
Software Testing and Validation
A.A. 2025/2026

Corso di Laurea in Informatica

The SPIN Model Checker

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Acronyms

Murphi stands for nothing, though it is probable that it
reminds Murphi’s Laws

“if something may fail, it will fail”, i.e., EFp → AFp

SPIN stands for Simple Promela INterpreter

Promela is the SPIN input language

Murphi input language does not have a proper name

Promela stands for PROcess MEta LAnguage

as we will see, it is actually based on Operating Systems-like
processes

Also see slides at
https://spinroot.com/spin/Doc/SpinTutorial.pdf

some of such slides are reused here

https://spinroot.com/spin/Doc/SpinTutorial.pdf

Structure of a Promela Model

We recall that Murphi input language is based on:
global variables with finite types

base types are integer subranges and enumerations
higher types are arrays and structures

function and procedures
guarded rules and starting states (dynamics)

may call functions and procedures, in an atomic way
Pascal-like syntax: := for assignments, = for equality checks...

invariants

Structure of a Promela Model

Promela instead has:
global variables with finite types

base types are integer types of the C language
enumerations are very limited
arrays and records
channels!

processes behaviour (dynamics)

possibly with arguments and local variables

properties to be checked:

assertions
deadlocks
“neverclaim” describing a BA
a separate tool may translate an LTL formula in the
corresponding BA

Structure of a Promela Model

Structure of a Promela Model

Mainly C-like syntax: = for assignments, == for equality
checks...

with some exceptions: if, while, message exchange

No start states: there is only one starting state

an “empty” state, we will see how it is defined

Thus, if you need multiple starting states, you will have to
explicitly model this in Promela

having the “empty” state non-deterministically going in the
desired starting states

Assertions are conceptually the same as invariants

Processes in Promela

Dynamics in Promela is defined through processes

You may define many different codes for your processes:
proctype

You may instantiate many times each proctype

each instantiation of a proctype is a process

Each process is either active from the starting state, or it is
explictly started by some other process

an active process may be either running or blocked, as we will
see

Though Promela proctypes may seem procedures, they are
not!

running a process is not like calling a function
it is rather like forking a new process, which executes the
given code concurrently with the “calling” one

Peterson Protocol in Operating Systems

Peterson Protocol in Promela

bool turn , flag [2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit ++;

assert(ncrit == 1); /* critical section */

ncrit --;

flag[_pid] = 0;

goto again

}

Peterson Protocol in Promela

In this case, the starting state has:

two running processes, both ready to execute their first
statement (i.e., the assert)
turn, flag, ncrit are all set to zero

both entries for flag

A special local variable pid is available for all processes

similar to Operating Systems PID
if there are n active processes, each will have pid ranging
from 0 to n − 1
read-only

The often-deprecated goto statement is heavily used in
Promela models

the same holds for the break statement
C-like labels also may have special meanings

Non-Determinism in Promela: Part I

In the Peterson model above, there does not seem to be any
non-determinism

Instead, in each state there are two possible successors

one obtained executing the (current statement in) the first
process
the other one obtained executing the second process

Generally speaking, if in a state there are n active processes,
then there are n successors

actually, they may be less, because of blocked statements
or more, because of the other source of non-determinism

SPIN checks that properties hold for all possible interleavings
between processes

using OS-like parlance, the model must be correct regardless of
the scheduler

Non-Determinism and Interleaving: Murphi vs. SPIN

In Murphi, non-determinism is given by the fact that multiple
rules may be fired

i.e., their guard is true in the same state

In SPIN, for now, non-determinism is given by the fact that
multiple processes may execute their next statement

Statements interleaving is not possible in Murphi

statements are in rules (or startstates) bodies
possibly enclosed in functions/procedures
if two rules are fired together, first execute all statements in
one body, so as to obtain one successor state...
... then execute all statements in the other body, so as to
obtain another successor state
it may be also the case that the two successor states turn out
to be equal

Blocked and Executable Statements

Proctypes are sequences of statements

Statements may be either blocked or executable

again, it resembles OS blocking primitives, such as those on
semaphores or on message exchange

If a statement is blocked, then the corresponding process
cannot be selected for execution

For each type of statement, we will say when it is blocked and
when it is executable

Blocked and Executable Statements

The following statements are always executable: assignments,
goto, break, skip, assert, printf

return does not exist
break must be inside a cycle
skip does “nothing”, useful in some cases
assert takes an expression e as argument: if e is false, the
verification is aborted and the error is reported
printf is only used in debugging the model itself (simulation
mode)

Blocked and Executable Statements

Expressions may be used as statements

in Peterson protocol:
(flag[1 - pid] == 0 || turn == 1 - pid);

