Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

o Model checking is based on models of the artifact, testing
addresses the artifact
o However, some modeling is often required also for testing
o models for the environment (i.e., what is providing inputs)
o models for plant, when the software is a controller
o in some cases, testing on the final product in its “natural”
environment only may be also dangerous
o e.g., testing of the controller for a flying aircraft
o models of the software itself
o UML diagrams
o control flow diagrams et al. (will be defined in the following)
o help in devising better tests

o May be already available from specifications, or a modeling

phase may be needed %
. FE e

o Compact, i.e., understandable

o often, they are for human inspection
o if models are for some automatic procedure, then they must be
manipulable in the given computational resources

o this is exactly the case for model checking!

o Predictive, i.e., not too simple
o at least be able to detect what is “bad” and what is “good”
o different models may be used for the same artifact, when
testing different aspects
o e.g., model to predict airflow w.r.t. efficient passenger loading
and safe emergency exit

o Semantically meaningful
o given something went bad, we need to understand why
o identify the part with the failure

o Sufficiently general
o not too specilized on some characteristics
o otherwise, not useful
o e.g., a C program analyzer which only works for programs
without pointers

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Given a program, a state is an assignment for all variables in
the program

o including local variables: call stack

o state space: set of all possible states

©

o A behaviour is a sequence of states, interleaved by program
statements being executed

The number of behaviours for non-trivial programs is
extremely huge

o infinite if we do not consider machine limitations
o e.g., integers need not to be represented on maximum 64 bits

©

o An abstraction is a function from states to (reduced) states
o some details are suppressed

o e.g., some variables are not considered %
: | piyrasmy s
\ DELL'AQUILA o

©

Two different states may be considered the same by an
abstraction

o e.g., they differ by some variable, which is abstracted out

©

States sequences may be squeezed

©

Non-determinism may be introduced

o e.g., when a choice was made by considering the value of some
abstracted-out variable

o In model checking, this is done by hand for each system

o here, instead, we will consider some standard models which are
especially tailored for testing
o in some cases, they may be automatically extracted from code

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Clelelonelel rel Jonel I)
OO) 0e)

0OoO0—Ce0
“Coe—eee

(Each circle is a binarv variable..))

o Model close to the actual program source code
o finite by construction

o Resembles old flow diagrams but:

o no different shapes for blocks
o to be used after having written a code, not before

o Often compilators are also able to build the control flow graph

o e.g., gcc —fdump-tree-cfg
o compilators build CFG while compiling to enhance compilation

o Directed graph:
o nodes are program statements
o may also be group of statements or fragments of statements
o edges represent the possibility to go from a node to another
o either by branch or by sequential execution
o max outgoing degree is 2, excluding switches...
o cycles in the code correspond to cycles in the CFG and
viceversa
o paths in the CFG correspond to executions of code and
viceversa
o connected, each path goes from start to finish

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Nodes usually are a maximal group of statements with a
single entry and single exit
o basic block
o i.e., always sequential assignments are grouped together
o in a maximal way

o On the contrary, it may happen that a single statement is
broken down
o because it is not always executed with a single entry and a
single exit
o e.g., the for statement
o e.g., short-circuit evaluation
o e.g., other strange cases: a = (b++7 c++ : ++d);

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

if (...) (switch(...) {
False—"—True
v

DISIM

1 =
2 * Remove/collapse multiple newline characters.
3 .
4 * @param String string to collapse newlines in.
5 * @return String
6 v
7 public static String collapseNewlines(String argStr)
8 {
9 char last = argStr.charAt(0);
10 StringBuffer argBuf = new StringBuffer();
1
12 for (int cldx = 0 ; cldx < argStr.length(); cldx++)
13 {
14 char ch = argStr.charAt(cldx);
15 it ch!l="\n’ ||last!="\n")
16 {
17 argBuf.appendi(ch);
18 last = ¢ch;
19 }
20

) o
return argBuf.toString(); AQUILA 3%

RN
BoR
—
('é*
E%Z

n
w
——

4' public static String collap 1es(String argStr) q

{ b2
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (intcldx =0 ;

cldx < argStr.length();

char ch = argStr.charAt(cldx);
if (ch !="n'

False—~—Tru

argBuf.append(ch);
last = ch;

