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Software Testing and Verification is an elective course for the
Informatica Bachelor Degree
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Lecturer: Igor Melatti

Where to find these slides and more:
o https://igormelatti.github.io/sw_test_val/
20252026/index.html (ltalian)
o https://igormelatti.github.io/sw_test_val/
20252026/index_eng.html (English)
o also on MS Teams: “DT0758: Software Testing and Validation

(2025/26)", code 860bvld
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2 classes every week, 2 hours per class
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o The exam consists in working on a project and discuss it
o teams of at most 3 students are allowed for projects
o Project: perform testing and validation of a given software

o each team may choose one among the ones selected by lecturer
o each team will have to discuss its project with slides
o pre-evaluation is possible and encouraged

o our last lessons will be dedicated to projects ongoing work
discussion
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o Dates back to computer science origins
o of course, not only in computer science
o Generally speaking: we have built something, is it what we
actually wanted to build? does it accomplishes its tasks?

| do not want to get tired standing up, | build a chair

am | actually not tired any more? or at least, less than before?
does the chair crash if | sit for too much time?

does it crash if | increase my weight?

could | have built the chair better (more comfortable, with less
materials, ...)?

o The same holds for software
o but also for hardware, or combinations hardware+software
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Q Suppose you want to write a software fulfilling some given
requirements

o given an array A, sort A in a non-decreasing way

o given a graph G = (V, E) and two nodes u, v € V, decide if
there exists a path from u to v

o build the data base for a library

o manage an airport

o etc.

Q Let us try to write the corresponding requirements
o V1I<i<n—1A[l] <Ali+1]
o dup,...,u, s.t.
m=ulu,=vAV1<i<n—1(u,u1)€E?
o It is possible also for the remaining cases, though it is more

complicated % guvessma m ‘
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o Suppose you have an automatic program synthesizer
(generator)
o a special program which takes requirements as input
o must be described in some formal way, i.e., using an
unambiguous mathematical language
o ... and outputs a correct-by-construction program which fulfills
the input requirements

Requirements Program

Programs synthesizer
\ / DEGLI STUDI ienze delln
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o All efforts are in making the program generator correct,
efficient and effective

o It outputs correct-by-construction programs
o if | say “give me a program sorting arrays”, then | obtain a

program which never fails
o i.e., given any array (input instance), it outputs always the
correct sorted array (corresponding output)
o Verification problem does not exist
o or it shifts on the requirements: did we write the requirements

we actually wanted?
U/ Bl i

o validation: we will be back on this



use existing methods:
should Ruby, Java or Net selected for implementation?

invent new methods: A
should new language be invented for |
programming financial appiiations?

creativity: S
standard accounting sucks, ™\
I could ry another approach ™\

" N

self-direction:
‘even these electrisity voltage swings
shouldn' distiact me:

Build

manage

| nesd o
my persona inances

research, external knowledge:
Whatis Micrasolt Money and Quicken implementaton?
What people ke and don' like about these products?

adaptation to environment

“The program should wark on desktop and mobils phone.
Houl data sholld be stored?

abstractions:
Income, purchases, payments, investments, ofs.
deal withthe same accounts. What s common?

reasoning:

John wants o braak down expenses by

| family member, 5o the pragram should ask
| and store tis information or cach entry

problem solving:

What if expenss is related to more
than one merbar? Should | bothar
John o just allow muliple selection?

Understand

— memory.
I remember you have a wite
Do You need password for your data?
Tearming from experience:
Lasttime you've lost al your data
Do you want to add backup function?

| intemal models and knowledge:
Doyou want to use double-nt

complex ideas comprehension:
Tellme how You manage your finances.
Whatdo you expact fom the program?

language comprehension.
Nice idea, personal finances are mporant

accountng or simpe Fackng of expenses? P




o Do you need to build a software? then, you will have to do it
ad hoc

o totally general approaches to build program generators cannot
exist

o it is easy to see that building a program generator is an
undecidable problem

o Of course, you can rely on libraries, methodologies, etc, but...

