Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

o Main analogies: both formal verification and testing are about
checking some properties of a system
o easiest property: does the system output the correct answer for
any given input?
o other properties: does it deadlock? does it run within given
deadlines?

o Main difference: formal verification requires a formal model of
the system and a specification of the properties in some
temporal logic

o in some cases, the model can be automatically built (e.g., for
hardware verification or bounded software verification)

o Testing requires the current version (for part) of the actual
software

o as for the property, no need that any temporal Ioglc is used.

though it may help S| o
o a simulator may be used for some physical cémponents

o Testing requires the current version (for part) of the actual

software

o i.e., do not modify the code before testing, unless those
changes are kept in the final code

o i.e., if you modify the software, test it, and then say that the
original software is ok, then many (additional) correctness
problems may arise

o in the following, it may be the case that the software is
modified: all modifications are meant to be kept

o

possible modifications: to add assertions, or to expose possible
errors (see sensitivity discussion below)

o possible exception: code instrumentation
o possible exception: if there are performance issues, then it

must be carefully discussed -

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

o Thus, testing is typically applied /ate in the design process

o you need actual software, which is typically developed after
architectural design and so on

o at least for complex software projects

o However, if the software design process is well organized,

testing may also be applied much early

e.g.: some components may be fully developed before others

as soon as they are developed, they may be tested

this is actually what it should be always done

the technique allowing this is called scaffolding

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

© © 0 o

@ So, no models in testing? NO!
o you may not have a model of the system itself, but models
however play an important role
o in some cases, also a model of the system is available, why not
to use it?

o Models in testing are typically used:

o to generate inputs

o to guide in generating inputs

o to undestand if a testing phase is “adequate” or not
o What about algorithms?

o no “real” algorithms are used in testing
o forget p-calculus or nested DFS or so on
o though, as we will see, some algorithms may be helpful,

exactly as for the models [e [@ osm

T
(VHDL, Verilog, C, C++) (
Java, MathLab, Simulink, ...) / \\

~— — ~

BAD

Model Checker

(Equivalent to
Exhaustive testing)

v Counlerelemple
Ie. sequence of events
(states) leading to an
undesired state.

-
FAIL ~_|
// .

PASS

Le. no sequence of
events (states) can
possibly lead to an
undesired state.

—

T DISIM
upI pimerio i
QUILA

An approximate answer
BUG HUNTING: Testing + Simulation

Input sequence
(stimulus)

~..u(3) u(2) u(1) u(0)

N,

System (Model)

Compute output by
Simulation or by running the actual

system when possible

%

Define initial state + parameters

y - Observer

Output sequence

y(0) y(1) y(2) y(3) ...

™~
\\,\p\}}ycks that output sequence 91(/// DisM.

o No need of complex algorithms as in model checking: simply
Q choose what to test
o SUV: System under Verification

Q devise some relevant inputs
Q execute the SUV with such inputs
@ check if the corresponding results are ok or not

o Some automatization may be performed, but mainly a manual
work for each of such steps

o Does this mean testing is easy? Obviously, NO!

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Main difficulties for “choose what to test”
o only the whole system?
o for cyber-physical systems, a simulator may be used
o all/some meaningful parts?
o all/some functionalities?
o all/some single functions or classes?

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Main difficulties for “devise some relevant inputs”
o are there some “hidden” inputs?
o e.g., a global/class member variable, a database or a RESTful
querying system
o which are the input variables domains?
o which values have to be selected?
o variable domains may be extremely large (integers) or close to
infinite (floats, strings)
o sometimes, also go outside variables domains
o once values are selected, may we understand which share of
the input space got covered?
o all inputs at the beginning, or must be fed with some timing?

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Main difficulties for “execute the SUV with such inputs”
o whole system: sometimes easy, sometimes hard

Qo
Qo
(*]

o

a simple Web interface and a submit button: easy
sequence of commands in CLI

only invokable by some mouse clicks sequence (hidden
functionality)

many library requirements

o ...

o only some part(s): must be extracted in some way for
execution

*]

all dependencies must be resolved

o all inputs at the beginning, or must be fed with some timing?

