
Software Testing and Validation
A.A. 2025/2026

Corso di Laurea in Informatica

Finite Models of Software

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica



Models in Testing

Model checking is based on models of the artifact, testing
addresses the artifact

However, some modeling is often required also for testing

models for the environment (i.e., what is providing inputs)
models for plant, when the software is a controller

in some cases, testing on the final product in its “natural”
environment only may be also dangerous
e.g., testing of the controller for a flying aircraft

models of the software itself

UML diagrams
control flow diagrams et al. (will be defined in the following)
help in devising better tests

May be already available from specifications, or a modeling
phase may be needed



Models Must Be...

Compact, i.e., understandable

often, they are for human inspection
if models are for some automatic procedure, then they must be
manipulable in the given computational resources

this is exactly the case for model checking!

Predictive, i.e., not too simple

at least be able to detect what is “bad” and what is “good”
different models may be used for the same artifact, when
testing different aspects
e.g., model to predict airflow w.r.t. efficient passenger loading
and safe emergency exit



Models Must Be...

Semantically meaningful

given something went bad, we need to understand why
identify the part with the failure

Sufficiently general

not too specilized on some characteristics
otherwise, not useful
e.g., a C program analyzer which only works for programs
without pointers



Finite Abstraction of Behaviour

Given a program, a state is an assignment for all variables in
the program

including local variables: call stack
state space: set of all possible states

A behaviour is a sequence of states, interleaved by program
statements being executed

The number of behaviours for non-trivial programs is
extremely huge

infinite if we do not consider machine limitations
e.g., integers need not to be represented on maximum 64 bits

An abstraction is a function from states to (reduced) states

some details are suppressed
e.g., some variables are not considered



Finite Abstraction of Behaviour

Two different states may be considered the same by an
abstraction

e.g., they differ by some variable, which is abstracted out

States sequences may be squeezed

Non-determinism may be introduced

e.g., when a choice was made by considering the value of some
abstracted-out variable

In model checking, this is done by hand for each system

here, instead, we will consider some standard models which are
especially tailored for testing
in some cases, they may be automatically extracted from code



Finite Abstraction of Behaviour

(Each circle is a binary variable...)



(Intraprocedural) Control Flow Graphs

Model close to the actual program source code

finite by construction

Resembles old flow diagrams but:

no different shapes for blocks
to be used after having written a code, not before

Often compilators are also able to build the control flow graph

e.g., gcc -fdump-tree-cfg

compilators build CFG while compiling to enhance compilation



(Intraprocedural) Control Flow Graphs

Directed graph:
nodes are program statements

may also be group of statements or fragments of statements

edges represent the possibility to go from a node to another

either by branch or by sequential execution
max outgoing degree is 2, excluding switches...

cycles in the code correspond to cycles in the CFG and
viceversa
paths in the CFG correspond to executions of code and
viceversa
connected, each path goes from start to finish



Control Flow Graphs (CFGs)

Nodes usually are a maximal group of statements with a
single entry and single exit

basic block
i.e., always sequential assignments are grouped together
in a maximal way

On the contrary, it may happen that a single statement is
broken down

because it is not always executed with a single entry and a
single exit
e.g., the for statement
e.g., short-circuit evaluation
e.g., other strange cases: a = (b++? c++ : ++d);



Control Flow Graphs



Control Flow Graphs



Control Flow Graphs



Control Flow Graphs

Let P be a (part of a) function or procedure for which testing
must be performed

white-box testing: we know the code of P as a sequence
C(P) = ⟨I1, . . . , Ik⟩ of statements
we assume P is written in some imperative language
we assume that complex statements in C(P) are already
broken down in parts

short-circuited conditions, inline increments,
function/procedure calls...

in the collapseNewlines example, k = 12

9 statements, declaration included
but the for is split in 3 and the if is split in 2



Control Flow Graphs

Let g = ⟨i1, . . . , im⟩ be a grouping for the statements of C(P)
1 ≤ ij < ij+1 ≤ k for all j = 1, . . . ,m − 1
e.g., for g = ⟨3, 5, 10⟩ we will consider three blocks:

the first 3 statements, then other two statements, and finally
the remaining 5 statements

we will call g granularity for a given C(P)
Of course, granularities must comply with code

no flow branches (if, while, etc) inside a block Iij+1 . . . Iij+1

Usually, maximal granularities are chosen

from a flow branch (or starting point) to another flow branch
(or ending point)
in the collapseNewlines example, g = ⟨4, 5, 7, 8, 10, 11, 12⟩



Control Flow Graphs

A CFG for a program P with granularity g is a graph
G = (V ,E ) s.t.

