Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

o Let AP be a set of “atomic propositions”

o in the sense of first-order logic: each atomic proposition is
either true or false
o tipically identified with lower case letters p,q,. ..

o A Kripke Structure (KS) over AP is a 4-tuple (S, I, R, L)

S is a finite set, its elements are called states
| C S is a set of initial states

R C S x S is a transition relation

L:S — 24P is a labeling function

© © 0 o

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o A Labeled Transition System (LTS) is a 4-tuple (S, I, A\, d)

S is a finite set of states as before

| C S'is a set of initial states as before (not always included)
A is a finite set of labels

6 C S x A\ xS isa labeled transition relation

© © 0 o

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o S = {(P17P2a qi, g2, t) ‘ P1, P2 S {LO»leLQ;LB,LZl}, q1, g2 €
{0,1},t € {1,2}} = {L0,L1,1L2,13,L4}2 x {0,1}? x {1,2}

o I ={L0}2 x {0} x {1,2}
o R: see next slide

o AP = {(P[1] = v) | v € {L0,L1,12,13,L4}} U {(P[2] =
v) | v e {L0,L1,12,L3, L4} U{(Q[t] =v) | v e
{0,11ru{@2] = v) | v € {0,1}} U{(turn = v) | v € {1,2}}

o e.g.: L((LO,L0,0,0,1)) = {(P[1] = LO), (P[2] = LO), (Q[1] =

0),(Q[2] = 0), (turn = 1)}
% iy -

(LIL

E.g.: ((L0,L0,0,0,1),(L1,L0,1,0,1)) € R, whilst
((L0,L0,0,0,1), (2,L0,0,0,1)) ¢ R

Transitions in R corresponds to arrows in the figure above

UNIVERSITA DISIM
| DEGLI STUDI Oganinerie ol wgegrer
DELLAQUILA]

o KSs have atomic propositions on states, LTSs have labels on
transitions
o In model checking, atomic propositions are mandatory
o to specify the formula to be verified, as we will see
o a first example was the invariant in Murphi
o Instead, it is not required to have a label on transitions

o Murphi allows to do so, but it is optional
o may be easily added automatically, if needed
o Labels are typically needed when:
o we deal with macrostates, as in UML state diagrams
o when we are describing a complex system by specifying

sub-components, so labels are used for synchronization
R ‘\

NIVERSITA DISIM
EGLI STUDI e
ELLAQUILA]

its

t
\ | D
\ DI

o In many cases, the transition relation R is required to be total
oVseS3s'eS:(s,s)eR

o this of course allows also s = s’ (self loop)
o In the Peterson’s example, the relation is actually total

o Murphi allows also non-total relations, by using option -ndl

o note however that not giving option -ndl is stronger:
VseS3s'eS:s#s AN(s,s')eR

o otherwise, if siss.t. Vs'. s ="V (s,s’) ¢ R, Murphi calls s a
deadlock state

o that is, you cannot go anywhere, except possibly self looping
ons

o By deleting any rule, we will obtain a non-total transition

relation s |
| | UNIVERSITA DISIM

©

The transition relation is, as the name suggests, a relation

©

Thus, starting from a given state, it is possible to go to many
different states

o in a deterministic system,

Vsi, 5,5 € S. (51752) ERA (51,53) ER— =353

o this does not hold for KSs
This means that, starting from state s;, the system may
non-deterministically go either to s, or to s3

o or many other states

©

©

Motivations for non-determinism: modeling choices!
o underspecified subsystems
o unpredictable interleaving
o interactions with an uncontrollable environmepnt

‘l\l\l]?\”\ DIsIM
Qo ... \ | DEGLI STUDI
\ DELL'AQUILA 2

o Given a KS § = (5,1, R, L), we can define:
o the predecessor function Preg : S — 2°
o defined as Pres(s) = {s' € S| (s/,s) € R}
o we will write simply Pre(s) when S is understood
o the successor function Post : § — 2°
o defined as Post(s) = {s' € S| (s,s’) € R}
o Note that, if S is deterministic, Vs € S. |Post(s)| <1

o Note that, if S is total, Vs € S. |Post(s)| > 1

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o A path (or execution) on a KS § = (5,1, R, L) is a sequence

T = 59515> . .. such that:
o Vi>0.s; €5 (itis composed by states)
o Vi >0.(s;,si+1) € R (it only uses valid transitions)

o We will denote i-th state of a path as (i) = s;
o Note that paths in LTSs also have actions: m = spagsiaz . . .

s.t. (S,', aj, Si+1 € 5)
% P -

o The length of a path m is the number of states in 7
o paths can be either finite 7 = sgs1 ... s, in which case

7| =n+1
o or infinite T = spsy ..., in which case |7| = co

o We will denote the prefix of a path uptojas7|; =sp...s;
o a prefix of a path is always a finite path

o A path 7 is maximal iff one of the following holds
o || =00
o || = n+1 and |Post(n(n))] =0

o thatis, Vs € S. (n(n),s) ¢ R
o i.e., the last state of the path has no successors

o often called terminal state

o If R is total, maximal paths are always infinite
o for many model checking algorithms, this is‘%iﬁdm m ‘

o The set of paths of § starting from s € S is denoted by
Path(S,s) = {n | m is a path in S A 7(0) = s}
o The set of paths of § is denoted by
Path(S) = Use/Path(S, s)
o that is, they must start from an initial state
o A state s € S is reachable iff
dr € Path(S), k < |rn|: w(k)=s
o i.e., there exists a path from an initial state leading to s
through valid transitions

o The set of reachable states is defined by
Reach(S) = {#(i) | 7 € Path(S),i < |r|}

