Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

o Murphi stands for nothing, though it is probable that it
reminds Murphi's Laws

o "if something may fail, it will fail", i.e., EFp — AFp
o SPIN stands for Simple Promela INterpreter
o Promela is the SPIN input language

o Murphi input language does not have a proper name
o Promela stands for PROcess MEta LAnguage

o as we will see, it is actually based on Operating Systems-like
processes

o Also see slides at
https://spinroot.com/spin/Doc/SpinTutorial.pdf

o some of such slides are reused here o
B) B 2

https://spinroot.com/spin/Doc/SpinTutorial.pdf

o We recall that Murphi input language is based on:
o global variables with finite types
o base types are integer subranges and enumerations
o higher types are arrays and structures
o function and procedures
o guarded rules and starting states (dynamics)
o may call functions and procedures, in an atomic way

o Pascal-like syntax: := for assignments, = for equality checks...
o invariants

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Promela instead has:

o global variables with finite types
o base types are integer types of the C language
o enumerations are very limited
o arrays and records
o channels!

o processes behaviour (dynamics)
o possibly with arguments and local variables

o properties to be checked:

o assertions

o deadlocks

o ‘“neverclaim” describing a BA

o a separate tool may translate an LTL formula in the

corresponding BA e
| | uxiversiTA Dism
\ / DEGLI STUDI ienze delln
\ % IR .@ ;

Variables and Types @)

Basic types
+ Five different (integer) bit turn=1; [0..1]
basic types. bool flag; [0.1]
byte counter; [0..255]
* Arrays short s; [-216-1.. 216 —1]
int msg; [-232-1.. 232 1]

* Records (structs) A
rrays —em

. arra
» Type conflicts are detected byte a[27]; mdic;xg
at runtime. RhE el start at 0
+ Defaultinitial value of basic 1YPedef(records) (
. ede. ecor:
variables (local and global) yzhort £1;
is 0. 2 DyLERE2Y variable
R g declaration
rr.fl = ..
Thursday 11-Apr- - i ! i &)
y pr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 20 \'Y IS
University of Twente ence dettn

&

©

©

Mainly C-like syntax: = for assignments, == for equality
checks...

o with some exceptions: if, while, message exchange
No start states: there is only one starting state

o an “empty” state, we will see how it is defined

Thus, if you need multiple starting states, you will have to
explicitly model this in Promela

o having the “empty” state non-deterministically going in the
desired starting states

Assertions are conceptually the same as invariants

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Dynamics in Promela is defined through processes
o You may define many different codes for your processes:
proctype
o You may instantiate many times each proctype
o each instantiation of a proctype is a process

o Each process is either active from the starting state, or it is
explictly started by some other process

o an active process may be either running or blocked, as we will
see

o Though Promela proctypes may seem procedures, they are
not!

o running a process is not like calling a function

o it is rather like forking a new process, which fecutes the
given code concurrently with the “calling” % BT “”

boolean flag [2];
int turn;
veid PO() Peterson’s Algorithm
while (true) {
flag [0] = true;
turn = 1;
while (flag [1] && turn == 1) /* do nothing */;
/* critical section */;
flag [0] = false;
/* remainder */;

void P1()

while (true) {
flag [1] = true;
turn = 0;
while (flag [0] && turn == 0) /* do nothing */;
/* critical section */;
flag [1] = false;
/* remainder */
}
void main()
{
flag [0] = false;

flag [1] = false;
parbegin (PO, P1);

DISIM

bool turn, flag([2];
byte ncrit;

active [2] proctype user ()
{

assert(_pid == 0 || _pid == 1)
again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid]l == 0 || turn == 1 - _pid);
ncrit++;

assert (ncrit == 1); /* critical section */
ncrit--;

flag[_pid] = 0;

goto again e
| | onrversir oo
} BB Bl e

o In this case, the starting state has:

o two running processes, both ready to execute their first
statement (i.e., the assert)
o turn, flag, ncrit are all set to zero

o both entries for flag
o A special local variable _pid is available for all processes
o similar to Operating Systems PID
o if there are n active processes, each will have _pid ranging
from0Oton—1
o read-only

o The often-deprecated goto statement is heavily used in
Promela models

o the same holds for the break statement

o C-like labels also may have special meaning%‘\m.m\ m
(. gf it e

o In the Peterson model above, there does not seem to be any
non-determinism
o Instead, in each state there are two possible successors
o one obtained executing the (current statement in) the first
process
o the other one obtained executing the second process
o Generally speaking, if in a state there are n active processes,
then there are n successors
o actually, they may be less, because of blocked statements
o or more, because of the other source of non-determinism
o SPIN checks that properties hold for all possible interleavings
between processes
o using OS-like parlance, the model must be correct regardless.of
the scheduler 1¥J BT

\ DELL'AQUILA

o In Murphi, non-determinism is given by the fact that multiple
rules may be fired

o i.e., their guard is true in the same state

o In SPIN, for now, non-determinism is given by the fact that
multiple processes may execute their next statement
o Statements interleaving is not possible in Murphi
o statements are in rules (or startstates) bodies
o possibly enclosed in functions/procedures
o if two rules are fired together, first execute all statements in
one body, so as to obtain one successor state...
o ... then execute all statements in the other body, so as to
obtain another successor state
o it may be also the case that the two successor states turn out

to be equal j% —_— m
B B =

©

()

