Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

©

Model Checking problem:
o input: a KSS=(S,/,R,L) and a formula ¢
o output: true iff S = ¢, (false, ¢) otherwise, being c a
counterexample

©

Depending on ¢ being LTL or CTL, different algorithms must
be provided
We will first show the “theoretical” algorithm for CTL

o classical approach: both S and R fit into RAM
o graph-based: we will see that the one actually used is instead
fix-point based

©

o Then, we will see how they can be efficiently implemented
o LTL: SPIN and NuSMV

o CTL: NusSMV S = o
O Bt =

o CTL is based on state formulas, i.e., ¢ holds depending on the
state we are considering
o this also holds for subformulas of ¢, e.g., AFAGp has one
subformula AGp

o Since we have the full state space S, we label all states s € S
with (sub)formulas holding in s

o not only the reachable states: all of them

o Then, we use subformulas labeling to decide higher formulas
labelling

o Thus, we compute A : § — 2%, being 2% the set of all
subformulas of ¢

o At theend, S ¢ iff Vs € . ¢ € A(s) P
l%J GNVERSTA T

o Consider the abstract syntax tree of ¢, call it ¢
o Start from the leaves in ¢, which must be an atomic
proposition p or true
o VseS.peA(s) e pel(s)
o Vs € S. true € A(s)
o Then go upwards in ¢, using, for each node, the labeling of
the sons
o VseS. e As)=d&A(s)
o Vs €S. O APy € A(s) & (1 € A(s) A Dy € A(s))
o Vs €S.EXP e A\(s) = (35’ : (s,5') e RADP € A(5))

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

©

©

©

©

©

We already have A"1({®1}) and A1 ({®,})

o here and in the following, A\"}({®}) = {s € S| ® € \(s)}, for
a CTL formula ¢

All states satisfying ®; are ok, let T be the set of such states
Then, backward visit of the state space of S, starting from T
The backward visit stops when $; does not hold

Complexity is O(|S| + |R|)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

labels CheckEU(KS S, formula OEUD,, labels N)
{
let S=(S5L,RL);
= {seS|dyeNs)};
foreach s T
A(s) = A(s) U {®:EUD,};
while (T #2) {
let s be s.t. s€T;
T =T\ {s};
foreach te {t|(t,s)e R} {
if &EUD, € A (1) A &1 € A(t) {
/* OEUP, € \(t): wisited states check */
(t) (t) U {®:EUD,};
u {t};
F}r} .

return \; %\ Py o

o We already have A~1({®}): this defines a subKS S’ of S
o A71({®}) contains all states in which ¢ holds
o Then, compute the strongly connected components (SCCs) of
Sl
o inside such components, ® holds on all states on all paths

o Finally, label with EG® all s in such SCCs, plus all backward
reachable t € §’

o in fact, it may be the case that a s € S’ is not in any SCC, as
it is only connected to states not in S’
o but if it goes into one state in some SCC, it is however good
o not necessarily in one step, provided all the path satisfies ®...
o so we move on states for which holds forever in at least one
path...

o Complexity is again O(|S| + |R|) \% e, ‘

labels CheckEG(KS S, formula EG®, labels \)

{

let S=(S5,,R,L);
S ={seS|deA(s)}; R = {(s,t)eR|s,teS'};
A = SCC(S',R); T = UacaA;
foreach se T, A(s) = A(s) U {EGD};
while (T #2) {
let s be s.t. s€T;
T =T\ {s};
foreach te{t|(t,s)e R} {
if EGOEA(t) { /* since (t,s)ER', deA(t) */
A(t) = AMt) U {EG®};
T =T U {t};
}r

return \; .
\ RESHLRTNE! ;

©

Complexity is:
o O(]S]) for boolean combinations and atomic propositions
o O(]S]) also for EX®
o O(|S|+|R]) for EG® and ¢; EU &,

Since this must be done for every subformula of ¢, the overall
complexity is O((|S| + |R])|¢])

o || is the number of nodes of the abstract syntax tree of ¢

©

©

Linear in the size of the input, if one of the two is fixed... is
this as good as it seems?

