
Software Testing and Validation
A.A. 2025/2026

Corso di Laurea in Informatica

Testing Methodologies

Igor Melatti

Università degli Studi dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

From Model Checking...

... to Testing

Testing AKA Get the Inputs

Model Checking main difficulty:

choose the most suitable model checker
understand the system and model it within the model checker
input language
understand the properties of the system and specify them
within the model checker temporal logic

Testing main difficulty: which inputs should I use?

slightly less difficult: how do I observe/check the result?
also running tests may be an issue

Recall that inputs are theoretically infinite and practically too
many

a function taking an input integer...
thus also important: which input coverage am I achieving?

Testing AKA Get the Inputs

There are exeptions:
programs without inputs

e.g.: always returns the same constant, or a constant
depending on previous executions
but one input is always present: launch the system...

programs taking enumerated inputs only

e.g.: a function taking two booleans

In the vast majority of cases, too many inputs to consider
them all, must somehow select a “meaningful” subset

i.e., so that errors, if present, are likely to be detected

No general tools available, only some methodologies

good practices
some tools may be used for selected parts of the testing phase

Terminology

Program or System Under Verification (SUV)

could also be a part of a “program”
could also be a system with many processes

Test case A set of inputs, execution conditions, PASS/FAIL
criterion

input is anything the program to be tested can
get

command-line arguments, files, interrupts,
mouse coordinates, sensors...

execution condition: information on the test
execution

typically, input timing: whether all input must
be provided at the start or not
e.g., a sequence of interrupts with given timing

PASS/FAIL: some way to check
e.g.: output must be equal to this expected
result

Terminology

Test case specification A formal or informal description of a test
case

“the input is two words” → a valid test case will
be “goodbye all”

Test suite a set of test cases

Test execution running the test cases on the program

Test obligation a property for test case specifications

e.g., “all words must be 7 letters long”

Adequacy criteria some property a test suite must fulfill

e.g., “all test cases must contain at least 30
inputs”
could also be seen as a set of test obligations
namely, the adequacy criterion is satisfied if
every test obligation is satisfied by at least one
test case in the suite

Terminology

Function Mathematical concept (set of pairs)

Java Function Syntactical function in Java language

works with all other languages, of course

Unit Smallest unit of work in the program

typically (but not always) close to single
functions or single classes
here, “unit of work” roughly refers to:

the smallest increment by which a software
system grows or changes
the smallest unit that appears in a project
schedule and budget
the smallest unit that may reasonably be
associated with a suite of test cases (unit
testing)

Terminology

Independently Testable Feature (ITF) Some functionality of the
program which can be isolated from the other
functionalities

not necessary at code level: here, it is testing
level
e.g., a program or a function may be able to
both sort and merge files
however, sorting and merging may be ITF
granularity depends on the program: from
individual functions, to features of an integrated
system composed of many programs
going through individual classes and libraries
when detected at unit testing, an ITF is usually
a function/method or a class, but not only unit
testing exists...

Testing Timeline

1 Unit testing

2 Integration testing

3 System testing

4 Acceptance testing (validation)

5 Regression testing

Testing Main Techniques

Two main overall methodologies:
functional testing: tester knows specs but not the code

also known as black-box testing

structural testing: tester exploits code knowledge

also known as white-box testing and glass-box testing
includes data-flow testing

Applicable to all types of testing, from unit to acceptance

Orthogonal and/or auxiliary techniques:

combinatorial testing
model-based testing

Typical Setting for Testing

Starting point: decide which is the SUV

not only up to the TE (Test Engineer)
must be also decided in accordance with developers and
considering budget

SUV may be:

a simple stand-alone program (unit + acceptance testing)
a system composed by a few interacting components (unit +
integration + acceptance testing)
a prototype of a complex system with many interacting
components (unit + integration + acceptance testing)
a complex system tout court (all testing)

for cyber-physical systems, this might include simulators

regression testing for something already tested

A SUV always includes at least one ITF

Acceptance and regression testing will be covered later, as
they require special methodologies

Typical Setting for Testing

1 Given a SUV, the TE must develop:

a set of test case specifications (test suite)
test adequacy for the overall test suite

2 TE generates the test cases from the test case specifications
3 TE runs the test and collect the results

test are instrumented so as to also check adequacy criteria

4 If adequacy criteria are not met, revise test case specifications
going back to step 1

5 Developers correct all discovered errors and TE starts again
from 3

no need to wait for the step 4: as soon as an error is
discovered, it can be corrected
it may happen that specifications should be updated too →
back to step 1

Example (White-Box Testing)

Example (Black-Box Testing)

We have a function taking one string s as an input and returning a
string s ′ as an output.

