
Software Testing and Validation
A.A. 2025/2026

Corso di Laurea in Informatica

Testing Preliminaries

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

From Formal Verification to Testing

Main analogies: both formal verification and testing are about
checking some properties of a system

easiest property: does the system output the correct answer for
any given input?
other properties: does it deadlock? does it run within given
deadlines?

Main difference: formal verification requires a formal model of
the system and a specification of the properties in some
temporal logic

in some cases, the model can be automatically built (e.g., for
hardware verification or bounded software verification)

Testing requires the current version (for part) of the actual
software

as for the property, no need that any temporal logic is used,
though it may help
a simulator may be used for some physical components

From Formal Verification to Testing

Testing requires the current version (for part) of the actual
software

i.e., do not modify the code before testing, unless those
changes are kept in the final code
i.e., if you modify the software, test it, and then say that the
original software is ok, then many (additional) correctness
problems may arise
in the following, it may be the case that the software is
modified: all modifications are meant to be kept

possible modifications: to add assertions, or to expose possible
errors (see sensitivity discussion below)
possible exception: code instrumentation
possible exception: if there are performance issues, then it
must be carefully discussed

From Formal Verification to Testing

Thus, testing is typically applied late in the design process

you need actual software, which is typically developed after
architectural design and so on
at least for complex software projects

However, if the software design process is well organized,
testing may also be applied much early

e.g.: some components may be fully developed before others
as soon as they are developed, they may be tested
this is actually what it should be always done
the technique allowing this is called scaffolding

From Formal Verification to Testing

So, no models in testing? NO!

you may not have a model of the system itself, but models
however play an important role
in some cases, also a model of the system is available, why not
to use it?

Models in testing are typically used:

to generate inputs
to guide in generating inputs
to undestand if a testing phase is “adequate” or not

What about algorithms?

no “real” algorithms are used in testing
forget µ-calculus or nested DFS or so on
though, as we will see, some algorithms may be helpful,
exactly as for the models

From Model Checking...

... to Testing

Basic Notions on Testing

No need of complex algorithms as in model checking: simply
1 choose what to test

SUV: System under Verification

2 devise some relevant inputs
3 execute the SUV with such inputs
4 check if the corresponding results are ok or not

Some automatization may be performed, but mainly a manual
work for each of such steps

Does this mean testing is easy? Obviously, NO!

Basic Notions on Testing

Main difficulties for “choose what to test”
only the whole system?

for cyber-physical systems, a simulator may be used

all/some meaningful parts?
all/some functionalities?
all/some single functions or classes?

Basic Notions on Testing

Main difficulties for “devise some relevant inputs”
are there some “hidden” inputs?

e.g., a global/class member variable, a database or a RESTful
querying system

which are the input variables domains?
which values have to be selected?

variable domains may be extremely large (integers) or close to
infinite (floats, strings)
sometimes, also go outside variables domains

once values are selected, may we understand which share of
the input space got covered?
all inputs at the beginning, or must be fed with some timing?

Basic Notions on Testing

Main difficulties for “execute the SUV with such inputs”
whole system: sometimes easy, sometimes hard

a simple Web interface and a submit button: easy
sequence of commands in CLI
only invokable by some mouse clicks sequence (hidden
functionality)
many library requirements
...

only some part(s): must be extracted in some way for
execution

all dependencies must be resolved

all inputs at the beginning, or must be fed with some timing?

Basic Notions on Testing

Main difficulties for “check if the corresponding results are ok
or not”

in many cases (usually, not for the whole system...), the result
isn’t easy to extract

it may be in some global variable, needs some extra code to
output its value after the function call
or in a private class member without a getter: the getter must
be added (or the private removed)
the result may be put in some file/database/socket

but also after we got the result: how to know if it is correct?
isn’t it a circular reasoning?
if we simply want to detect failures, it may be needed to
modify the code to expose them

segmentation faults for C/C++ code...

check for software usability: what is “ok” is not well defined...