An expression e used as a statement is executable iff e is
evaluated to true in the current state

e is always of some integer type
as usual in C, e is false if e = 0, and true otherwise
boolean is a particular type of integer with 0, 1 as only
available values
boolean connectors are the same as in C and Java (&&, ||)
in OS parlance, we are implementing busy waiting
e is equivalent to while (e == 0) {/* do nothing */}

Once it becomes executable and it is actually executed, SPIN
simply goes to the next statement

Peterson Protocol in Promela

bool turn , flag [2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit ++;

assert(ncrit == 1); /* critical section */

ncrit --;

flag[_pid] = 0;

goto again

}

Blocked and Executable Statements

The run statement may be used to create a new process

there is a limit to the number of active processes N
run is executable iff the number of currently active processes
is less than N

Other ways to have processes:
declare a proctype as active [n]

active since the start state
n is the number of instances to be run, may be skipped if
n = 1
if proctype has arguments, initialized to 0

name a proctype as init

again, active since the start state

There must be either active proctypes or the init proctype in
every Promela model

Structure of a Promela Model

Peterson Protocol in Promela

bool turn , flag [2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit ++;

assert(ncrit == 1); /* critical section */

ncrit --;

flag[_pid] = 0;

goto again

}

Peterson Protocol in Promela

bool turn , flag [2];

byte ncrit;

proctype user()

{

/* ... as before */

}

init {

run user();

run user();

}

Atomic Statements

Each single statement is atomic

other processes must wait for an executable single statement
completion
this differs from OS-like processes: if n is shared and n++ is
executed, race conditions may arise
because n++ must be viewed as a sequence of assembly
statements
not in Promela

It is sometimes desirable to declare a sequence of statements
s1, . . . , sn as atomic: atomic {s1, . . . , sn}

Peterson Protocol in Promela

bool turn , flag [2];

byte ncrit;

proctype user()

{

/* ... as before */

}

init {

atomic{

run user();

run user();

}

}

Atomic Statements

An atomic block like atomic {s1, . . . , sn} may be executable
or blocked as well

The rule is simple: atomic {s1, . . . , sn} is executable iff s1 is
executable

What happens if si is blocked for some i > 1?

The process loses the atomicity, it becomes blocked and other
active processes will have to be executed

This is the only case in which a statement is initially
executable and then becomes blocked

When si is executable again, and the “scheduler” selects the
process, the rest of the atomic section is executed atomically
again

unless a new sj is blocked with j > i ...

Atomic Statements

Another way of specifying atomic blocks is d step

{s1, . . . , sn}
Again, executable iff s1 is executable, but:

it is a (runtime) error if si is blocked with i > 1
each si must be deterministic
all statements seen till now are deterministic, we will see
non-deterministic ones later

Thanks to these restrictions, d step is more efficient than
atomic

intermediate states need not to be generated, as they cannot
block and then resume

Atomic Statements

Atomic Statements

Blocked and Executable Statements

The timeout statement may be used to avoid deadlocks

that is, states where all processes only have blocked
statements to be executed next

In fact, timeout is an expression

it becomes true (and thus, as a statement, executable) iff we
are in a deadlock, in the sense described above

Used as an escape in some cases

Blocked and Executable Statements

The if statement has a somewhat surprising syntax
if

:: e1 -> s11; . . . ; s1n1
...
:: em -> sm1; . . . ; smnm

fi

inspired by Dijkstra guarded command language
it is executable if there exists i s.t. ei is executable

typically ei are expressions, thus when some ei is true

as a special expression, else is true (executable) iff all ei are
false (blocked)

thus, an if with an else is always executable

if all ei are blocked, then the if statement is blocked

note that this is very different from “normal” imperative
languages ifs...

; may be used instead of ->, which is actually syntactic sugar

Blocked and Executable Statements

The semantics of the if statement is the following
if

:: e1 -> s11; . . . ; s1n1
...
:: em -> sm1; . . . ; smnm

fi

let I = {i | ei is true in the current state}
then there are |I | successor states, each ready to execute sj for
j ∈ I
thus, this is the other source of non-determinism

Blocked and Executable Statements

The while statement does not exist in Promela

Instead, we have
do

:: e1 -> s11; . . . ; s1n1
...
:: em -> sm1; . . . ; smnm

od

as for the if, it is executable if there exists i s.t. ei is
executable
if all ei are blocked, then the do statement is blocked
of course, if is executed only once, while do is executed
forever
more precisely: once, for some i , si1; . . . ; sini is executed, the
whole do is evaluated again
to exit from a do, a break is necessary
or some other escape, such as goto or unless: see later

Non-Determinism in Promela: Part II

There are two sources of non-determinism in Promela:
inter-process, as a process may non-deterministically be chosen
among all the currently active non-blocked processes

a non-blocked process is a process which current statement is
executable

intra-process: using if or do

In fact, if E = {ei1 , . . . , eik | eij is executable} is such that
|E | > 1, there will non-deterministically be |E | successors

of course, for the current process only
other processes may have a current if or do as well

Non-Determinism in Promela: Part II

Other Promela

Other Promela

Other Promela

Inter-Process Communication

Two processes may communicate using shared memory

that is, using global variables
one writes and the other reads

If synchronization is required, busy waiting must be used

that is, read only after writing

Inter-Process Communication

byte x;

active [2] proctype user()

{

byte y;

i f
:: _pid == 0 -> x = 1

:: _pid == 1 -> y = x;

fi;

...