}

Fa\seﬁl
@ ©
cldx++)

b8 J \\)
DI

NIVERSITA DISIM
GLI STUDI ey
LL'AQUILA

return argBuf.toString(); ELAGUIL

}

o Let P be a (part of a) function or procedure for which testing
must be performed
o white-box testing: we know the code of P as a sequence
C(P) = (h,...,I) of statements
o we assume P is written in some imperative language
o we assume that complex statements in C(P) are already
broken down in parts
o short-circuited conditions, inline increments,
function/procedure calls...
o in the collapseNewlines example, k = 12
o 9 statements, declaration included
o but the for is split in 3 and the if is split in 2

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Let g = (i1,...,im) be a grouping for the statements of C(P)

o 1<jj<ijpp<kforallj=1,...,m—1

o eg., for g = (3,5,10) we will consider three blocks:

o the first 3 statements, then other two statements, and finally
the remaining 5 statements

o we will call g granularity for a given C(P)
o Of course, granularities must comply with code

o no flow branches (if, while, etc) inside a block /; 1 ... /;,,
o Usually, maximal granularities are chosen

o from a flow branch (or starting point) to another flow branch

(or ending point)
o in the collapseNewlines example, g = (4,5,7,8,10,11,12)

| UNIVERSITA DISIM
\ | DEGLISTUDI unes s
\ DELLAQUILA]

©

©

A CFG for a program P with granularity g is a graph
G= (V E)s.
V= {< —1+1- gi>|i:17"'7‘g|}

o with go =0
o nodes are basic blocks and |V| = |g|

o E={(u,v)|u,ve VA control flow from last statement of u
and first of v may take place}
Typically, nodes v; € V are labeled with the corresponding
basic block (lg, ,+1.../g)
Typically, edges (u, v) € E may be labeled by a boolean value
if flow from u to v is conditioned
o last statement of v is an if or a while

o and similar, e.g., for, until etc

In some cases, some alphanumeric label is ad J‘t‘q.‘@‘%se @ o
references B i ;

o Linear code sequences and jumps
o maximal sequences of consecutives statements
o may be directly derived from a CFG
o In a nutshell: all sequences of consecutive basic blocks

o while a basic block cannot contain branches, LCSAJ can
o while you can go back in a CFG, you cannot go back in a
LCSAJ

o see example: no b7 — b3
o thus, conditional branches create overlapping LCSAJs
o basic blocks cannot overlap
o Typically, there are 4x more LCSAJs than basic blocks
o no closed formula for the number of LCSAJs, must apply the

algorithm o
\ RESHLRTNE! ;

4' public static String collap 1es(String argStr) q

{ b2
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (intcldx =0 ;

cldx < argStr.length();

char ch = argStr.charAt(cldx);
if (ch !="n'

False—~—Tru

argBuf.append(ch);
last = ch;

}

Fa\seﬁl
@ ©
cldx++)

b8 J \\)
DI

NIVERSITA DISIM
GLI STUDI ey
LL'AQUILA

return argBuf.toString(); ELAGUIL

}

From
entry
entry
entry
entry
X
JL
jL
jL

bl
bl
bl
bl

Sequence of Basic Blocks

b2
b2
b2
b2

b3
b3
b3
b3

b3
b3
b3

LELE EEZ

b6

b6

b7

b7

b8

To
1X
T
JE
jL
return
1T
JE
jL

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

o Look at the CFG (also the code, but it is easier in the CFG)
o You can go on till when you are forced to stop
o you are forced to stop when, w.r.t. the code, you have to go
more than a step further, or simply back
o You can stop also if there is the possibility to not going in the
following step
o Let G =(V,E, L, L) be a labeled CFG

o Ly:V = Ly,Ly: E— Lg are two bijective labeling functions
for nodes (basic blocks) and edges, respectively
o no really need of having the labeling function: it simply makes

the LCSAJ more readable
\ BEGLISTUR! ;

1 =
2 * Remove/collapse multiple newline characters.
3 .
4 * @param String string to collapse newlines in.
5 * @return String
6 v
7 public static String collapseNewlines(String argStr)
8 {
9 char last = argStr.charAt(0);
10 StringBuffer argBuf = new StringBuffer();
1
12 for (int cldx = 0 ; cldx < argStr.length(); cldx++)
13 {
14 char ch = argStr.charAt(cldx);
15 it ch!l="\n’ ||last!="\n")
16 {
17 argBuf.appendi(ch);
18 last = ¢ch;
19 }
20