o ... there is no guarantee that the starting requirements are
met by the final software
o e.g., if you implement an iterative program to sort arrays, but
you forget to increment the index, the starting requirements
will not be met

o more subtle errors may be very difficult to f% @
oxIvERSITA -
BELAQUILA i



o So you need a verification phase
o for simple cases like sorting, it is sufficient to perform it in the
end
o for more complex cases, verification must be performed also
during developing phase
o for very complex/important cases, verification must be
performed also before developing the software

o Verification goal is to find errors, if any

o for our purposes, an error is a violation of the requirements
o some requirements are present since the beginning, some other

may add up later
\ DELL'AQUILA 2



o Software Engineers are well aware of the problem
o All software design processes include one or more verification

phases
o though it may be simply called test o testing

) ¥
WVerification },
o



o Software Engineers are well aware of the problem
o All software design processes include one or more verification

phases
o though it may be simply called test o testing

Cumuative cost
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o Software Engineers are well aware of the problem
o All software design processes include one or more verification

phases
o though it may be simply called test o testing

Requirements Analysis & Design
Implementation
Planning

Deployment

Initial
Planning
Evaluation ]
Testing
—
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o Software Engineers are well aware of the problem
o All software design processes include one or more verification

phases
o though it may be simply called test o testing

Phases
Disciplines |Inception“ Elaboration ” Construction ”Tmnsitl‘un|

Business Modeling
Requirements

Analysis & Design

Implementation
Test
Deployment

Configuration
& Change Mgmt

Project Management
Environment F S

- —
Const | Const || Tran || Tran
#N #1 2

iti Const
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Iterations St L —
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o We have been speaking of software, but all we said holds for
any computer-based system

o Hardware

o digital circuits
o microprocessors

o Embedded Systems

o tiny dedicated computer inside bigger systems

o typically, either controllers or monitors

o cars (ABS, ESC/ESP...), generic means of transportation,
domestic electrical appliances (fridges, TVs, ...)

o errors could be in hardware, software, both, or in the
“communication” (interface) between hardware and software
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Summing up:

Q start from requirements

Q develop some (partial or final) solution

o

you may “complicate” such steps at wish

Q verify that the current solution fulfills the starting
requirements

+]

if at least one error is discovered, correct it, going to step 2

o you may need to correct the requirements, going to step 1
o verification may (and should) be done during the intermediate

developing steps
if no error, deploy solution
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Verification and validation are often used as synonyms

©

However, there is an important distinction between the two
terms

o validation involves final users “expectations”

o verification is performed only keeping in mind the software
requirements already collected

o verification does not care whether requirements are what users
want or not

©

Validation is “did we built the right system?” — useful system

©

Verification is “did we built the system right?" — dependable
system



©

Requirements analysis vs. requirements specifications
o requirements analysis: what (we understood that) the users
want
o requirements specification: the solution we propose for the
requirements analysis

©

Validation is about checking requirements anaysis
o more focused on the overall requirements and the final code

©

Verification is about checking requirements specifications
o often with intermediate steps
@ In this course, we will mainly focus on verification
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Actual Needs and .
Constraints User Acceptance (alpha, beta test) Delivered
Package
2
2
E) System < System Test System
Specifications Integration
Analysis /
Review
Subsystem Integration Test
Design/Specs Subsystem
Analysis /
Review |
Unit/Component| Unit/ |
Specs Module Test | components | | |
\__ User review of external behavior as it is
determined or becomes visible
° I ”Valida(ion
)
7 i >
Verification
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Method number 1: Testing
Q you have the actual system (or a part of it)
Q you feed it with predetermined inputs

Q you check if outputs are the expected ones
o “expected” w.r.t. the requirements