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Main difficulties for “check if the corresponding results are ok
or not”
o in many cases (usually, not for the whole system...), the result
isn't easy to extract
o it may be in some global variable, needs some extra code to
output its value after the function call
o orin a private class member without a getter: the getter must
be added (or the private removed)
o the result may be put in some file/database/socket
o but also after we got the result: how to know if it is correct?
isn't it a circular reasoning?
o if we simply want to detect failures, it may be needed to
modify the code to expose them
o segmentation faults for C/C++ code...

o check for software usability: what is “ok” is%w‘ellﬁd\eﬁm ‘

o No general tool is available for none of the problems above
o some subparts may be automatized for many interesting cases,
but not for all cases

o Testing must be integrated within software process
o only testing at the end of the developing phase is bad
o Running tests has a cost: consider project budget and release
deadlines

o may force to only check the whole system with very limited
time

o Model Checking is only performed for mission- or
safety-critical systems with medium-high budget
o Testing is always performed on any software
o from cli-based computer-science-first-year projects to airport
management system
o Even more: any released version of a software must be tested

o otherwise, CrowdStrike-like problems
o easy to understimate the effect of a modification on a working

software

o Regression Testing

o Testing all features is typically impossible for complex projects

o For simpler projects, all features may be tested, but not at
100% coverage

o

Q

actually, also 1% testing coverage is often too difficult to
obtain

even if there are some particular measures for which 100%
coverage may be achieved

o Priorities must be defined

Qo

more risky and defect-likely parts of the software must be
checked first

o strictly followed by the parts which are executed more often
o 80/20 rule: 80% of any daily business activity is provided by

| DEGLI STUDI
DELL'AQUILA

20% of the business system functions, transactions, or WOI’k“W
j | UNIVERSITA @ s

o Some authors distinguish between positive vs negative testing

o positive testing: check that the software behaves as it should
under “normal” conditions
o negative testing: check that users cannot “break” the system
o both if they are malicious: denial of service and similar issues
o and if they are not: including apex by accident in a
non-sanitized search...

o We will consider both these types of testing without further
distinction

o Software related figures:

o architects: general software “structure”

o developers: write (and fix!) code

o testers: plan, prepare and execute tests; furthermore, interpret
test results

o For not-too-big projects, some or all of these figures could
coincide

o For complex projects, testers should be separated from
developers and/or architects

o though they must know the corresponding skills

o not influenced by having devised and/or implemented the
system

o the same programmer could be a developer in_a project and a
tester in another | T — o

| DEGLI STUDI
\ DELL'AQUILA

o Skills of a software engineer specialized in testing: matches
the steps from above

choose what to test

devise some relevant inputs

execute the SUV with such inputs

check if the corresponding results are ok or not

© © 0 o

o All keeping into account budget (i.e., number of testering
engineers) and deadlines (i.e., time available for testing)

o In a testing team, such capabilities could be properly mixed

o Let us consider complex projects: the following types of
testing can be performed
Q unit testing: test simple functions/classes/processes first
Q integration testing: put some meaningful subsets of

functions/classes/processes together and test them
system testing: test the whole system

©

o last step of integration...

[#)

acceptance testing (validation): test the whole system with the
final users

regression testing. how to re-test the system when new
releases are issued

©

o code (and possibly specifications) is modified

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

Actual Needs and .
Constraints User Acceptance (alpha, beta test) Delivered
Package
2
2
E) System < System Test System
Specifications Integration
Analysis /
Review
Subsystem Integration Test
Design/Specs Subsystem
Analysis /
Review |
Unit/Component| Unit/ |
Specs Module Test | components | | |
__ User review of external behavior as it is
determined or becomes visible
° I ”Valida(ion
)
7 i >
Verification