Informally: s ′ is the same as s, but consecutive spaces are
collapsed into one space.

Formally: let S = {(i , k) | si = ′ ′ ∧ (i > 1→ si−1 ̸= ′ ′) ∧ k >
1 ∧ ∧k−1

n=1si+n = ′ ′}. Let
S ′ = {(j , k) | ∃(i , k) ∈ S ∧ j = i −

∑
(i ′,k)∈S | i<i ′(k − 1)}. Let

σ(S , j) =
∑

(i ,k)∈S | i<j(k − 1).

Then, for all j = 1, . . . , |s| −
∑

(i ,k)∈S(k − 1), s ′j = sj+σ(S ′,j)

Example

Test case specification 1: all input should be at least 10
characters long

Test case specification 2: all input should contain at least 3
spaces

Test obligation 1 (black-box): the test suite should contain an
empty string

Test obligation 2 (white-box): in the if, the first clause
should always evaluate to true and the second to false at least
once (and/or viceversa)

We generate the test suite following specifications

We check if obligations are ok

Example

Test obligation (coverage): all statements should be executed
at least once

What happens if the code has some unreachable code? No
test suite is adequate!

Quantitative measures could be used

Suppose an adequacy criterion generates n obligations...

... if m of such obligations are met by the test suite, then it is
100m

n % adequate

Functional Testing

Typically, we do not only have a program: we also have a
functional specification of its behaviour

in some logic, or even in natural language (starting comments
of a function...)
requirements are expressed by users and specified by software
engineers

Functional specifications are the base for functional testing

More precisely, functional test case design is about deriving
test cases from functional specifications

The structure of the program is completely ignored

e.g., “all ifs must be evaluated at least once” is not
functional testing

Also called black-box testing

Cheaper than white-box or glass-box testing

A Systematic Approach for Functional Testing

A Systematic Approach for Functional Testing

Step 1 is to identify “separated” features

lack of documentation may make this difficult

Identify Independently Testable Features in unit testing

if it is a single function/method, probably just one ITF is
possible
though there are functions where some parameters may trigger
completely different behaviours

e.g., a Python function taking a list and a further argument
telling what to do (average, summation, standard deviation,
...)

if it is a class, many ITFs are identifiable

e.g., for a String class, one ITF may be string creation and
modification, another ITF may be string searching, ...

A Systematic Approach for Functional Testing

Identify Independently Testable Features in integration testing

for an FTP software, given the two units which directly
exchange through a socket, an ITF may be the correct sending
and receiving of any stream of bits

Identify Independently Testable Features in system testing

web page specification: search the DB, update the DB, provide
info from the DB
sub-functionalities: edit a pattern to search the DB, provide a
form for registering, ...
rather than having a test case for multiple functionalities, it is
better to devise separate test cases for each functionality of
the system
different from module decomposition: program users
perspective vs. developers

recall that a program user may also be another program
requires detailed specification

Functional Testing

Functional testing techniques in brief:

input: ITF specification
output: test cases specification

Core of the methodology: partitioning the possible behaviors
of the program into a finite number of homogeneous classes

not an actual partition, as they may overlap
“homogeneous” in a broad sense, depends on the program
often requires to integrate program specifications, good for
project documentation!

Human effort required, similar to modeling in model checking

in few cases, if program specifications are already formal, the
work is easier
e.g., a model checking specification may be directly translated
in test cases

Functional Testing

A function with two 32-bit integers has 264 ≈ 1021 possible
different inputs

Given budget limitations, only an extremely tiny fraction of
inputs may be tested

limitations are both in money and time

Random sampling: choose test cases from a random
distribution

of course, depending on the program specifications
e.g., for a function taking 3 floating points and a string, we
sample from R3 × A∗, if A is the alphabet

To do: build a program that generate test cases by sampling
the given input space

by definition of test case, this must also include a function to
check the result

Random Testing

Suppose that we have to test an ITF with 2 inputs: an integer
i and a floating point f

Suppose that testing budget allows testing to last T seconds,
and that each run of the ITF requires t seconds: then,
R =

⌊
T
t

⌋
runs are allowed

we are posponing the problem of checking the result

Example of test case specification: for each variable,
S = ⌊

√
R⌋ independent and equally spaced samples are taken

for i , take all values from I = {m + jl | j = 0, . . . ,S − 1},
being m (M) the minimum (maximum) value for i and
l =

⌊
M−m

S

⌋
analogous for f , defining set F
take all values from I × F for testing
very rough, extremely huge gaps, no functional specification
taken into account

