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o Invariants represent a huge share of properties to be verified
on a system
o For many systems, one may be happy with invariants only
o “nothing bad happens”, that's all folks
o However, it is not always sufficient: a non-running system of
course satisfies invariants
o no starting states, thus no reachable states...
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o Safety properties: something bad must never happen

o example: in the Peterson's protocol, it must not happen that
both processes are accessing the resource (L3 in the Murphi
model)

o Invariants are a special case of safety properties
o there are some safety properties which are not invariants
o however, they can be expressed with invariants by adding
variables to the Kripke Structure
o in the following, we will consider “invariants” and "safety
properties” as synonyms

o Liveness properties: something good will eventually happen

o example: in the Peterson's protocol, both processes will
eventually access the resource

o not at the same tlmel A " “l\[\lll%”\ DISIM
o cannot be expressed with invariants G/ sttt e
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Notation: let S be a KS and ¢ be a formula in any logic
S | ¢ is true iff @ is true in S

o what this means depends on the logic, as we will see
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For most properties ¢, if S [~ ¢ then there exists a path
7 € Path(S) which is a counterexample

o by overloading the symbol =, 7 (£ ¢

©

For safety properties, |7| < oo
o & arrives to an unsafe state and that’s it

©

For liveness properties, |7| = 0o
o since S is finite, this implies that 7 contains a loop (/asso) in

its final part
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Equivalent definition for a safety formula: given a finite
counterexample, every extension still contains the error

There is one formula which is both safety and liveness: the
true invariant

o it cannot have a counterexample...
There are formulas which are neither safety nor liveness

o their counterexample is not a path
For typically used formulas, they are either safety or liveness
properties



o Let a model o be an infinite sequence of truth assignments to
all p € AP
NS (2AP)w
o could also be seen as a sequence of sets P C AP
o given a path 7 of a KS &, we can always obtain a model from
7 by replacing each w(i) with L(w(/))
o It is possible to define if o |= ¢, for a given formula ¢
o  is a safety property if, for all o s.t. o [£ ¢, there exists j s.t.

Vo'olj=0d|j =0 FEe
o i.e., given an (infinite) counterexample o, there must exist a
prefix p of o s.t. all other models ¢’ having p as a prefix are
again counterexamples
o ¢ is a liveness property if, for each prefix wy ... w;, there
exists o s.t. ol =wp...w; and 0 | ¢

o i.e., a (finite) prefix of a model o cannot be d“h‘(‘igh&xa[“ e

as you may always complete it in a “good”



If we identify a property by the set of its models (¢ = {0 | 0 = ¢})

safety and liveness property
9AP\w
(277)

\ .-~ liveness properties

safety properties

~ - --~ neither liveness
nor safety properties

Ty | osm
\ Jg/ BiRITAGUIR =

invariants
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Model Checking logics are based on the concept of execution
of a Kripke structure &

o thus, on 7w € Path
Often, paths are directly viewed as a sequence of atomic
propositions, rather than states

o from 7 =s1,%,... to AP(7) = L(s1), L(s2), - - .
Focusing on executions allows to model time

o time in the sense that we have something coming before of
something else (in a path...)
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o Trade-off between

o logics expressiveness: interesting properties can be written
o logics efficiency: there is an efficient model checking algorithm

to compute if S |= ¢ %
.. 4 o



o We will focus on the two leading Model Checking logics: LTL
and CTL

o with some hints on CTL*

o LTL (Linear-time Temporal Logic) established by Pnueli in
1977

o CTL (Computation Tree Logic) established by Clarke and
Emerson in 1981
o used for IEEE standards:

o PSL (Property Specification Language, IEEE Standard 1850)
o SVA (SystemVerilog Assertions, IEEE Standard 1800).

o We will see syntax and semantics of both logics

o syntax: how a valid formula is written
o semantics: what a valid formula “means”

o that is, when § = ¢ holds <iz
: Sk \*M st @
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o Other derived operators:

o

© © o

o

of course true, false, OR and other propositional logic
connectors

future (or eventually): F® = true U ¢

globally: G® = —(true U =¢) = =F—®

release: ®; R &5 = —(—P; U —d,)

weak until: ;3 W &, = ($; U $,) vV Gd,

o Other notations:

