
Software Testing and Validation
A.A. 2025/2026

Corso di Laurea in Informatica

Logics in Model Checking

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Beyond Invariants

Invariants represent a huge share of properties to be verified
on a system

For many systems, one may be happy with invariants only

“nothing bad happens”, that’s all folks

However, it is not always sufficient: a non-running system of
course satisfies invariants

no starting states, thus no reachable states...

Safety vs. Liveness

Safety properties: something bad must never happen

example: in the Peterson’s protocol, it must not happen that
both processes are accessing the resource (L3 in the Murphi
model)

Invariants are a special case of safety properties

there are some safety properties which are not invariants
however, they can be expressed with invariants by adding
variables to the Kripke Structure
in the following, we will consider “invariants” and ”safety
properties” as synonyms

Liveness properties: something good will eventually happen

example: in the Peterson’s protocol, both processes will
eventually access the resource
not at the same time!
cannot be expressed with invariants

Safety vs. Liveness

Notation: let S be a KS and φ be a formula in any logic

S |= φ is true iff φ is true in S
what this means depends on the logic, as we will see

For most properties φ, if S ̸|= φ then there exists a path
π ∈ Path(S) which is a counterexample

by overloading the symbol |=, π ̸|= φ

For safety properties, |π| <∞
S arrives to an unsafe state and that’s it

For liveness properties, |π| = ∞
since S is finite, this implies that π contains a loop (lasso) in
its final part

Safety vs. Liveness

Equivalent definition for a safety formula: given a finite
counterexample, every extension still contains the error

There is one formula which is both safety and liveness: the
true invariant

it cannot have a counterexample...

There are formulas which are neither safety nor liveness

their counterexample is not a path

For typically used formulas, they are either safety or liveness
properties

Safety vs. Liveness: Mathematical Definition

Let a model σ be an infinite sequence of truth assignments to
all p ∈ AP

σ ∈ (2AP)ω

could also be seen as a sequence of sets P ⊆ AP
given a path π of a KS S, we can always obtain a model from
π by replacing each π(i) with L(π(i))

It is possible to define if σ |= φ, for a given formula φ

φ is a safety property if, for all σ s.t. σ ̸|= φ, there exists j s.t.
∀σ′.σ|j = σ′|j → σ′ ̸|= φ

i.e., given an (infinite) counterexample σ, there must exist a
prefix p of σ s.t. all other models σ′ having p as a prefix are
again counterexamples

φ is a liveness property if, for each prefix w0 . . .wi , there
exists σ s.t. σ|i = w0 . . .wi and σ |= φ

i.e., a (finite) prefix of a model σ cannot be a counterexample,
as you may always complete it in a “good” way

Safety vs. Liveness: Mathematical Definition

If we identify a property by the set of its models (φ = {σ | σ |= φ})

Model Checking Logics: Preliminaries

Model Checking logics are based on the concept of execution
of a Kripke structure S

thus, on π ∈ Path

Often, paths are directly viewed as a sequence of atomic
propositions, rather than states

from π = s1, s2, . . . to AP(π) = L(s1), L(s2), . . .

Focusing on executions allows to model time

time in the sense that we have something coming before of
something else (in a path...)

Trade-off between

logics expressiveness: interesting properties can be written
logics efficiency: there is an efficient model checking algorithm
to compute if S |= φ

Model Checking Logics: Preliminaries

We will focus on the two leading Model Checking logics: LTL
and CTL

with some hints on CTL*
LTL (Linear-time Temporal Logic) established by Pnueli in
1977
CTL (Computation Tree Logic) established by Clarke and
Emerson in 1981
used for IEEE standards:

PSL (Property Specification Language, IEEE Standard 1850)
SVA (SystemVerilog Assertions, IEEE Standard 1800).