Q if there is one output different from the expected one, then we
have an error

Q you correct it and start over again
o restarting from the “highest” point where you made the

correction

o requirements, design, code



Method number 1 bis: Simulation

o two typical cases:

o prototyping: you do not have the full code, but some simplified
prototype may be built

o feed inputs to the prototype instead of the actual software
o especially useful to test designs (early testing)

o you have the full code, but it is used to control/monitor of
some physical system (cyber-physical systems)

o the simulator is for such physical system: it accepts the same
inputs and provides the same outputs of the physical system

o connect the software to such simulator as it was the real
system

o proceed as in “normal” testing by feeding inputs and
observing outputs

o you might also use a prototype for the (control/monitor)

software and a simulator for the physical § m.for.earl o
testing \& ' o



Cyber-physical systems: why this methodology?
o Must check if they work before connecting to the physical
part
o or, even worse, build it
o at least, the most common/easy errors must be ruled out
o If you have a controller for a plane, you do not directly test it
on an actual plane, a simulator of the plane is used
o only when tests on the simulator are ok you move to test on
the actual plane
o if the simulator says the plane is crashed, it is less severe than
an actual plane crashing
o It is not a matter of safety only: it might also be an
economical problem
o e.g., testing on microprocessors must use some simulator

before, as “writing” on silicon is expensive %> !
. - . . | UNIVERSITA D\S\'A‘ .
o e.g., if you are building a new airplane also bg8ing enits @ g

controller, you must know if there are problend in the design



This might not be easy: testing typically only triggers errors
Then, you might have to reproduce the error in some smaller
scale

Then, you have to understand where the problem is and what
causes it

o requirements? architecture? design? single point in the code?
an intricated flow in the code?

Then, design and implement the actual correction

In this course, we only deal with error triggering

‘ UNIVERSITA DIsIM
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An approximate answer
BUG HUNTING: Testing + Simulation

Input sequence
(stimulus)

~..u(3) u(2) u(1) u(0)

N,

System (Model)

Compute output by
Simulation or by running the actual

system when possible

%

Define initial state + parameters

y - Observer

Output sequence

y(0) y(1) y(2) y(3) ...

™~
\\,\p\}}ycks that output sequence 91(/// DisM.



o Both testing and simulation may be performed in refined ways
o In fact, the testing plan (the predetermined sequence of
inputs) may be computed using dedicated algorithms so that
coverage is maximized
o we will get back soon on this concept
o This is the most challenging and important step for such
techniques
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Pro

o (Relatively) easy to implement
o easier than the other methods we will consider here

o Largely used in industry

o in most cases, testing and/or simulation are the only
verification methods used

Cons

o They can prove that a system has errors, but cannot prove
that a system does not have errors

o Cannot be used to prove generic formal properties

o The coverage of the “input space” is low

o Errors are frequently detected when it is too’%mmm
B B —



They can prove that a system has errors, but cannot prove that a
system does not have errors

o If an error is detected, then the system must be corrected,
happy to have discovered it

o Otherwise, we cannot conclude anything
o That is, we cannot say that the system is error-free

o In fact, having not be able to spot errors does not imply that

there are no errors
j» e :‘l\[\lll\!!’\ DISIM
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Cannot be used to prove generic formal properties

Qo

Qo

This is a consequence of the previous slide

As an example: in an operating system, is it true that mutual
exclusion is enforced for 2 given processes?
In order to test such a property you would have to modify the
system itself

o so that the output contains something like “propriety violated”

or “'property ok”

But even in this case, we cannot draw a formal statement on
the validity of the property

Again, not finding a violation does not imply there are no

violations N
‘¥\ UNIVERSITA DisiM
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The coverage of the “input space” is low

o A successful testing phase should consider “all what may
happen” to the system in a real-world environment

o This would need too much tests or simulations

Input sequences System (Model) Output sequences

. y(3) uy(2) uy(1) uy(0) Compute output by Y0 %) ¥:(2) yi(3) .

