
Software Testing and Validation
A.A. 2025/2026

Corso di Laurea in Informatica

CTL and LTL Model Checking Algorithms

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Theoretic vs. Practical Algorithms

Model Checking problem:

input: a KS S = ⟨S , I ,R, L⟩ and a formula φ
output: true iff S |= φ, ⟨false, c⟩ otherwise, being c a
counterexample

Depending on φ being LTL or CTL, different algorithms must
be provided

We will first show the “theoretical” algorithm for CTL

classical approach: both S and R fit into RAM
graph-based: we will see that the one actually used is instead
fix-point based

Then, we will see how they can be efficiently implemented

LTL: SPIN and NuSMV
CTL: NuSMV

CTL Theoretic Algorithm

CTL is based on state formulas, i.e., φ holds depending on the
state we are considering

this also holds for subformulas of φ, e.g., AFAGp has one
subformula AGp

Since we have the full state space S , we label all states s ∈ S
with (sub)formulas holding in s

not only the reachable states: all of them

Then, we use subformulas labeling to decide higher formulas
labelling

Thus, we compute λ : S → 2φ, being 2φ the set of all
subformulas of φ

At the end, S |= φ iff ∀s ∈ I . φ ∈ λ(s)

CTL Theoretic Algorithm

Consider the abstract syntax tree of φ, call it ϕ

Start from the leaves in ϕ, which must be an atomic
proposition p or true

∀s ∈ S . p ∈ λ(s) ⇔ p ∈ L(s)
∀s ∈ S . true ∈ λ(s)

Then go upwards in ϕ, using, for each node, the labeling of
the sons

∀s ∈ S . ¬Φ ∈ λ(s) ⇔ Φ ̸∈ λ(s)
∀s ∈ S . Φ1 ∧ Φ2 ∈ λ(s) ⇔ (Φ1 ∈ λ(s) ∧ Φ2 ∈ λ(s))
∀s ∈ S . EXΦ ∈ λ(s) ⇔ (∃s ′ : (s, s ′) ∈ R ∧ Φ ∈ λ(s ′))

CTL Theoretic Algorithm: Φ1EUΦ2 ∈ λ(s)

We already have λ−1({Φ1}) and λ−1({Φ2})
here and in the following, λ−1({Φ}) = {s ∈ S | Φ ∈ λ(s)}, for
a CTL formula Φ

All states satisfying Φ2 are ok, let T be the set of such states

Then, backward visit of the state space of S, starting from T

The backward visit stops when Φ1 does not hold

Complexity is O(|S |+ |R|)

CTL Theoretic Algorithm: Φ1EUΦ2 ∈ λ(s)

labels CheckEU(KS S, formula Φ1EUΦ2, labels λ)
{

let S = ⟨S , I ,R, L⟩;
T = {s ∈ S | Φ2 ∈ λ(s)};
foreach s ∈ T

λ(s) = λ(s) ∪ {Φ1EUΦ2};
while (T ̸= ∅) {

let s be s.t. s ∈ T ;

T = T \ {s};
foreach t ∈ {t | (t, s) ∈ R} {

i f Φ1EUΦ2 ̸∈ λ(t) ∧ Φ1 ∈ λ(t) {

/* Φ1EUΦ2 ̸∈ λ(t): visited states check */

λ(t) = λ(t) ∪ {Φ1EUΦ2};
T = T ∪ {t};

} } }

return λ;
}

CTL Theoretic Algorithm: EGΦ ∈ λ(s)

We already have λ−1({Φ}): this defines a subKS S ′ of S
λ−1({Φ}) contains all states in which Φ holds

Then, compute the strongly connected components (SCCs) of
S ′

inside such components, Φ holds on all states on all paths

Finally, label with EGΦ all s in such SCCs, plus all backward
reachable t ∈ S ′

in fact, it may be the case that a s ∈ S ′ is not in any SCC, as
it is only connected to states not in S ′

but if it goes into one state in some SCC, it is however good

not necessarily in one step, provided all the path satisfies Φ...

so we move on states for which Φ holds forever in at least one
path...