We will see syntax and semantics of both logics

syntax: how a valid formula is written
semantics: what a valid formula “means”
that is, when S |= φ holds

LTL Syntax

Φ ::= p | Φ1 ∧ Φ2 | ¬Φ | (Φ) | XΦ | Φ1 U Φ2

Other derived operators:

of course true, false, OR and other propositional logic
connectors
future (or eventually): FΦ = true U Φ
globally: GΦ = ¬(true U ¬Φ) = ¬F¬Φ
release: Φ1 R Φ2 = ¬(¬Φ1 U ¬Φ2)
weak until: Φ1 W Φ2 = (Φ1 U Φ2) ∨ GΦ1

Other notations:

next: XΦ = ⃝Φ
GΦ = □Φ
FΦ = ♢Φ

We are dropping past operators, thus this is pure future LTL

LTL Semantics

Goal: formally defining when S |= φ, being S a KS and φ an
LTL formula

we say that S satisfies φ, or φ holds in S
This is true when, for all paths π of S, π satisfies φ

i.e., ∀π ∈ Path(S). π |= φ
symbol |= is overloaded...

For a given π, π |= φ iff π, 0 |= φ

Finally, to define when π, i |= φ, a recursive definition over the
recursive syntax of LTL is provided

π ∈ Path(S), i ∈ N

LTL Semantics for π, i |= φ

π, i |= p iff p ∈ L(π(i))

π, i |= Φ1 ∧ Φ2 iff π, i |= Φ1 ∧ π, i |= Φ2

π, i |= ¬Φ iff π, i ̸|= Φ

π, i |= XΦ iff π, i + 1 |= Φ

π, i |= Φ1 U Φ2 iff ∃k ≥ i : π, k |= Φ2 ∧∀i ≤ j < k . π, j |= Φ1

LTL Semantics for Added Operators

It is easy to prove that:

∀π ∈ Path(S), i ∈ N. π, i |= true
π, i |= GΦ iff ∀j ≥ i . π, j |= Φ
π, i |= FΦ iff ∃j ≥ i . π, j |= Φ
π, i |= Φ1 R Φ2 iff ∀k ≥ i . π, k |= Φ2 ∨ ∃i ≤ j < k : π, j |= Φ1

i.e., ∀k ≥ i . π, k ̸|= Φ2 → ∃i ≤ j < k : π, j |= Φ1

i.e., ∀k ≥ i . ∀i ≤ j < k. π, j ̸|= Φ1 → π, k |= Φ2

π, i |= Φ1 W Φ2 iff (∀j ≥ i . π, j |= Φ1) ∨ (∃k ≥ i : π, k |=
Φ2 ∧ ∀i ≤ j < k . π, j |= Φ1)

For many formulas, it is silently required that paths are infinite

That’s why transition relations in KSs must be total

LTL Semantics: Typical Paths for Common Formulas

For p ∈ AP, we will also consider p to be any set in
{P ∈ 2AP | p ∈ P}

that is, p is any subset of atomic propositions containing p
e.g., p may be any of {p}, {p, q}, {p, r , s}...
furthermore, p̄ = ¬p ∈ {P ∈ 2AP | p /∈ P}

e.g., p̄ may be any of {q}, {q, r}, {r , s}...
finally, ⊥ denotes any subset of atomic propositions

If π |= Gp, then π = pω

of course, this includes, e.g., π = {p, q}{p, r}{p}{p, q}{p} . . .
π, 3 |= Gp: π =⊥⊥⊥ pω

If π |= Fp, then π =⊥∗ p ⊥ω

If π |= p U q, then π = {p, q̄}∗q ⊥ω

If π |= p W q, then either π = {p, q̄}∗q ⊥ω or π = pω

If π |= p R q, then either π = {p̄, q}ω or
π = {p̄, q}∗{p, q} ⊥ω

q must be kept holding till when a p appears and “releases”
q...

Safety and Liveness Properties in LTL

Given an LTL formula φ, φ is a safety formula iff
∀S. (∃π ∈ Path(S) : π ̸|= φ) → ∃k : π|k ̸|= φ

Given an LTL formula φ, φ is a liveness formula iff
∀S. (∃π ∈ Path(S) : π ̸|= φ) → |π| = ∞
All LTL formulas are either safety, liveness, or the AND of a
safety and a liveness

being defined on paths, the counterexample is always a path

Safety properties are those involving only G, X, true and
atomic propositions

Liveness are all those involving an F or a U
but beware of negations...