}

What if I want y = x to happen only after x = 1?

Inter-Process Communication

byte x;

bit b = 0;

active [2] proctype user()

{

byte y;

i f
:: _pid == 0 -> atomic{b = 1; x = 1}

:: _pid == 1 -> atomic{b == 1; y = x;}

fi;

...

}

Inter-Process Communication: Channels

Fortunately, Promela offers a simple way to handle
communication: FIFO channels

similar to OS message exchange via mailbox

To declare a channel, the chan data type can be used

the modeler must specify both the size of the channel and the
type of the messages to be exchanged

Messages may be tuples

their types must be enclosed in brackets

Inter-Process Communication: Channels

Inter-Process Communication: Channels

To send a message in a channel:
channel!value1,. . .valuen

executable iff channel has size m > 0 and contains at most
m − 1 messages
each message has n components

To receive a message in a channel: channel?x1,. . .,xn

if all xi are variables, the first still undelivered message in
channel is stored in each xi , breaking down the tuple
executable iff the channel is not empty
if all xi are constant values, the first still undelivered message
in channel is compared to the values xi , breaking down the
tuple
executable iff the first message in the channel matches the
given values
in this case, the message is removed from the channel
variables and constants may be mixed

Inter-Process Communication: Rendez-Vous Channels

It is sometimes desirable to also have blocking send

that is, if there is not some other process receiving on the
channel, the send must block
reading is always blocking, if there is not something to be
received

This may be achieved using rendez-vous channel

Defined using 0 as the channel size

Both the sending and the reading process will block, till when
some other process perform the dual operation

Then, both of them go on to the following statement

only case in which two separate statement of two different
process are executed at the same time

Dijkstra Protocol in Promela

#define p 0

#define v 1

chan sema = [0] of { bit }; /* rendez -vous */

proctype dijkstra ()

{ byte count = 1; /* local variable */

do
:: (count == 1) -> sema!p; count = 0

/* send 0 and blocks , unless some other

proc is already blocked in reception */

:: (count == 0) -> sema?v; count = 1

/* receive 1, same as above */

od

}

Dijkstra Protocol in Promela

proctype user()

{ do
:: sema?p;

/* critical section */

sema!v;

/* non -critical section */

od

}

init

{ run dijkstra ();

run user(); run user(); run user()

}

Channels Example: Alternating Bit Protocol

https:

//en.wikipedia.org/wiki/Alternating_bit_protocol

Data link layer protocol, used in the first Internet

Process A wants to send a multi-part message to process B

order of message parts are important, so first trunk first, then
second...

A sends current part together a bit b, and waits for B answer

If B sends back ACKb, A proceed with the next part with
flipped bit 1− b

Otherwise, send the current part again, with the same b

Try to simulate the Promela model with the graphical SPIN

https://en.wikipedia.org/wiki/Alternating_bit_protocol
https://en.wikipedia.org/wiki/Alternating_bit_protocol

Inter-Process Communication: Channels

Promela: Other

Each statement may have a label (e.g. again in Peterson’s
protocol)

If the label begins with “end”, then it is a valid end-state

An end-state is valid if it has an “end” label or if it consists of
the closing bracket } of a process

Any other state from which it is not possible to execute a
transition triggers a verification error, claiming a deadlock has
been found

If the label begins with “accept”, then it is an accepting state

typically inside some neverclaim representing a BA of some
LTL formula

From Promela to Kripke Structures

We define the Kripke structure S = ⟨S , I ,R, L⟩ corresponding
to a given Promela model

S = D1 × . . .× Dn ×
∏p

l=1

(
{1, . . . , sl}k ×

∏k
i=1

∏ℓl
j=1 Dij

)
there are n flattened global variables, including channels
(arrays of structures...)
there can be a maximum k active processes
proctype l has at most sl statements and ℓl flattened local
variables
program counters must be stored for each running process, so
as to single out the exact statement to be executed in each
process
if a Di corresponds to short or int, then it has 216 or 232

values on a typical 64-bit architecture, as it is in C

From Promela to Kripke Structures

This state space is dynamic, as it contains the currently active
processes

new processes may be added at any time by a run statement
thus, to define the state space in advance, you need to bound
the maximum number of active processes