RSITA

DISIM

o Some of these steps may be deleted

Qo

for cli-based computer-science-first-year projects, unit testing
coincide with system testing

for medium-size projects, integration testing and system
testing may coincide

for a library, system testing may not exist

for a personal software, validation is straightforward as
developers and final users coincide

o Not necessarily in cascade

*]

errors discovered in later steps typically cause earlier steps to
be re-run

sometimes not only re-running, but also devising new inputs
could be required

o If errors are discovered, developers have to fix- h‘em; then
re-run testing B/ st 2

o It is easy to understand why you need regression testing

o Why not directly acceptance testing?
o going to the final user with a non-working project is obviously
a bad idea
o without testing, your software may simply don’t run at all
o Why not directly system testing?

o same as asking “why do you use software engineering
techniques to write complex software?”
o testing is bottom-up (from units to system) because:
o it is far easier for developers to understand where errors are
o allows reusability of units

o Two main overall methodologies:
o functional testing: tester knows specs but not the code
o also known as black-box testing
o structural testing: tester exploits code knowledge
o also known as white-box testing and glass-box testing
o includes data-flow testing
o Two other methodologies
o static testing: code may not exist, look at documentation only

o mainly done through model checking
o but also prototyping may be used

o performance testing: needs actual code

o Applicable to all types of testing, from unit to acceptance

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Orthogonal and/or auxiliary techniques:
o combinatorial testing
o given some values for single inputs, obtain a full input
o model-based testing

o extract inputs from models of software
o special case: fault-based testing

o test execution: not always straightforward

o Applicable to nearly all testing of the previous slide

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

Testing is not only for software: nearly all products must be
tested before being sold

o i.e., stressed in a controlled environment

()

Typically, the testing phase is standardized for a given product

o always repeated for some randomly chosen instance of the

product
o e.g., take a smartphone from a selling pack and drop it from
10m
o For products which are not built in series, testing must be
individual

o race cars, houses, etc.

©

Of course, some guidelines may be available

o e.g., testing of houses in a seismic environnﬁ%J puivEsiTA m

o Software is among the most difficult things to be checked
o it is virtually always “customized”, thus each software needs its
own testing phase

o There are guidelines, some of which will be covered in this

course

o Some difficulties:
o only errors presence can be proved

o cost
Qo
Q
[+

it is easy to make some simple tests
it may be enough for very-non-critical software
for most software, a tradeoff is needed between testing cost

and software criticality
\ / DEGLI STUDI ienze delln
\ BECAGUIA :

o Some difficulties (continued):
o non-linearity

Qo

if you successfully test an elevator to be able to carry 1000 kg,
then it will be ok with 900 kg or less

if you successfully test a sorting procedure with 1000
elements, it may fail with 2 elements

if you make a small modification to a pair of glasses, you do
not need to run full design test from scratch

if you make a small modification to a software (e.g., a security
update), it may cause some failure in other previously tested

parts of the software
\ DELL'AQUILA

recall the CrowdStrike vulnerability...

DISIM

o The following principles characterize the Testing and
Validation as an activity of its own:
o partition, visibility, feedback
o nothing new: also other engineering activities may use this
o sensitivity, redundancy, restriction
o specific for testing and validation

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Sensitivity

o

o

problem: many errors may not be “observable”
e.g., a buffer overflow in C/C++ may or may not cause a
failure in the running process
sensitivity asks that errors or faults in the software always
result in observable failures
especially hits in code design/implementation: add assertions
or similar code fragments

o or use languages with dynamic checks such that Java, Python

or Rust

as for verification, model checking is actually more suited for

sensitivity

also manual code inspection may be used

=
* Worse than broken: Are you feeling lucky?
y

#include <asserth>

char before[] =
char middlef] = "
char after[]

void show() {
printi("%s\n%s\n%s\n", before, middle, after);

void stringCopy (char “target, const char *source, int howBig);

int main(int argc, char *argy) {
show()
strcpy(middle, "Mudd led
show()
stncpy(middle, "Muddled", sizeof(middle)); /* Fault, may not fail ¥
show()
tringCe "Muddled".
show()

}

/* Sensitive version of strncpy; can be counted on to fail

*in an observable way EVERY time the source is too large

* for the target, unlike the standard strncpy or strcpy.