[+]

o

o

next: X¢ = (O
Go =0¢
Fo =0

o We are dropping past operators, thus this isj‘»% uittire :
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Goal: formally defining when S |= ¢, being S a KS and ¢ an
LTL formula

o we say that S satisfies ¢, or ¢ holds in S

This is true when, for all paths 7 of S, 7 satisfies ¢
o i.e, Vr € Path(S). 7 = ¢
o symbol = is overloaded...
Fora given 7, m = @ iff 1,0 = ¢
Finally, to define when 7,/ |= ¢, a recursive definition over the
recursive syntax of LTL is provided

o 7€ Path(S),i € N
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m, i = piff p e L(n(i))

i EPI NG Iff i =P AT, i = Py

i =P iff i fE D

m i EXOiffr,i+1E=®

TG Uy iff 3k > i: m k= GaAVi < j < kom,j = &
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o It is easy to prove that:

V7 € Path(S),i € N. 7, i = true

T iEGOfY>imjEd

T iEFOIffIj>im o

TiEGI RO iffVA>imkEdVIi<j<k:mjEd
o e, Vk>imklfEd,—3i<j<k:mjEd
o ie,Vk>iVi<j<k mjEd —»mklEDd

TiEO W iff (V>imjE=d)Vv(@k>i: mkE

Py AVi<j< k.omjl=d)

o For many formulas, it is silently required that paths are infinite

o That's why transition relations in KSs must be total
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For p € AP, we will also consider p to be any set in
{(Pc2AP | pec P}
o that is, p is any subset of atomic propositions containing p

o e.g., p may be any of {p},{p, qg, {p,r,s}...
o furthermore, p=—-p e {P 24P | p¢ P}

o e.g., p may be any of {q},{q,r}, {r,s}...
o finally, L denotes any subset of atomic propositions

If 7 = Gp, then ™ = p¥

o of course, this includes, e.g., m = {p, g}{p, r}{pHp, gH{p}- ..
om,3EGp: m=L11p¥

If 7 |=Fp, thenm=1%p L

If | =pUgq, thenm={p,g}*q L¥

If 7 = p W gq, then either 7 = {p, §}*q L“ or m = p¥
If 7 = p R g, then either 7 = {p, q}* or

m=1{pat"{p,q} L*
o g must be kept holding till when a p appeak d‘ “reléas @ i

g...



o Given an LTL formula ¢, ¢ is a safety formula iff
VS. (3m € Path(S) : mlE ) = 3k wl fE @
o Given an LTL formula ¢, ¢ is a liveness formula iff
VS. (3m € Path(S) : 7 £ ) — 7] = 0
o Al LTL formulas are either safety, liveness, or the AND of a
safety and a liveness
o being defined on paths, the counterexample is always a path
o Safety properties are those involving only G, X, true and
atomic propositions
o Liveness are all those involving an F or a U
o but beware of negations...

| UNIVERSITA

o Some formulas are both safety and liveness, like true, G true
and so on % prma, *
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S E Fp since p holds in the
first state

For full: let 7 € Path(S)

m,0 = Fp with j =0

/Sz\] recall: 71'7/' ): Fo iff
A injEd
- m,i | piff p € L(n(i))
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¢/§T\J S [~ Fa since sp is not reach-
able from sp
counterexample: s =
50555055 - - -

For full: 7,0 £ Fa as, for all

jﬂ
»
Y
—
V
o
QL
R
=
3
S

Counterexample is infinite,
thus this is a liveness property
6\] Any finite prefix of 7 is not a

N counterexamples- '
% N @ -
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S = Gp since there are many
counterexamples, here is one:
T = 50555055 - - -

For full: 7,0 = Gp with j =1

/s‘\] recall: mi = G iff
YT jE®
p.r m, i = piff p e L(w(i))

N

a rﬂsﬁ\] Safety  property, actually
7|2 is enough

Every path hagipe 7/> as73y,..
prefix is a coungerexample S
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S E G-a since s is not
reachable from s

For full: let @ € Path(S)
7,0 = G—a as the only state
s with a € L(s) is s, which is
3\] not reachable from s

N

N
Pt f recall. 7 € Path(S) im-
plies 7(0) € I, thus w(0) = sp
a r/Sﬁ\] here
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S E p U g since p € L(sp),
next(sp) = {si,s5} and g €
L(Sl) NqgE L(S5)

)
=

(72
HT
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S = p U r, a counterexample
is ™ = sps1(s25354)

Again this is a liveness formula,
even if m|; would have been
enough

s ™\ In fact, you have to rule out

" {p,7}...