()

Proctypes are sequences of statements
Statements may be either blocked or executable
o again, it resembles OS blocking primitives, such as those on

semaphores or on message exchange
If a statement is blocked, then the corresponding process
cannot be selected for execution
For each type of statement, we will say when it is blocked and
when it is executable

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o The following statements are always executable: assignments,
goto, break, skip, assert, printf

(*]
~]
*]
o

return does not exist

break must be inside a cycle

skip does “nothing”, useful in some cases

assert takes an expression e as argument: if e is false, the
verification is aborted and the error is reported

printf is only used in debugging the model itself (simulation
mode)

o Expressions may be used as statements

o in Peterson protocol:
(flagll - _pid] == 0 || turn == 1 - _pid);
o An expression e used as a statement is executable iff e is
evaluated to true in the current state
e is always of some integer type
o as usual in C, e is false if e =0, and true otherwise
o boolean is a particular type of integer with 0, 1 as only
available values
o boolean connectors are the same as in C and Java (&&, | |)
o in OS parlance, we are implementing busy waiting
o e is equivalent to while (e == 0) {/* do nothing */}

©

o Once it becomes executable and it is actually executed, SPIN

simply goes to the next statement %
. g e

bool turn, flag([2];
byte ncrit;

active [2] proctype user ()
{

assert(_pid == 0 || _pid == 1)
again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid]l == 0 || turn == 1 - _pid);
ncrit++;

assert (ncrit == 1); /* critical section */
ncrit--;

flag[_pid] = 0;

goto again e
| | onrversir oo
} BB Bl e

o The run statement may be used to create a new process
o there is a limit to the number of active processes N
o run is executable iff the number of currently active processes
is less than N
o Other ways to have processes:
o declare a proctype as active [n]
o active since the start state
o n is the number of instances to be run, may be skipped if
n=1
o if proctype has arguments, initialized to 0
o name a proctype as init

o again, active since the start state

o There must be either active proctypes or the init proctype in

every Promela model %
O/ bR e

Processes (3)

= Process are created using
the run statement (which
returns the process id). }

proctype Foo (byte x) {

= Processes can be created
at any point in the execution init {

(within any process). iy ?id";;)r‘"‘ ECOl2)p
run 00 ;

= Processes start executing }

after the run statement. R"“mber [, (5
= Processes can also be active[3] proctype Bar () {

created by adding active

in front of the proctype parameters will be

declaration. initialised to 0

P2
U=

QV“: inners' i)
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 18 \J oIS
University of Twente ence dettn
4

bool turn, flag([2];
byte ncrit;

active [2] proctype user ()
{

assert(_pid == 0 || _pid == 1)
again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid]l == 0 || turn == 1 - _pid);
ncrit++;

assert (ncrit == 1); /* critical section */
ncrit--;

flag[_pid] = 0;

goto again e
| | onrversir oo
} BB Bl e

bool turn, flagl([2];
byte ncrit;

proctype user ()

{

/¥ ... as before */
}

init {
run user () ;
run user ();

}

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

o Each single statement is atomic

o

o ltis
S1, -

other processes must wait for an executable single statement
completion

this differs from OS-like processes: if n is shared and n++ is
executed, race conditions may arise

because n++ must be viewed as a sequence of assembly
statements

not in Promela

sometimes desirable to declare a sequence of statements

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

.., Sp as atomic: atomic {si,...,Sp}

bool turn, flagl([2];
byte ncrit;

proctype user ()

{

/* ... as before */
}

init {
atomicq
run user () ;
run user () ;

}

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

o An atomic block like atomic {si,...,s,} may be executable
or blocked as well

o The rule is simple: atomic {si,...,s,} is executable iff s; is
executable

o What happens if s; is blocked for some i > 17

o The process loses the atomicity, it becomes blocked and other
active processes will have to be executed

o This is the only case in which a statement is initially
executable and then becomes blocked

o When s; is executable again, and the “scheduler” selects the
process, the rest of the atomic section is executed atomically
again

o unless a new s; is blocked with j > ... %‘ PryFRY m ‘

o Another way of specifying atomic blocks is d_step
{s1,...,sn}
o Again, executable iff s; is executable, but:

o it is a (runtime) error if s; is blocked with i > 1
o each s; must be deterministic
o all statements seen till now are deterministic, we will see
non-deterministic ones later
o Thanks to these restrictions, d_step is more efficient than
atomic

o intermediate states need not to be generated, as they cannot

block and then resume
\ Beci sTunt 2

proctype P1() { tla; tlb; tlc } HPS
proctype P2() { t2a; t2b; t2c } NO GTOmIClTy

init { run P1(); run P2() }

Not completely correct as each
process has an implicit end-transition...

Y
Q“,’s Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 49 {y

University of Twente

DISIM

proctype P1() { atomic {tla; tlb; tlc} } .
proctype P2() { t2a; t2b; c } GTOm|C
init { run P1(); run P2() }

It is as if P1 has only one transition...

If one of P1's transitions
blocks, these transitions
may get executed

(02

@)
)
» (2 %)
G

)
%) Although atomic clauses cannot

@ be interleaved, the intermediate
states are still constructed.