Random Testing

Make it random: use some S ′ >> S , e.g., S ′ = kS with
k = 100

thus obtaining I = {m + jl | j = 0, . . . ,S ′ − 1}, being m (M)
the minimum (maximum) value for i and l =

⌊
M−m
S′

⌋
then, choose at random S (different) elements from I,
obtaining I ′
analogous for F ′ ⊆ F
take all values from I ′ ×F ′ for testing
much better, no huge gaps (simply increase k), but still does
not consider ITF specification

What about variable-length arguments, e.g., we also have a
string s as a third parameter?

to start with, S = ⌊ 3
√
R⌋

again, use S ′ = kS with k > 1
first decide some maximum length M, then take S values from
S ′ = {RandomStr(jl) | j = 0, . . . ,S ′ − 1}, being l =

⌊
M
S′

⌋
and

RandomStr(d) a function creating a string of size d with
random printable characters

From Pure Random Sampling to Partitioning

Simply random is not a good choice, better a kind of
“guided” random

Best way to guide is perform partitioning of input space

not an actual partition: the union is the whole, but partitions
may have some non-null intersection
however, “partitioning” is standard terminology for testing

Typical desired property: there does not exist a partition
containing both failure and non-failure inputs

In fact, by random sampling from each partition, we will for
sure consider all failure inputs

partition of failure inputs only → some failure will be detected

Of course, the property is desirable but impossible to obtain in
the general case

Partition Testing

Partition testing: any method that partition the input spaces
in a finite number of partitions as seen above

Functional testing: partition testing where the partition
algorithm is based on the program specification

also called specification-based partition testing

Generating test cases is more expensive: we also have to
guarantee they belong to partitions

pure random does not check this, thus it is simpler

Fewer test cases generated in the same amount of money and
time

However, it is typically more effective in finding failures

A Systematic Approach for Functional Testing

A Systematic Approach for Functional Testing

For each ITF identified, a number of inputs are needed

e.g., a registration on a Web page (single ITF) needs name,
surname, age, ...
in some cases, some input may be hidden and must be
explicited

e.g., when checking if some name is in a database, the input is
not only the name, but also the database!

Note that inputs may be grouped, but here we consider them
flattened

we are in unit testing, and a method takes an instance of a
class A as input? recursively consider all members of A
till when we are in basic data types: numbers, characters and
strings

More on Flattenization

To flatten a class, the constructor method must be considered

if more than one constructor is present, consider the one with
most arguments
if no constructor is present, this typically denotes some flaw
to go on anyway, directly consider class members
if no class member, why pass it as an argument? there should
be a flaw, or it may be neglected

Recursively flatten each constructor argument

till when we are in basic data types: numbers (including
enumerations and booleans...), characters and strings

Arrays may be considered as one argument

methodologies will typically operate on each element separately
this includes recursive classes or structures representing lists

e.g., ArrayList in Java

A Systematic Approach for Functional Testing

For each inputs identified, a choice is needed between:
1 identify representative values

meaningful fixed values for inputs are directly enumerated

2 build a model

some model is built which generates values for input
e.g., a grammar may be built, defining the valid values
also an algorithm could be written
or a methodology may be used, as we will do in the following:
Category-Partition and Catalog-based techniques

Both methods try to detect “good” partitions for the state
space

A Systematic Approach for Functional Testing

Combine the values of the different inputs involved

if all of them have been enumerated in the previous step, the
Cartesian product may be used
however, this works for few inputs with few values, as the size
explodes
e.g., 6 inputs with 6 values each results in about 50k tests

Thus, we need something more clever:

detect illegal combinations
select a practical and meaningful subset of legal combinations

Example: 2 input numbers representing length of a string and
number of special characters

the 0 length + more than 1 special character is illegal

Illegal Combinations: What To Do?

It could be straightforward to think that illegal combinations
of inputs must be always ruled out

However, illegal combinations often have to be tested as well

We may consider two possible cases:
1 the ITF is for the “general public”
2 the ITF is an API, to be invoked by programs

As for case 1, illegal combinations should always be tested

Illegal Combinations: What To Do?

We may consider two possible cases:
1 the ITF is for the “general public”
2 the ITF is an API, to be invoked by programs

As for case 1, illegal combinations should always be tested

generic users may easily feed “wrong” inputs
an error must be returned, not a failure!

As for case 2, it depends

if the ITF is for internal use only, and some assurance of
compliance is present from the specifications, we may rule out
the illegal combination
otherwise, generic programs may be as generic users...