)
=

N
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S = —(p U r), a counterexam-
ple is m = (sos5)

In fact, (s0s5),0 =p U r

Thus it may happen that S [~
® and S = ()

/s ™\ Instead, it is impossible that

\_/ S and S ()
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S = q, since sp is the only ini-

tial state and g ¢ L(so) (all

paths in Path(S) must start

from sp)

S |= p, since p € L(sp)

3\] S EXq, since ge L(s1)) Nqg e

L(S5)

p.t f S = XXgq, since all states but
S5, S¢ are reachable in exactly 2

a (8§ ) steps

N
/
\
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S - FGp, a counterexample is
T = s051(525351)
Again this is a liveness formula

)
=

f%
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S = GFp

All lassos are spss or sps35s

In both such lassos, there are
states in which p holds
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S = GFpV FGp
Consequence of the two previ-
ous slides

)
=

(72
HT
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S = G(p U q), a counterexam-
ple is m = sps1(525351)

(p U g) must hold at any
reachable state

Ok in sp, s1, Sp, but not in s3
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o Recall the Peterson's protocol: checking mutual exclusion is
G(—(p A q)), being p=P[1] =L3,q =P[2] =L3
o all invariants are of the form GP, where P does not contain
modal operators X, U or F
o Checking that both processes access to the critical section
infinitely often is GF P[1] = L3 A GF P[2] = L3
o liveness property: no process is infinitely banned to access the
critical section
o Even better: G (P[1] = L2 — F P[1] = L3)
o the same for the other process
o since it is simmetric, this is actually enough
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o Definition of equivalence between LTL properties:
pr1=pr ff VS.8Epi&SE @
o equivalent: Vo...
o ldempotency:
o FFp=Fp
o GGp=Gp
o pU(pUqg)=(pUq)Ug=pUgq
o Absorption:
o GFGp =FGp
o FGFp = GFp
o Expansion (used by LTL Model Checking algorithms!):

o pUqg=qV(pAX(pUq)
o Fp=pV XFp .

o Gp=pAXGp ¥\ N -



®=p| P ADy | D | (d) | EXD | EGP | Ed; U b,

o Other derived operators (besides true, false, OR, etc):

o EF® = Etrue U ¢
o cannot be defined using E-G—®, as this is not a CTL formula
o actually, it is a CTL* formula (see later)
o in fact, you cannot place a negation between E and the

subformula
o AF® = -EG—-9, AGP = -EF-¢d, AXd = -EX-D
o APy U dy = (mE-D; U (=1 A =P1)) A “EG—D,

o ®;AUG, = Ad;Ud,, d,EUS, = Ed,Ud,
>% DRGSR ”” :



O u=true|p| P1 APy | P | (D) | XD | D; U Dy

o Essentially, all temporal operators are preceded by either E or
A

o with some care for U
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o Goal: formally defining when S |= ¢, being S a KS and ¢ a
CTL formula
o This is true when, for all initial states s € / of S, s E ¢

o thus, CTL is made of state formulas
o LTL has path formulas

o To define when s |= ¢, a recursive definition over the recursive
syntax of CTL is provided
o no need of an additional integer as for LTL syntax
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Vs € S. s = true

s Epiff pe L(s)
SEPIADiffsE P AsE Dy

sE P iff s = d

s = EX® iff 37 € Path(S,s). n(1) = ¢

s = EG® iff 37 € Path(S,s). V). n(j) = ¢

S ): E‘Dl U ¢2 iff
dr € Path(S,s)3k : w(k) = P2 AVj < k. w(j) =1
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o It is easy to prove that:

s E AG9 iff Vi € Path(S,s). Vj. 7(j) E ¢
s E AF® iff Vi € Path(S,s). 3j. n(j) E ¢
analogously for AU, AR, AW

just replace V with 3 for EF, ER, EW

o Analogously to LTL, for many CTL formulas it is silently
required that paths are infinite

© © 0 o

o So again transition relations in KSs must be total
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Some CTL formulas may be neither safety nor liveness

o being defined on states, the counterexample may be an entire
computation tree

Safety properties are those involving only AG, AX, true and
atomic propositions

Some formulas are both safety and liveness, like true,
AG true and so on

Liveness are formulas like AF, AFAG, AU

EF or EG are neither liveness nor safety
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S = AFp since p holds in the
first state

For full: sy = Fp since p €
L(sp), thus, for all paths start-
ing in sp, p holds in the first

e /2
"f
)
(73]
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[9)
—+
o
(2]
(@]
o
0
o
o
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<
(0]
>
—+
c
L
<
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S = EFp for the same reason
as above