©

Alas no: state space explosion hits exactly in |S| and |R)|
o || is typically low for real-world properties to be verified

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

)
=

(72
HT

© = EFAFp =
true EU(—(EG—p))

Leaves of ¢ AST are true and
p, thus:

Vi€ {0,2,4}. X)) =
™~ {true, p}

Vi € {1,3,56}. As) =

{true},

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

¢ = true EU(—(EG—p))

Going up one level:

Vi € {0,2,4}. X)) =

{true, p}

Vi e {1,3,5,6}. A(s) =
3\] {tr.ue, -p},

___/ Going up two levels:

p.r CheckEG(S, EG—p, A)

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

=)
=

N

labels CheckEG(KS S, formula EG®, labels \)
{
let S=(S5,,R,L);
S ={seS|deA(s)}; R = {(s,t)eR|s,teS'};
A = SCC(S/,R/); T = UAGAs.t. ‘A‘>1A;
foreach s€ T, A(s) = A(s) U {EGD};
while (T #2) {
let s be s.t. s€T;
T =T\ {s};
foreach te{t|(t,s)e R} {
if EGO & A\(t) {
A(t) = AMt) U {EG®};
T =T U {t};
Y r}

return \; .
+ OB/ B =2

¢ = true EU(=(EG—p))
CheckEG(S, EG—p, \)
S"'={s1,53,55,5}

There are no SCC on S’

Thus T = @ and \ does not

)
=

T”’
)
(@)
0
Q
=5
o
[0)

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

/gt\

¢ = true EU(—(EG—p))
Vi e {0,2,4}. A(sj)
{true, p}
Vi € {1,3,5,6}. A(si)
{true, —p},

/53\] Going up one more level:
Vi€ {0,2,4}. A(s))
{true, p, ~(EG—p)}

I Vi e {1,3,5,6}. X(s)

2 (3, {true, =p, ~(EG-p)}

| UNIVERSITA
\ | DEGLI STUDI
\ DELL'AQUILA

¢ = true EU(—(EG—p))
Finally, call CheckEU(S,
true EU(—=(EG—p), \)
T = S, as all states are labelled
with =(EG—p)

, all states must be la-

)
=

o,
_/
8
2 G
g
+
>
AS)

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

labels CheckEU(KS S, formula ¢;EUdD,, labels A)

{

let S=(S,I,R,L);
T = {seS|de(s)};
foreach se T
/\(S) =)\(S) U {¢1EU¢2},
while (T #2) {
let s be s.t. s€T;
T =T\ {s};
foreach te{t|(t,s)e R} {
if OEUdP, € A(t) A Dy € A(2) {
/\(S) = /\(S) U {¢1EU¢2},
T =T U {t};
Y r}

return \; <iz
| ‘\\[\IR\H\
\ BEEL A

f‘/St?J 5 ¢ = true EU(=(EG—p))
N- — Vi e {0,2,4}. Ms) =
{true, p, =/(EG—p), ¢}
Vi e {1,3,56}. As) =
{true, —=p, 7(EG—p), ¢}
(s, 3 ‘ /s}\] Since ¢ € A(sp), we have that
N S . SEp
a.r p.r
a | S;)

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

o Many LTL algorithms exist, we will directly see the most
efficient one

o Surprising fact: not only LTL is not included inside CTL, it is
also more difficult to check!

o Namely, whilst CTL model checking is in P, LTL model
checking is PSPACE-complete

o no, PSPACE is not “good” as P is: NP C PSPACE
o Efficient algorithms for LTL run in O((|S| + |R[)2¥!)
o In practice, this is not much worse than CTL model checking

o the real problem is O(|S| + |R|)
o ¢ is usually small, it is difficult to come up with lengthy

formulas L

o The idea is simple: first translate ¢ into a special automaton

A(e)
o Then, perform a DFS visit both S and A(y), one step at a
time
o equivalent to verify to Cartesian product S x A(yp)

o If some special node s is found, start from s itself a new
nested DFS

o If we are able to come back to s, we have a counterexample
for ¢
o Otherwise, S = ¢

o Such algorithm may be implemented on-the-fly, thus instead
of a KS we have an NFSS

o no need to have S and R in memory beforé%ﬂﬂgm,‘l m ‘

o A (non-deterministic) Biichi Automaton (BA) is a 5-tuple
A= (X, Q,0, Qo, F) where:

Y is the alphabet, i.e., a finite set of symbols

Q is the finite set of states

0 C Q x X x Q is the transition relation

Qo C @ are the initial states

F C @ are the final states

o With respect to a KS, we also have final states and edges are
labeled with symbols from an alphabet

© 06 06 0 o

o the labeling L is also missing in BAs
o however, we will see that AP is linked to ¥

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o BAs are not different from well-known automata in
computational theory
o finite state automata (FSA) are essentially equal in the
definition
o The difference is in the language they accept
o FSA: a word w is recognized if, by walking inside the FSA
through symbols in w, a final state is reached
o this implies that |w| < 0o
o the set of all recognized w may be infinite, but each w is finite
o A BA recognize a(n infinite) language of infinite words
o each word w has an infinite number of symbols