) o
return argBuf.toString(); AQUILA 3%

RN
BoR
—
('é*
E%Z

n
w
——

4' public static String collap 1es(String argStr) q

{ b2
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (intcldx =0 ;

cldx < argStr.length();

char ch = argStr.charAt(cldx);
if (ch !="n'

False—~—Tru

argBuf.append(ch);
last = ch;

}

Fa\seﬁl
@ ©
cldx++)

b8 J \\)
DI

NIVERSITA DISIM
GLI STUDI ey
LL'AQUILA

return argBuf.toString(); ELAGUIL

}

From
entry
entry
entry
entry
X
JL
jL
jL

bl
bl
bl
bl

Sequence of Basic Blocks

b2
b2
b2
b2

b3
b3
b3
b3

b3
b3
b3

LELE EEZ

b6

b6

b7

b7

b8

To
1X
T
JE
jL
return
1T
JE
jL

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA :

o Let G =(V,E, Ly, Ly) be a labeled CFG

o The LCSAJ associated to G is
I(G) = {(/1,627 /3> | h,s € Le, by € ET/} s.t.:

o Iy arrives to the first statement of /5
o thatis: if L;'(h) = (u,v), then £» begins with L;(v)

o I3 exits from the last statement of /5
o thatis: if L;'(k) = (u,v), then £, ends with L;(u)

o fp = vi...v, contains consecutive basic blocks of C(P)

connecting / to k3, that is:

o v; and vj;1 are consecutive basic blocks both in G and in the

source code forall i =1,...,n—1
o v, is either followed by a control flow jump or it is the end of
the unit

o vy is either the beginning of the unit, or the destination of

backward control flow jump, or the uniqug de ination o o
forward control flow jump . BEREASLIEL Zer

From
entry
entry
entry
entry

o bl is the start; b3 and b8 are destinations of control flow
jumps

o also b6 and b7, but they are also reachable from b5 and b6

o thus, LCSAJs can start from one of them

o Starting from one of these, one different LCASJ each time
you see a branch

o Many overlapping; they are combined in act

Sequence of Basic Blocks

b2
b2
b2
b2

b3
b3
b3
b3

b3
b3
b3

%

return
jT
JE
jL

o so that ending and starting points c0|nC|de

g .

LCSAJ(C) {
W < getStartingBlocks (C);
L «— o;
for v ¢ W {
H «+— @;
DFSLCSAJ(C, v, @);
}

return L;

3

DFSLCSAJ(C, v, S) { // C=(V,E)

H +~ H U {v}; § « push(S,v);
N <~ {weV]|(v,w)€E}; // successors of v
if (v+1¢NVIN>1) A (|S|>1VN=2g) A
Vi=1,...,|S|-1.85[i]=S[]-1

L « LU{S};
for we N {

if (wéH)

DFSLCSAJ(C, w, S);

}
S « pop(S);

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

getStartingBlocks (C) {
let C=(V,E,s);
H Vi,V « 2,9,0;
allStartingBlocks(V ,E, s);
H «— @;
V, < correctStartingBlocks(V,E, V,);
return {s}UViUV;,;
}
allStartingBlocks(V,E, v) {
H +« H U {v};
for weV s.t. (v,w)eE {
if (w<v) Vi « Vi U {W},
else if (w#v+1) WV, « VWV, U {w};
if (w¢ H) allStartingBlocks(V,E, w);

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

correctStartingBlocks(V,E, v) {
H +« H U {v};
for weV s.t. (v,w)eE {
if (w=v+1 A we W)
V2 — V2 \ {W},
if (wé¢H)
correctStartingBlocks (V , E, w);

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o CFG is typically intraprocedural; call graphs are
interprocedural

© © 06 06 o0 o

simply a graph where nodes are defined functions

there is an edge from £ to g iff £ may call g

order of calls is not important

thus, they may contain calls which are actually never made
sometimes arguments are made explicit

number of paths inside a call graph may be exponential, even
without recursion

public class C {

public static C cFactory (String kind) {

if (kind ") return new C();

if (kind S™") return new S();

return null;
}
void foo() {

System.out.printin("You called the parent’s method");
}

public static void main(String args]) {
(new A()).check();