——|Simulation or by running the actual

0, (3) uy(2) uy(1) u,(0) ¥i(0) ¥,(1) ¥,(2) y,(3) -«

system when possible

o The n in the figure may easily be 10 and more; outputs must

also be checked o
ffl N ‘



The coverage of the “input space” is low
o This also has another bad consequence

o Testing and simulation find the “easy” errors

o the most frequent ones
o i.e., those that are caused by many (different) input sequences

o Instead, corner cases usually go undetected

o i.e., errors that are caused by a few (or even single) input
sequences are usually not found

‘ UNIVERSITA DIsIM
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Errors are frequently detected when it is too late

o This is a consequence of the previous point: you need many
tests to get a reasonable coverage and discover possible corner

cases
o The later an error is found, the more expensive the correction
40 7 — Without Automated
testing
35 /\ With Automated testing

30 \

25 \

>0 Source: )
Mercury Interactive,

15 Siebel Siemens

10 \

5

0 Number of times more
T T T r T ]

expensive to fix
1X 3-6X 10X 15-40X  30-70X 40- DisiM
1000X. o
Early development Implementation

Errors caught (percent)




o To solve the above underlined problems, we should consider
all inputs
o That is, all possible system evolutions

o of course, testing and simulation only consider some evolutions:
those “activated” by inputs chosen by the testing plan in use

o A possible way to do this is to prove a dedicated theorem,
stating that the system is correct for all inputs

o For sorting, this could be done (and it is actually done in
Algorithms textbooks...)

o For other cases (e.g., microprocessor design), it would be too
difficult or time consuming

o Thus, techniques of formal verification have %\ \[\,,Me\lop
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A set of (heterogeneous) techniques which make possible the
impossible

©

That is, algorithms able to generate and analyze all system
evolutions
o so, they provide a mathematical certification of correctness
(not achievable with testing/simulation)
o also for generic properties, like mutual exclusion

©

Actually, the problem of verifying a given system w.r.t. a
given property is undecidable

o the property to be verified may be: is this system always
terminating?

So, there will be some (acceptable in many cases) Iimitati

©
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There are many techniques available for formal verification

Applying any of these techniques is usually much more
difficult than testing/simulation

o both in terms of personnel and notions required
So, why to do this?
Because there are many cases in which testing/simulation
simply are not enough

o for both economic and safety reasons

| UNIVERSITA DISIM
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o Safety-critical systems: failures may affect humans
o public transport software controllers (if an automatic pilot of
an airplane has a failure...)
o trains crossing
o ABS for cars
o ...
o For most of such systems, formal verification is mandatory by
law
o ESA (European Space Agency)
o |EC (International Electrotechnical Commission)

‘ UNIVERSITA DIsIM
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o Mission-critical systems: failures cause huge economic losses

o automatic space probes
o logistics

o communication networks
© MiCroprocessors

o

o Internal company regulations often make formal verification
mandatory as well

‘ UNIVERSITA DIsIM
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o Also for systems which are neither safety nor mission critical:
there are economic motivations to use formal verification

©

Using testing/simulations, errors are eventually discovered

©

The problem is that they may be found late
o this is a consequence of the low coverage issue

©

So late, that often errors are found after the system has been
deployed, i.e., when it is already used by its final users
o for, e.g., a word processor, it is annoying, but we are somewhat
used to software updates to fix bugs
o this is not always possible or easy
o e.g., a legacy software out of support

‘ UNIVERSITA DIsIM
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Hardware circuits: to “write” a circuit on silicon is the most
expensive part of the developing process

So, finding an error after having written the circuit entails a
huge economic loss

This also holds for other systems, when the developing process
is lengthy

In fact, finding a late error may cause going again through
preceding developing phases

o less competitivity on the market
o for both being late and for augemented costs

| UNIVERSITA DISIM
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o Some famous errors in safety-critical systems
o 20/7/1969: on the Apollo 11, the driving computer fails
multiple times during the final descent on the Moon
o all ok because the large support team on Earth finds out that
the error may be ignored
o 26/9/1983, URSS believes USA have launched 5 nuclear
weapons
o no 3rd WW only because a Russian official finds it strange
there are only 5 missiles
o all due to a software bug in recognizing false negatives
o 1985-1987: Therac-25, computer system to treat cancer
through rediations
o many patients due to too high radiations

o the error was afterwards tracked to a “race gondition” among
concurrent processes :%J DROYERSUIY @ Bt