K

void stringCopy(char “target, const char *source, int howBig) {
assert(strlen(source) < howBig).
stropy(target, source);

/* Fault, but may not fail */

’” tofail %/

DISIM

o Redundancy

o in a broad sense: having some behavior that depend on
something other

o you declare an ‘intent”, so we can test if the intent is fulfilled

o typed languages are a type of redundancy by intent

o e.g., you declare something to be integer and you can raise an
error if instead there is a float

o as for actual testing: check if an implementation is ok w.r.t.
its specification is actually a type of redundancy

o specifications should be written so as to ease automatic testing

or manual inspection
\ / DEGLI STUDI ienze delln
\ RESHLRTNE! ;

o Restriction

o your desired property is too difficult to attain?
o restrict it, i.e., try with something easier
o but however meaningful
o e.g.: too difficult to check that a variable is always initialized,
then check if there exist the possibility that it may be
uninitialized

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

/** A trivial method with a potentially uninitialized variable.
* Maybe someCondition(0) is always true, and therefore k is
* always initialized before use ... but it's impossible, in
* general, to know for sure. Java rejects the method.

Y/
static void questionable() {
intk;
for (inti=0;i < 10; ++i) {
if (someCondition(i)) {
k=0;
} else {
K +=i;
}
}

System.out.printin(k);

DISIM

o Partition

o divide and conquer (divide et impera)
o decompose the problem to be tested
o the very fact that many different testing techniques exists, and
may be employed on the same software, it is a matter of
partition
o unit testing, functional testing, structural testing...
o also making a model of the system is a partitioning technique
o from “does this software satisfy my property?” ...
o to “does this model satisfy my property?” and “does this
model faithfully represent the software?”

o Visibility
o very similar to sensitivity, but with focus on input rather than
output
o again, mainly a design issue to ease testing
o typical example: base program information on textual files
rather than binary files

o low performance degradation, but much better readability and
capability of testing
o e.g., HTTP exchange information as text
o e.g., Unix-based OSs use text files for configuration

o Feedback

o learn to build better testing phase from previous testing phase

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

o Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

o software process contains: requirement analysis and
specification, software design, implementation, validation and
verification

o organized in many ways

o Testing (and verification in general) cannot be simply done at

the end
Requirements Analysis & Design
Implementation
Planning
Deployment
Initial
Planning

| | UNIVERSITA DISIM
\ | DEGLISTUDI o
Evaluation \ DELLAQUILA St
Testing &

o Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

o software process contains: requirement analysis and
specification, software design, implementation, validation and
verification

o organized in many ways

o Testing (and verification in general) cannot be simply done at
the end

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

o software process contains: requirement analysis and
specification, software design, implementation, validation and
verification

o organized in many ways

o Testing (and verification in general) cannot be simply done at
the end

2
inglementation .
)
L3

Verification }, - .
/ ‘ UNIVERSITA DISIM
v \ | DEGLI STUDI
m \ DELL'AQUILA]

o Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

o software process contains: requirement analysis and
specification, software design, implementation, validation and
verification

o organized in many ways

o Testing (and verification in general) cannot be simply done at
the end

Disciplines |]lmeptinnH Elaboration H Construction ”wmm|

Business Modeling
Requirements e

Analysis & Design T e g——_

Deployment

Configuration
& Change Mgmt

Project. — | H ~ i >
' ’ S o .,
[omar | [man # 1] [2] G [t Tt | T o \ < DELL'AQUILA e