Basic Notions on Testing

No general tool is available for none of the problems above

some subparts may be automatized for many interesting cases,
but not for all cases

Testing must be integrated within software process

only testing at the end of the developing phase is bad

Running tests has a cost: consider project budget and release
deadlines

may force to only check the whole system with very limited
time

Basic Notions on Testing

Model Checking is only performed for mission- or
safety-critical systems with medium-high budget

Testing is always performed on any software

from cli-based computer-science-first-year projects to airport
management system

Even more: any released version of a software must be tested

otherwise, CrowdStrike-like problems
easy to understimate the effect of a modification on a working
software
Regression Testing

Basic Notions on Testing

Testing all features is typically impossible for complex projects

For simpler projects, all features may be tested, but not at
100% coverage

actually, also 1% testing coverage is often too difficult to
obtain
even if there are some particular measures for which 100%
coverage may be achieved

Priorities must be defined

more risky and defect-likely parts of the software must be
checked first
strictly followed by the parts which are executed more often
80/20 rule: 80% of any daily business activity is provided by
20% of the business system functions, transactions, or workflow

Basic Notions on Testing

Some authors distinguish between positive vs negative testing

positive testing: check that the software behaves as it should
under “normal” conditions
negative testing: check that users cannot “break” the system

both if they are malicious: denial of service and similar issues
and if they are not: including apex by accident in a
non-sanitized search...

We will consider both these types of testing without further
distinction

Basic Notions on Testing

Software related figures:

architects: general software “structure”
developers: write (and fix!) code
testers: plan, prepare and execute tests; furthermore, interpret
test results

For not-too-big projects, some or all of these figures could
coincide

For complex projects, testers should be separated from
developers and/or architects

though they must know the corresponding skills
not influenced by having devised and/or implemented the
system
the same programmer could be a developer in a project and a
tester in another

Basic Notions on Testing

Skills of a software engineer specialized in testing: matches
the steps from above

choose what to test
devise some relevant inputs
execute the SUV with such inputs
check if the corresponding results are ok or not

All keeping into account budget (i.e., number of testering
engineers) and deadlines (i.e., time available for testing)

In a testing team, such capabilities could be properly mixed

Testing Timeline

Let us consider complex projects: the following types of
testing can be performed

1 unit testing: test simple functions/classes/processes first
2 integration testing: put some meaningful subsets of

functions/classes/processes together and test them
3 system testing: test the whole system

last step of integration...

4 acceptance testing (validation): test the whole system with the
final users

5 regression testing: how to re-test the system when new
releases are issued

code (and possibly specifications) is modified

Testing Timeline

Testing Timeline

Some of these steps may be deleted

for cli-based computer-science-first-year projects, unit testing
coincide with system testing
for medium-size projects, integration testing and system
testing may coincide
for a library, system testing may not exist
for a personal software, validation is straightforward as
developers and final users coincide

Not necessarily in cascade

errors discovered in later steps typically cause earlier steps to
be re-run
sometimes not only re-running, but also devising new inputs
could be required

If errors are discovered, developers have to fix them; then,
re-run testing

Testing Timeline

It is easy to understand why you need regression testing

Why not directly acceptance testing?

going to the final user with a non-working project is obviously
a bad idea
without testing, your software may simply don’t run at all

Why not directly system testing?

same as asking “why do you use software engineering
techniques to write complex software?”
testing is bottom-up (from units to system) because:

it is far easier for developers to understand where errors are
allows reusability of units

Testing Main Techniques

Two main overall methodologies:
functional testing: tester knows specs but not the code

also known as black-box testing

structural testing: tester exploits code knowledge

also known as white-box testing and glass-box testing
includes data-flow testing

Two other methodologies
static testing: code may not exist, look at documentation only

mainly done through model checking
but also prototyping may be used

performance testing: needs actual code

Applicable to all types of testing, from unit to acceptance

Testing Main Techniques

Orthogonal and/or auxiliary techniques:
combinatorial testing

given some values for single inputs, obtain a full input

model-based testing

extract inputs from models of software
special case: fault-based testing

test execution: not always straightforward

Applicable to nearly all testing of the previous slide

Basic Notions on Testing

Testing is not only for software: nearly all products must be
tested before being sold

i.e., stressed in a controlled environment

Typically, the testing phase is standardized for a given product

always repeated for some randomly chosen instance of the
product
e.g., take a smartphone from a selling pack and drop it from
10m

For products which are not built in series, testing must be
individual

race cars, houses, etc.