DELL'AQUILA



o Some famous errors in mission-critical systems
o 1962: Mariner 1 automatic space probe (80 M$)

o the dash sign for negative numbers is missing ( “the most
expensive dash in history”)

o resulting trajectory is completely wrong

o the support team blows the probe to avoid it hitting
something on ground

o 1990: AT&T network failure

o just one code line wrong in one telephone exchange
o for hours, 60000 users are unable to make calls

o 1990: another space probe, Ariane 5 (500 M€ )

o overflow in converting numbers from 64 to 16 bits (!)

o due to reuse of Ariane 4 software -
j’ “ UNIVERSITA DISIM
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o Some famous errors in mission-critical systems (continued)
o 1994: Intel Pentium computes wrong answers on some floating
point errors (450 M$)
o 2006: Airbus A380 internal wires
o errors in the software controlling wiring
o all design process have to be restarted from scratch
o extremely huge economic losses
o 2010: Toyota Prius ABS
o error “glitch” in the ABS controller
o 185,000 cars recalled for updating
o also bad publicity

‘ UNIVERSITA DIsIM
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o A should-be-famous error in mission-critical systems:
Needham-Schroeder protocol
o public-key authentication protocol, designed in 1978
o widespread use in many systems for decades
o initiated a large body of work on the design and analysis of
cryptographic protocols

()

After 17 years of usage, an error was (manually) discovered in
1995 by Lowe

In 1996, Lowe showed that, using formal verification, it would
have been easy to immediately detect the error

o more in detail, by using model checking

©

©

Other examples are in

https://spinroot.com/spin/success. h% R
B B e
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The most recent case: CrowdStrike vulnerability
= sky EURD 2024  VIDEO  L'APP DI SKY TG24 PODCAST

MONDO News Approfondimenti Ucraina UE USA  Coronavirus UK  Siria  Afghanistan

MONDO

shy R . .
Crash CrowdStrike, verso [ Microsoft
la normalita. Microsoft: 8,5
milioni di dispositivi
coinvolti

201ug 2024 -19:14




The most recent case: CrowdStrike vulnerability

La “schermata blu della
morte” che ha bloccato i
computer in tutto il mondo:
ecco cosa € successo. “Piu
pesante del Millennium
Bug”

di Diego Longhin




The most recent case: CrowdStrike vulnerability
The New ork Times

Global Tech Outage What We Know ~ When Tech Fails  More Flights Canceled  Passengers Still Struggling ~ Guard Against Scams

Chaos and Confusion: Tech Outage

Causes Disruptions Worldwide

Airlines, hospitals and people’s computers were affected after
CrowdStrike, a cybersecurity company, sent out a flawed software
update.

fsracnatice L[] Ces
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o Testing and simulation are the most used verification tools

o most companies (especially for software) use only these tools

o easier and cheaper to use

o at least one between testing and simulation are always
performed

o For mission critical or safety critical systems, formal
verification methods must be used

o more difficult to be applied
o may provide a mathematical certification for the system

correctness
\ BEAIAOLIA :

o only applied when budget allows it



There are two macro-categories:

o [Interactive methods

o Automatic methods
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There are two macro-categories:

o [Interactive methods

o as the name suggests, not (fully) automatic
o human intervention is typically required
o in this course, we do not deal with such techniques

o Automatic methods
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There are two macro-categories:

o [Interactive methods

o as the name suggests, not (fully) automatic
o human intervention is typically required
o in this course, we do not deal with such techniques

o Automatic methods
o only human intervention is to model the system

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2



There are two macro-categories:

o [Interactive methods

o as the name suggests, not (fully) automatic
o human intervention is typically required
o in this course, we do not deal with such techniques

o Automatic methods
o only human intervention is to model the system

o There also exist hybridations among the two categories

‘ UNIVERSITA DIsIM
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Also called proof checkers, proof assistants or high-order
theorem provers

©

Tools which helps in building a mathematical proof of
correctness for the given system and property
o Pros

o virtually no limitation to the type of system and property to be
verified
o Cons

o highly skilled personnel is needed
o both in mathematical logic and in deductive reasoning
o needed to “help” tools in building the proof

| UNIVERSITA DISIM
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o Used for projects with high budgets
o For which the automatic methods limitations are not

acceptable
o used, e.g., to prove correctness of microprocessor circuits or
OS microkernels

o Some tools in this category (see
https://en.wikipedia.org/wiki/Proof _assistant):

o HOL
o PVS
o Coq

| UNIVERSITA DISIM
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https://en.wikipedia.org/wiki/Proof_assistant