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Verification of invariants: nothing bad happens
o The property is a formula ¢ : S — {0,1}
o built using boolean combinations of atomic propositions in
p € AP
o i.e., the syntax is

O=(P) [PAD|DOVI| D |p

o The KS S satisfies ¢ iff ¢ holds on all reachable states
o Vs € Reach(S). ¢(s) =1
o Note that it may happen that ¢(s) = 0 for some s € S: never

mind, if s ¢ Reach(S)
B/ Biih e

o First, we mathematically define a Murphi description M

o V ={(w,...,v,) is the set of global variables of M, with
domains (Ds,...,Dy)
o all variables are unfolded to the Murphi simple types
o integer subranges

o enumerations
o the special “undefined” value should be added to all simple

types
o that is, if a variable is an array with g elements, then it is
actually to be considered as g different variables
o the same for records (and any nesting of arrays and records)
o as an example: var a : array [1..n] of record begin
b: 1..m; c: 1..k; endrecord
o then there will be 2n variables as follows:

alb,...,anb,alc,...,anc (=7 = — @ -
o the f|rst n with type 1 .m, the other with ty SR ‘

o Z=A{h,..., I} is the set of startstate sections in M

o startstates may be defined inside rulesets; again, all rulesets
are unfolded

o thus, if a startstate Z is inside m nested rulesets R1,...,Rm...

o and each ruleset R; is defined on an index j; spanning on a
domain D; (note that D; must be a simple type)...

o then there actually are [[”, |D,| startstates to be considered,
instead of just one

o of course, in each of these startstates definitions, the tuple
J1,---,Jm takes all possible values of Ry X ... X R,

o T={Ti,..., Tp} is the set of rule sections in M
o again, if rulesets are present, they are unfolded

o The Kriepke structure S = (S, /, R, L) described by M is such
that:

o S=Dy x...xD,

o s € [iff there is a startstate /; € Z s.t. s may be obtained by
applying the body of /;

o (s,t) € Riff thereisarule T; € T s.t. T; guard is true in s
and T; body changes s to t

o AP={(v=d)|v=vie VAde D;}

o (v =d) e L(s) iff variable v has value d in s

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o We also assume to have a function defining the semantics of
Murphi (sequence of) statements
o those in bodies of rules and startstates
o Let P be the set of all possible (syntactically legal) Murphi
statements
o including while, if, for, assignments...
o Thus, letn:Px Dy x...x D, — D1 x...x D, be our
evaluation function

o it takes a Murphi statement P € P and the state s preceding
such statement

o it returns the new state s’ obtained by executing P on s

oeg,na:=a+1;b:=b—-1,(1,2,3)) =(2,1,3)

o 1 may be defined, e.g., using operational se%tics .
UNIVERSITA @ -
\ / DEGLI STUDI ento di i
\ DELL'AQUILA Sy

o We also assume to have a function defining the semantics of
Murphi boolean expression
o those in guards of rules
o and in invariants!
o Let Q be the set of all possible (syntactically legal) Murphi
boolean expressions
o including forall, exists, equality checks...
o Thus, let (: Q@ x Dy x ... x D, — {0,1} be our evaluation
function
o it takes a Murphi boolean expression @ € Q and the state s to
be evaluated

o it returns 1 iff Q is true in s
o eg. (((a=3b=4),(1,4,3) =1

o ¢ may be defined using atomic propositions>%8‘[;ﬁ§ﬁ§ bm ‘

©

Let @ € Q be a Murphi boolean expression
Flatten Q w.r.t. Forall and Exists

o Forall is replaced by ANDs, Exists by ORs

o e.g., from Exists il: pid Do Exists i2: pid Do (il
=12 & P[i1] = L3 & P[i2] = L3) End End ...

o ...to(1 '=1&P[1] =L3 &P[1] =13) | (2'=1%&
P[2] = L3 & P[1] =1L3) | (1 '=2 & P[1] =13 &
P[2] =L1L3) | (2 '=2 & P[2] = L3 & P[2] = L3)

If we replace each variable v; € V occurring in Q with a value
wj, € D;, we obtain a boolean value (true or false)

()