Thus, state space grows: as new processes run and new local
variables are reached

... and shrinks: as some process terminate

From Promela to Kripke Structures

I = {s0} where s0 contains only processes defined as active
and all global variables are zero

all program counters are at the beginning, local variables still
does not exist

Intuitively, R(s, s ′) holds iff there is a running process p in s
and an executable statement t at the current program counter
of p s.t. t, when executed, leads from s to s ′

if t is the beginning of an atomic sequence, then the whole
atomic sequence must be executed
till the first blocking statement of the sequence
if t is a send on a rendez-vous channel c , and there is another
current statement t ′ in another process p′ s.t. t ′ is a receive on
c , both t and t ′ have to be executed when leading from s to s ′

L is similar to Murphi, i.e., equations between (global and
local) variables and values; however, also program counters
must be considered

SPIN Simulation

Almost equal to Murphi one

void Make_a_run(NFSS N)

{

let N = ⟨S , {s0},Post⟩;
s_curr = s0;
i f (some assertion fail in s_curr))

return with error message;

while (1) { /* loop forever */

i f (Post(s_curr) = ∅)

return with deadlock message;

s_next = pick_a_state(Post(s_curr));
i f (some assertion fail in s_curr))

return with error message;

s_curr = s_next;

}

}

SPIN Verification

Able to answer to the following questions:

is there a deadlock (invalid end state)?
are there reachable assertions which fail (safety)?
is a given LTL formula (safety or liveness) ok in the current
system?
is a given neverclaim (safety or liveness) ok in the current
system?

It is possible to specify some side behaviours:

is sending to a full channel blocking, or the message is dropped
without blocking?

It may report unreachable code

Promela statements in the model which are never executed

SPIN Verification

Similar to Murphi:
1 the SPIN compiler (SrcXXX/spin -a) is invoked on

model.prm and outputs 5 files:

pan.c, pan.h, pan.m, pan.b, pan.t (unless there are errors...)

2 the 5 files given above are compiled with a C compiler

it is sufficient to compile pan.c, which includes all other files
in this way, an executable file model is obtained

3 just execute model

option --help gives an overview of all possible options

SPIN Verification of LTL Formulas

The former is ok for assertion or deadlock checks

If you also have an LTL formula
1 the SPIN compiler (SrcXXX/spin -F) is invoked on

model.ltl and outputs a neverclaim on the standard output

model.ltl must be a text file with only 1 line
file extensions does not matter
syntax for the formula: G is [], F is <>, U is U
atomic propositions must be identifiers

2 append the neverclaim to the promela file
3 define the identifiers used as atomic proposition by #defines

in the promela file
4 go on as before

If you use the graphical GUI, it is much easier: such steps are
automatically performed

PAN: Protocol ANalyzer

pan.[ch] is the fixed part of the verifier, it implements a
DFS (also BFS starting from some later version, but less
efficient), it also includes the other files

pan.t creates a table with an entry for each statement in the
source Promela model

for each statement, the corresponding values to execute the
forward and backward in pan.[bm] are stored
this is needed for simulations and counterexamples

PAN: Protocol ANalyzer

pan.m is the part of the verifier which depends on the
Promela model: it contains a C switch statement
implementing the transition relation

very similar to Murphi Code implementing a rule body
the current state is saved in a memory buffer called now which
is very similar to the Murphi’s workingstate
given the current state, given a running process index i and
the program counter p inside that process, it performs on now

the modifications demanded by the Promela statement at line
i of process p, so obtaining the next state
actually, a second index j is needed in the case the current
statement is non-deterministic

PAN: Protocol ANalyzer

pan.b: the same of pan.m, but backwards!

pan.m does not surprise and it is not conceptually difficult to
understand and implement
implementing the same backwards is not straightforward, but
SPIN does it!
essentially, all Promela instruction may be reversed, and the
code to reverse them is in pan.b

PAN maintains old values for all variables in the state (i.e.,
values are saved before overwriting due to new assignments)
thanks to the fact that the visit is a DFS (SPIN is optimized
for DFS), each time an action overwriting a variable is undone,
we need the last value, thus a stack for each variable is used

PAN: Protocol ANalyzer

On-the-fly exploration: as in Murphi, the RAM contains only
the part of the graph which has been explored till now

only the states, no transitions between them

Hash table for the visited states

Murphi uses open addressing, here the hash table is handled
with collision lists
in order to speed up visited states check, such lists are ordered
(i.e., each new state is inserted in order)

Iterative DFS (recursive one is inefficient)

with gotos and global variables!
DFS stack is explicitly handled in a lighter and more efficient
way