V = {⟨Igi−1+1 . . . Igi ⟩ | i = 1, . . . , |g |}
with g0 = 0
nodes are basic blocks and |V | = |g |

E = {(u, v) | u, v ∈ V∧ control flow from last statement of u
and first of v may take place}

Typically, nodes vi ∈ V are labeled with the corresponding
basic block ⟨Igi−1+1 . . . Igi ⟩
Typically, edges (u, v) ∈ E may be labeled by a boolean value
if flow from u to v is conditioned

last statement of u is an if or a while

and similar, e.g., for, until etc

In some cases, some alphanumeric label is added to ease
references



From CFG to LCSAJ

Linear code sequences and jumps

maximal sequences of consecutives statements
may be directly derived from a CFG

In a nutshell: all sequences of consecutive basic blocks

while a basic block cannot contain branches, LCSAJ can
while you can go back in a CFG, you cannot go back in a
LCSAJ

see example: no b7 → b3

thus, conditional branches create overlapping LCSAJs
basic blocks cannot overlap

Typically, there are 4x more LCSAJs than basic blocks

no closed formula for the number of LCSAJs, must apply the
algorithm



LCSAJ: References Are From Here



LCSAJ: How It Looks Like



From CFG to LCSAJ: Idea

Look at the CFG (also the code, but it is easier in the CFG)

You can go on till when you are forced to stop

you are forced to stop when, w.r.t. the code, you have to go
more than a step further, or simply back

You can stop also if there is the possibility to not going in the
following step

Let G = (V ,E , L1, L2) be a labeled CFG

L1 : V → LV , L2 : E → LE are two bijective labeling functions
for nodes (basic blocks) and edges, respectively
no really need of having the labeling function: it simply makes
the LCSAJ more readable



Control Flow Graphs



Control Flow Graphs



From CFG to LCSAJ



From CFG to LCSAJ

Let G = (V ,E , L1, L2) be a labeled CFG

The LCSAJ associated to G is
I(G ) = {⟨l1, ℓ2, l3⟩ | l1, l3 ∈ LE , ℓ2 ∈ L∗V } s.t.:

l1 arrives to the first statement of ℓ2
that is: if L−1

2 (l1) = (u, v), then ℓ2 begins with L1(v)

l3 exits from the last statement of ℓ2
that is: if L−1

2 (l3) = (u, v), then ℓ2 ends with L1(u)

ℓ2 = v1 . . . vn contains consecutive basic blocks of C(P)
connecting l1 to l3, that is:

vi and vi+1 are consecutive basic blocks both in G and in the
source code for all i = 1, . . . , n − 1
vn is either followed by a control flow jump or it is the end of
the unit
v1 is either the beginning of the unit, or the destination of
backward control flow jump, or the unique destination of
forward control flow jump



From CFG to LCSAJ

b1 is the start; b3 and b8 are destinations of control flow
jumps

also b6 and b7, but they are also reachable from b5 and b6
thus, LCSAJs can start from one of them

Starting from one of these, one different LCASJ each time
you see a branch

Many overlapping; they are combined in actual testing

so that ending and starting points coincide, e.g., jL



Algorithm for LCSAJs

LCSAJ(C ) {

W ← getStartingBlocks(C );

L ← ∅;

for v ∈ W {

H ← ∅;

DFSLCSAJ(C , v , ∅);

}

return L;
}



Algorithm for LCSAJs

DFSLCSAJ(C , v , S) { // C = (V ,E )
H ← H ∪ {v}; S ← push(S , v );
N ← {w ∈ V | (v ,w) ∈ E}; // successors of v
i f ((v + 1 /∈ N ∨ |N| > 1) ∧ (|S | > 1 ∨ N = ∅) ∧
∀i = 1, . . . , |S | − 1.S [i ] = S [i ]− 1)
L ← L ∪ {S};

for w ∈ N {

i f (w /∈ H)

DFSLCSAJ(C , w , S);
}

S ← pop(S);
}



Algorithm for LCSAJs

getStartingBlocks(C ) {

let C = (V ,E , s);
H,V1,V2 ← ∅,∅,∅;

allStartingBlocks(V ,E , s);
H ← ∅;

V2 ← correctStartingBlocks(V ,E , V2);

return {s} ∪ V1 ∪ V2;

}

allStartingBlocks(V ,E , v ) {

H ← H ∪ {v};
for w ∈ V s.t. (v ,w) ∈ E {

i f (w < v ) V1 ← V1 ∪ {w};
e l se i f (w ̸= v + 1) V2 ← V2 ∪ {w};
i f (w /∈ H) allStartingBlocks(V ,E , w );

