
Software Testing and Validation
A.A. 2025/2026

Corso di Laurea in Informatica

The Murphi Model Checker

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Murphi

Murphi or Murφ, the simplest among “model checkers”

as all model checkers we will see in this course, Murphi may be
freely downloaded with the source code, thus it may also be
modified
links for download of all model checkers we will see are on the
course web-page: https://igormelatti.github.io/sw_
test_val/20252026/index.html

https://igormelatti.github.io/sw_test_val/20252026/index.html
https://igormelatti.github.io/sw_test_val/20252026/index.html

Murphi

Formally, as all model checkers, Murphi needs the following
input:

1 a description of the system S you want to verify (i.e., the
“model” you want to “check”)

as we will see, this is essentially a Kriepke structure

2 a property φ you want the system S to satisfy

The output will be either OK or FAIL

if FAIL, it is possible to tell Murphi to print a counterexample

Murphi

In Murphi, both the description of S and of φ must be written
in a single text file, following a precise syntax

in other model checkers we will see (e.g., SPIN), this syntax
has a name; but this is not the case for Murphi
thus, we will refer to it simply as Murphi input language
as we will see, in many points Murphi input language is similar
to some imperative programming languages, especially Pascal
(for statements) and C (for expressions)

Murphi

A description for S and φ written in the Murphi input language
must be organized as follows

1. definitions of:

constants, also named parameters
data types, divided in simple and composed

there are only two simple types: enumerations and integer
subranges
the boolean data type is predefined as an enumeration (true,
false)
the composed types are formed using array and/or records
(structs), possibly mixed, following the Pascal syntax

Murphi

1. (Continuing)
global variables, each having one of the types above

global variables are fundamental, as they define the states
space S
that is, S is defined by all possible values of all global variables
thus, is defined by the Cartesian product of all types of all
global variables defined
as all types are finite, S may be huge but it is always finite
see example below

note that such definitions may be mixed, of course keeping in
mind variables scoping

e.g., if you need constant A to define type B of variable C ,
you must define constant A first, then type B and finally
variable C
type B could also be used inline directly when declaring C

Murphi

2. Definitions of:

functions

return a value
may have side effects (i.e., modify a global variable)
may modify input arguments, but must be explicitly stated as
in Pascal (parameter passed as reference)

procedures

do not return a value
may have side effects (i.e., modify a global variable)
may modify input arguments, but must be explicitly stated as
in Pascal (parameter passed as reference)

Murphi

For both functions and procedures:

Pascal-like syntax
it is possible to define and use local variables
local variables must not be considered in the definition of the
state space S

Again, you can mix them, provided scoping is respected

E.g., if function F calls procedure G which calls function H,
then G must be defined before F and H before G

Murphi

3. Definitions (mixed as you like it) of:

start states, defined as Pascal-like statements, intended as
atomically executed

may contain the typical statements of imperative
programming languages: assignments, cycles, ifs, functions
and procedures calls
local variables may be defined

rules, each defined by:

a(n application) guard, defining if a rule is applicable (fired, as
Murphi says) or not
a body, again formed by atomically executed Pascal-like
statements
an optional string, working as a short comment for the rule
by the way, comments may be either with C syntax (/**/) or
Pascal syntax (--)

Murphi

Of course the guard must be a boolean expression

Only global variables and constants may occur in a guard

actually, also ruleset indexes, we will be back on this

It is possible to call functions (not procedures!)

The body may contain the typical statements of imperative
programming languages: assignments, cycles, ifs, functions
and procedures calls

Local variables may be defined and used

Murphi

3. (Continuing):

invariants, each of them defines a property to be checked

same as guards: it must be a boolean expression
only global variables and constants may occur in a guard
exceptions are possible when forall or exist are used
it is of course possible to call functions

Finally, at least one initial state and one rule must be present
(see 00.minimal model.m)

Murphi

Murphi checks that all reachable states of S satisfy all
invariants

a state s ∈ S is reachable if there exists a path in the
transition graph from an initial state to s
that is: starting from an initial state, there exists a chain of
rules, each applied to the state obtained from the preceding
one, leading to s
this is a safety property

Murphi

Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

Murphi

Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

UML-like state diagram: this is the first process; the second
may be obtained exchanging 1’s with 2’s and viceversa

L1 L2 L3 L4L0

turn := 1; !Q[2] or turn = 2

Q[2] and turn = 1

Q[1] := false;

Q[1] := true;

Murphi

Example: G. L. Peterson protocol for mutual exclusion of 2
processes (1981)

two identical processes
each applies Peterson protocol to access to the critical section
L3
the first issuing the request enters L3
Q is a global variable, defined as an array of two integers

each process i may modify Q[i] and read Q[(i + 1) mod 2]

turn is another global variable, which may be both read and
modified by both processes

Murphi

Murphi description for Peterson protocol: let’s start with the
variables

of course turn and Q, but also two variables P for the modality
(“states” in the UML-like state diagram)
see 01.2 peterson.no rulesets.no parametric.m

to this aim, we define constants and types
the N constant (number of processes) is here fictious: only 2
processes, not more
this version of Peterson protocol only works for 2 processes

thus, the state space is
S = label t2 × {true, false}2 × {1, 2}

Variables for Murphi Model Describing Peterson Protocol

turn v ∈ {1..N}

v ∈ {L0, L1, L2, L3, L4}

v ∈ {true, false} v ∈ {true, false}

P

Q

v ∈ {L0, L1, L2, L3, L4}

Murphi

Hence, |S | = 52 × 22 × 2 = 200 (there are 200 possible states)

as a matter of comparison, the “state” L0 in the UML-like
state diagram actually contains 51 × 22 × 2 = 40 states...

However, as we will see, reachable states are about 10 times
less

2 initial states: turn may be initialized with any value in its
domain

Note that 01.2 peterson.no rulesets.no parametric.m

we have rules repeated 2 times in a nearly equal fashion

This can be done in this very simple model, but in general
descriptions must be parametric

Murphi

If we want to check Peterson with 3 processes, currently we
would have to add rules in the desciprion

very similar to the ones already present, only changing the
index to 3

Instead, it must be possible to only change the value of N
from 2 to 3

To write parametric descriptions in Murphi, rules are grouped
with rulesets

an index will allow to describe the behavior of the generic
process i
see 02.2 peterson.with rulesets.no parametric.m, but
invariant is still for two processes only

Murphi

Finally, in 03.2 peterson.with rulesets.parametric.m
also the invariant is parametric in N

Exists x:T E (x) End is equivalent to ∨x∈TE (x)
Forall x:T E (x) End is equivalent to ∧x∈TE (x)
all types T = {x1, . . . , x|T |} are finite, thus it is a finite formula