Standard Recursive DFS

HashTable Visited = ∅;

DFS(graph G = (V ,E), node v)
{

Visited := Visited ∪ v ;
foreach v ′ ∈ V t.c. (v , v ′) ∈ E {

i f (v ′ /∈ Visited)

DFS(G , v ′);

}

}

Iterative DFS Easy Version

DFS(graph G = (V ,E))
{

s := init;

push(s, 1);
while (stack ̸= ∅) {

(s, i) := top();

increment i on the top of the stack;

i f (s /∈ Visited) {

Visited := Visited ∪ s;
let S ′ = {s ′ | (s, s ′) ∈ E};
i f (|S ′| >= i) {

s := i-th element in S ′;

push(s, 1);
}

e l se pop();

}

e l se pop();

} }

Iterative DFS

DFS(graph G = (V ,E))
{

s := init; i := 1; depth := 0;

push(s, 1);
Down:

i f (s ∈ Visited)

goto Up;

Visited := Visited ∪ s;
let S ′ = {s ′ | (s, s ′) ∈ E};
i f (|S ′| >= i) {

s := i-th element in S ′;

increment i on the top of the stack;

push(s, 1);
depth := depth + 1;

goto Down;

}

Iterative DFS

Up:

(s, i) := pop();

depth := depth - 1;

i f (depth > 0)

goto Down;

}

DFS in PAN

DFS(NFSS N)

{

let N = (S , I , Post);
now := init; depth := 0;

Down:

i f (now ∈ Visited)

goto Up;

Visited := Visited ∪ now;

foreach p s.t. p is a running process in now {

foreach opt s.t. opt is enabled at p.pc {

now := apply(now , p, opt);

/* no need of incrementing opt on the top of the

stack: when popping , it will be done by the

foreach on opt ... */

push(p, opt);

depth := depth + 1;

goto Down;

DFS in PAN

Up:

(p, opt) := pop();

depth := depth - 1;

now := undo(now , p, opt);

} }

i f (depth > 0)

goto Down;

}

PAN: Just Two Indexes!

The stack does not store states

Instead, each stack entry stores a pair ⟨p, o⟩ of indices
(integers)

p is a process pid
o identifies a statement at the current program counter of p
(recall that there may be non-determinism inside each
process...)
so it is 8 bytes, whilst the current state may easily require
some kB

We now detail the rational behind this choice

PAN: Just Two Indexes!

There is just one initial state

Let ⟨p0, o0⟩ be the first (from the bottom) pair on the stack;
it univocally identifies a statement istr0 to be executed

By applying istr0 to s0 we obtain a state s1 (formally,
s1 =apply(s0, p0, o0))

Analoguously, s2 =apply(s1, p1, o1) if ⟨p1, o1⟩ is the second
pair on the stack

Thus, a stack ⟨⟨p0, o0⟩, . . . , ⟨pd , od⟩⟩ univocally identifies a
state sd , obtained by chaining the executions due to pairs
⟨pi , oi ⟩
Formally, ∀1 ≤ i ≤ d si =apply(si−1, pi−1, oi−1)

PAN: Just Two Indexes!

Moreover, SPIN is able to define the undo function, with the
same parameters of the apply function

of course, apply is defined in pan.m, undo in pan.b

undo needs a stack of values for each variable, as explained
above
however, it tries to minimise such stacks usage; e.g., if a c =

c + 2 statement must be undone, then it is sufficient to
execute c = c - 2

for direct assigments (e.g., c = 4), the apply function puts the
preceding values of v in the stack of v before overwriting it
with 4
undo will pop the value from the stack of v and put it back in
v

this works because the whole visit is a DFS

PAN: Just Two Indexes!

Finally, recall we have a global fixed structure now
implementing the current state

same as Murphi’s workingstate

Summing up, given what we said:

no need of pushing a whole state s in the DFS stack: SPIN
pushes the pair ⟨p, o⟩ which generates s if applied to the
current state
no need of popping a state s: SPIN pops the pair ⟨p, o⟩ which
generates s if undone on the current state

PAN: Details

ch13.pdf adds some more details

Atomic sequences handling:

if we are inside an atomic sequence, SPIN must take care that
only the current process can execute
this is done by setting From = To = II (line 44), which forces
the for loop in line 24 to oly select the current process
normal behaviour is reprised at line 46
a state may be searched and possibly inserted in the hash table
(line 13) only if we are not in an atomic sequence

PAN: Details

ch13.pdf adds some more details

timeout handling:

it is a Promela boolean expression, which is true iff the whole
system deadlocks (all processes must execute non-executable
statements)
thus, when the double for at lines 24 and 28 is finished
without any statement being executable (thus, n is still 0) and
this is not a valid end state, PAN tries to perform the whole
computation again with timeout set to 1
linea 46 reprises the normal non-timeout behaviour