Complexity is again O(|S |+ |R|)

CTL Theoretic Algorithm: EGΦ ∈ λ(s)

labels CheckEG(KS S, formula EGΦ, labels λ)
{

let S = ⟨S , I ,R, L⟩;
S ′ = {s ∈ S | Φ ∈ λ(s)}; R ′ = {(s, t) ∈ R | s, t ∈ S ′};
A = SCC(S ′,R ′); T = ∪A∈AA;
foreach s ∈ T , λ(s) = λ(s) ∪ {EGΦ};
while (T ̸= ∅) {

let s be s.t. s ∈ T ;

T = T \ {s};
foreach t ∈ {t | (t, s) ∈ R ′} {

i f EGΦ ̸∈ λ(t) { /* since (t, s) ∈ R ′, Φ ∈ λ(t) */

λ(t) = λ(t) ∪ {EGΦ};
T = T ∪ {t};

} } }

return λ;
}

CTL Theoretic Algorithm: Complexity

Complexity is:

O(|S |) for boolean combinations and atomic propositions
O(|S |) also for EXΦ
O(|S |+ |R|) for EGΦ and Φ1 EU Φ2

Since this must be done for every subformula of φ, the overall
complexity is O((|S |+ |R|)|φ|)

|φ| is the number of nodes of the abstract syntax tree of φ

Linear in the size of the input, if one of the two is fixed... is
this as good as it seems?

Alas no: state space explosion hits exactly in |S | and |R|
|φ| is typically low for real-world properties to be verified

CTL Model Checking Algorithm Running Example

φ = EFAFp =
true EU(¬(EG¬p))
Leaves of φ AST are true and
p, thus:
∀i ∈ {0, 2, 4}. λ(si) =
{true, p}
∀i ∈ {1, 3, 5, 6}. λ(si) =
{true},

CTL Model Checking Algorithm Running Example

φ = true EU(¬(EG¬p))
Going up one level:
∀i ∈ {0, 2, 4}. λ(si) =
{true, p}
∀i ∈ {1, 3, 5, 6}. λ(si) =
{true,¬p},
Going up two levels:
CheckEG(S, EG¬p, λ)

CTL Theoretic Algorithm: EGΦ ∈ λ(s)

labels CheckEG(KS S, formula EGΦ, labels λ)
{

let S = ⟨S , I ,R, L⟩;
S ′ = {s ∈ S | Φ ∈ λ(s)}; R ′ = {(s, t) ∈ R | s, t ∈ S ′};
A = SCC(S ′,R ′); T = ∪A∈A s.t. |A|>1A;
foreach s ∈ T , λ(s) = λ(s) ∪ {EGΦ};
while (T ̸= ∅) {

let s be s.t. s ∈ T ;

T = T \ {s};
foreach t ∈ {t | (t, s) ∈ R ′} {

i f EGΦ ̸∈ λ(t) {

λ(t) = λ(t) ∪ {EGΦ};
T = T ∪ {t};

} } }

return λ;
}

CTL Model Checking Algorithm Running Example

φ = true EU(¬(EG¬p))
CheckEG(S, EG¬p, λ)
S ′ = {s1, s3, s5, s6}
There are no SCC on S ′

Thus T = ∅ and λ does not
change

CTL Model Checking Algorithm Running Example

φ = true EU(¬(EG¬p))
∀i ∈ {0, 2, 4}. λ(si) =
{true, p}
∀i ∈ {1, 3, 5, 6}. λ(si) =
{true,¬p},
Going up one more level:
∀i ∈ {0, 2, 4}. λ(si) =
{true, p,¬(EG¬p)}
∀i ∈ {1, 3, 5, 6}. λ(si) =
{true,¬p,¬(EG¬p)}

CTL Model Checking Algorithm Running Example

φ = true EU(¬(EG¬p))
Finally, call CheckEU(S,
true EU(¬(EG¬p), λ)
T = S , as all states are labelled
with ¬(EG¬p)
Thus, all states must be la-
belled with φ