Commonly dubbed Model Checking
Model Checking software tools are called model checkers

There are some tens model checkers developed; the most
important ones are listed in https://en.wikipedia.org/
wiki/List_of_model_checking_tools

Many are freely downloadable and modifiable for research and
study purposes

Research area with many achievements in over 30 years

| UNIVERSITA DISIM
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https://en.wikipedia.org/wiki/List_of_model_checking_tools
https://en.wikipedia.org/wiki/List_of_model_checking_tools

Perfect verification of
arbitrary properties by
logical proof or
exhaustive testing
(infinite effort)

Theorem proving:
Unbounded effort to
verify general properties

Model Checking:
Decidable but possibly
intractable checking of

simple temporal properties

Typical
testing
technique

Precise analysis of
simple syntactic
properties

Simplified Optimistic

properties inaccuracy 2|
E| universiTa DISIM
7 B =2
Pessimistic 4 ’

inaccuracy



T
(VHDL, Verilog, C, C++ ) (
Java, MathLab, Simulink, ...) / \\

~— — ~

BAD

Model Checker

(Equivalent to
Exhaustive testing)

v Counlerelemple
Ie. sequence of events
(states) leading to an
undesired state.

-
FAIL ~_|
// .

PASS

Le. no sequence of
events (states) can
possibly lead to an
undesired state.

—
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System Req uirements Verification fest
& Case Studies of Case Studies

Software Integration
& Testing

—
Model Checker

Automated test generation

ﬂ - ‘ High Value Activities
oisit

Less design errors
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Actual Needs and .
Constraints User Acceptance (alpha, beta test) Delivered
Package
2
2
E) System < System Test System
Specifications Integration
Analysis /
Review
Subsystem Integration Test
Design/Specs Subsystem
Analysis /
Review |
Unit/Component| Unit/ |
Specs Module Test | components | | |
\__ User review of external behavior as it is
determined or becomes visible
° I ”Valida(ion
)
7 i >
Verification
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o In order to have this computationally feasible, we need a
strong assumption on the system under verification (SUV)
o l.e., it must have a finite number of states
o Finite State System (FSS)

o In this way, model checkers “simply” have to implement
reachability-related algorithms on graphs

o Such finite state assumption, though strong, is applicable to
many interesting systems

o that is: many systems are actually FSSs
o or they may be approximated as such
o or a part of them may be approximated as such
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There are many notions of “state” in computer science

Model checking states are not the ones in UML-like state
diagrams

Model checking states are similar to operational semantics
states

That is: suppose that a system is “described” by n variables

Then, a state is an assignment to all n variables
o given Dy,..., D, as our n variables domains, a state is

n
se x . D;
i=1
\ / DEGLI STUDI ence dettn



o We have two identical processes accessing a shared resource

o in the figure below, /i, denote the two processes
o the well-known Peterson algorithm is used

Q[1] := true; turn :=1; 1Q[2] or turn =2

Q[2] and turn = 1

Q[1] := false;

‘ UNIVERSITA DIsIM
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o The 5 “states” in the preceding figure are actually modalities

o From a model checking point of view, they correspond to
multiple (i.e., sets of) states

o To see which are the actual states, let us model this system
with the following variables:
o mj, with i = 1,2: the modality for process i
o Q;, with j =1,2: Q; is a boolean which holds iff process i
wants to access the shared resource
o turn: shared variable
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o Thus, the resulting model checking states are the following:
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o There are 25 reachable states
o assuming state (L0, LO, f,f,1) as the starting one
o All possible states are 200

o there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 x 52 overall assignments

o The LO modality for the first process encloses 6 (reachable)
states
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There are 25 reachable states
o assuming state (L0, LO, f,f,1) as the starting one