Fuzzing: illegal combinations for system testing, we will be
back on this

A Systematic Approach for Functional Testing

General techniques reducing Cartesian products do not exist

Insights may be present in the documentation/specification

Typical strategies include:

considering a subset of each ITF
considering exhaustive combinations only for selected pairs

The output is a test case specification, but may also be
directly a test case

also an algorithm could be viewed as a test case specification

Finally, generate the test case and instantiate (i.e., run) it

select one or more test cases for each test case specification
scaffolding for the actual run, we will be back on this

Combinatorial Testing

Describes the methodologies to obtain the general approach
for functional testing described above

Two main techniques may be employed

Category-Partition Testing
Catalog-Based Testing

A third technique only deals with the combinatorial part, thus
may be applied to both: Pairwise Combination Testing

Category-Partition Testing

Suppose we have selected an ITF and one (flattened!)
parameter of such ITF

We have to list all of its categories

some characteristic which may differentiate among possible
inputs for that parameter
e.g.: for a string, its length, or the number of special characters
e.g., for an integer, being positive or negative
categories may be defined also for combinations of parameters
(environmental conditions)
e.g.: for a parameter string (pattern) to be found in a text:
number of occurrences
in some cases, the “expected result” category could be added

Category-Partition Testing

Then, we partition each category into choices

in the testing sense: different partitions may have non-empty
intersections

This is done by providing general and coincise rules to each
category

e.g., the length of a string may be 0, 1, between 5 and 20,
greater than 50
e.g., an integer may be negative, 0 or strictly positive

Defining and using properties might help for impossible
combinations

e.g., if the length of a string is 0 the property may be
“property:Empty”
e.g., if the number of special characters is 1, it may be applied
only “if:NonEmpty”

Collapsing Spaces Example

Collapsing Spaces Example

We have a function taking one string s as an input and returning a
string s ′ as an output.

Informally: s ′ is the same as s, but consecutive spaces are
collapsed into one space.

Formally: let S = {(i , k) | si = ′ ′ ∧ (i > 1→ si−1 ̸= ′ ′) ∧ k >
1 ∧ ∧k−1

n=1si+n = ′ ′}. Let
S ′ = {(j , k) | ∃(i , k) ∈ S ∧ j = i −

∑
(i ′,k)∈S | i<i ′(k − 1)}. Let

σ(S , j) =
∑

(i ,k)∈S | i<j(k − 1).

Then, for all j = 1, . . . , |s| −
∑

(i ,k)∈S(k − 1), s ′j = sj+σ(S ′,j)

Collapsing Spaces Example: Category Partition Testing

Suppose we are performing black-box unit testing; in such a
case, we are forced to consider this function as an ITF

inputs are already identified: exactly one string
thus, no problems for combinations...

Let us begin with the characteristics of our lone input
(categorization phase)

length
number of spaces
number of occurrences of consecutive spaces
expected result
min and max number of consecutive spaces
number of consecutive starting/trailing spaces
number of special characters
spaces only

For the partitioning phase, see cases collapse.xls

k-Collapsing Spaces Example

We have a function taking one string s and an integer n ≥ 2 as an
input and returning a string s ′ as an output.

Informally: s ′ is the same as s, but k consecutive spaces, s.t.
k ≥ n, are collapsed into one space.

Formally: let S = {(i , k) | si = ′ ′ ∧ (i > 1→ si−1 ̸= ′ ′) ∧ k ≥
n ∧ ∧k−1

n=1si+n = ′ ′}. Let
S ′ = {(j , k) | ∃(i , k) ∈ S ∧ j = i −

∑
(i ′,k)∈S | i<i ′(k − 1)}. Let

σ(S , j) =
∑

(i ,k)∈S | i<j(k − 1).

Then, for all j = 1, . . . , |s| −
∑

(i ,k)∈S(k − 1), s ′j = sj+σ(S ′,j)

k-Collapsing Spaces Example: Category Partition Testing

For the Category-Partition, let us begin with the
characteristics of the input k (s is as in the previous example)

interval
domain

if the input is provided via a GUI, it could be not an integer...

We also have environmental characteristics, i.e., which look at
both inputs

number of k consecutive spaces occurring in s
expected result

For the partitioning phase, see cases collapse k.xls

Roots of a 2nd Degree Equation

Roots of a 2nd Degree Equation

We have a function taking three floating point numbers a, b, c . It
returns three floating point numbers n, r1, r2.

Formally: n is the number of roots of the equation
ax2 + bx + c = 0. If n = 1, then r1 = r2 is the root, if n = 2 then
r1 > r2 are the two roots, if n = 0 then r1 = r2 = −1.