CTL Theoretic Algorithm: Φ1EUΦ2 ∈ λ(s)

labels CheckEU(KS S, formula Φ1EUΦ2, labels λ)
{

let S = ⟨S , I ,R, L⟩;
T = {s ∈ S | Φ2 ∈ λ(s)};
foreach s ∈ T

λ(s) = λ(s) ∪ {Φ1EUΦ2};
while (T ̸= ∅) {

let s be s.t. s ∈ T ;

T = T \ {s};
foreach t ∈ {t | (t, s) ∈ R} {

i f Φ1EUΦ2 ̸∈ λ(t) ∧ Φ1 ∈ λ(t) {

λ(s) = λ(s) ∪ {Φ1EUΦ2};
T = T ∪ {t};

} } }

return λ;
}

CTL Model Checking Algorithm Running Example

φ = true EU(¬(EG¬p))
∀i ∈ {0, 2, 4}. λ(si) =
{true, p,¬(EG¬p), φ}
∀i ∈ {1, 3, 5, 6}. λ(si) =
{true,¬p,¬(EG¬p), φ}
Since φ ∈ λ(s0), we have that
S |= φ

LTL Model Checking Algorithm

Many LTL algorithms exist, we will directly see the most
efficient one

Surprising fact: not only LTL is not included inside CTL, it is
also more difficult to check!

Namely, whilst CTL model checking is in P, LTL model
checking is PSPACE-complete

no, PSPACE is not “good” as P is: NP ⊆ PSPACE

Efficient algorithms for LTL run in O((|S |+ |R|)2|φ|)
In practice, this is not much worse than CTL model checking

the real problem is O(|S |+ |R|)
φ is usually small, it is difficult to come up with lengthy
formulas

LTL Model Checking Algorithm

The idea is simple: first translate φ into a special automaton
A(φ)

Then, perform a DFS visit both S and A(φ), one step at a
time

equivalent to verify to Cartesian product S ×A(φ)

If some special node s is found, start from s itself a new
nested DFS

If we are able to come back to s, we have a counterexample
for φ

Otherwise, S |= φ

Such algorithm may be implemented on-the-fly, thus instead
of a KS we have an NFSS

no need to have S and R in memory before starting

Büchi Automaton

A (non-deterministic) Büchi Automaton (BA) is a 5-tuple
A = ⟨Σ,Q, δ,Q0,F ⟩ where:

Σ is the alphabet, i.e., a finite set of symbols
Q is the finite set of states
δ ⊆ Q × Σ× Q is the transition relation
Q0 ⊆ Q are the initial states
F ⊆ Q are the final states

With respect to a KS, we also have final states and edges are
labeled with symbols from an alphabet

the labeling L is also missing in BAs
however, we will see that AP is linked to Σ

Büchi Automaton

BAs are not different from well-known automata in
computational theory

finite state automata (FSA) are essentially equal in the
definition

The difference is in the language they accept

FSA: a word w is recognized if, by walking inside the FSA
through symbols in w , a final state is reached
this implies that |w | < ∞
the set of all recognized w may be infinite, but each w is finite

A BA recognize a(n infinite) language of infinite words

each word w has an infinite number of symbols

Language Accepted by Büchi Automata

Let w = w0w1 . . . be an infinite string s.t. ∀i . wi ∈ Σ

w ∈ Σω

The BA A accepts w iff there exists a path π = q0w0q1w1 . . .
s.t.

∀i . qi ∈ Q ∧ wi ∈ w ∧ (qi ,wi , qi+1) ∈ δ
q0 ∈ Q0

if I = {i | qi ∈ F}, then |I | = ∞
otherwise stated: π goes through a final state infinitely often
(or almost always)
this is where the definition differs from FSAs, where π is finite
and its final state must be in F

L(A) is the set of infinite words recognized by A
Languages recognized by a BA are called ω-regular

recall that FSA recognize regular languages

Büchi Automata Examples

Final states are those with thicker boundaries, initial states are
pointed to by an arrow

This recognizes the language b∗aω

Note that a∗ is a language (infinite set of finite words)
containing ε, a, aa, aaa, . . .

Note that aω is a single infinite word aaaaaaa . . .