}
}
class S extends C {
void foo() {
System.out.printin("You called the child’s method");
}
}
class A {
void check() {
C myC = C.cFactory('
myC.foo();
}
}

check()

S.foo C.cFactory(String)

C.foo

DISIM

1 public class Context {

2 public static void main(String args]) {
3 Context c = new Context();

4 c.foo(3);

5 c.bar(17);

5 }

7

8 void foo(int n) {

9 int]] myArray = newint[n];
10 depends(myArray, 2) ;

"

12

13 void bar(int n) {

14 int]] myArray = newint[n];
15 depends(myArray, 16) ;

16

17

18 void depends(int[] a, intn) {

19 a[n] = 42;

20

21}

C.foo C.bar C.bar(17)

DISIM

l

C.depends(int[3],a,2)

S

C.depends

C.depends(int[17],a,16)

A
(1 context: A)
B C
A A
(2 contexts: AB, AC)
D E
A A
(4 contexts: ABD, ABE, ACD, ACE)
F G
A y
(8 contexts: ...)
H |

\/ ‘ ‘ UNIVERSITA DISIM
' J DEGLISTUD! ity
(16 calling contexts: ...) \ A DELL'AQ :

o Calls between different functions/methods, important, e.g.,
for the previous slide
o Simply following calls and returns in a CFG-like way is not
practical: too many spurious paths
o (AX,Y,B),(C,X,Y,D) are ok
o (AX,Y,D),(C,X,Y,B) are impossible

bar

‘ UNIVERSITA DIsIM

o To solve the problem, context is needed
o if sub is called by A, it must return in B
o Number of contexts is exponential

o may be ok for a small group of functions, e.g., a not-too-big
single Java class

o Some special cases exist
the info needed to analyze the calling procedure must be small
e.g., proportional to the number of called procedures
the information about the called procedure must be
context-independent
example: declaration of exception throwing in Java

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

©

©

©

©

©

A graph where nodes are “modalities” of a given software

©

Edges are labeled with input/output

o A priori: used to design the software

o Will be exploited to get good inputs for testing
LF. Other char
apend
LE

W within

line

Other char-
append

Unix only uses LF, DOS uses
CR+LF
LF mandatory after CR, node

emit
. name not accurate
I d . .
emit: write accumulated text to
EOF,

output

LF |CR | BOF | ofher SV =/ —
e | e/emit | I/emit | d/- w / append \ | BECEAGUILA g
w | e/emit | I/emit | d/emit | w/append &

I {el- d/- w / append

Other char
append

EOF
CR emit

/** Convert each line from standard input */
void transduce() {

1
2
3
4 #define BUFLEN 1000

5 char buf[BUFLEN]; /* Accumulate line into this buffer "/
6

7

8

int pos=0; /* Index for next character in buffer */

char inChar; /* Next character from input */

10 int atCR = 0; /* 0="within line", 1="optional DOS LF"*/

12 while ((inChar = getchar()) = EOF) {

13 switch (inChar) {

14 case LF:

s it (aiCR) { /* Optional DOS LF Empty buffer: !'pos && !'atCR
16 alCR = 0;

17 }else { /* Encountered CR within line */ W'th”’] I|ne pos)O && | atCR
18 emit(buf, pos);

N N Looking: atCR

21 break; .

2 cmeon Other char: default

23 emit(buf, pos):

24

25

26

27 default:

28 if (pos >=BUFLEN-2) fail("Buffer overflow");

29 buf[pos++] = inChar;

30 } /" switch

3

a2 if (pos > 0) { et
33 emit(buf, pos);

“ o}

s}

o A Mealy machine is a 6-tuple M = (5,50, 2,A, T, G)
consisting of the following:

a finite set of states S

a start state (also called initial state) Sp € S

a finite set called the input alphabet

a finite set called the output alphabet A

a (deterministic!) transition function T : S x ¥ — S mapping

pairs of a state and an input symbol to the corresponding next

state

o an output function G : S X ¥ — A mapping pairs of a state
and an input symbol to the corresponding output symbol.