University of Twente

N - &
P Thursdoy 11-apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 50 &

DISIM

o The timeout statement may be used to avoid deadlocks

o that is, states where all processes only have blocked
statements to be executed next

o In fact, timeout is an expression

o it becomes true (and thus, as a statement, executable) iff we
are in a deadlock, in the sense described above

o Used as an escape in some cases

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o The if statement has a somewhat surprising syntax
if
e —> S11;--- 1 S1m

€m ~> Smi;- - Smnp,
fi
o inspired by Dijkstra guarded command language
o it is executable if there exists / s.t. e; is executable
o typically e are expressions, thus when some ¢; is true

o as a special expression, else is true (executable) iff all e; are
false (blocked)

o thus, an if with an else is always executable
o if all ¢ are blocked, then the if statement is blocked

o note that this is very different from “normak’
languages ifs...

_imperative
UNIVERSITA

| DEGLI STUDI
DELL'AQUILA

; may be used instead of ->, which is actually

©

syntactic sug

o The semantics of the if statement is the following
if

€1 —> Si1;---;51m

1 €m ~> Smli---; Smnm

fi

o let I = {i| e is true in the current state}

o then there are |/| successor states, each ready to execute s; for
jel

o thus, this is the other source of non-determinism

o The while statement does not exist in Promela

o Instead, we have

do

od

€1 —> Si1;.--;S51m

€m ~> Smi;--- Smnp,

as for the if, it is executable if there exists i s.t. ¢ is
executable

o if all ¢; are blocked, then the do statement is blocked
o of course, if is executed only once, while do is executed

forever
more precisely: once, for some i, sj1;...; S, is executed, the

whole do is evaluated again
. . UNIVERSITA D\SM
o to exit from a do, a break is necessary % BELAQUILA .
es

o or some other escape, such as goto or unl

see Iater

o There are two sources of non-determinism in Promela:

o inter-process, as a process may non-deterministically be chosen
among all the currently active non-blocked processes

o a non-blocked process is a process which current statement is
executable

o intra-process: using if or do
o In fact, if E = {ej,..., e | &; is executable} is such that
|E| > 1, there will non-deterministically be |E| successors

o of course, for the current process only
o other processes may have a current if or do as well

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

if-statement (2)

b
if
(n %2 !'=0) ->
(n >= 0) ->
(n $ 3 ==0) ->
: else ->

£fi

give n a random value
if

:: skip -> n=0
skip -> n=1
skip -> n=2
: skip -> n=3

éi_

n=1 * The else guard becomes
n=g'2 executable if none of the
n=

skip

other guards is executable.

non-deterministic branching

skips are redundant, because assignments

P2
&vs: Thursday 11-Apr-2002

are themselves always executable...

Theo C. Ruys - SPIN Beginners' Tutorial

13 &

University of Twente

SITA

upI
ILA

DISIM

unless
{ <stats> } unless { guard; <stats> }

— Statements in <stats> are executed until the first
statement (guard) in the escape sequence becomes
executable.

— resembles exception handling in languages like Java
— Example:

proctype MicroProcessor() {

{

/* execute normal instructions */

}

unless { port ? INTERRUPT; ... }
}

Thursday 11-Apr-2002

Theo C. Ruys - SPIN Beginners' Tutorial

57(‘)‘

University of Twente

DISIM

macros - cpp preprocessor

Promela uses cpp, the C preprocessor to preprocess

Promela models. This is useful to define:

— constants
#define MAX 4

All cpp commands start with a hash:

#define, #ifdef, #include, etc.

— macros
#define RESET ARRAY (a) \

d_step { a[0]=0; a[1]=0; a[2]=0; a[3]=0; }

— conditional Promela model fragments
#define LOSSY 1

#ifdef LOSSY

active proctype Daemon() { /* steal messages */ }

#endif

Thursday 11-Apr-2002

Theo C. Ruys - SPIN Beginners' Tutorial

5 &

Univarsity of Twente

DISIM

inline - poor man's procedures

» Promela also has its own macro-expansion feature using
the inline-construct.

inline init array(a) {

d step {
Ti=0; — Should be declared somewhere

do else (probably as a local variable).
i<N -> a[i] = 0; i++
else -> break
od;
i=0;
} T Besure to reset temporary variables.
}

— error messages are more useful than when using #define
— cannot be used as expression
- all variables should be declared somewhere else

58 . . . %)
e Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 59 {%

University of Twente

DISIM

o Two processes may communicate using shared memory

o that is, using global variables
o one writes and the other reads

o If synchronization is required, busy waiting must be used
o that is, read only after writing

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

byte x;

active

{

if

What if | want y

byte y;

[2] proctype

-> X
-> y

x to happen only after x

byte x;

bit b = 0;

active [2] proctype user ()

{
byte y;
if
:: _pid == 0 -> atomic{b = 1; x = 1}
:: _pid == 1 -> atomic{b == 1; y = x;}
fi;

}

o Fortunately, Promela offers a simple way to handle
communication: FIFO channels

o similar to OS message exchange via mailbox
o To declare a channel, the chan data type can be used
o the modeler must specify both the size of the channel and the
type of the messages to be exchanged
o Messages may be tuples
o their types must be enclosed in brackets

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Communication (2

« Communication between processes is via channels:
— message passing
— rendez-vous synchronisation (handshake)