©

o e.g., the former evaluates to true by setting P[1] = L3 and
P[2] = L3

Thus, ((Q,s) = 1iff Q(wj,,...,w;,)
o where each wj;; is such that (v, =w;) € L (5)e.
o Q(wj,...,w;,) is the result of replacing var \,,\ WWith \'“” e

ij'

i

©

o (s,t) € Riff thereisarule T; € T s.t. T; guard is true in s
and T; body changes s to t
o By using 17 and (, we can be more precise:
o “T; guard is true" means ((G(T;),s) =1, being G(T;) the
Murphi expression used as guard of rule T;
o "T; body changes s to t" means n(B(T;),s) = t, being B(T;)
the Murphi statement used as body of rule T;
o s € | iff there is a startstate /; € Z s.t. s may be obtained by
applying the body of /;
o "s may be obtained by applying the body of /" means
n(B(l),(L,..., 1)) =s, being B(T;) the Murphi statement

used as body of startstate /;
SV 7= - oo
\ | BECEAGUIA 3%

o (s,t) € Riff thereisarule T; € T s.t. T; guard is true in s
and T; body changes s to t:
o that is: in the body of T;, variables starting values are those of
s
o note that there may be two or more rules defining the same
transition from s to t; no problem with this
o simply, the same transition is described by multiple rules

o A state s is a deadlock state for two possible reasons:

Q (s,t) ¢ Rforall t €8S, i.e., the values for the variables in s do
not satisfy any ruleset guard

Q (s,t) € R — t =s, i.e., there is some ruleset guard which is
satisfied by s, but its body do not change any of the global

variables (e.g., the body is empty) o
%‘ e N

©

©

©

©

Theoretically, extract KS S and property ¢ from M as
described above

o for a given invariant / in M, ¢(s) =¢(/,s) forall s € S
Then, KS S satisfies ¢ iff ¢ holds on all reachable states
o Vs € Reach(S). ¢(s) =1
Thus, consider KS as a graph and perform a visit
o states are nodes, transitions are edges
If a state e s.t. p(e) =0 is found, then we have an error

Otherwise, all is ok

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

o From a practical point of view, many optimization may be
done, but let us stick to the previous scheme

o The worst case time complexity for a DFS or a BFS is
O(|V| + |E|) (and same for space complexity)

o For KSs, this means O(|S| + |R|), thus it is linear in the size
of the KS

o Is this good? NO! Because of the state space explosion
problem

o Assuming that B bits are needed to encode each state

o ie, B= 27:1 b;, being b; the number of bits to encode
domain D;

o We have that |S| = O(2B) %

The “practical” input dimension is B, rather than |S| or |R|
Typically, for a system with N components, we have O(N)
variables, thus O(B) encoding bits

It is very common to verify a system with N components, and
then (if N is ok) also for N 4+ 1 components

o verifying a system with a generic number N of components is a
proof checker task...

This entails an exponential increase in the size of |S]
Thus we need “clever” versions of BFS/DFS

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Assumes that all graph nodes are in RAM

o For KSs, graph nodes are states, and we know there are too
many

o state space explosion

o You also need a full representation of the graph, thus also
edges must be in RAM

o using adjacency matrices or lists does not change much
o for real-world systems, you may easily need TB of RAM

o Even if you have all the needed RAM, there is a huge
preprocessing time needed to build the graph from the Murphi
specification

o Then, also BFS itself may take a long time .
AR/ Bl rd

o We need a definition inbetween the model and the KS: NFSS
(Nondeterministic Finite State System)
o N = (S, 1, Post), plus the invariant ¢

o S is the set of states, | C S the set of initial states
o Post : S — 25 is the successor function as defined before

o given a state s, it returns T sit. t€ T — (s,t) € R
o no labeling, we already have ¢

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o KSs and NFSSs differ on having Post instead of R
o Post may easily be defined from the Murphi specification
o Such definition is implicit, as programming code, thus
avoiding to store adjacency matrices or lists
o t € Post(s) iff there is a rule T; € T s.t. T; guard is true in s
and T; body changes s to t
o see above for using 1 and ¢

o Essentially, if the current state is s, it is sufficient to inspect all
(flattened) rules in the Murphi specification M

o for all guards which are enabled in s, execute the body so as
to obtain t, and add t to next(s)

o This is done “on the fly", only for those states s which must

be explored e

void Make_a_run(NFSS A, invariant ¢)
{
let N =(S,/,Post);
s_curr = pick_a_state(/);
if (l¢(s_curr))
return with error message;
while (1) { /* loop forever */

s_next = pick_a_state (Post(s_curr));
if ('¢(s_next))

return with error message;
s_curr = s_next;

}
}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

void Make_a_run(NFSS N,
{

invariant ¢)
let N =(S,[,Post);
s_curr = pick_a_state(/);
if (l¢(s_curr))
return with error message;
while (1) { /* loop forever */
if (Post(s_curr)=9)
return with deadlock message;

s_next = pick_a_state (Post(s_curr));
if ('y(s_next))

return with error message;
s_curr = s_next;

}
}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

void Make_a_run(NFSS N,
{

invariant ¢)

let N =(S,[,Post);

s_curr = pick_a_state(/);

if (l¢(s_curr))

return with error message;

while (1) { /* loop forever */

if (Post(s_curr)=@ V Post(s_curr)={s_curr})
return with deadlock message;

s_next = pick_a_state (Post(s_curr));
if ('y(s_next))

return with error message;
s_curr = s_next;

}
}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

©

©

©

Similar to testing
If an error is found, the system is bugged

o or the model is not faithful
o actually, Murphi simulation is used to understand if the model
itself contains errors