With details: let R = {x ∈ R | ax2 + bx + c = 0} and
∆ = b2 − 4ac. Then, n = |R|. Furthermore, for ∆ = 0, n = 1 and
R = {ξ}, r1 = r2 = ξ. Furthermore, for ∆ > 0, n = 2 and
R = {ξ1, ξ2}, r1 = ξ, r2 = ξ2 with r1 > r2. Finally, for ∆ < 0,
n = 0,R = ∅ and r1 = r2 = −1.

Roots of a 2nd Degree Equation: Category Partition
Testing

For the Category-Partition, let us begin with the
characteristics of our three inputs separately (categorization
phase)

interval
domain
validity

As for the environment:

interval for ∆

For the partitioning phase, see cases roots.xls

Catalog-Based Testing

Suppose we have selected an ITF and its parameters

Three steps:
1 Identify variables, definitions, preconditions, postconditions

and operations on ITF parameters from the specification
2 Derive a first set of test case specifications from the items

identified above
3 Complete the test case specifications using catalogs

Catalogs are built over time and experience, help in identify
values for a specific class

each software house (and developer/test engineer) has its own
e.g., when an integer is involved, always include a test with
that integer equal to 0

Catalog-Based Testing is a good technique also without
catalogs

on the contrary, using catalog only may not be a good idea
catalogs may also be used in Category-Partition Testing

Catalog Example

Identify Elementary Items of the Specification

From initial specification of a unit to elementary items of
basic types:

Preconditions conditions on input which must be true before
invoking the unit test

may be checked by the unit itself (validated
preconditions)...
or by the outside caller (assumed preconditions)

Postconditions result of execution
Variables input, output or intermediate

Operations performed on input and/or intermediate values
Definitions shorthands in the specification

Derive a First Set of Test Case Specifications

We want to partition the input domain, and we use the
previously collected information for this purpose

for each validated precondition P, we have two classes of
inputs: inputs in which P holds, and inputs in which P does
not hold

a single validated precondition may be split in two or more
parts, if it involves ANDs or ORs

for each assumed precondition P, we only consider input
satisfying P

otherwise, unit behaviour is typically undefined

if a postcondition has a guard, consider the guard as a
validated precondition
if a definition involving variables has a guard, consider the
guard as a validated precondition

Complete Test Case Specifications Using Catalogs

Generate additional test case specifications from variables and
operations

This is done using a pre-existing catalog, to be sequentially
scanned:

for each catalog entry, analyze all elementary items and
possibly add cases

A catalog is typically organized with an entry for each type of
variable or operation

Inside each entry, a distinction is made between input, output
or input/output variables

Then, a suggestion on values to be considered is provided

Different catalogs may be used by different companies

also, in the same company for different application domains

Collapsing Spaces Example

Collapsing Spaces Example

We have a function taking one string s as an input and returning a
string s ′ as an output.

Informally: s ′ is the same as s, but consecutive spaces are
collapsed into one space.

Formally: let S = {(i , k) | si = ′ ′ ∧ (i > 1→ si−1 ̸= ′ ′) ∧ k >
1 ∧ ∧k−1

n=1si+n = ′ ′}. Let
S ′ = {(j , k) | ∃(i , k) ∈ S ∧ j = i −

∑
(i ′,k)∈S | i<i ′(k − 1)}. Let

σ(S , j) =
∑

(i ,k)∈S | i<j(k − 1).

Then, for all j = 1, . . . , |s| −
∑

(i ,k)∈S(k − 1), s ′j = sj+σ(S ′,j)

Collapsing Spaces Example: Catalog-based Testing

For the Catalog-based Testing, let us begin with the
elementary items:

Variables

s: input string
s ′: output string

Definitions

a “space” corresponds to ASCII code 0x20

Assumed Preconditions:

s is a NULL-terminated string of characters

Validated Preconditions: NONE

Collapsing Spaces Example: Catalog-based Testing

Continuing from the previous slide:

Postconditions:

if s does not contain occurrences of n ≥ 2 consecutive spaces,
s ′ = s
otherwise:

for any two non-space characters a, b at position i < j in s,
both a, b are also in s ′ at positions i ′ < j ′

the same holds for space characters, provided they are not
preceded or followed by other space characters
for all maximal substrings of n ≥ 2 spaces at position i in s,
there will be a single space in s ′ at position i ′ ≤ i

Operations

scan s, searching for consecutive spaces
build a new string containing the result
modify a string by deleting some spaces inside it

Collapsing Spaces Example: Catalog-based Testing

We now generate test case specifications, by also specifying
from where they come

POST1: without consecutive spaces, s ′ = s

TC-POST1-1: s does not contain consecutive spaces
TC-POST1-2: s contains n ≥ 2 consecutive spaces