~ also called:
» Both are defined as channels: queue or buffer
chan <name> = [<dim>] of {<t;>,<ty>, .. <t >};
-/ -
name of type of the elements that will be
the channel transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

chan ¢ = [1] of {bit};
chan toR = [2] of {mtype, bit};

: - . _— array of
chan line[2] = [1] of {mtype, Record}; channels

& . X ' @)
P Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37 %y

University of Twente

DISIM

o To send a message in a channel:
channel!valuel,...valuen
o executable iff channel has size m > 0 and contains at most
m — 1 messages
o each message has n components
o To receive a message in a channel: channel?x1,...,xn
o if all x/ are variables, the first still undelivered message in
channel is stored in each xi, breaking down the tuple
o executable iff the channel is not empty
o if all x/ are constant values, the first still undelivered message
in channel is compared to the values %/, breaking down the
tuple
o executable iff the first message in the channel matches the
given values
o in this case, the message is removed from t ‘a\[o
o variables and constants may be mixed

UIII AOUIA

o It is sometimes desirable to also have blocking send
o that is, if there is not some other process receiving on the
channel, the send must block

o reading is always blocking, if there is not something to be
received

©

This may be achieved using rendez-vous channel
o Defined using 0 as the channel size

o Both the sending and the reading process will block, till when
some other process perform the dual operation

©

Then, both of them go on to the following statement

o only case in which two separate statement of two different
process are executed at the same time .

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

#define p 0
#define v 1
chan sema = [0] of { bit }; /* rendez-vous */

proctype dijkstra()
{ byte count = 1; /* local wariable */
do
(count == 1) -> semal!p; count = 0
/* send 0 and blocks, unless some other
proc ts already blocked in reception */
(count == 0) -> sema?v; count = 1
/* receive 1, same as above */
od

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

proctype user ()

{ do
sema?p;
/* critical section */
semalv;
/* mon-critical section */
od
}
init

{ run dijkstra();
run user (); run user(); run user ()

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

}

https:
//en.wikipedia.org/wiki/Alternating bit_protocol

©

Data link layer protocol, used in the first Internet

©

Process A wants to send a multi-part message to process B

o order of message parts are important, so first trunk first, then
second...

©

A sends current part together a bit b, and waits for B answer

If B sends back ACKb, A proceed with the next part with
flipped bit 1 — b

Otherwise, send the current part again, with the same b

©

©

©

Try to simulate the Promela model with the graphical SPIN

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

https://en.wikipedia.org/wiki/Alternating_bit_protocol
https://en.wikipedia.org/wiki/Alternating_bit_protocol

DEMO

Alternating Bit Protocol ()

mt; {MSG, ACK]} channel
vee -~ length of 2

f {mtype, bit};

of {mtype, bit};

chan toS ='[2]l
=\

chan toR \[.2.]’
proctype Sender(chan in, out)
{

bit sendbit, recvbit;

do

:: out ! MSG, sendbit ->

in ? ACK, recvbit;

proctype Receiver (chan in

bit recvbit;
do
:: in ? MSG(recvbit) ->
out ! ACK(recvbit);
od
}

init
{
run Sender (toS, toR);

, out)

)

if run Receiver (toR, toS);
: recvbit == sendbit -> }

sendbit = 1-sendbit . .
:: else Alternative notation:
£i ch ! MSG(parl, .)

od ch ? MSG(parl,

}
&?P‘s: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial

O]

University of Twente

DISIM

o Each statement may have a label (e.g. again in Peterson’s
protocol)

o If the label begins with “end”, then it is a valid end-state

o An end-state is valid if it has an “end” label or if it consists of
the closing bracket } of a process

o Any other state from which it is not possible to execute a
transition triggers a verification error, claiming a deadlock has
been found

o If the label begins with “accept”, then it is an accepting state

o typically inside some neverclaim representing a BA of some

LTL formula .
\ BEGLISTUR! ;

o We define the Kripke structure S = (S, I, R, L) corresponding
to a given Promela model

o S=D;x...x D, x]I ({1,...,5,}" x T, f’le,-j)

o there are n flattened global variables, including channels
(arrays of structures...)

o there can be a maximum k active processes

o proctype / has at most s; statements and ¢, flattened local
variables

o program counters must be stored for each running process, so
as to single out the exact statement to be executed in each
process

o if a Dj corresponds to short or int, then it has 2! or 22
values on a typical 64-bit architecture, as it is in C

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

o This state space is dynamic, as it contains the currently active

processes
o new processes may be added at any time by a run statement

o thus, to define the state space in advance, you need to bound
the maximum number of active processes

o Thus, state space grows: as new processes run and new local
variables are reached
o ... and shrinks: as some process terminate

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o | = {sp} where sy contains only processes defined as active
and all global variables are zero
o all program counters are at the beginning, local variables still
does not exist

o Intuitively, R(s,s’) holds iff there is a running process p in s
and an executable statement t at the current program counter
of p s.t. t, when executed, leads from s to s’

o if t is the beginning of an atomic sequence, then the whole
atomic sequence must be executed

till the first blocking statement of the sequence

if tis a send on a rendez-vous channel ¢, and there is another

current statement t’ in another process p’ s.t. t’ is a receive on

¢, both t and t’ have to be executed when leading from s to s’

o L is similar to Murphi, i.e., equations between {global and

. | ‘ UNIVERSITA DISIM

local) variables and values; however, also pro :lmlunte
must be considered b

©

©

Almost equal to Murphi one

void Make_a_run(NFSS N)
{
let N =(S,{sp},Post);

s_curr = Sy;

if (some assertion fail in s_curr))
return with error message;
while (1) { /* loop forever */
if (Post(s_curr)=9)
return with deadlock message;
s_next = pick_a_state (Post(s_curr));
if (some assertion fail in s_curr))
return with error message;
s_curr = s_next;