}

}



Algorithm for LCSAJs

correctStartingBlocks(V ,E , v ) {

H ← H ∪ {v};
for w ∈ V s.t. (v ,w) ∈ E {

i f (w = v + 1 ∧ w ∈ V2)

V2 ← V2 \ {w};
i f (w /∈ H)

correctStartingBlocks(V ,E , w );

}

}



Call Graphs

CFG is typically intraprocedural; call graphs are
interprocedural

simply a graph where nodes are defined functions
there is an edge from f to g iff f may call g
order of calls is not important
thus, they may contain calls which are actually never made
sometimes arguments are made explicit
number of paths inside a call graph may be exponential, even
without recursion



Call Graphs



Call Graphs



Call Graphs



Interprocedural Analysis

Calls between different functions/methods, important, e.g.,
for the previous slide

Simply following calls and returns in a CFG-like way is not
practical: too many spurious paths

(A,X ,Y ,B), (C ,X ,Y ,D) are ok
(A,X ,Y ,D), (C ,X ,Y ,B) are impossible



Interprocedural Analysis

To solve the problem, context is needed

if sub is called by A, it must return in B

Number of contexts is exponential

may be ok for a small group of functions, e.g., a not-too-big
single Java class

Some special cases exist

the info needed to analyze the calling procedure must be small
e.g., proportional to the number of called procedures
the information about the called procedure must be
context-independent
example: declaration of exception throwing in Java



Finite State Machines: Mealy Machines

A graph where nodes are “modalities” of a given software

Edges are labeled with input/output

A priori: used to design the software

Will be exploited to get good inputs for testing

Unix only uses LF, DOS uses
CR+LF
LF mandatory after CR, node
name not accurate
emit: write accumulated text to
output



Finite State Machines

Empty buffer: !pos && !atCR

Within line: pos>0 && !atCR

Looking: atCR
Other char: default



Mealy Machine Formal Definition

A Mealy machine is a 6-tupleM = (S ,S0,Σ,Λ,T ,G )
consisting of the following:

a finite set of states S
a start state (also called initial state) S0 ∈ S
a finite set called the input alphabet Σ
a finite set called the output alphabet Λ
a (deterministic!) transition function T : S × Σ→ S mapping
pairs of a state and an input symbol to the corresponding next
state
an output function G : S × Σ→ Λ mapping pairs of a state
and an input symbol to the corresponding output symbol.

Given an input w ∈ Σ∗,M outputs o ∈ Λ∗, |o| = |w | s.t.
∀i = 1, . . . , |w |. si = T (si−1,wi ) ∧ oi = G (si−1,wi )
s0 = S0



Data Flow Models

CFGs, FSMs etc are a good way to represent control flow

What about data flow?

Again, ideas are borrowed from compilers theory

data flow is used to detect errors for type checking, or also for
code optimization
also used in software engineering tout court, for refactoring or
reverse engineering

As for testing, useful for:

select test cases based on dependence information
detect anomalous patterns that indicate probable programming
errors, e.g. usage of uninitialized values



Definition-Use Pairs

Definition of a variable: either its declaration or a write access

for languages like Python, mostly write access...
write access may be:

left part of an assignment
parameter initialization in function calls
other special cases such as ++ construct in C-like languages

Use of a variable: a read access

right part of an assignment
variable passed in function calls
variable used without being modified

The same line of code may be both definition and use

typically, nearly all lines either define and/or use at least one
variable
++ construct is both definition and use on the same variable



Definition-Use Pairs



Definition-Use Pairs

A variable has only definitions? it is useless

A variable has only uses? there is some error

For a given definition, there may be many uses, and viceversa

of course, for a fixed variable
see y in the previous slide: 2 definitions, 3 uses...

A definition-use pair combines a given use with the closest
definition

w.r.t. some possible execution (path) of the code

Other definitions behind the closest one are killed



Definition-Use Pairs

Consider an execution path π = s1, . . . , sm:

si are statements and si , si+1 may be contiguous in π iff the
control flow may go from si to si+1

e.g., from the previous code: 1,2,3,8,9 and
1,2,3,4,5,6,7,3,4,5,6,7,8,9 and 1,2,3,4,5,6,7,3,4
if we consider the corresponding CFG G , then π is a path of G

Consider an execution path π = s1, . . . , sm and a variable v :

if ∃k . use(v) ∈ sk , let L = {ℓ < k | def(v) ∈ sℓ}
(d , u) = (max L, k) is a definition-use pair
vd reaches u or vd is a reaching definition of u
sℓ is a killed definition if ℓ ∈ L ∧ ℓ ̸= max L
the sub-path sd . . . sk is definition-clear