POST2: with consecutive spaces, in s ′ they are replaced by
single spaces

we will obtain the same as before, thus we can skip

We are now ready to apply the catalog

Catalog Example

Collapsing Spaces Example: Catalog-based Testing

“Enumeration” may be applied to the definition, thus
TC-DEF-1: s contains a space

already inside TC-POST1-2, we may skip this

TC-DEF-1: s does not contain a space

Also “Non-numeric Constant” may be applied to the
definition

TC-DEF-2: s contains a TAB
TC-DEF-3: s contains a CR
TC-DEF-4: s contains a LF
TC-DEF-5: s contains a CR+LF

Collapsing Spaces Example: Catalog-based Testing

“Sequence” may be applied to our string s, thus:

TC-VAR1-1: s is the empty string
s is a string with only one character, i.e.:

TC-VAR1-2-1: s is a TAB
TC-VAR1-2-2: s is a CR
TC-VAR1-2-3: s is a LF
TC-VAR1-2-4: s is a CR+LF (ok, two characters)
TC-VAR1-2-5: s is a special character different from above
TC-VAR1-2-6: s is a non-special character

TC-VAR1-3: s has length > 1
TC-VAR1-4: s has a very high length, say > 1000
if this is an HTML page, with a limit on s, try a length greater
than that limit

Collapsing Spaces Example: Catalog-based Testing

“Operation” may be applied to our operation, thus:

TC-OP-1: s begins with two spaces
TC-OP-2: s contains two spaces

might correct TC-POST1-2, so as n > 2

TC-OP-3: s ends with two spaces
TC-OP-4: s contains 4 spaces

might correct TC-POST1-2, so as n > 2 ∧ n ̸= 4

TC-OP-5: s contains 3 spaces

might correct TC-POST1-2, so as n ≥ 5

TC-OP-6: s ends with one space

k-Collapsing Spaces Example

We have a function taking one string s and an integer n ≥ 2 as an
input and returning a string s ′ as an output.

Informally: s ′ is the same as s, but k consecutive spaces, s.t.
k ≥ n, are collapsed into one space.

Formally: let S = {(i , k) | si = ′ ′ ∧ (i > 1→ si−1 ̸= ′ ′) ∧ k ≥
n ∧ ∧k−1

n=1si+n = ′ ′}. Let
S ′ = {(j , k) | ∃(i , k) ∈ S ∧ j = i −

∑
(i ′,k)∈S | i<i ′(k − 1)}. Let

σ(S , j) =
∑

(i ,k)∈S | i<j(k − 1).

Then, for all j = 1, . . . , |s| −
∑

(i ,k)∈S(k − 1), s ′j = sj+σ(S ′,j)

k-Collapsing Spaces Example: Catalog-based Testing

Let us add elementary items for input k:

Add variable: k , as the input number of consecutive spaces
Add assumed precondition: k ∈ Z

might not be true if this is an HTML form...

Validated Preconditions: k ≥ 2
Postconditions (updated):

if s does not contain occurrences of n ≥ k consecutive spaces,
s ′ = s
if s contains occurrences of n ≥ k consecutive spaces, s ′ is
initially equal to s, then all n ≥ k consecutive spaces are
replaced with one space only

Operations (updated):

scan s, searching for at least k consecutive spaces

k-Collapsing Spaces Example: Catalog-based Testing

TC-POST1-1: s does not contain n ≥ k consecutive spaces

TC-POST1-2: s contains n ≥ k consecutive spaces

TC-POST3-1: k < 2

TC-POST3-2: k ≥ 2

TC-VAR2-1: k = 1

TC-VAR2-2: k = 2

TC-VAR2-3: k > 2

Roots of a 2nd Degree Equation

Roots of a 2nd Degree Equation

We have a function taking three floating point numbers a, b, c . It
returns three floating point numbers n, r1, r2.

Formally: n is the number of roots of the equation
ax2 + bx + c = 0. If n = 1, then r1 = r2 is the root, if n = 2 then
r1 > r2 are the two roots, if n = 0 then r1 = r2 = −1.

With details: let R = {x ∈ R | ax2 + bx + c = 0} and
∆ = b2 − 4ac. Then, n = |R|. Furthermore, for ∆ = 0, n = 1 and
R = {ξ}, r1 = r2 = ξ. Furthermore, for ∆ > 0, n = 2 and
R = {ξ1, ξ2}, r1 = ξ, r2 = ξ2 with r1 > r2. Finally, for ∆ < 0,
n = 0,R = ∅ and r1 = r2 = −1.