All possible states are 200
o there are 3 variables with two possible values (the 2 variables
Q, plus the turn variable) and 2 variables (P) with 5 possible
values, thus 23 x 52 overall assignments
The LO modality for the first process encloses 6 (reachable)
states
No need of guards on transitions!
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o The UML-like state diagram is often useful to write the model

o as we will see, this will depend on the model checker input
language

o It is the model checker task to extract the global (reachable)
graph as seen before

o And then analyze it
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o ESA, NASA e IEC require most of their project to be model
checked

o Important companies have dedicated laboratories for Model
Checking
o hardware: Intel, IBM, SUN, NVIDIA
o software: IBM, SUN, Microsoft
o Many universities have research groups
o USA: MIT, CMU, Austin, Stanford...
o very close collaboration with companies
o The 3 “inventors” of Model Checking received Touring Award
in 2007:

o E. A. Emerson, E. M. Clarke, J. Sifakis e ! .
% e, @ ‘
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T
(VHDL, Verilog, C, C++ ) (
Java, MathLab, Simulink, ...) / \\

~— — ~

BAD

Model Checker

(Equivalent to
Exhaustive testing)

v Counlerelemple
Ie. sequence of events
(states) leading to an
undesired state.

-
FAIL ~_|
// .

PASS

Le. no sequence of
events (states) can
possibly lead to an
undesired state.

—
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upI pimerio i
QUILA



3 steps:
Q Choose the model checker M which is most suitable to the
SUV S (and the property ¢)
Q Describe S in the input language of M
Q Describe the property ¢
Q Invoke the model checker and wait for the answer

o OK= S ': ©
o FAIL = counterexample

o correct the error (it may happen that S or ¢ must be
corrected instead...) and go back to step 3

o OutOfMem or OutOfTime

o adjust system parameters (or the description.of S)
. R i



o Most used for reactive systems
o always executing systems:
o monitors: warns if something bad happens
o controllers: avoids that something bad happens
o services: wait for requests and serve it
o more in general, concurrent execution of processes/threads
with shared memory/messages exchange
o errors may occur because of interactions/interleaving between
different processes/threads

o Not good for standalone (1-process) programs

o e.g., sorting an array or perform BFS of a graph
o for such systems, testing can be complemented with theorem
proving (or with manual proof derivation)

o of course, budget must be taken into accou%mmm m
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Pro
o Same guarantees of proof checking
o But requiring less “mathematics” and “computer science”
knowledge
Cons
o Computational Complexity

o causing “"OutOfMem” and "OutOfTime": State Explosion
Problem

o You check a model of the system, not the actual system

o though in some cases models can be automatically extracted
from the system

o Useful only for multi-process/thread softwar%mw\ .



o With some semplification, all Model Checking algorithms are
essentially like this:

Q Extract, from the description of the SUV S, the transition
relation of S

Q Compute the reachable states (reachability)

©Q Check if ¢ holds in all reachable states

o All steps may be computationally heavy, but let us focus on
the reachability

o see mutual exclusion example

o If S is described by n (binary) variables, then the number of

reachable states is O(2")
j» NE “l\l\lk\!! A DISIM
OB/ bic it e



o Such complexity cannot be avoided in the most general case
o Theoretically speaking, (LTL) Model Checking is P-SPACE
complete
o CTL Model Checking is in P, but as we will see this does not
make things better
o There are several model checking algorithms, depending on
the “type"” of S
o each checker has its “preferred” SUVs
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There are 3 categories:

o Explicit
o Implicit (symbolic)

o SAT-based
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There are 3 categories:
o Explicit
o each reachable state is separately stored
o very good for communication protocols

o Implicit (symbolic)

o SAT-based
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There are 3 categories:
o Explicit
o each reachable state is separately stored
o very good for communication protocols

o Implicit (symbolic)
o dedicated data structures are used to represent sets of states
o very good for digital hardware

o SAT-based
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There are 3 categories:
o Explicit
o each reachable state is separately stored
o very good for communication protocols
o Implicit (symbolic)
o dedicated data structures are used to represent sets of states
o very good for digital hardware

o SAT-based

o many problems may be theoretically rewritten as SAT, but in
model checking this works pretty well also in practice