If an error is not found, we cannot conclude anything

The error state may lurk somewhere, out of reach for the
random choice in pick_a_state

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

BFSIG. 5)
I for ogni vertice u € V]G] - {5]

2 do color{u] & WHITE
3 dftt] &= e
4 afu] +— niL
5 color{s] « Gray
6 dis]«0
T mix] e~
8 Q5]
9 whileQ=z@
10 do u & head[Q]
11 for ogni v & Adj{u]
12 do if color{v] = wHITE
13 then color[v] « crav
14 ‘ d[v] e dllwe] + 1
I35 Avl—u
16 - Expuere(@. v)
17 Degueve(() e
| | UNIVERSITA Disim
18 calorit] & nLack % BEGHLSTLPL e,

FIFO_Queue Q;
HashTable T;

bool BFS(NFSS N, AP ¢)

{

let N =(S,/,Post);
foreach s in [{
if (le(s))
return false;

}

foreach s in |/
Enqueue(Q, s);

foreach s in |/
HashInsert (T, s);

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

while (Q # 0) {
s = Dequeue(Q);
foreach s_next in Post(s) {
if ('p(s_next))
return false;
if (s_next is not in T) {
Enqueue (Q, s_next);
HashInsert (T, s_next);
Yy /% <f x/ } /* foreach */ } /* while */

return true;

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

©

Edges are never stored in memory
o states are “created” when expanding the current state
o rules are used to modify the current state so as to obtain the
new one
o at the start, you have an empty state which is modified by
startstates
(Reachable) states are stored in memory only at the end of
the visit

o inside hashtable T

©

©

This is called on-the-fly verification

o States are marked as visited by putting them inside an
hashtable

o rather than coloring them as gray or black

o which needs the graph to be already in mer%} T m

z

o State space explosion hits in the FIFO queue Q and in the
hashtable T

o and of course in running time...
o However, Q is not really a problem

o it is accessed sequentially
o always in the front for extraction, always in the rear for
insertion

o can be efficiently stored using disk, much more capable of
RAM

o T is the real problem

o random access, not suitable for a file
o what to do?

o before answering, let's have a look at Murphi«code
. R i

o As for all explicit model checker, a Murphi verification has the
following steps:
Q compile Murphi source code and write a Murphi model
model.m
Q invoke Murphi compiler on model.m: this generates a file
model.cpp
o mu options model.m
o see mu -h for available options
Q invoke C++ compiler on model.cpp: this generates an
executable file
o g++ -Ipath_to_include model.cpp -o model
o path_to_include is the include directory inside Murphi
distribution
Q invoke the executable file

o ./model options <iz
o see ./model -h for available options \ J BECEASUILY e

o Executable mu is in src directory of Murphi distribution
o Obtained by compiling the 25 source files in src
o of course, a Makefile is provided for this

o Standard compiler implementation, with Flex lexical analyzer
(mu.1) and Yacc parser (mu.y)

o The main function which builds model.cpp is
program: :generate_code in cpp_code.cpp (called by main,
in mu. cpp)

0 program: :generate_code uses the parse tree generated by
Yacc to “implement” in C4++ the guards and the bodies of
the rules

o The result goes in model. cpp: model-specif'r%g\enw\
Rt e

o Each Murphi variable v (local or global) corresponds to a
C++ instance mu_v of the class mu__int (possibly through
class generalizations)

o Class mu__int is used to handle variables with max value 254
(255 is used for the undefined value)

o For integer subranges with greater values, class mu__long is
used; also mu__byte (equal to mu__int...) and mu__boolean
exist

o If v is a local variable, mu_v directly contains the value
(attribute cvalue, in_world is false)

o Otherwise, if v is global, mu_v retrieves the value from a
fixed-address structure containing the current state value

(workingstate; in_world is true) %‘ BT . ‘

class mu__int {
enum {undef_value=0xff};

bool in_world; /* local

i1ff false */
int 1b, ub;

/* bounds */

int byteOffset; /* in bytes */

/* points to workingstate->bits[byteOffset]
for global wariables,
local */

unsigned char *valptr;

unsigned char cvalue;

to cvalue for

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

public:

/* constructor, sets all attributes (the
variable 1s supposed to be local by
default, with an undefined value);
bytelOffset 7s computed by generate_code

*/

mu__int (int 1b, int ub, int size, char *n,

int byteOffset);

/* other useful functions */

int operator= (int val) {

if (val <= ub && val >= 1b) value(val);
else boundary_error(val);

return val; e
3 \ f BeGS! =

operator int () const {
if (isundefined()) return undef_error();
return value () ;
+;
const int value() const {return *valptr;};
int value(int val) {
xvalptr = val; return val;l};
void to_state(state *thestate) {
/* used to make the wvariable global */
in_world = TRUE;
valptr = (unsigned char *)&(workingstate->
bits[byteOffset]) ;

} ’ .