PAN: Details

ch13.pdf adds some more details

Apply ed undo are implemented in pan.m (included at line 30)
and pan.b (line 54)

if a statement cannot be executed, pan.m performs a C
continue statement, which forces for in line 28 to go on with
next iteration
otherwise, a goto P999 is executed
instead, pan.b executes goto R999

Finally, recall that, for LTL verification, a nested DFS is used

PAN: Counteracting State Space Explosion

PAN has the same bit compression (called byte masking) and
hash compaction techniques we described for Murphi

to enable hash compaction, compile pan.c with -DHC
byte masking is always enabled, compile with -DNOCOMP to
disable it

simply align to bytes instead of 4-bytes words

also bitstate hashing, a precursor of hash compaction
stack cycling, i.e., efficiently use disk for DFS stack

Other interesting techniques: collapse compression, minimized
automaton (may be combined), partial order reduction

First two techniques try to use less memory to represent the
set of visited states so far

same goal of hash compaction et similia

Last technique directly prunes the state space

same goal of symmetry reduction in Murphi

Collapse Compression

Less effective than hash compaction, but exhaustive as bit
compression

to enable it, compile pan.c with -DCOLLAPSE

Recall the main components of a Promela model: N
processes, global variables, channels

The idea is to store in the hashtable N + 2 state fragments,
instead of a single state

this is the default, but you can put all processes together
(-DJOINPROCS)
or separate channels with DSEPQS

A further special “order fragment” is used to say which is the
first fragment, the second, ... till the (N + 2)-th fragment

Collapse Compression

Thus, to decide if the current state is visited, first split it as
described above

If at least one fragment is not in the hashtable, the state is
new

of course, the missing fragment(s) must be placed inside the
hash table
for each of them, a unique identifier is generated and stored
together with the fragment
the unique identifier is an integer with value i , if this is the
i-th fragment to be generated

of course, only considering the current fragment typology...

the special order fragment contains the sequence of such
identifiers

Collapse Compression

Otherwise, also the order fragment must be checked

if it is found, then the state is already visited
otherwise, insert the new fragment order and return the state
as not visited

Very good if there are many combinations of a few state
fragments

the order fragment is much shorter than fragments
concatenation

Minimized Automaton

Explicit model checking, borrowing ideas from symbolic model
checking

We still have the DFS as above, but as for visited states check
there is not any hash table!

It is replaced by a “minimized automaton” representing the
visited states

here, a minimized automaton is essentially similar to those
recognizing regular expressions
but they are limited: no cycles (it is a DAG), as there is a
maximum length to the words

Minimized Automaton

Finite State Automaton (FSA) for regular expressions:
F = ⟨Q,Σ, δ, q0,F ⟩

Q is the finite set of states
being q0 ∈ Q the initial state and F ⊆ Q the final states
Σ is the alphabet (input symbols) of the regular expression
δ ⊆ Q × Σ× Q is the transition relation

A word w ∈ Σ∗ is recognized if, starting from q0, it ends up in
a final state in F

w = σ1 . . . σn, ⟨q0, . . . , qn⟩ is such that (qi−1,wi , qi) ∈ δ for
1 ≤ i ≤ n
w is recognized iff qn ∈ F

L(F) is the set of recognized words

Minimized Automaton

A minimized automaton F is a special case of a FSA where:

Σ = {0, 1}8 (input symbols are bytes)
|F | = 1
δ is deterministic, thus δ : Q × Σ → Q
L(F) is the set of bit sequences representing visited states,
which implies |L(F)| < ∞
as a consequence, there are no cycles induced by δ (it is a
DAG)

“diamonds”, i.e., circuits, are still possible
the original definition of minimized automaton also has layers
of states
s.t. δ goes from a state in level i to i + 1

PAN incrementally constructs F for each unvisited state

keeping it minimal w.r.t. the number of states
several heuristics are also used, not covered here

Minimized Automaton: Why Effective?

Suppose you have a k-bytes state vector, and that the visited
states are exactly those having 8 zeros in the last byte

thus, a visited state is represented by [0, 1]8(k−1)0

Using an hash table, we have to store 2k−1 states

Instead, using the minimized automaton:

Minimized Automaton: Why Effective?