}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Able to answer to the following questions:
o is there a deadlock (invalid end state)?
o are there reachable assertions which fail (safety)?
o is a given LTL formula (safety or liveness) ok in the current
system?
o is a given neverclaim (safety or liveness) ok in the current
system?
o It is possible to specify some side behaviours:
o is sending to a full channel blocking, or the message is dropped
without blocking?
o It may report unreachable code
o Promela statements in the model which are never executed

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Similar to Murphi:

Q the SPIN compiler (SrcXXX/spin -a) is invoked on
model .prm and outputs 5 files:

o pan.c, pan.h, pan.m, pan.b, pan.t (unless there are errors...)
Q the 5 files given above are compiled with a C compiler

o it is sufficient to compile pan.c, which includes all other files
o in this way, an executable file model is obtained

O just execute model
o option --help gives an overview of all possible options

o The former is ok for assertion or deadlock checks

o If you also have an LTL formula
Q the SPIN compiler (SrcXXX/spin -F) is invoked on
model.1ltl and outputs a neverclaim on the standard output
o model.ltl must be a text file with only 1 line
file extensions does not matter
syntax for the formula: Gis [], Fis <>, U isU
atomic propositions must be identifiers

© 0 o

O append the neverclaim to the promela file

Q define the identifiers used as atomic proposition by #defines
in the promela file

@ go on as before

o If you use the graphical GUI, it is much easier: such steps are

automatically performed W)=
.. 4 =

o pan. [ch] is the fixed part of the verifier, it implements a
DFS (also BFS starting from some later version, but less
efficient), it also includes the other files

0 pan.t creates a table with an entry for each statement in the
source Promela model

o for each statement, the corresponding values to execute the
forward and backward in pan. [bm] are stored
o this is needed for simulations and counterexamples

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o pan.m is the part of the verifier which depends on the
Promela model: it contains a C switch statement
implementing the transition relation

o very similar to Murphi Code implementing a rule body

o the current state is saved in a memory buffer called now which
is very similar to the Murphi's workingstate

o given the current state, given a running process index i and
the program counter p inside that process, it performs on now
the modifications demanded by the Promela statement at line
i of process p, so obtaining the next state

o actually, a second index j is needed in the case the current
statement is non-deterministic

O pan

[+]

.b: the same of pan.m, but backwards!

pan.m does not surprise and it is not conceptually difficult to
understand and implement

implementing the same backwards is not straightforward, but
SPIN does it!

essentially, all Promela instruction may be reversed, and the
code to reverse them is in pan.b

PAN maintains old values for all variables in the state (i.e.,
values are saved before overwriting due to new assignments)
thanks to the fact that the visit is a DFS (SPIN is optimized
for DFS), each time an action overwriting a variable is undone,
we need the /ast value, thus a stack for each variable is used

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o On-the-fly exploration: as in Murphi, the RAM contains only
the part of the graph which has been explored till now

o only the states, no transitions between them

o Hash table for the visited states
o Murphi uses open addressing, here the hash table is handled
with collision lists
o in order to speed up visited states check, such lists are ordered
(i.e., each new state is inserted in order)
o lterative DFS (recursive one is inefficient)

o with gotos and global variables!
o DFS stack is explicitly handled in a lighter and more efficient

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

HashTable Visited = @;

DFS(graph G =(V,E), node v)

{
Visited := Visited U v;
foreach v eV t.c. (v,v)eE {
if (v ¢ Visited)
DFS(G, v');
}
¥

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

DFS(graph G = (V,E))

{
s := init;
push(s, 1);
while (stack # @) {
(s, 1) := top(Q);

increment i on the top of the stack;
if (s ¢ Visited) {
Visited := Visited U s;
let S'={s"|(s,s') € E};
if (S >= i) {
s := i-th element in S§’;
push(s, 1);
}
else pop();

} Y I @
\ | BECEAGUIL oSt o
else pop(); 2 o

T}

DFS (graph G = (V,E))

{
§ := init; i := 1; depth := 0;
push(s, 1);
Down:
if (s € Visited)
goto Up;
Visited := Visited U s;

let §'={s'|(s,s') € E};
if (IS >= 1) {
s := i-th element in §’;
increment i1 on the top of the stack;
push(s, 1);
depth := depth + 1;

goto Down; o
|) uxaversrra —
} \ f BEcHSIE! o

Up:
(s, i) := pop();
depth := depth - 1;
if (depth > 0)
goto Down;

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

DFS (NFSS N)

{
let N =(S,/,Post);
now := init; depth := O0;
Down:
if (now € Visited)
goto Up;
Visited := Visited U now;

foreach p s.t. p is a running process in now {
foreach opt s.t. opt is enabled at p.pc {
now := apply(now, p, opt);
/* no need of incrementing opt on the top of the
stack: when popping, it will be done by the
foreach on opt... */
push(p, opt);

depth = depth + 1 5 >¥\ UNIVERSITA usm o
goto Down; Z ‘

Up:

(p, opt) := pop();
depth := depth - 1;
now := undo(now, p, opt);
P}
if (depth > 0)
goto Down;

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o The stack does not store states

o Instead, each stack entry stores a pair (p, o) of indices
(integers)

o pis a process pid

o o identifies a statement at the current program counter of p

o (recall that there may be non-determinism inside each
process...)

o so it is 8 bytes, whilst the current state may easily require
some kB

o We now detail the rational behind this choice

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o There is just one initial state

o Let (po, 00) be the first (from the bottom) pair on the stack;
it univocally identifies a statement istry to be executed

o By applying istry to sy we obtain a state s; (formally,
s1 =apply(so, po, 00))

o Analoguously, s, =apply(s1, p1,01) if {p1,01) is the second
pair on the stack

o Thus, a stack ((po, 00),- -, {Pd,0q)) univocally identifies a
state sy, obtained by chaining the executions due to pairs
{pi, 0i)

o Formally, V1 < i < d s; =apply(sj_1, pi-1, o;%

| UNIVERSITA DISIM
| DEGLISTUDI unes s
DELL'AQUILA]

o Moreover, SPIN is able to define the undo function, with the
same parameters of the apply function

o

[+]

of course, apply is defined in pan.m, undo in pan.b

undo needs a stack of values for each variable, as explained
above

however, it tries to minimise such stacks usage; e.g., ifa c =
c + 2 statement must be undone, then it is sufficient to
executec = c - 2

for direct assigments (e.g., ¢ = 4), the apply function puts the
preceding values of v in the stack of v before overwriting it
with 4

undo will pop the value from the stack of v and put it back in
v

this works because the whole visit is a DFS 2~ !
% e, Bt
\ DELL'AQUILA o

o Finally, recall we have a global fixed structure now
implementing the current state
o same as Murphi's workingstate

o Summing up, given what we said:

o no need of pushing a whole state s in the DFS stack: SPIN
pushes the pair (p, o) which generates s if applied to the
current state

o no need of popping a state s: SPIN pops the pair (p, 0) which
generates s if undone on the current state

o ch13.pdf adds some more details

o Atomic sequences handling:

o if we are inside an atomic sequence, SPIN must take care that
only the current process can execute

o this is done by setting From = To = II (line 44), which forces
the for loop in line 24 to oly select the current process

o normal behaviour is reprised at line 46

o a state may be searched and possibly inserted in the hash table
(line 13) only if we are not in an atomic sequence

o ch13.pdf adds some more details

o timeout handling:

o it is a Promela boolean expression, which is true iff the whole
system deadlocks (all processes must execute non-executable
statements)

o thus, when the double for at lines 24 and 28 is finished
without any statement being executable (thus, n is still 0) and
this is not a valid end state, PAN tries to perform the whole
computation again with timeout set to 1

o linea 46 reprises the normal non-timeout behaviour

o ch13.pdf adds some more details

o Apply ed undo are implemented in pan.m (included at line 30)
and pan.b (line 54)

o if a statement cannot be executed, pan.m performs a C
continue statement, which forces for in line 28 to go on with
next iteration

o otherwise, a goto P999 is executed

o instead, pan.b executes goto R999

o Finally, recall that, for LTL verification, a nested DFS is used

o PAN has the same bit compression (called byte masking) and
hash compaction techniques we described for Murphi

o to enable hash compaction, compile pan.c with -DHC
o byte masking is always enabled, compile with ~-DNOCOMP to
disable it

o simply align to bytes instead of 4-bytes words
o also bitstate hashing, a precursor of hash compaction
o stack cycling, i.e., efficiently use disk for DFS stack
o Other interesting techniques: collapse compression, minimized
automaton (may be combined), partial order reduction

o First two techniques try to use less memory to represent the
set of visited states so far

o same goal of hash compaction et similia

o Last technique directly prunes the state spaceggjgz
o same goal of symmetry reduction in Murphi“% SR o

o Less effective than hash compaction, but exhaustive as bit
compression

o to enable it, compile pan.c with -DCOLLAPSE

o Recall the main components of a Promela model: N
processes, global variables, channels
o The idea is to store in the hashtable N + 2 state fragments,
instead of a single state
o this is the default, but you can put all processes together
(-DJDINPROCS)
o or separate channels with DSEPQS
o A further special “order fragment” is used to say which is the
first fragment, the second, ... till the (N + 2) th fragment

‘ UNIVERSITA DISIM
| DEG] I Sp—

o Thus, to decide if the current state is visited, first split it as
described above

o If at least one fragment is not in the hashtable, the state is
new

o of course, the missing fragment(s) must be placed inside the
hash table
o for each of them, a unique identifier is generated and stored
together with the fragment
o the unique identifier is an integer with value /, if this is the
i-th fragment to be generated
o of course, only considering the current fragment typology...

o the special order fragment contains the sequence of such
identifiers

o Otherwise, also the order fragment must be checked
o if it is found, then the state is already visited
o otherwise, insert the new fragment order and return the state
as not visited
o Very good if there are many combinations of a few state
fragments

o the order fragment is much shorter than fragments
concatenation

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Explicit model checking, borrowing ideas from symbolic model
checking

o We still have the DFS as above, but as for visited states check
there is not any hash table!