‘l\l\l]?\”\ DIsIM
5 \ | DEGLI STUDI it e
’ \ DELLAQUILA !

o As for the byteOffset computation,
program: : generate_code simply computes the one for a
variable mu_v mapping a Murphi variable v in the following
way
o Let My,..., M, be the upper bounds of the n variables
preceeding the declaration of v
o Let b(x) = |logy(x +1)] + 1 be the number of bits required to
represent the maximum value x (plus the undefined value)
o Let B(x) =1if b(x) <8, 4 otherwise (i.e. only 1-byte or

4-bytes integers may be used)
R) oavensima bow
. R i

o Then, byteOffset(muv) = > . B(M;)

o Structure containing the current global state, is an instance of
class state

o Essentially, it consists of an array of unsigned characters,
named bits

o so that any value of any global variable may be casted inside it
o at a precise location, pointed to by valptr from mu__int

o Note that workingstate has a fixed length, that is
BLOCKS_IN WORLD = > | B(M))

o being N the number of all global variables
o namely, bits has BLOCKS_IN_WORLD unsigned chars

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Straightforward for ifs, whiles and so on: the “difficult” part
is assignments (and expressions evaluation)

o Essentially, a := b; in model.m becomes mu_a = (mu_b); in
model. cpp

o The operator () is redefined so that mu_b retrieves the value
for b, either from itself (attribute cvalue) or from
workingstate (thanks to valptr)

o Then, the redefined operator = is called, so that mu_a updates
the value for a to be equal to that of b, either from itself
(attribute cvalue) or from workingstate

o If the right side of the assignment has a generic expression, it
is evaluated in a similar way (the operator () solves the
Murphi variable references, the other values Wlll be integer
constants or function calls...) ‘ma\"};zﬁ ' -

o BTW, functions are mapped as C++ metho

©

©

©

©

For each rule i (starting from 0 at the end of model.m!) there
is a class named RuleBase/

Such class has Code method for the body and Condition
method for the guard

Startstates are similar, but they only have the body
A suitable C++ code flattens rulesets, if present

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Const VAL_LIM: 5;
Type val_t : O..VAL_LIM;
Var v : val_t;

Rule "incBy1"

v <= VAL_LIM - 1 ==>
Var useless : val_t;
Begin

useless := 1;

v := v + useless;

class RuleBasel {
public:

bool Condition(unsigned r) { /* guard */
return (mu_v) <= (4);

}

void Code (unsigned r) { /* body */
mu_1_val_t mu_useless("useless", 0);
mu_useless = 1;

mu_v = (mu_v) + (mu_useless);

};

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

ruleset i: h..u; do

ruleset j: h..u do

Rule "incBy1"

i< j ==>

Begin v := v + i - j; End;
Endruleset; Endruleset;

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

class RuleBaseO {
public:
bool Condition (unsigned r) {
/* called (1 —h+1)(v2—h+1) with r ranging
from 0 to (u1—h+1)(tre—h+1)—1 %/
static mu__subrange_7 mu_j;
mu_j.value((r % (vu—h+1)) + h);
r=1r/ (1u-—h+1);
static mu__subrange_6 mu_ij;
mu_i.value((r % (tu—h+1)) + h);
/* useless, but it is automatically
generated... */
r=r1/ (1-h+1);

return (mu_i) < (mu_j); (=7 = — @ ——
\ DELL'AQUILA Sy
} 2 ‘

void Code (unsigned r) {

static mu__subrange_7 mu_j;
mu_j.value((r % (vu—h+1)) + h);
r=1/ (1u—h+1);

static mu__subrange_6 mu_i;
mu_i.value((r % (Ul—/1+1)) + h);
r=r1/ (1—-h+1);

mu_v = ((mu_v) + (mu_i)) - (mu_j);

}s

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Note that the first part of Condition and Code is meant to
translate an integer from O to (u3 — h +1)(up —h+1)—1in
2 values for the rulesets indeces

The interface class for the verification algorithm is
NextStateGenerator

Suppose there are R rules ry, ..., rr_1, and that each r; is
contained in N; nested rulesets having upper bound uj;; and
lower bound [/, for j =1,...,N;

Note that Condition simply calls its homonymous method of
the RuleBase class corresponding the current r...

Let P(k)=Y1g(IT%(uj —j+1))+1 be the number
of flattened rules preceding the rule rg;

class NextStateGenerator {
RuleBaseO RO;

RuleBase(R—1) R(R—1);
public:
void SetNextEnabledRule (unsigned &

what_rule) ;
ISV V= [o
) Bl o

bool Condition(unsigned r) { /* » will
range from 0 to P(R) */
category = CONDITION;

if (what_rule < P(1))

return RO.Condition(r - 0);

if (what_rule >= P(1l) && what_rule < P(2))
return R1.Condition(r - P(1));

if (what_rule >= P(R—1) && what_rule <
P(R))

return R(R—1).Condition(r - P(R—1));
return Error;

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

void Code (unsigned r) {

if (what_rule < P(1)) {

RO.Code(r - 0); return;

}

if (what_rule >= P(1) && what_rule < P(2)) {
R1.Code(r - P(1)); return;

}

if (what_rule >= P(R—1) && what_rule <
P(R)) {
R(R—1).Code(r - P(R—1)); return;
T}
s i

const unsigned numrules = P(R); % f

Concatenation of include/*.h

model . cpp

Concatenation of include/*.C

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

FIFO_Queue Q;
HashTable T;

bool BFS(NFSS N, AP ¢)