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Let w = wows ... be an infinite string s.t. Vi. w; € &

o weEXY
o The BA A accepts w iff there exists a path m = gqowoqiws . ..
s.t.
o Vi.gi € QAw; € W/\(q,-,w,-,q,-+1) €d
° qo € Qo

o if I ={i|qi€F}, then |l| =00
o otherwise stated: 7w goes through a final state infinitely often
(or almost always)
o this is where the definition differs from FSAs, where 7 is finite
and its final state must be in F
o L(A) is the set of infinite words recognized by A

o Languages recognized by a BA are called w-regular

o recall that FSA recognize regular Ianguagesf’%\m.wn m
B bict G E

O

Final states are those with thicker boundaries, initial states are
pointed to by an arrow

This recognizes the language b*a*

o Note that a* is a language (infinite set of finite words)
containing ¢, a, aa, aaa, . . .

o Note that a* is a single infinite word aaaaaaa ...

Thus, b*a® = {a¥, ba*, bba®, ...} % Nt @ ‘

That is: a finite number of b’s, followed by infiite a's

©

©

©

©

0"

b

s

This recognizes the language (a + b)*b*
That is, (a+ b)*b¥ = {b¥, ab¥, abab”, abbabbbab®, ...}
That is: any finite sequence of a and b, followed by infinite b's

Cannot be recognized by a deterministic BA!
o instead, deterministic FSAs recognize the same Ianguages@

| UNIVERSITA

non-deterministic FSAs ‘ | pryERsiTa

\ DELLAQUILA

©

Also LTL properties are related to infinite words

o recall that a model o is an infinite sequence of truth
assignments to all p € AP
o by adapting LTL semantics about 7 = ¢, we can define
whether o = ¢
o we replace a path state 7(i) with the set P; C AP s.t.
P.={peAP|pe L(x())}
o Thus, an LTL property recognizes a language
Llp)={o € (@) |0 ¢}
o sometimes, we use @ and P = L(y) interchangeably
o Furthermore, the “infinitely often” part recalls the LTL
formula GFp

Also the “eventually forever” FGp is importan;é\ “

©

o Let ¢ be an LTL formula, and let £(y) be the set of models
of . Then, there exists a BA A, s.t. L(A,) = L(p)
o it is easy to show that the vice versa does not hold
o We skip the proof, but:
o of course, we have
o the size of A, i.e., the number of states, is 20(¢])
o since we typically verify small properties, this is ok
o There exist tools performing such translation
o inside SPIN model checker, using option -f

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

— 2AP

Biichi automaton for FGp:

Ao
S »

KJ) P

Biichi automaton for GFp:

©

©

©

©

Given S, ¢ decide if S = ¢

Consider S as a BA where F = S

Then, S = ¢ = L(S) C L(p)

Furthermore, = L(S) N L(—¢) = &

Finally, = L(S x A(—¢)) =@

The last step is the one which is actually computed
Complexity is O((|S] - [A(=¢)))?) = O((|S| - 21¥1)?)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o The graph to be visited is defined as G = (V/, E) where:
o V=5x Q
o thus, each state is a pair with a state from S and a state from
A(=¢)
o ((s,9),(s',q")) € Eiff (s,s'Y e Rand Ip € L(s") : (q,p,q")
o thus, ¥ = AP
o On such G, we must find acceptance cycles
o an acceptance stateis (s, q) s.t. g€ F
o we have an acceptance cycle if (s, q) is an acceptance state
and it is reachable from itself
o If an acceptance cycle is found, we have a counterexample

and S |~ ¢
o If the visit of G terminates without finding

o No need for S, @, R, to be in RAM from the beginning
o similar to Murphi: we have a next function directly derived
from the input model
o also A(y) is described by a suitable language

©

Depth-First Visit, easily and efficiently adaptable for finding
acceptance cycles

Namely, Nested Depth-First Visit: one for exploring
S X A(p), the other to detect cycles

o the two searches are interleaved

©

If an acceptance cycle is found, the DFS stack contains the

counterexample
.. R s

©

DFS(KS_BA SA, state (s,q), bool n, state a) {
let SA:<5A,IA,RA,LA>;
foreach (s',¢')€ Sa s.t. ((s,9),(s',4")) € Ra {
if (o A (s,q9) == a)
exit reporting error;
if ((s,¢'n)¢g T) {
T =T U{(sdm)}s
DFS(SA, (Qqﬁ, n, a);
if (-n A (s',¢') is accepting) {
DFS(SA, (s,q¢'), true, (5,¢'));
Y}

LTLMC(KS S, LTL ¢) {
A = BA_from LTL(ﬁgp) T = @;
let S=(S,I,R,L), A=(X,Q,6,Qo,F);

foreach sel,ge Qo 1»/-\ — @ osu
DFS(Sx A, (s,q), false, null); & :