© ©6 06 0o o

o Given an input w € *, M outputs o € A*, |o| = |w]| s.t.
o Vi=1,..., |W‘ S = T(S,'_l7 W,') Noj = G(S,'_l, W,')

o S5 = 50 f ‘
UNIVERSITA Dism
|] DEGLESTUD] it e
\ DELL'AQUILA 2

©

CFGs, FSMs etc are a good way to represent control flow
What about data flow?

Again, ideas are borrowed from compilers theory

o data flow is used to detect errors for type checking, or also for
code optimization

o also used in software engineering tout court, for refactoring or
reverse engineering

©

©

©

As for testing, useful for:
o select test cases based on dependence information
o detect anomalous patterns that indicate probable programming
errors, e.g. usage of uninitialized values

o Definition of a variable: either its declaration or a write access

o

o

for languages like Python, mostly write access...
write access may be:
o left part of an assignment
o parameter initialization in function calls
o other special cases such as ++ construct in C-like languages

o Use of a variable: a read access

Qo

right part of an assignment

o variable passed in function calls
o variable used without being modified

o The

same line of code may be both definition and use

typically, nearly all lines either define and/or use at least one
variable

++ construct is both definition and use on t%m Ry,aria[,s.ﬁ ‘

© 0 N o e W N =

public int ged(int x, inty) {

int tmp;

while (y = 0) {
tmp=x%Yy;
X=Y;
y =tmp;

}

return x;

/*A:defxy Y/

/* deftmp */
/*B:usey Y
/* C: use x,y, def tmp */
/" D:usey defx 7/
/¥ E:usetmp, defy */

/*F:usex ™

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

©

©

()

©

©

A variable has only definitions? it is useless
A variable has only uses? there is some error

For a given definition, there may be many uses, and viceversa

o of course, for a fixed variable
o see y in the previous slide: 2 definitions, 3 uses...

A definition-use pair combines a given use with the closest
definition
o w.r.t. some possible execution (path) of the code

Other definitions behind the closest one are killed

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o Consider an execution path m = s1,..., 5!
o s; are statements and s;, s;y1 may be contiguous in 7 iff the
control flow may go from s; to s;11
o e.g., from the previous code: 1,2,3,8,9 and
1,2,3,45,6,7,3,4,5,6,78,9 and 1,2,3,4,5,6,7,3,4
o if we consider the corresponding CFG G, then 7 is a path of G
o Consider an execution path m = s1,..., sy, and a variable v:
if 3k. use(v) € si, let L ={¢ < k| def(v) € s¢}
(d, u) = (max L, k) is a definition-use pair
vg reaches u or vy is a reaching definition of u

sy is a killed definition if £ € L A £ # max L
% By -

© © 06 0o o

the sub-path sy ... sk is definition-clear

— publicint god

inttmp;

public int ged (int x, int y) {

use={}

def = {x, y, tmp }

while (y!=0)
{

ﬁFa\s

True

def =)
use = {y)

dof = {tmp)
use ={x y}

return x;

def =0}
use = {x}

In the path from A to E,
definition-use pair for tmp is (C,
E)

Early definition in A is killed

| UNIVERSITA pisim
\ | DEGLI STUDI
\ DELL'AQUILA ,

o Use-definition pairs defines a direct data dependence, can be
used to build the data dependence graph

o As in CFGs, nodes are statements, possibly grouped with
some granularity
o here, granularity on nodes may be tuned according to needs:
o single expressions (especially for compilers)
o statements (figure below)
o basic blocks
o etc

o There is an edge (s, t) with label v iff (s, t) is a definition-use

pair for variable v (for some path)
% P -

© 0 N o e W N =

public int ged(int x, inty) {

int tmp;

while (y = 0) {
tmp=x%Yy;
X=Y;
y =tmp;

}

return x;

/*A:defxy Y/

/* deftmp */
/*B:usey Y
/* C: use x,y, def tmp */
/" D:usey defx 7/
/¥ E:usetmp, defy */

/*F:usex ™

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

Errata corrige: D—C with x, E—D with y, E—»B with y
Note that definition of use of x in F may be either A or D

public int ged(int x, int y) { A
int tmp;
T

T
A S e e N
! v v Y !
! Gmp=x%y (C}-\\ ! |
T |
| tmp __y’ ! i !
: v :y I !
L (y=tmp & 7 |
: / Y : : :
| | | | | |
A A 4 A SN 4 |
[while (y1=0) B (x=y; O
{ ! |
N____X i