Some formulas are both safety and liveness, like true, G true
and so on

LTL Examples

S |= Fp since p holds in the
first state
For full: let π ∈ Path(S)
π, 0 |= Fp with j = 0

recall: π, i |= FΦ iff
∃j ≥ i . π, j |= Φ
π, i |= p iff p ∈ L(π(i))

LTL Examples

S ̸|= Fa since s6 is not reach-
able from s0
counterexample: π =
s0s5s0s5 . . .
For full: π, 0 ̸|= Fa as, for all
j ≥ 0, a /∈ L(π(j))

Counterexample is infinite,
thus this is a liveness property
Any finite prefix of π is not a
counterexample

LTL Examples

S ̸|= Gp since there are many
counterexamples, here is one:
π = s0s5s0s5 . . .
For full: π, 0 ̸|= Gp with j = 1

recall: π, i |= GΦ iff
∀j ≥ i . π, j |= Φ
π, i |= p iff p ∈ L(π(i))

Safety property, actually
π|2 is enough
Every path having π|2 as a
prefix is a counterexample

LTL Examples

S |= G¬a since s6 is not
reachable from s0
For full: let π ∈ Path(S)
π, 0 |= G¬a as the only state
s with a ∈ L(s) is s6, which is
not reachable from s0

recall: π ∈ Path(S) im-
plies π(0) ∈ I , thus π(0) = s0
here

LTL Examples

S |= p U q since p ∈ L(s0),
next(s0) = {s1, s5} and q ∈
L(s1) ∧ q ∈ L(s5)

LTL Examples

S ̸|= p U r , a counterexample
is π = s0s1(s2s3s4)
Again this is a liveness formula,
even if π|1 would have been
enough
In fact, you have to rule out
{p, r̄}ω...

LTL Examples

S ̸|= ¬(p U r), a counterexam-
ple is π = (s0s5)
In fact, (s0s5), 0 |= p U r
Thus it may happen that S ̸|=
Φ and S ̸|= ¬(Φ)
Instead, it is impossible that
S |= Φ and S |= ¬(Φ)

LTL Examples

S ̸|= q, since s0 is the only ini-
tial state and q /∈ L(s0) (all
paths in Path(S) must start
from s0)
S |= p, since p ∈ L(s0)
S |= Xq, since q ∈ L(s1) ∧ q ∈
L(s5)
S ̸|= XXq, since all states but
s5, s6 are reachable in exactly 2
steps

LTL Examples

S ̸|= FGp, a counterexample is
π = s0s1(s2s3s4)
Again this is a liveness formula

LTL Examples

S |= GFp
All lassos are s0s5 or s2s3s4
In both such lassos, there are
states in which p holds

LTL Examples

S |= GFp ∨ FGp
Consequence of the two previ-
ous slides

LTL Examples

S ̸|= G(p U q), a counterexam-
ple is π = s0s1(s2s3s4)
(p U q) must hold at any
reachable state
Ok in s0, s1, s2, but not in s3

LTL Non-Toy Examples

Recall the Peterson’s protocol: checking mutual exclusion is
G(¬(p ∧ q)), being p = P[1] = L3, q = P[2] = L3

all invariants are of the form GP, where P does not contain
modal operators X, U or F

Checking that both processes access to the critical section
infinitely often is GF P[1] = L3 ∧ GF P[2] = L3

liveness property: no process is infinitely banned to access the
critical section

Even better: G (P[1] = L2 → F P[1] = L3)

the same for the other process
since it is simmetric, this is actually enough

Equivalence Between LTL Properties

Definition of equivalence between LTL properties:
φ1 ≡ φ2 iff ∀S. S |= φ1 ⇔ S |= φ2

equivalent: ∀σ...
Idempotency:

FFp ≡ Fp
GGp ≡ Gp
p U (p U q) ≡ (p U q) U q ≡ p U q

Absorption:

GFGp ≡ FGp
FGFp ≡ GFp

Expansion (used by LTL Model Checking algorithms!):

p U q ≡ q ∨ (p ∧ X(p U q))
Fp ≡ p ∨ XFp
Gp ≡ p ∧ XGp

CTL Syntax

Φ ::= p | Φ1 ∧ Φ2 | ¬Φ | (Φ) | EXΦ | EGΦ | EΦ1 U Φ2

Other derived operators (besides true, false, OR, etc):
EFΦ = Etrue U Φ

cannot be defined using E¬G¬Φ, as this is not a CTL formula
actually, it is a CTL* formula (see later)
in fact, you cannot place a negation between E and the
subformula

AFΦ = ¬EG¬Φ, AGΦ = ¬EF¬Φ, AXΦ = ¬EX¬Φ
AΦ1 U Φ2 = (¬E¬Φ2 U (¬Φ1 ∧ ¬Φ1)) ∧ ¬EG¬Φ2

Φ1AUΦ2 = AΦ1UΦ2, Φ1EUΦ2 = EΦ1UΦ2

Comparison with LTL Syntax

Φ ::= true | p | Φ1 ∧ Φ2 | ¬Φ | (Φ) | XΦ | Φ1 U Φ2

Essentially, all temporal operators are preceded by either E or
A

with some care for U

CTL Semantics

Goal: formally defining when S |= φ, being S a KS and φ a
CTL formula

This is true when, for all initial states s ∈ I of S, s |= φ

thus, CTL is made of state formulas
LTL has path formulas

To define when s |= φ, a recursive definition over the recursive
syntax of CTL is provided

no need of an additional integer as for LTL syntax

CTL Semantics for s |= φ

∀s ∈ S . s |= true

s |= p iff p ∈ L(s)

s |= Φ1 ∧ Φ2 iff s |= Φ1 ∧ s |= Φ2

s |= ¬Φ iff s ̸|= Φ

s |= EXΦ iff ∃π ∈ Path(S, s). π(1) |= Φ

s |= EGΦ iff ∃π ∈ Path(S, s). ∀j . π(j) |= Φ

s |= EΦ1 U Φ2 iff
∃π ∈ Path(S, s)∃k : π(k) |= Φ2 ∧ ∀j < k. π(j) |= Φ1

CTL Semantics for Added Operators

It is easy to prove that:

s |= AGΦ iff ∀π ∈ Path(S, s). ∀j . π(j) |= Φ
s |= AFΦ iff ∀π ∈ Path(S, s). ∃j . π(j) |= Φ
analogously for AU, AR, AW
just replace ∀ with ∃ for EF, ER, EW

Analogously to LTL, for many CTL formulas it is silently
required that paths are infinite

So again transition relations in KSs must be total

Safety and Liveness Properties in CTL

Some CTL formulas may be neither safety nor liveness

being defined on states, the counterexample may be an entire
computation tree

Safety properties are those involving only AG, AX, true and
atomic propositions

Some formulas are both safety and liveness, like true,
AG true and so on

Liveness are formulas like AF, AFAG, AU

EF or EG are neither liveness nor safety

CTL Examples

S |= AFp since p holds in the
first state
For full: s0 |= Fp since p ∈
L(s0), thus, for all paths start-
ing in s0, p holds in the first
state, so it holds eventually

CTL Examples

S |= EFp for the same reason
as above
If it holds for all paths, then it
holds for one path
AFΦ → EFΦ
The same holds for the other
temporal operators G,U etc

CTL Examples

S ̸|= EFa since s6 is not reach-
able
Note that the counterexample
cannot be a single path
Since it would not enough to
disprove existence
The full reachable graph must
be provided
One could also show the tree of
all paths
Neither safety nor liveness

CTL Examples

S |= A(p U q) since p ∈ L(s0),
next(s0) = {s1, s5} and q ∈
L(s1) ∧ q ∈ L(s5)

CTL Examples

S ̸|= A(p U r), a counterexam-
ple is π = s0s1(s2s3s4)

CTL Examples

S |= E(p U r), an example is
π = (s0s5)

CTL Examples

S ̸|= ¬E(p U r), a counterex-
ample is π = (s0s5)
In fact, S ̸|= Φ iff S |= ¬(Φ)
whenever |I | = 1
In fact, the implicit for all is on
initial states only, whilst it is on
all paths for LTL...