o It is replaced by a “minimized automaton” representing the
visited states
o here, a minimized automaton is essentially similar to those
recognizing regular expressions
o but they are limited: no cycles (it is a DAG), as there is a

maximum length to the words
B) B 2

o Finite State Automaton (FSA) for regular expressions:
‘F: <Q7Z7(57q0>F>
Q is the finite set of states
being go € Q the initial state and F C Q the final states
Y is the alphabet (input symbols) of the regular expression
0 C @ x X x Q is the transition relation
o A word w € L* is recognized if, starting from qo, it ends up in
a final state in F
o W=o01...0n, {Qo,...,qn) is such that (gi_1, w;, g;) € § for
1<i<n
o w is recognized iff g, € F

© © © o

o L(F) is the set of recognized words

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o A minimized automaton F is a special case of a FSA where:
¥ ={0,1}8 (input symbols are bytes)
[F[=1
0 is deterministic, thus 6 : @ X ¥ — Q
L(F) is the set of bit sequences representing visited states,
which implies |£(F)| < o0
as a consequence, there are no cycles induced by ¢ (it is a
DAG)

o ‘“diamonds”, i.e., circuits, are still possible

o the original definition of minimized automaton also has layers

of states
o s.t. § goes from a state in level i to i+ 1

o PAN incrementally constructs F for each unvisited state

o keeping it minimal w.r.t. the number of states_
o several heuristics are also used, not coveredl%

© © 0 o

©

| UNIVERSITA DISIM
| DEGLI STUDI pormerto i
\ DELL'AQUILA !

o Suppose you have a k-bytes state vector, and that the visited
states are exactly those having 8 zeros in the last byte

o thus, a visited state is represented by [0, 1]3(x=1)0
o Using an hash table, we have to store 2k=1 states
o Instead, using the minimized automaton:

k—1 times

C:\Olj—OL’ « oo LH/D

o As usual in Model Checking: impossible to a priori state that
a given KS will be “well” represented by a minimized
automaton, or collapse compression, or whatever

o all such techniques may be seen as “heuristics” in some sense
o For the minimized automaton, some ‘“regularity” is needed
inside the bit representation of the set of visited state

o Also note that sometimes adding a state may improve
regularity, making the minimized automaton smaller

o and of course, in some other cases, adding a state may
decrease regularity and make the automaton bigger

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

(Y .
c g sr!d pel c g m.lt
[1 1 |[pc:2 b:0 [1 0 |pcl
/
/
/
/
/
/
¢ 9
[1]] 1

c g init | snd '?/3
£ 111| 1 |pc3|pc:3 F;)'l

\ | DEGLISTUDI > Diarinioind

\ | BEGLTSTUDI S

P

init
2 pc: 3

snd P

pc: 3

i

SLTSTUD

\ | D Bgarimioa
\E DELLAQUILA w ek

‘ 0x01 01 12 210 ‘

~ —, 0x00 — o~ all

oxor” -
\ 0x00 ™ Ox21 r\yoo /
Y, \ Y, ‘;) /]
A 0x13 — 0x23 — 0%00
(F—»{)—»(VY
_/ _/

~, 0x12 ~ 0x21 — 0x00
—»(

N / _/

‘ c ‘ g snd ;;?'1 ‘ c g ‘ init ‘ c g snd prg‘i ‘ c g init | snd prg‘g
[1 |pc:2 b-0 [0 |[pc:l [1] 1 |pc:3 b-0 [1] 1 |pc:3|pc:3 b1
‘ 0x00 01 12 210 ‘ ‘ 0x00 00 01 ‘

DEGLTSTUDI
DELL

AQUILA

M2 . 0x05
(VOO () 208

~al
) —»{()
) o~ 0x01 . all o~ afl /)
i @) O /
aly/
A 0x02 — O0x05 — /
c snd |P init |P ‘ P02 ‘)
ity pc:3 |2 pc: 3 UN O > g
/ 0 0x04
003\ L 0x02 —~
J—m

o POR does not try to use less memory to save the same states:
it tries to save less states
o while retaining correctness, of course

o some states are “useless” and need not to be explored (and
saved)

o also saves in computation time, of course

o Similar to Murphi symmetry for the goal, but different in use
and algorithm

o use: Murphi modeler must specify which parts of the model
are symmetric
o in SPIN, POR is directly applied without the modeler being

aware of it
\ BEGLISTUR! ;

o though it is possible to disable it

o There are many ways to perform POR; here, we focus on
ample sets

o The main idea is that not all interleavings of processes must
actually be expanded

o if we have, e.g., 2 processes, for some actions it is not
important if we execute P1 and then P2 or viceversa

o We need an algorithm to decide when only one interleaving
can be considered, retaining verification correctness
o such algorithm must have a low overhead

o must also work locally (we cannot first expand all reachable
states and then decide which ones can be removed...)

o Let P =(Q, qo, T) be a finite state program (FSP) where:
o @ is a finite set of states, qg € Q is the start state
o T is a finite set of operations
o also called actions or transitions
o each action t € T is a partial function t: Q - QU { L}
o i.e., executing t from a state g generates a new state