[retum X; F Lo

~ v

Algorithm Reaching definitions

Input: A control flow graph G = (nodes, edges)
pred(n) = {m € nodes | (m,n) € edges}
succ(m) = {n € nodes | (m,n) € edges}
gen(n) = {v, } if variable v is defined at n, otherwise { }
kill(n) = all other definitions of v if v is defined at n, otherwise {}

Output: Reach(n) = the reaching definitions at node n

for n € nodes loop
ReachOut(n) = {} ;
end loop;
workList = nodes ;
while (workList # {}) loop
// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList\\ {n} ;

oldVal = ReachOut(n) ;

// Apply flow equations, propagating values from predecessars
Reach(i) = Upcpred(n) ReachOut(m);
ReachOut(n) = (Reach(n) \ kill(n)) Ugen(n) ;
if (ReachOut(n) # oldVal) then
// Propagate changed value to successor nodes
workList = workListU succ(n)
endif;
end loop;

DISIM

— publicint god F—

A
public int ged (int x, int y) {
inttmp; def = {x, y, tmp }
use={}
A— o
‘{NME(Y!ED) v Bﬁ B% {XA7XD7tA7 thyanA}
ﬁFa\s = el C— {XAaXDa ta, tC»)’Ea)/A}
D— {XA7XD7 tC;YE7YA}
g m— E— {XDv.yA7yE7tC}

use ={x y}

F— {XAaxDv ta, tC7yAayE}

Xa is not in E

Xa, xp both in F

does not consider actual uses,

e.g., tatcisinF

return x; Q/ ‘ UNIVERSITA DISIM
\ | DEGLI STUDI
} \ DELL'AQUILA !
def =0} ,
use = {x} <

y =tmp;

o Other uses of the control flow graph: available expressions
o again, mutuated from compilers: when a given expression can
be evaluated just once and stored for later use
o testing: available expressions should be always tested
o An expression E is:

o generated when its value is computed
o killed when at least one of the variables involved changes its
value

o not necessarily by assignments, could be a side effect of a
function call...

o available at some point p iff, for all paths 7 from start to p, E
is generated but not subsequently killed in

o Algorithm is very similar to the reaching definitions one:

o for available expressions, is a forward all-pa palysis
o for reaching definitions, is a forward any-path alysis’ “ e

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Statement Available Expressions

)

a=>b+c

{b+c}
b=a-4d

fa-d)
cC=b+c

{a - d}
d=a-4d

0 -

Algorithm Available expressions

Input: A control flow graph G = (nodes, edges), with a distinguished roct node stari.
pred(n) = {m € nodes | (m,n) € edges}
succ(m) = {n € nodes | (in,n) € edges}
gen(n) = all expressions ¢ computed at node n
kill(r) = expressions e computed anywhere, whose value is changed at n;
kill(start) is the set of all e.

Output: Avail(n) = the available expressions at node n

for n € nodes loop
AvailOut(n) = set of all e defined anywhere ;
end loop;
workList = nodes ;
while (workList # {}) loop
// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList', {n} ;
oldVal = AvailOut(n) ;
// Apply flow equations, propagating values from predecessors
Avail(n) = Nepredin AvailOut(m);
AvailOut(n) = (Avail(n)\ kill(n)) Ugen(n) ;
if (AvailOut(n) # oldVal) then
// Propagate changes lo successors
workList = workList LU succ(n)
endif;
end loop;

DISIM

Algorithm Reaching definitions

Input: A control flow graph G = (nodes, edges)
pred(n) = {m € nodes | (m,n) € edges}
succ(m) = {n € nodes | (m,n) € edges}
gen(n) = {v, } if variable v is defined at n, otherwise { }
kill(n) = all other definitions of v if v is defined at n, otherwise {}

Output: Reach(n) = the reaching definitions at node n

for n € nodes loop
ReachOut(n) = {} ;
end loop;
workList = nodes ;
while (workList # {}) loop
// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList\\ {n} ;

oldVal = ReachOut(n) ;