Roots of a 2nd Degree Equation: Catalog-based Testing

VAR1, VAR2, VAR3: a, b, c

VAR4, VAR5, VAR6: n, r1, r2

DEF1: ∆ = b2 − 4ac

PRE1, PRE2, PRE3 (assumed or validated): a, b, c ∈ R
POST1: if ∆ < 0, then n = 0, r1 = r2 = −1
POST2: if ∆ = 0, then n = 1 and r1 = r2 are s.t.
ar21 + br1 + c = 0

POST3: if ∆ > 0, then n = 2 and, ∀r ∈ {r1, r2},
ar2 + br + c = 0

OP1: compute ∆

OP2, OP3: compute −b±
√
∆

2a

Roots of a 2nd Degree Equation: Catalog-based Testing

From POST1: ∆ < 0, ∆ ≥ 0

From POST2: ∆ = 0, ∆ ̸= 0

From POST3: ∆ > 0, ∆ ≤ 0

Thus, TC-POST-1, TC-POST-2, TC-POST-3:
∆ < 0,∆ = 0,∆ > 0

If PRE1 is validated (same for PRE2, PRE3):

TC-PRE1-1: a contains multiple dots
TC-PRE1-2: a contains multiple E
TC-PRE1-3: a is bigger than maximum long double (if
applicable)
TC-PRE1-4: a > 0 is lower than long double epsilon (if
applicable)
TC-PRE1-5: a contains alphabetic characters (different from
E/e)

Pairwise Combination Testing

Suppose that we have a set of test cases specifications
generated by Category-Partition or Catalog-based Testing

Pure Category-Partition or Catalog-based Testing considers all
possible combinations of test case specifications

Easily, the number of resulting combinations may be
intractably high

similar to the state space explosion problem in model checking

Some adjustment may be performed by applying some
“reasonable” constraint

Pairwise Combination Testing offers a systematic way to cut
the number of resulting combinations

Pairwise Combination Testing

Suppose we have T1, . . . ,Tn “single” test cases specifications
(test factors)

each test factor Ti has |Ti | different choices
e.g., in the collapsing spaces example, we have
|Tlength| = 4, |Tspaces| = 5, |ToccConsSp| = 3
may also work with “raw” test cases

Then, the number of combined test case specifications is∏n
i=1 |Ti |

With pairwise combination testing, they are usually equal to
|TM | · |Tm|, being Tm,TM the two bigger sets

a generic formula for the size is not available
however, effective tools are available to generate test cases
see, e.g., https://github.com/microsoft/pict

It has been shown that this is a practical good solution for
testing

https://github.com/microsoft/pict

Pairwise Combination Testing

The following properties must be true for the Pairwise Testing
result R ⊆

∏n
i=1 Ti

∀1 ≤ i < j ≤ n, ∀(v1, v2) ∈ Ti × Tj , ∃(w1, . . . ,wn) ∈ R s.t.
wi = v1 ∧ wj = v2
that is: for any possible choice of two test factors, all possible
pairs of values are present in the result
orthogonal arrays: all pairs are covered the same number of
times
for (v1, v2) ∈ Ti × Tj , let C (v1, v2) = {(w1, . . . ,wn) ∈ R s.t.
wi = v1 ∧ wj = v2}
then, ∃p s.t., for all (v1, v2) ∈ Ti × Tj , |C (v1, v2)| = p

May be generalized to k ≤ n
consider k-tuples instead of pairs
R =

∏n
i=1 Ti if only if n = k

Some Category-Partition-like constraint may still be applied
on the result

this is what also pict allows to do

Structural Testing

Functional testing is mainly black-box: no need of seeing the
actual software

If the source code is available, something may be done to add
some more test cases

not necessarily the full “program”, also some model may be
sufficient
e.g., a control flow graph

Typical question: did we cover all “relevant” parts of the
software?

Structural Testing

If some statement has never been executed during all tests,
that is typically not good

This happens if the statement is executed only if C holds, and
for all test cases C does not hold

inside an if, but it is not the only case
may be a while, or after a return...

Of course, it may happen that a statement will never be
executed at all (unreachable code)

Of course, having all statements executed does not guarantee
errors are caught

it may be the case that only given inputs trigger a failure
or the implementation may be faulty w.r.t. the specification,
not considering some cases
so, structural testing typically complements functional testing

Structural Testing and Adequacy Criteria

One major usage of structural testing is to define adequacy
criteria

That is: suppose we have already generated a test suite for
our ITF

Is this test suite adequate w.r.t. some measurable criteria?