CTL Examples

S ̸|= AFAGp, a counterexam-
ple is π = s0s1(s2s3s4)
This is a liveness formula

CTL Examples

S ̸|= EFEGp, a counterexam-
ple is again a computation tree
All lassos are s0s5 or s2s3s4
In both such lassos, there are
states in which p does not hold

CTL Examples

S ̸|= AFEGp, a counterexam-
ple is again a computation tree
Since S ̸|= EFEGp...

CTL Examples

S ̸|= EFAGp, a counterexam-
ple is again a computation tree
Since S ̸|= EFEGp...

CTL Non-Toy Examples

Recall the Peterson’s protocol: checking mutual exclusion is
AG(¬(p ∧ q)), being p = P[1] = L3, q = P[2] = L3

equivalent to LTL Gp

It is always possible to restart:
AGEF P[1] = L0 ∧ AGEF P[2] = L0

CTL vs. LTL: a Comparison

Recall that φ1 ≡ φ2 iff ∀S. S |= φ1 ⇔ S |= φ2

also holds (w.l.g.) when φ1 is LTL and φ2 is CTL

Of course, some CTL formulas cannot be expressed in LTL

it is enough to put an E, since LTL always universally
quantifies paths
so, there is not an LTL φ s.t. φ ≡ EGp

no, F¬p is not the same, why?

So, one might think: LTL is contained in CTL

in the sense, for each LTL formula, there is a CTL equivalent
formula
simply replace each temporal operator O with AO, that’s it
let T be a translator doing this
for any LTL formula φ, φ ≡ T (φ)
actually, Gp ≡ T (Gp) = AGp

CTL vs. LTL: a Comparison

Theorem. Let φ be an LTL formula. Then, either i) φ ≡ T (φ)
or ii) there does not exist a CTL formula ψ s.t. φ ≡ ψ

idea of proof: replacing with E is of course not correct, and
temporal operators on paths are the same

Corollary. There exists an LTL formula φ s.t., for all CTL
formulas ψ, φ ̸≡ ψ

Proof of corollary:
by the theorem above and the definitions, we need to find

1 an LTL formula φ
2 a KS S

where S |= φ and S ̸|= T (φ)

viceversa is not possible

CTL vs. LTL: a Comparison

For example, as for the LTL formula, we may take φ = FGp
note instead that GFp ≡ AGAFp

For example, as for the KS S, we may take

We have that S |= FGp, but S ̸|= AFAGp

Thus, CTL requires “more” than the corresponding LTL

CTL vs. LTL: a Comparison

S ̸|= AFAGp means that
¬(∀π ∈ Path(S). ∃j : ∀ρ ∈ Path(S, π(j)). ∀k . p ∈ ρ(k))
= ∃π ∈ Path(S). ∀j : ∃ρ ∈ Path(S, π(j)). ∃k . p ̸∈ ρ(k)

In our S, π = sω0 : in fact, at any point of π, you may branch
and go through ¬p instead...

S |= FGp means that ∀π ∈ Path(S). ∃j : ∀k ≥ j . p ∈ π(k)

Thus, there is not a CTL formula equivalent to FGp

Furthermore, there is not an LTL formula equivalent to
AFAGp

CTL, LTL and CTL*

CTL* introduced in 1986 (Emerson, Halpern) to include both
CTL and LTL

No restrictions on path quantifiers to be 1-1 with temporal
operators, as in CTL

State formulas: Φ ::= true | p | Φ1 ∧ Φ2 | ¬Φ | AΨ | EΨ
Path formulas: Ψ ::= Φ | Ψ1 ∧Ψ2 | ¬Ψ | Ψ1UΨ2 | FΨ | GΨ

CTL, LTL and CTL*

The intersection between CTL and LTL is both syntactic and
“semantic”

Some formulas are both CTL and LTL in syntax: all those
involving only boolean combinations of atomic propositions

“Semantic” intersection: some LTL formulas may be
expressed in CTL and vice versa, using different syntax

AGAFp and GFp
AGp and Gp
etc