As usual in Model Checking: impossible to a priori state that
a given KS will be “well” represented by a minimized
automaton, or collapse compression, or whatever

all such techniques may be seen as “heuristics” in some sense

For the minimized automaton, some “regularity” is needed
inside the bit representation of the set of visited state

Also note that sometimes adding a state may improve
regularity, making the minimized automaton smaller

and of course, in some other cases, adding a state may
decrease regularity and make the automaton bigger

PAN Saving Memory Recap: Normal

c
[]

g
1

snd
pc: 2

rcv
pc:1
b:0

c
[]

g
0

init
pc: 1

c
[1]

g
1

snd
pc: 3

rcv
pc:1
b:0

c
[1]

g
1

snd
pc: 3

rcv
pc:3
b:1

init
pc: 3

PAN Saving Memory Recap: Hash Compaction

c
[]
g
1
snd
pc: 2

rcv
pc:1
b:0

c
[]
g
0
init

pc: 1

c
[1]

g
1
snd
pc: 3

rcv
pc:1
b:0

c
[1]

g
1
snd
pc: 3

rcv
pc:3
b:1

init
pc: 3

PAN Saving Memory Recap: Collapse

c
[]

g
1

snd
pc: 2

rcv
pc:1
b:0

g
0

init
pc: 1

c
[1]

snd
pc: 3

rcv
pc:3
b:1

init
pc: 3

C
1

P
6

G
1

P
1

G
2

P
5

C
2

P
2

P
3

P
4

C:1; G:2; P: 6,5

C:1; G:1; P: 1

C:2; G:2; P: 2,5

C:2; G:2; P: 3,2,4

PAN Saving Memory Recap: Minimized Automaton

0x00 01 12 210 0x00 00 01 0x01 01 12 210 0x01 01 03 13 230

c
[]

g
1

snd
pc: 2

rcv
pc:1
b:0

c
[]

g
0

init
pc: 1

c
[1]

g
1

snd
pc: 3

rcv
pc:1
b:0

c
[1]

g
1

snd
pc: 3

rcv
pc:3
b:1

init
pc: 3

0x00

0x01

0x00

0x01

0x01

0x00 0x21 0x00

0x03

0x13 0x23 0x00

0x12 0x21 0x00

!= 0x03

all all

PAN Saving Memory Recap: Collapse + Minimized
Automaton

c
[]

g
1

snd
pc: 2

rcv
pc:1
b:0

g
0

init
pc: 1

c
[1]

snd
pc: 3

rcv
pc:3
b:1

init
pc: 3

C
1

P
6

G
1

P
1

G
2

P
5

C
2

P
2

P
3

P
4

0x01

0x02

0x02

0x01

0x06

0x01 all all

0x02

0x02 0x05
all

0x03 0x02
0x04

0x05 all

Partial Order Reduction

POR does not try to use less memory to save the same states:
it tries to save less states

while retaining correctness, of course
some states are “useless” and need not to be explored (and
saved)
also saves in computation time, of course

Similar to Murphi symmetry for the goal, but different in use
and algorithm

use: Murphi modeler must specify which parts of the model
are symmetric
in SPIN, POR is directly applied without the modeler being
aware of it
though it is possible to disable it

Partial Order Reduction

There are many ways to perform POR; here, we focus on
ample sets

The main idea is that not all interleavings of processes must
actually be expanded

if we have, e.g., 2 processes, for some actions it is not
important if we execute P1 and then P2 or viceversa

We need an algorithm to decide when only one interleaving
can be considered, retaining verification correctness

such algorithm must have a low overhead
must also work locally (we cannot first expand all reachable
states and then decide which ones can be removed...)

Partial Order Reduction

Let P = ⟨Q, q0,T ⟩ be a finite state program (FSP) where:

Q is a finite set of states, q0 ∈ Q is the start state
T is a finite set of operations

also called actions or transitions
each action t ∈ T is a partial function t : Q → Q ∪ {⊥}
i.e., executing t from a state q generates a new state
q′ = t(q)
we also define, for each action t ∈ T , the set
ent = {q ∈ Q | t(q) ̸=⊥}
furthermore, the function en : Q → 2T returns all actions
enabled in a state q, i.e., en(q) = {t ∈ T | q ∈ ent}

paths are sequences π = r0α0r1 . . .

notation: π(q)(i) = ri , π
(a)(i) = αi

of course, ri+1 = αi (ri), αi+1 ∈ en(ri)

Partial Order Reduction

From an FSP P = ⟨Q, I ,T ⟩ it is easy to generate a KS
S = ⟨S , J,R, L⟩

Q = S , J = I
(s, s ′) ∈ R iff ∃t ∈ en(s) : s ′ = t(s)
L may be defined as needed

Note that actions are deterministic, but the resulting KS may
be non-deterministic

there may exists t, t ′ ∈ T , q ∈ S s.t. t ̸= t ′, q ∈ ent ∩ ent′ and
t(q) ̸= t ′(q)

It is easy to see that a Promela model is close to an FSP:
each action is a statement

thus, an action is identified by a PID and a statement inside
that PID
of course, states are defined as above from Promela to KSs
possible ⊥: if the process is not at the correct PC...
less straightforward: if t is not executable