If it holds for all paths, then it
holds for one path

AF® — EF®

/53\] The same holds for the other
\__/ temporal operators G, U etc

2)
J

N
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S [~ EFa since sg is not reach-
able

Note that the counterexample
cannot be a single path

Since it would not enough to
. disprove existence

The full reachable graph must
be provided

One could also show the tree of

2)
J

f%

a /S\, all paths

v Neither safety I|veness '
‘l‘\[\‘l‘ll‘\ll;\‘ [\SM . .
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S E A(p U q) since p € L(sp),
next(sp) = {si,s5} and g €
L(Sl) NqgE L(S5)
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S [~ A(p U r), a counterexam-
ple is m = sps1(525351)

)
=

(72
HT
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S [~ —E(p U r), a counterex-
ample is ™ = (spss)

In fact, S £ @ iff S E —(P)
whenever |/| =1

In fact, the implicit for all is on
/53\] initial states only, whilst it is on
\__/ all paths for LTL...

2)
J

N
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S [~ AFAGp, a counterexam-
ple is m = sps1(525351)
This is a liveness formula

)
=

f%
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S [~ EFEGp, a counterexam-
ple is again a computation tree
All lassos are spss or spS354

In both such lassos, there are
states in which p does not hold

f%
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S = AFEGp, a counterexam-
ple is again a computation tree
Since S ~ EFEGp...

2)
J

(72
HT
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S = EFAGp, a counterexam-
ple is again a computation tree
Since S ~ EFEGp...

2)
J

(72
HT
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o Recall the Peterson’s protocol: checking mutual exclusion is
AG(—(p A q)), being p=P[1] =13,g =P[2] =L3
o equivalent to LTL Gp

o It is always possible to restart:
AGEF P[1] = LO A AGEF P[2] = LO
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o Recall that p1 =y iff VS.SE o1& SE ¢

Qo

also holds (w.l.g.) when ¢y is LTL and ¢, is CTL

o Of course, some CTL formulas cannot be expressed in LTL

[+]

o

it is enough to put an E, since LTL always universally

quantifies paths
so, there is not an LTL ¢ s.t. ¢ = EGp

o no, F—p is not the same, why?

o So, one might think: LTL is contained in CTL

o

© © 0 o

in the sense, for each LTL formula, there is a CTL equivalent
formula

simply replace each temporal operator O with AQ, that’s it
let 7 be a translator doing this

for any LTL formula ¢, ¢ = T(p)

actually, Gp = T(Gp) = AGp % puivEsiTA m .



o Theorem. Let ¢ be an LTL formula. Then, either i) ¢ = T(¢)
or ii) there does not exist a CTL formula ¢ s.t. ¢ =
o idea of proof: replacing with E is of course not correct, and
temporal operators on paths are the same

o Corollary. There exists an LTL formula ¢ s.t., for all CTL

formulas ¢, ¢ Z 9
o Proof of corollary:
o by the theorem above and the definitions, we need to find

Q an LTL formula ¢
Q aKSs

o where S = ¢ and S £ T ()

o viceversa is not possible
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For example, as for the LTL formula, we may take ¢ = FGp
o note instead that GFp = AGAFp

For example, as for the KS S, we may take

@)

s0 s1 s2

We have that S = FGp, but S [~ AFAGp
Thus, CTL requires “more” than the corresponding LTL
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S = AFAGp means that

—(Vm € Path(S). 3j : Vp € Path(S, (). Vk. p € p(k))

= Ir € Path(S). Vj : Jp € Path(S,n(j)). Ik. p & p(k)
Inour S, m = s§’: in fact, at any point of 7, you may branch
and go through —p instead...

S = FGp means that Vo € Path(S). 3j : Vk > j. p € w(k)
Thus, there is not a CTL formula equivalent to FGp

Furthermore, there is not an LTL formula eq ‘gmt\":go . o
AFAGp
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CTL* introduced in 1986 (Emerson, Halpern) to include both
CTL and LTL

No restrictions on path quantifiers to be 1-1 with temporal
operators, as in CTL

State formulas: @ ::=true | p| 1 APy | =P | AV | EV
Path formulas: W = ® [ W1 AW [ W | WUV, | FV | GV
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o The intersection between CTL and LTL is both syntactic and
“semantic”

o Some formulas are both CTL and LTL in syntax: all those
involving only boolean combinations of atomic propositions

o “Semantic” intersection: some LTL formulas may be
expressed in CTL and vice versa, using different syntax

o AGAFp and GFp

° AGp and Gp she o -
o etc \ ; | BECEAGUILA o



