paths executed by tests

Regression test cases can be identified from correspondence
between test cases and specification items

if there was a model extracted from specification, simply
update the model and extract tests again
code-based selection techniques may be used on such models



Regression Testing Techniques

Instead of reducing, also giving priorities could be good

could be based on the code changes (see below)
or also on testing history for previous versions
e.g., give low priority to tests which never failed and are not
affected by current modifications

All tests will be eventually executed, but...

there are many releases, so typically the same tests are
executed many times
in each release, execute only tests with priority above a given
threshold
as a result, some tests will have higher frequency than other
however, it is guaranteed that all tests will be eventually
executed
so high priority is also given to tests which have been
“waiting” too much



Regression Testing Techniques

Execution history priority schema: low priority to the recently
executed tests

similar to round robin...

Fault revealing priority schema: high priority to tests which
reveled faults

faults are not evenly distributed...
exercise the parts which needs most testing

Structural priority schema: high priority to tests which cover
most “elements”

statements, branchs, conditions for unit testing
methods, features for integration/system testing