o software model checking
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There are 3 categories:
o Explicit
o each reachable state is separately stored
o very good for communication protocols
o Implicit (symbolic)
o dedicated data structures are used to represent sets of states
o very good for digital hardware

o SAT-based

o many problems may be theoretically rewritten as SAT, but in
model checking this works pretty well also in practice
o software model checking

o Proof checker ibridations

o not completely automatic, but better than %’gﬂjﬁquers[,s-ﬂ ‘



o Controllers generators
o particular case for the program synthesizer seen in the
beginning
o controllers are software modules which sends digital commands
to some physical device
o in some cases, they may be built automatically, using
algorithms similar to those of Model Checking
o Probabilistic Model Checking

o verification of stochastic processes

o Stochastic Model Checking
o verification outcome is correct with high probability
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Not all software is mission- or satefy-critical
o actually, most software do not fall in such categories
o Moreover, testing is required also for such systems
o not all features may be checked through formal verification

o Hence, testing is at least as important as model checking and
similar techniques

o early 2000s estimate: software failures cost US economy nearly
60 billion$ per year

o early 2000s estimate: at least 22 billion$ per year could be
saved by applying proper software testing

©

No general frameworks exist, but we have some general “best
practises”

o we will cover them in this course >%\\nnml\ m
\ f BeGS! i



o Many powerful Al tools have been recently developed and
made accessible:

o general-purpose: ChatGPT, DeepSeek, Claude, Perplexity, ...
o programming specific: Copilot, Llama,
o How they affect what we see in this course?

o We have to first consider how they can be used when
developing/implementing/testing some software

©

directly generate software implementations from specifications
given a software, tell me if there are errors
given-a-software,—directlyperform-testing Al LLMs refuse to
run software

given a software, list some interesting test cases

given software specifications, output a description for some

model checking tool % puvessims m ‘
\ DELL'AQUILA 3
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Requirements Program
Programs synthesizer

o Temptation: if it is output by Al, it is correct-by-construction
o the verification problem simply disappears
o This is extremely far from reality

o thus impractical for mission or safety critical software

o Finding errors in Al-generated software requires (human)

developers to first understand it % — -
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()

Provide the source code to Al and ask if it can spot any errors

If an error is found, mostly good

o Al answers may always contain errors, but a (human) developer
should be able to check if the error is a false negative or not

If an error is not found, again no guarantee that there are no
errors

However, asking a check to Al may be a good idea as a start

of the verification
% LRy s



o Provide the source code to Al and ask test cases as output
o also specifications (for the whole software or for some parts)
may be provided: white-box testing

o Again, Al answers may always contain errors

o in this case, it may be that output test cases are not
well-formed, i.e., they do not consider all inputs

o if they are well-formed, their coverage (roughly, capability of
finding errors, if any) could be worse than what a human tester
could produce

o especially if the methodologies explained in this course are
adopted...



o Provide the software specifications to Al and ask a
specification for some model checking tool as output

o Like the generating software point, no guarantee of
“correctness”

o i.e., of representing the system correctly
o or, if it does, of being actually usable
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A Kriepke structure is a 4-tuple: (S,/, R, L)

Formulas satisfiability: © = U4 iff
JeNVO<i<jrn(i)EeAT() EY

p-calcolus, e.g.: R(x) = uZ[l(x) V 3IX[N(X',x) A Z(X)]]
Algorithms on graphs, hash tables, OBDDs...
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o We will examine the most important model checkers, also
considering the source code

o often very well written
o in order to delay state explosion as much as possible
o good way to learn how to code

o SUVs modeling examples

o Software testing best practices, with examples
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Q Modeling systems with the Murphi model checker

©

Kripke structures and algorithms inside Murphi: Model
Checking of invariants
LTL and CTL properties

o safety and liveness
CTL Model Checking algorithms
LTL Model Checking with SPIN
CTL Model Checking with NuSMV

Bounded Model Checking with NuSMV
Testing (starting from November)
o granularity

o techniques T
. | “ UNIVERSITA D\S\'A‘ . .
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