!
= t(q)
o we also define, for each action t € T, the set

en: = {q € Q[t(q) #L}
o furthermore, the function en : Q — 27 returns all actions
enabled in a state g, i.e,, en(q) = {t € T | g € en;}

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

o paths are sequences ™ = ryary - . .
o notation: 79 (i) = r;, 7@(i) = a;
o of course, riy1 = ai(ri), aip1 € en(r;)

o From an FSP P = (Q,/, T) it is easy to generate a KS
S=(S,J,R,L)
o Q=S5J=1
o (s,s') € Riff 3t € en(s) : s’ = t(s)
o L may be defined as needed

o Note that actions are deterministic, but the resulting KS may
be non-deterministic

o there may exists t,t' € T,ge Ss.t. t #t', g € en;Neny and
t(q) # t'(q)

o It is easy to see that a Promela model is close to an FSP:
each action is a statement

o thus, an action is identified by a PID and a statement inside
that PID

o of course, states are defined as above from Promela to KSs

o possible L: if the process is not at the corr%g\;;,.rgm m ‘
o less straightforward: if t is not executable % ‘

o Actually, we may see that, given an action t, we have that
q € en; iff the following holds

o

let i inside process p be the Promela statement corresponding
tot

must be a single statement, thus dos are replaced by ifs with
gotos

if nondeterminism is present, i is one of the nondeterministic
options

if more processes of the same proctype are present, t is related
to one of these processes

thus T is defined so as to consider the possible maximum
number of processes for each proctype

then, g must be such that PC of p corresponds to i and i is

executable .
U/ Bl i

o Given an FSP P = (Q, 1, T), an ample selector is a function
amp : Q — 27 s.t. amp(q) C en(q)
o for a given g € Q, amp(q) is an ample set
o An ample selector defines a new KS &’ = (S, 1, R’, L), where
(s,s') € R"iff 3t € amp(s) : s’ = t(s)
o of course, R C R
o from a DFS point of view, we normally expand actions in
en(q); instead, here we expand only amp(q)
o We want to choose a POR-sound amp
o SEpIffS' Ep
o we start by considering only invariants (assertions) as ¢
o We want to compute amp(q) (almost) only looking at current

state g

o must be simple, i.e., with little overhead SAZ| .. oo
o no need to be optimal NGy e -

o Two actions «, 3 € T are independent iff
Vq € engNeng. a(q) € engAB(q) € ena Ae(B(q)) = B(a(q))

o i.e., a, B can be executed in any order, obtaining the same
result
o otherwise, «, 8 are dependent, which means that dq €
en, Neng : (a(q) € eng A B(q) € eny) — a(B(q)) # B(a(q))
o in this case, it is both o dependent on 3 and viceversa
o example 1: two actions modifying local variables only are
always independent
o example 2: two actions modifying the same global variable are
nearly always dependent
o unless o = 3, or the new value is however the same

N
)

a //\\7‘ A b
- \Xﬂ\

(N (\ P
()) e
/
~A — | | UNIVERSITA DISIM
\ | DEGLI STUDI Sy c—
?:\ / a \ DELL'AQUILA]

o An action « is invisible w.r.t. a labeling L : Q — 24P iff
Vq € en,. L(q) = L(a(q))

OO

{p.q. 1} P, 1}

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Recall:

o we are performing a DFS of the KS generated by an FSP

o we have a current state q

o we want to decide if we can consider amp(q) C en(q) instead
of en(q)

o The first 2 conditions only look at g and its actions
o Vg € Q.en(q) # 0 — amp(q) # 0
o otherwise, we have introduced a deadlock...
o Vg € Q. amp(q) C en(q) — (Yo € amp(q). « is invisible)

o if we cut some actions, then this must not affect the labeling
o this also means that only invisible actions can be cut

The remaining conditions also consider paths starting from g
o Vg € Q,¥r € Path(P, q). (3i > 0,a € amp(q) : 7 (), a
are dependent) — 3j < i : 7(3(j) € amp(q)
o if this is true, then either:

o there exists an « € amp(q) which is the first from amp(q) in
7r

o then, « is independent on all previous actions on 7, and can
be executed first

o otherwise, there exists an « € amp(q) which is independent on

all other actions in 7
\ f BeGS! =

o again, such a can be executed first

o Example till now: a1, 81 and ap, 5> are independent

o Essentially, POR defers execution of some actions

o not executing an action at all means that a meaningful portion
of the state space is omitted

o With these 3 conditions only, it may happen that an action is
never expanded, due to cycles

o in the example below, S is independent on both ay, as

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

The remaining condition rules out the problem with cycles
o Consider a DFS on the reduced KS, and suppose an expanded
state g is detected as already visited
o We also check if it is on the DFS stack; this implies:

o there is a cycle
o some part of the g sub-tree has not be explored

o Then, amp(q) = en(q)
o i.e., g must be fully expanded

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o It seemed that POR with ample set was ok for any
stutter-invariant LTL formula

o recall that a formula ¢ may be viewed as the set (language) of
words L() in AP* which are recognized by ¢

o ¢ is stutter-invariant iff, for any sequence of integers j; € N
and w = pop1 ... € L(¢), pgpr - € L(p)

o essentially, by repeating any character in the word for any
number of times you still obtain a word in the language

o if ¢ does not contain X, then it is stutter-invariant

o viceversa does not hold

o However an error was discovered (and corrected) in 2019