Definition-Use Pairs

In the path from A to E,
definition-use pair for tmp is (C,
E)
Early definition in A is killed



Definition-Use Pairs

Use-definition pairs defines a direct data dependence, can be
used to build the data dependence graph

As in CFGs, nodes are statements, possibly grouped with
some granularity

here, granularity on nodes may be tuned according to needs:

single expressions (especially for compilers)
statements (figure below)
basic blocks
etc

There is an edge (s, t) with label v iff (s, t) is a definition-use
pair for variable v (for some path)



Definition-Use Pairs



Definition-Use Pairs

Errata corrige: D→C with x, E→D with y, E→B with y
Note that definition of use of x in F may be either A or D



Algorithm to Generate All Reaching Definitions



All Reaching Definitions

A→ ∅
B→ {xA, xD , tA, tC , yE , yA}
C→ {xA, xD , tA, tC , yE , yA}
D→ {xA, xD , tC , yE , yA}
E→ {xD , yA, yE , tC}
F→ {xA, xD , tA, tC , yA, yE}
xA is not in E
xA, xD both in F
does not consider actual uses,
e.g., tA, tC is in F



Available Expressions

Other uses of the control flow graph: available expressions

again, mutuated from compilers: when a given expression can
be evaluated just once and stored for later use
testing: available expressions should be always tested

An expression E is:

generated when its value is computed
killed when at least one of the variables involved changes its
value

not necessarily by assignments, could be a side effect of a
function call...

available at some point p iff, for all paths π from start to p, E
is generated but not subsequently killed in π

Algorithm is very similar to the reaching definitions one:

for available expressions, is a forward all-paths analysis
for reaching definitions, is a forward any-path analysis



Available Expressions



Available Expressions



Algorithm to Generate All Available Expressions



Algorithm to Generate All Reaching Definitions



All Available Expressions

A→ ∅
B→ ∅
C→ ∅
D→ ∅
E→ ∅
F→ ∅



Control Dependence

Control dependence tree
models the effects of conditional branches
nodes are statements, but again granularity may change
to define edges, the notion of dominators is needed
a node n is dominated by node m iff, for all paths π from the
root to n, m is also in π
the (unique) immediate dominator of n is the closest
dominator of n

i.e., with the minimum path to reach n
also stated as: the dominator of n which does not dominate
any other dominator of n

dominator tree: there is an edge (s, t) iff s is the immediate
dominator of t

for all reachable nodes there is exactly one immediate
dominator

post-dominators (also forward-dominators): same definition,
but in the reverse graph

an exit node must be present: all paths from there to the
exit...



Dominators



Control Dependence

Back to the control dependence tree: given nodes s, t, we
have that (s, t) is an edge iff t is control dependent on s

To define when t is control dependent on s, the following
holds:

t is reached on all (finite!) execution paths

then, t is control dependent on the root only
it may actually be the root itself

t is reached on some but not all execution paths; then for s
the following must hold:

the outgoing degree of s in the CFG is at least 2
one of the successors of s in the CFG is post-dominated by t
(t may also be a direct successor of s)
s is not post-dominated by t

Complexity is V 3



Control Dependence: Post Dominators

Full immediate post dominators tree

4

3

5

2

1

6



Control Dependence

Proof that B is control dependent on E

Gray region: nodes
post-dominated by
E
Node B has
successors both
within and outside
the gray region
→ E is control-
dependent on B



Control Dependence

Full control dependence tree



Control Dependence Tree, Characteristics

There may be edges going out by two types of nodes only:

the root (A in the example)
nodes in which a choice is done (B in the example)

the outgoing degree in the original CFG is at least 2

If a node (like F) is always reached, then the only dependence
is in executing the unit, i.e. on the root

“always reached”: possibly infinite paths are excluded
in the gcd example, it is easy to modify C, D, E so that it
keeps looping forever
nevertheless, in the control dependence graph F is always
reachable

If a node (like B) makes a choice, then all its “forced” content
(without further branches) is control dependent on B



Data Flow Analysis with Arrays and Pointers

Easy to perform data flow analysis on single variables

When considering pointers and/or arrays, many difficulties
arise

Difficulty 1: definition-use on an array referenced by variables

e.g.: a[i] = 1; k = a[j]; is a definition-use pair iff i == j

too difficult to determine if such a condition is always true,
always false, or sometimes true and sometimes false

Difficulty 2: aliases obtained by full array assigment

e.g., b = a; a[2] = 42; i = b[2]; is a definition-use pair
(or triple?) in Java



Difficulty 3: Arguments Passing

fromCust == toCust? fromHome == fromWork? toHome ==

toWork?