{

let N =(S,/,Post);
foreach s in [{
if (le(s))
return false;

}

foreach s in |/
Enqueue(Q, s);

foreach s in |/
HashInsert (T, s);

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

while (Q # 0) {
s = Dequeue(Q);
foreach s_next in Post(s) {
if ('p(s_next))
return false;
if (s_next is not in T) {
Enqueue (Q, s_next);
HashInsert (T, s_next);
Yy /% <f x/ } /* foreach */ } /* while */

return true;

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

Post (s) is computed using class NextStateGenerator
It is equivalent to a for loop on all flattened rules

For each flattened rule index r, Condition(r) tells if the
current state workingstate enables the guard of r

If so, the next state is obtained via Code(r), by directly
modifying workingstate

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Open addressing ...
o insert: repeatedly call e = h(s,i) (for i =1,2,..., m) till
Tle] = @, then insert s in T[e]
o search: repeatedly call e = h(s, i) (for i=1,2,...,m) till
either:
o T[e] = @ — s is not present
o T[e] =s — s is present
o ... with double hashing
there are two hash functions hy, hy
h(s, i) = (h1(s) + ih2(s)) mod m
m is the size of T, and is a prime number
/1(57 11) = h(S, 12) — i1 = i2

© 06 0 o

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

States must be stored in T

©

©

For efficiency reasons, T is a fixed-length array, each entry is
an instance of state class
o if T becomes full, the verification is terminated and you have
to run it again with more memory
o option -m of model executable

©

Thus, T stores workingstates

©

Two possible ways (also together):

Q use less memory for each state
Q store less states

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o To save some (not much...) space, the Murphi compiler
option -b may be used to compress states (bit compression in
SPIN’s parlance)

o Whilst hashcompaction is a lossy compression, this is lossless
o But very less efficient

o In this way, workingstate contents are not forced to be
aligned to byte boundaries, so it occupies less space

o Moreover, effective subranges size is used (remember we store
the lower bound...)

o Of course, a more complex handling than the valptr and

byteOffset one has to be used e
1%} guvessma s
AR/ Bl g

Var
x : 2b55..261;
y : 30..53;

StartState

x := 256;
y := b3;

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

workingstate—>bits

0x0 0x0 0x1 0x0 0x35 without —b

workingstate—>bits
Oxc 0x2 | with-b

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

o Enabled by compiling the Murphi model with -c

o When dealing with hash table insertions and searches, state
“signatures” are used instead of the whole states

o The idea is that it is unlikely to happen that two different
states have the same signature

o If this happens, some states may be never reached, even if
they are indeed reachable

o Thus, there may be “false positives”: the verification
terminates with an OK messages, while the system was buggy
instead

o However, this is very unlikely to happen, and in every case it

is much better than testing, which may miss_whole classes e
| ‘ UNIVERSITA DISIM
bugs) il @ g

o At the beginning of the verification, a vector hashmatrix of
24*BLOCKS_IN_WORLD longs (4 byte per each long) is created
and initialized with random values (hashmatrix will never be
modified)

o Then, given a state s to be sought/inserted, 3 longs 10, 11
and 12 are computed from hashmatrix

o Namely, 1/, for i = 0,1,2, is the bit-to-bit xor of the longs in
the set H(i/) = {hashmatrix[3k + i] | the k-th bit of the
uncompressed state s is 1};

o That is to say, every bit of s is used to determine if a given
element of hashmatrix has or hasn't to be used in the

signature computation . E\ !

o This is accomplished in the functions of file
include/mu_hash. cpp, where to avoid to compute
8*BLOCKS_IN_WORLD bit-to-bit xor operations, some xor
properties allow to use the preceeding computed signature and
save some xor computation (oldvec variable)

o Then, 10 is used as a hash value (index in the hash table)

o The concatenation of 11 and 12 (truncated to a given number
of bits by option -b) gives the signature (the value to be
sought/inserted in T)

o It should be obvious, now, that a signature cannot be used to
generate states, so that's why Q entries do not point to hash
table entries any more

o Thus, if current workingstate state is found to be new, and
so its signature is put inside the hash table, a- WV Mmemor;
block is allocated to be assigned to the currepfifrom: of t e
queue, and workingstate is copied into that

o Differently from SPIN's partial order reduction, these
techniques are not transparent to the user

o In fact, symmetry reduction are applicable only if some types
have been declared using the scalarset keyword (for
multiset reduction, the keyword is multiset)

o Not all systems are symmetric

o However, when it is possible to apply symmetry reduction,
only a subset of the state space is (correctly) explored

o To be more precise, symmetry reduction induces a partition of
the state space in equivalence classes

o A functions chain (implemented in the model-dependent part

in model.cpp) is able to return the representative of the
. . | ‘ UNIVERSITA DISIM
equivalence class of a given state Ul bl s

o Rules for scalarset:

o the values are not used in any comparison operation except
equality testing

o the values are not used in any arithmetic operation

o the result from the for loop with the subrange as index does
not depend on the order of the iteration

o cannot be directly assigned to some value: either it is used on
a forall, exists, for, ruleset, or it is used an assignment with
some other scalarset value