// Apply flow equations, propagating values from predecessars
Reach(i) = Upcpred(n) ReachOut(m);
ReachOut(n) = (Reach(n) \ kill(n)) Ugen(n) ;
if (ReachOut(n) # oldVal) then
// Propagate changed value to successor nodes
workList = workListU succ(n)
endif;
end loop;

DISIM

— publicint ged F—

public int ged (int x, int y) {
inttmp;

def = {x, y, tmp }
use={}

while (y!= 0) B
{

A— o
SR B— o

C— o

oo =) D— o
E— o
F— o

return x; Q/
}

def =0}
use = {x}

DISIM

o Control dependence tree
o models the effects of conditional branches
o nodes are statements, but again granularity may change
o to define edges, the notion of dominators is needed
o a node n is dominated by node m iff, for all paths 7 from the
root to n, mis also in 7
o the (unique) immediate dominator of n is the closest
dominator of n
o i.e., with the minimum path to reach n
o also stated as: the dominator of n which does not dominate
any other dominator of n
o dominator tree: there is an edge (s, t) iff s is the immediate
dominator of t
o for all reachable nodes there is exactly one immediate
dominator
o post-dominators (also forward-dominators): same definition,

but in the reverse graph A | s o
o an exit node must be present: all paths fr here'to the o

exit...

IVERSITA

SLISTUDI
L'AQUILA

o Back to the control dependence tree: given nodes s, t, we
have that (s, t) is an edge iff t is control dependent on s
o To define when t is control dependent on s, the following
holds:
o tis reached on all (finite!) execution paths
o then, t is control dependent on the root only
o it may actually be the root itself
o tis reached on some but not all execution paths; then for s
the following must hold:
the outgoing degree of s in the CFG is at least 2
one of the successors of s in the CFG is post-dominated by t
(t may also be a direct successor of s)
s is not post-dominated by t

o Complexity is V3 %

© 06 0 ©

Full immediate post dominators tree
—{ public int gcd F—

‘ publicint ged(int x, inty) { (Aw o’
lint tmp; l ",

—(while (y 1= 0){ (B)— o

i
(tmp=x%y; © ° °
P)
D
(y = tmp; E—
N (return x;} ® °

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Proof that B is control dependent on E

—{ public int gcd F—
publicint gcd(int x, int'y) { A .
\int tmp; Q Gray region: nodes
l post-dominated by
—(while (y 1= 0){ (B)— E
l Node B has
Qmp =x%y; (C)
i SUCCessors both
G=y; D) within and outside
the gray region
(y = tmp; E— — E is control-
) dependent on B
_ﬂ/retum x;} /F)

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

Full control dependence tree

public int gcd(int x, int y) { (A
int tmp;

/ X
L{while (y'=0) @ Geturn X; \EB

ftmp=x%y; (C) <y=tmp; @

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

o There may be edges going out by two types of nodes only:

o the root (A in the example)
o nodes in which a choice is done (B in the example)

o the outgoing degree in the original CFG is at least 2
o If a node (like F) is always reached, then the only dependence
is in executing the unit, i.e. on the root

o “always reached”: possibly infinite paths are excluded
o in the gcd example, it is easy to modify C, D, E so that it

keeps looping forever
o nevertheless, in the control dependence graph F is always

reachable
o If a node (like B) makes a choice, then all its “forced” content

(without further branches) is control dependent on B
% pma -

©

©

©

©

Easy to perform data flow analysis on single variables

When considering pointers and/or arrays, many difficulties
arise
Difficulty 1: definition-use on an array referenced by variables
o eg.: alil = 1; k = a[j]; is a definition-use pair iff 1 == j
o too difficult to determine if such a condition is always true,
always false, or sometimes true and sometimes false

Difficulty 2: aliases obtained by full array assigment
o eg,b=a; a[2] = 42; i = b[2]; is a definition-use pair
(or triple?) in Java

fromCust == toCust? fromHome == fromWork? toHome ==
toWork?

public void transfer (Custinfo fromCust, Custinfo toCust) {

PhoneNum fromHome = fromCust.gethomePhone();
PhoneNum fromWork = fromCust.getworkPhone();

PhoneNum toHome = toCust.gethomePhone();
PhoneNum toWork = toCust.getworkPhone();

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