Iterations

t“

important class of faults are suitably targeted
o “important” depends on what you are building
o e.g., if C/C++ is used, beware of memory leaks

discover errors as soon as possible

o error in coding revealed at unit testing OK

o error in coding revealed at system integration
BAD

o error in coding discovered by final user VERY
BAD

o error in the system specifications discovered in
system acceptance test CATASTROPHE

achieve completeness and timeliness within
budget

A e “l\\ll?\ll\ DIsIM
o on the whole process: do not r%t:zhe‘avy i

because of errors

o Process visibility: progress must be easily detectable

o This entails that quality goals must be clearly stated and

refined

o Goals are measured on software product qualities, which may

be:

o internal: only visible to the software developers and designers

Qo

e.g.. maintainability, reusability, traceability

o external: also visible to final users

o

Qo
Qo
o

e.g.: throughput, latency, usability

summing up, either dependability or usefulness goals
dependability: does it have (functional) faults?
usefulness: provided it is dependable, does it have other
(typically non-functional) faults?

e.g.: bad user interface, software is too sley tq[\,w\ m
OB/ il ==

o Simplest dependability property: correctness
o all behaviors of the software are as specified

o Reliability: statistical approximation of correctness

if not all behaviors are ok, then at least, e.g., 90% of them are
often specified w.r.t. a particular usage profile

the same program can be more or less reliable depending on

how it is used

o a possible formal definition: percentage of successful

. . . . 100[S
operations in a given period ﬁ

©

©

©

o S is the set of all operations which succeed in the given period

o Availability: reliability w.r.t. failures duration is important

may be defined as 100,15
u: software is up and accepting requests
d: software is down and not accepting requests

typically, u+ d =1 day, or 1 week
o MTBF: Mean Time Between Failures

© © o

©

o may be defined as \Tlfl > ek Ifl
o F is the set of all failures in the given period (1 day, 1 week...)
o for a failure f € F, |f] is the duration, i.e., time required for

fixing f
more detailed than availability: e.g., it distinguishes from 30
failures of 1 minute and 1 failure of 30 minutes

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

©

o Robustness: correct and reliable only within some defined
operational limits

o if there is a failure only because of a 100x load, the system is
however robust
o Safety: nothing bad occurs
o of course, must be defined w.r.t. some property
o e.g.: there is never more than one process in the critical section
o broader sense than what we have defined in model checking
o essentially, it is any property you can specify, so also liveness

and neither liveness nor safety
j» “ UNIVERSITA DISIM
\ / DEGLI STUDI ienze delln
%} RESHLRTNE! .@ i

or System Under Verification (SUV)
o could also be a part of a “program”
o could also be a system with many processes
A set of inputs, execution conditions, PASS/FAIL
criterion
o input is anything the program to be tested can
get
o command-line arguments, files, interrupts,
mouse coordinates, sensors...
o execution condition: information on the test
execution
o typically, input timing: whether all input must
be provided at the start or not
o e.g., a sequence of interrupts with given timing
o PASS/FAIL: some way to chec
o e.g.: output must be equal t %
result)

A formal or informal description of a test
case

o “the input is two words” — a valid test case will
be “goodbye all”

a set of test cases
running the test cases on the program
a property for test case specifications
o e.g., “all words must be 7 letters long”
some property a test suite must fulfill

o e.g., “all test cases must contain at least 30
inputs”
o could also be seen as a set of test obligations

o namely, the adequacy criterionris-sea‘tisfied if
every test obligation is satisfied%éﬁ‘f‘l%\st :

test case in the suite

Mathematical concept (set of pairs)
Syntactical function in Java language
o works with all other languages, of course
Smallest unit of work in the program

o typically (but not always) close to single
functions or single classes
o here, “unit of work” roughly refers to:
o the smallest increment by which a software
system grows or changes
o the smallest unit that appears in a project
schedule and budget
o the smallest unit that may reasonably be

associated with a suite of test-gases (unit
test/ng) % i o,

Some functionality of the
program which can be isolated from the other
functionalities

o not necessary at code level: here, it is testing
level

0 e.g., a program or a function may be able to
both sort and merge files

o however, sorting and merging may be ITF

o granularity depends on the program: from
individual functions, to features of an integrated
system composed of many programs

o going through individual classes and libraries

o when detected at unit testing, an ITF is usually

a function/method or a class, %ﬁg@gﬂly @ pow
testing exists... 2 ‘