Partial Order Reduction: FSP vs Promela

Actually, we may see that, given an action t, we have that
q ∈ ent iff the following holds

let i inside process p be the Promela statement corresponding
to t
must be a single statement, thus dos are replaced by ifs with
gotos
if nondeterminism is present, i is one of the nondeterministic
options
if more processes of the same proctype are present, t is related
to one of these processes
thus T is defined so as to consider the possible maximum
number of processes for each proctype
then, q must be such that PC of p corresponds to i and i is
executable

Partial Order Reduction

Given an FSP P = ⟨Q, I ,T ⟩, an ample selector is a function
amp : Q → 2T s.t. amp(q) ⊆ en(q)

for a given q ∈ Q, amp(q) is an ample set

An ample selector defines a new KS S ′ = ⟨S , I ,R ′, L⟩, where
(s, s ′) ∈ R ′ iff ∃t ∈ amp(s) : s ′ = t(s)

of course, R ′ ⊆ R
from a DFS point of view, we normally expand actions in
en(q); instead, here we expand only amp(q)

We want to choose a POR-sound amp

S |= φ iff S ′ |= φ
we start by considering only invariants (assertions) as φ

We want to compute amp(q) (almost) only looking at current
state q

must be simple, i.e., with little overhead
no need to be optimal

Partial Order Reduction: Independent Actions

Two actions α, β ∈ T are independent iff
∀q ∈ enα∩enβ. α(q) ∈ enβ∧β(q) ∈ enα∧α(β(q)) = β(α(q))

i.e., α, β can be executed in any order, obtaining the same
result
otherwise, α, β are dependent, which means that ∃q ∈
enα ∩ enβ : (α(q) ∈ enβ ∧ β(q) ∈ enα) → α(β(q)) ̸= β(α(q))
in this case, it is both α dependent on β and viceversa
example 1: two actions modifying local variables only are
always independent
example 2: two actions modifying the same global variable are
nearly always dependent

unless α = β, or the new value is however the same

Partial Order Reduction: Invisible Actions

An action α is invisible w.r.t. a labeling L : Q → 2AP iff
∀q ∈ enα. L(q) = L(α(q))

Partial Order Reduction: Conditions for amp

Recall:

we are performing a DFS of the KS generated by an FSP
we have a current state q
we want to decide if we can consider amp(q) ⊂ en(q) instead
of en(q)

The first 2 conditions only look at q and its actions
∀q ∈ Q. en(q) ̸= ∅ → amp(q) ̸= ∅

otherwise, we have introduced a deadlock...

∀q ∈ Q. amp(q) ⊂ en(q) → (∀α ∈ amp(q). α is invisible)

if we cut some actions, then this must not affect the labeling
this also means that only invisible actions can be cut

Partial Order Reduction: Conditions for amp

The remaining conditions also consider paths starting from q

∀q ∈ Q, ∀π ∈ Path(P, q). (∃i > 0, α ∈ amp(q) : π(a)(i), α
are dependent) → ∃j < i : π(a)(j) ∈ amp(q)

if this is true, then either:
there exists an α ∈ amp(q) which is the first from amp(q) in
π

then, α is independent on all previous actions on π, and can
be executed first

otherwise, there exists an α ∈ amp(q) which is independent on
all other actions in π

again, such α can be executed first

Partial Order Reduction: Conditions for amp

Example till now: α1, β1 and α2, β2 are independent

Partial Order Reduction: Conditions for amp

Essentially, POR defers execution of some actions

not executing an action at all means that a meaningful portion
of the state space is omitted

With these 3 conditions only, it may happen that an action is
never expanded, due to cycles

in the example below, β is independent on both α1, α2

Partial Order Reduction: Conditions for amp

The remaining condition rules out the problem with cycles

Consider a DFS on the reduced KS, and suppose an expanded
state q is detected as already visited

We also check if it is on the DFS stack; this implies:

there is a cycle
some part of the q sub-tree has not be explored

Then, amp(q) = en(q)

i.e., q must be fully expanded

Partial Order Reduction with LTL Formulas

It seemed that POR with ample set was ok for any
stutter-invariant LTL formula

recall that a formula φ may be viewed as the set (language) of
words L(φ) in AP∗ which are recognized by φ
φ is stutter-invariant iff, for any sequence of integers ij ∈ N
and w = p0p1 . . . ∈ L(φ), pi00 p

i1
1 . . . ∈ L(φ)

essentially, by repeating any character in the word for any
number of times you still obtain a word in the language
if φ does not contain X, then it is stutter-invariant
viceversa does not hold

However an error was discovered (and corrected) in 2019