Of course, some guidelines may be available

e.g., testing of houses in a seismic environment

Basic Notions on Software Testing

Software is among the most difficult things to be checked

it is virtually always “customized”, thus each software needs its
own testing phase

There are guidelines, some of which will be covered in this
course

Some difficulties:

only errors presence can be proved
cost

it is easy to make some simple tests
it may be enough for very-non-critical software
for most software, a tradeoff is needed between testing cost
and software criticality

Basic Notions on Software Testing

Some difficulties (continued):
non-linearity

if you successfully test an elevator to be able to carry 1000 kg,
then it will be ok with 900 kg or less
if you successfully test a sorting procedure with 1000
elements, it may fail with 2 elements
if you make a small modification to a pair of glasses, you do
not need to run full design test from scratch
if you make a small modification to a software (e.g., a security
update), it may cause some failure in other previously tested
parts of the software
recall the CrowdStrike vulnerability...

Six Principles for Testing (and Verification)

The following principles characterize the Testing and
Validation as an activity of its own:

partition, visibility, feedback

nothing new: also other engineering activities may use this

sensitivity, redundancy, restriction

specific for testing and validation

Six Principles for Testing (and Verification)

Sensitivity

problem: many errors may not be “observable”
e.g., a buffer overflow in C/C++ may or may not cause a
failure in the running process
sensitivity asks that errors or faults in the software always
result in observable failures
especially hits in code design/implementation: add assertions
or similar code fragments

or use languages with dynamic checks such that Java, Python
or Rust

as for verification, model checking is actually more suited for
sensitivity
also manual code inspection may be used

Sensitivity Example

Six Principles for Testing (and Verification)

Redundancy

in a broad sense: having some behavior that depend on
something other
you declare an ‘intent”, so we can test if the intent is fulfilled
typed languages are a type of redundancy by intent

e.g., you declare something to be integer and you can raise an
error if instead there is a float

as for actual testing: check if an implementation is ok w.r.t.
its specification is actually a type of redundancy
specifications should be written so as to ease automatic testing
or manual inspection

Six Principles for Testing (and Verification)

Restriction

your desired property is too difficult to attain?
restrict it, i.e., try with something easier

but however meaningful

e.g.: too difficult to check that a variable is always initialized,
then check if there exist the possibility that it may be
uninitialized

Restriction Example

Six Principles for Testing (and Verification)

Partition

divide and conquer (divide et impera)
decompose the problem to be tested
the very fact that many different testing techniques exists, and
may be employed on the same software, it is a matter of
partition

unit testing, functional testing, structural testing...

also making a model of the system is a partitioning technique

from “does this software satisfy my property?”...
to “does this model satisfy my property?” and “does this
model faithfully represent the software?”

Six Principles for Testing (and Verification)

Visibility

very similar to sensitivity, but with focus on input rather than
output
again, mainly a design issue to ease testing
typical example: base program information on textual files
rather than binary files

low performance degradation, but much better readability and
capability of testing

e.g., HTTP exchange information as text
e.g., Unix-based OSs use text files for configuration

Feedback

learn to build better testing phase from previous testing phase

Software Process

Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

software process contains: requirement analysis and
specification, software design, implementation, validation and
verification
organized in many ways

Testing (and verification in general) cannot be simply done at
the end

Software Process

Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

software process contains: requirement analysis and
specification, software design, implementation, validation and
verification
organized in many ways

Testing (and verification in general) cannot be simply done at
the end

Software Process

Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

software process contains: requirement analysis and
specification, software design, implementation, validation and
verification
organized in many ways

Testing (and verification in general) cannot be simply done at
the end

Software Process

Not “process” in the sense of operating systems: “software
process” is the whole set of activities needed to develop a
high-quality software for some specific problem

software process contains: requirement analysis and
specification, software design, implementation, validation and
verification
organized in many ways

Testing (and verification in general) cannot be simply done at
the end

Software Process: Testing

Completeness important class of faults are suitably targeted

“important” depends on what you are building
e.g., if C/C++ is used, beware of memory leaks