Thus, b∗aω = {aω, baω, bbaω, . . .}
That is: a finite number of b’s, followed by infinite a’s

Büchi Automata Examples

This recognizes the language (a+ b)∗bω

That is, (a+ b)∗bω = {bω, abω, ababω, abbabbbabω, . . .}
That is: any finite sequence of a and b, followed by infinite b’s

Cannot be recognized by a deterministic BA!

instead, deterministic FSAs recognize the same languages of
non-deterministic FSAs

Büchi Automata and LTL Properties

Also LTL properties are related to infinite words

recall that a model σ is an infinite sequence of truth
assignments to all p ∈ AP
by adapting LTL semantics about π |= φ, we can define
whether σ |= φ

we replace a path state π(i) with the set Pi ⊆ AP s.t.
Pi = {p ∈ AP | p ∈ L(π(i))}

Thus, an LTL property recognizes a language
L(φ) = {σ ∈ (2AP)ω | σ |= φ}

sometimes, we use φ and P = L(φ) interchangeably
Furthermore, the “infinitely often” part recalls the LTL
formula GFp

Also the “eventually forever” FGp is important

Büchi Automata and LTL Properties

Let φ be an LTL formula, and let L(φ) be the set of models
of φ. Then, there exists a BA Aφ s.t. L(Aφ) = L(φ)

it is easy to show that the vice versa does not hold

We skip the proof, but:

of course, we have Σ = 2AP

the size of Aφ, i.e., the number of states, is 2O(|φ|)

since we typically verify small properties, this is ok

There exist tools performing such translation

inside SPIN model checker, using option -f

Büchi Automata Examples

Büchi automaton for FGp:

Büchi automaton for GFp:

LTL Model Checking: Automata-Theoretic Solution

Given S, φ decide if S |= φ

Consider S as a BA where F = S

Then, S |= φ ≡ L(S) ⊆ L(φ)
Furthermore, ≡ L(S) ∩ L(¬φ) = ∅
Finally, ≡ L(S ×A(¬φ)) = ∅
The last step is the one which is actually computed

Complexity is O((|S| · |A(¬φ)|)2) = O((|S| · 2|φ|)2)

On-the-Fly LTL Model Checking for L(S ×A(¬φ)) = ∅

The graph to be visited is defined as G = (V ,E) where:
V = S × Q

thus, each state is a pair with a state from S and a state from
A(¬φ)

((s, q), (s ′, q′)) ∈ E iff (s, s ′) ∈ R and ∃p ∈ L(s ′) : δ(q, p, q′)

thus, Σ = AP

On such G , we must find acceptance cycles

an acceptance state is (s, q) s.t. q ∈ F
we have an acceptance cycle if (s, q) is an acceptance state
and it is reachable from itself

If an acceptance cycle is found, we have a counterexample
and S ̸|= φ

If the visit of G terminates without finding one, S |= φ

On-the-Fly LTL Model Checking

No need for S ,Q,R, δ to be in RAM from the beginning

similar to Murphi: we have a next function directly derived
from the input model
also A(φ) is described by a suitable language

Depth-First Visit, easily and efficiently adaptable for finding
acceptance cycles

Namely, Nested Depth-First Visit: one for exploring
S ×A(φ), the other to detect cycles

the two searches are interleaved

If an acceptance cycle is found, the DFS stack contains the
counterexample

Nested DFS for LTL Model Checking

DFS(KS_BA SA, state (s, q), bool n, state a) {

let SA = ⟨SA, IA,RA, LA⟩;
foreach (s ′, q′) ∈ SA s.t. ((s, q), (s ′, q′)) ∈ RA {

i f (n ∧ (s ′, q′) == a)

exit reporting error;

i f ((s ′, q′,n) ̸∈ T) {

T = T ∪ {(s ′, q′,n)};
DFS(SA, (s ′, q′), n, a);

i f (¬n ∧ (s ′, q′) is accepting) {

DFS(SA, (s ′, q′), true , (s ′, q′));
} } } }

LTLMC(KS S, LTL φ) {

A = BA_from_LTL(¬φ); T = ∅;

let S = ⟨S , I ,R, L⟩, A = ⟨Σ,Q, δ,Q0,F ⟩;
foreach s ∈ I , q ∈ Q0

DFS(S ×A, (s, q), fa l se , null);

}