FIFO_Queue Q;
HashTable T;

bool BFS(NFSS A, AP o)
{

let N =(S,/,Post);
foreach ss in [{

s = Normalize(ss);
if (le(s))
return false;

}

foreach s in |/

Enqueue (Q, s);

foreach s in |/ 3

HashInsert (T, s); f%}m.‘w\‘ m
\ | BECEAGUILA o

while (Q # 0) {
s = Dequeue(Q);
foreach ss_next in Post(s) {
s_next = Normalize(ss_next);
if ('p(s_next))
return false;
if (s_next is not in T) {
Enqueue(Q, s_next);
HashInsert (T, s_next);
Yy /* <f ¥/ Y /* foreach */ } /* while */

return true;
‘ J DTS 0 e
\ BELAGLIA]

o How is Normalize implemented? Here are the main ideas

o Suppose that variable v is a scalarset(N), and v =1V in a
statese S

o Then, any permutation of the set {1,..., N} brings to an
equivalent state
o Thus, all possible permutations are generated, and the
lexicographically smaller state is chosen as the representative
o apply a permutation means: change the value of v, and
reorder any array or ruleset or for which depends on v
o Could be expensive, heuristics are also used to perform faster
but potentially not complete normalizations
o i.e., two symmetric states may be declared different

o this does not hinder verification correctness,’%{\it&sefficim ‘

o One could think: why not to perform a BFS on a legacy
software state space?
o transition relation: use some debugger to perform one
statement at a time
o e.g., for a C program, gdb may be used
o if concurrency is important, one machine code statement at a
time
o How many states will be there? Let us make an estimate
o values for all global variables
o value for the whole current call stack
o if we have threads, all call stacks...

o values for allocated memory on heap
o if some 1/0O is being used (e.g., open files), also its value must

be taken into account ’%M.M\ m
B SR e

o Actually, the whole computer’'s memory may be used
o both RAM and disks!

o Suppose we have 2TB of total memory, i.e., 16Tb

o Thus, the number of possible states is 22* ~ 210" ~ 10310%

o number of atoms in the universe: 10%°

o That's why Murphi does not consider the content of files and
heap, and does not allow uncompleted function calls
o functions are called only to determine the next state
o the full call stack must be empty at the end of each next state
computation

o For full software, only simulation (i.e., testing) can be
performed

o storing states is impossible ’%m.w\ m
. gt

o Establish mutual authentication between an initiator A and a
responder B

o desired outcome: A knows it is speaking with B and viceversa

©

Public key cryptography:
o each agent « has a public key K,
o any other agent 8 can get K, using a dedicated key server
o each agent « has a secret key K1

o Given a message m, it may be encrypted using some key K,
thus obtaining {m}k
o any agent 8 may encrypt m using K, for some agent «, thus
obtaining {m}x,
o only agent & may decrypt {m}_, thus obtaining m

| UNIVERSITA

« \ | DEGLI STUDI

\ DELL'AQUILA

o A random number N, (nonce) may be generated by any aiint

o We follow the modeling by Lowe, showing an error in the
protocol that went undetected for nearly 20 years

o Namely, an agent / (intruder) successfully make an agent B
think that / is instead A (impersonation)
o NS protocol for mutual authentication consists on 7 steps, but
here we focus on the 3 more important steps
o in the omitted steps, A and B obtain their public keys, let us
assume this is ok

o assume-guarantee approach: assuming that something works,
does the subsequent (dependent) steps work?
o ubiquously used in verification in its “weakest” form

o may be formalized, but we skip it
\ B ‘

o The three steps are as follows:
OA—)BZ{NA-A}KB
o - stands for concatenation, A is identity of A
) B—)AZ{NA-NB}KA
o A— B: {NB}KB

o From here onwards, B should be certain to be talking to A
o The idea is: if only A can decrypt {Ns - Ng}k,, then only A
could have sent {Ng}k, back to me
o this is the B viewpoint, of course
o A is the initiator and B the responder

o a bit counter-intuitive, as at the end it is the responder who

gets the answer ~
U/ BEt i

o Intruder /| power:
o overhear and/or intercept any message between any pair of
selected agents

o reply to any intercepted message
o know which the (other) intruders are

o not in the original paper...
o plus the fact it is itself an agent, thus:

o may decrypt messages encrypted with its key K;
o may encrypt messages with some other agents key K,
© may create nonces

o The protocol goal is that a whole set of initiators and

responders recognize each other
% S R

o 5 global variables:

(*]
Qo
Qo
Qo
Qo

number of initiators

number of responders

number of intruders

number of messages in the network
memory size of the intruder

o To trigger the error, it is sufficient that the first 4 variables are
strictly positive

o the last must be at least 3

o Once the error is corrected, you may select higher values to
see if it stays correct

o of course, same number of initiators and responders

o Initiator has a ‘“state” and the responder it is talking to

o ‘“states”: actually modalities or statuses, as in the Peterson
protocol

o SLEEPING: before first message A — B : {Na- A}k,

o WAIT: after first message and before B — A: {Na - Ng}k,

o COMMIT: after sending last message A — B : {Ng}k,

o Responder has a “state” and the initiator it is talking to

o SLEEPING: before first message A — B : {Na- A}k,
o WAIT: after sending B — A : {Na - N}k, and before