Timeliness discover errors as soon as possible

error in coding revealed at unit testing OK
error in coding revealed at system integration
BAD
error in coding discovered by final user VERY
BAD
error in the system specifications discovered in
system acceptance test CATASTROPHE

Cost effectiveness achieve completeness and timeliness within
budget

on the whole process: do not repeat heavy tasks
because of errors

Software Quality Through Testing

Process visibility: progress must be easily detectable

This entails that quality goals must be clearly stated and
refined

Goals are measured on software product qualities, which may
be:

internal: only visible to the software developers and designers

e.g.: maintainability, reusability, traceability

external: also visible to final users

e.g.: throughput, latency, usability
summing up, either dependability or usefulness goals
dependability: does it have (functional) faults?
usefulness: provided it is dependable, does it have other
(typically non-functional) faults?
e.g.: bad user interface, software is too slow, etc

Software Dependability

Simplest dependability property: correctness

all behaviors of the software are as specified

Reliability: statistical approximation of correctness

if not all behaviors are ok, then at least, e.g., 90% of them are
often specified w.r.t. a particular usage profile
the same program can be more or less reliable depending on
how it is used
a possible formal definition: percentage of successful

operations in a given period 100|S|
|S|+|F |

S is the set of all operations which succeed in the given period

Software Reliability: Other Possibile Definitions

Availability: reliability w.r.t. failures duration is important

may be defined as 100 u
u+d

u: software is up and accepting requests
d : software is down and not accepting requests
typically, u + d = 1 day, or 1 week

MTBF: Mean Time Between Failures

may be defined as 1
|F |

∑
f∈F |f |

F is the set of all failures in the given period (1 day, 1 week...)
for a failure f ∈ F , |f | is the duration, i.e., time required for
fixing f
more detailed than availability: e.g., it distinguishes from 30
failures of 1 minute and 1 failure of 30 minutes

Software Dependability

Robustness: correct and reliable only within some defined
operational limits

if there is a failure only because of a 100x load, the system is
however robust

Safety: nothing bad occurs

of course, must be defined w.r.t. some property
e.g.: there is never more than one process in the critical section
broader sense than what we have defined in model checking
essentially, it is any property you can specify, so also liveness
and neither liveness nor safety

Terminology

Program or System Under Verification (SUV)

could also be a part of a “program”
could also be a system with many processes

Test case A set of inputs, execution conditions, PASS/FAIL
criterion

input is anything the program to be tested can
get

command-line arguments, files, interrupts,
mouse coordinates, sensors...

execution condition: information on the test
execution

typically, input timing: whether all input must
be provided at the start or not
e.g., a sequence of interrupts with given timing

PASS/FAIL: some way to check
e.g.: output must be equal to this expected
result

Terminology

Test case specification A formal or informal description of a test
case

“the input is two words” → a valid test case will
be “goodbye all”

Test suite a set of test cases

Test execution running the test cases on the program

Test obligation a property for test case specifications

e.g., “all words must be 7 letters long”

Adequacy criteria some property a test suite must fulfill

e.g., “all test cases must contain at least 30
inputs”
could also be seen as a set of test obligations
namely, the adequacy criterion is satisfied if
every test obligation is satisfied by at least one
test case in the suite

Terminology

Function Mathematical concept (set of pairs)

Java Function Syntactical function in Java language

works with all other languages, of course

Unit Smallest unit of work in the program

typically (but not always) close to single
functions or single classes
here, “unit of work” roughly refers to:

the smallest increment by which a software
system grows or changes
the smallest unit that appears in a project
schedule and budget
the smallest unit that may reasonably be
associated with a suite of test cases (unit
testing)

Terminology

Independently Testable Feature (ITF) Some functionality of the
program which can be isolated from the other
functionalities

not necessary at code level: here, it is testing
level
e.g., a program or a function may be able to
both sort and merge files
however, sorting and merging may be ITF
granularity depends on the program: from
individual functions, to features of an integrated
system composed of many programs
going through individual classes and libraries
when detected at unit testing, an ITF is usually
a function/method or a class, but not only unit
testing exists...