A— B: {NB}KB
\ / BECEAQUILA e

o COMMIT: A is authenticated by B

o Intruder has two arrays
o for each agent a (including itself), the nonce N,

o modeling choice: it is not important, for this verification
purposes, to represent the actual random number

o otherwise, too many (unnecessary) states

o instead, only a boolean is stored for each agent: true if the
nonce is known, false otherwise

o to know a nonce, either it is its own or it has been able to

intercept and decrypt a message containing it
o a set of known “full” messages (knowledge)
o set size is finite: it models the intruder “power” of storing

messages
\ DELL'AQUILA :

o The network is a (finite-sized) array of messages
o Each message is a record of:

o source and destination agents
o key used for encryption

o not the actual key: the agent id suffices...

o the body, which is modeled by its type and single components
o Ny - A: a nonce and an address

o both are agent ids...
o Ng - N4 two nonces
o Ng one nonce
o Sending a message means setting up all of its parts and then
adding it to the network
o Receiving a message means removing it from the network

o should also check if you are the intended dé%tj@n;pputm

intruders do not do it... ALY

o All initiators A and responders B are in SLEEP status

o Each intruder only knows its own nonce and has no recorded

message

o There are no messages in the network

DIsIM

o Ruleset 1: for all sleeping initiators A and for all
responders/intruders B
o send nonce+address {Na - A}k,
o this means: set up the message and add it to the network
o thus a further condition is needed: network must not be full
o initiator A goes to WAIT status
o also records that its responder is B
o Ruleset 2: for all waiting initiators A,
o if there is a message m on the network which has been sent to
A and was sent by an intruder B...
o ... receive it: it should be m = {Na - Ng}k,
o thus, send {Ng}, as a response

o new status for A is COMMIT N
U/ Bl i

o Ruleset 1: for all sleeping responders B,
o if there is a message m on the network which has been sent to
B and comes from an intruder A...
. receive it: it should be m = {N4 - A}k,
thus, send {N4 - Ng}k, as a response
new status for B is WAIT
it also records that its initiator is A

© © o

©

o Ruleset 2: for all waiting responders B,
o if there is a message m on the network which has been sent to
B and comes from an intruder A...

o ... receive it: it should be m = {Ng}k,
o new status for B is COMMIT

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Ruleset 1: for all intruders [,
o if there is a message m on the network which has been sent to
B, and B is not an intruder...
o ... receive it: it may be either m = {Na- A}k, or m = {Ng}k,
for some B
o that is, any message coming from an initiator
o there are two possible cases:
o B =1, then m may be read and N4 is now known by /

o B # 1, then add m to knowledge of /
o provided that there is enough space and it is not already

present
o Ruleset 2: for all intruders | and for all non-intruders A,
o if there is a message m on the knowledge of /, send m to A
o essentially, this means that ruleset 1 is equivalent to: the

intruder sees messages going on the networl N\q’;qally o
receives only those which can be decrypted \ 2%/ it

o Ruleset 3: for all intruders / and for all non-intruders A, for all
possible messages m, send m to A

o

© © 0 o

“possible messages”: all those which may be composed using
the nonces known by /

if only one nonce is known, then only {Ng}k, can be sent

it two nonces are known, also {Na - Ng}k, can be sent

if no nonces are known, this ruleset cannot be fired

of course, there must also be room in the network for sending
m

| UNIVERSITA pisim
\ | DEGLI STUDI
\ DELL'AQUILA ,

o All responders are correctly authenticated

o for all initiators A, if status of A is COMMIT and its responder
is a responder B, then initiator of B must be A
o furthermore, B must not be sleeping
o All initiators are correctly authenticated
o for all responders B, if status of B is COMMIT and its initiator
is an initiator A, then responder of A must be B
o furthermore, A must be in COMMIT status

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

000000

A—1:{Na- A}k

A— B:{Na- A}k,

B — A:{Na-Ng}k,

| intercepts {Na - Ng}k,
| = A:{Na- N}k,
A— 1 :{Ng}g

I = B: {Ng}ks

A
\ | DEGLI STUDI

o Modeler must choose a “category” of attack

o here, the fact that an intruder may be inbetween an initiator
and its responder
o and may send any message to try to breach the protocol

o The model is deadlocked

o e.g., initiator sends to intruder, which learns the initiator nonce
and sends the answer, then initiator sends final message, which
is again taken by the intruder and finally the intruder generates
a message with learnt nonce to the initiator

o initiator is in COMMIT, responder does not see anything for
him, network is full thus stop

o For the purposes of this verification, deadlocks are “failed”

attacks, thus they can be discarded e
AR/ Bl i

o Corrected procotol:

) A—)B:{NA'A}KB
) B—)AZ{NA-NB-B}KA

o thus, also B identity is sent
o A— B: {NB}KB
o A flag in the Murphi model allows to turn this fix on

o It is possible to (manually) prove that, if a bug is still in the
protocol for any number of agents, then it should be in the
protocol with 3 agents

o Murphi shows that no attacks exist for 3 agents

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