In the following, we will mainly provide definitions for
meaningful criteria which exploits program source code
(mainly its CFG)

Is it possible to reverse this reasoning? That is:
1 we select an adequacy criterion
2 we generate test case specifications which pass the criterion
3 we generate test cases fulfilling the test case specifications

Structural Testing and Adequacy Criteria

Step 2 above is all but simple

As an example, some adequacy criteria require to make a
given condition true or false

a condition may be used by an if or a while

Of course, in the general case this is an undecidable problem

that is: given a program and a condition inside it, make the
condition be true/false
some of the difficulties: it may be the case that the variables
are changed before arriving to the condition, thus a reverse
engineering is required
the condition may involve a function call
the condition may be unreachable for the selected values
...

Human effort is required, or sub-optimal solutions must be
accepted

Statement Testing

Faults are in statements

also including expression evaluations

A fault in a statement cannot be revealed without executing
the faulty statement

A test suite T for a program P satisfies the statement
adequacy criterion for P, iff, for each statement S of P, there
exists at least one test case in T that causes the execution of
S

i.e., every node in the control flow graph of P is visited by
some execution path exercised by a test case in T

If not all statements, let us measure how many of them:
statement coverage CS = #execd statm

#all statm

Statement and Block Testing

If the CFG is provided, then “blocks” are considered instead
of “statements”

depending on CFG granularity

If CSs(T),CSb(T) are statement and block coverage for a test
suite T , and CSs(T1) > CSs(T2), then CSb(T1) > CSb(T2)

there is a kind of monotonicity

On the other hand, test suites with fewer test cases may
achieve a higher coverage than test suites with more

e.g., because the input is a string, so having just few long
strings may be enough, whilst having many short strings may
miss some statement

How to Measure Adequacy?

Suppose we have a code and a test suite, how can we actually
measure statement coverage?

We have to instrument the code: see collapse spaces.java

It may also be done by existing tools: e.g., CTC++

works for C, C++ and Java
commercial product, works on all platforms
enhanced compiler: you invoke CTC++ compiler and run the
executable as many times you want
CTC++ additional tools are available to analyze coverages
not only statement coverage, also the following ones

Very few free-to-use tools exists for code coverage
instrumentation

jacoco for Java

Branch Testing

If statement coverage is full, this means that all conditions are
evaluated at least once

However, this does not imply that all branches are considered

a branch is an edge between two blocks, traversed iff some
condition holds

That is, that all conditions are evaluated at least once true
and at least once false

In fact, an else may be missing, thus a perfect statement
coverage test suite may not consider the condition being false

This may be a problem in many cases

Branch Testing

T satisfies the branch adequacy criterion for P iff, for each
branch B of P, there exists at least one test case in T that
causes execution of B

In the CFG, all edges must be exercised by some test case in T

Branch coverage ratio: CB = #execd branches
#all branches

Condition Testing

If conditions are composed by multiple atomic propositions,
branch coverage could be not enough

e.g., a condition A ∧ B, with A always true, may pass the
branch coverage criterion...

Thus, we want all atomic propositions in all conditions to be
evaluated at least once true and at least once false

T satisfies the condition adequacy criterion for P iff, for each
basic condition C in P, C has a true outcome in at least one
test case and a false outcome in at least one test case in T

Cannot be directly observed in CFGs

Basic condition coverage ratio: CBC = #resulting truth values
2#all basic conditions

Branch and Condition Testing

We already saw that branch coverage does not imply
condition coverage

Neither the viceversa holds: for example, A ∧ B may be
exercised by A = 1,B = 0 and A = 0,B = 1, which is ok for
condition but not for branch

Branch and condition adequacy criterion: satisfied only if both
condition and branch coverage are satisfied

Both coverage ratios can be considered

Compound Condition Testing

A more “natural” way to deal with both branch and condition
coverage

Compound condition adequacy criterion: obtain the abstract
evaluation tree of each expression, then each path of such tree
must be covered

in an abstract evaluation tree (AET), internal nodes are
labeled with conditions, while edges and leaves are labeled
with true or false
it is the same as OBDDs, with conditions instead of variables

Thus, there must be a test case specification for each path
from the root to a leaf to satisfy the adequacy criterion

In the worst case, it is exponential

Compound Condition Testing: Examples

A ∧ B ∧ C ∧ D ∧ E

A

C

D

B

E

FALSE

FALSE

FALSE

FALSE

FALSE TRUE

FALSE TRUE

Compound Condition Testing: Examples

Compound condition for A ∧ B ∧ C ∧ D ∧ E

Compound Condition Testing: Examples

(((A ∨ B) ∧ C) ∨ D) ∧ E

A

C

B

D

FALSE

TRUEFALSE

E

FALSE
TRUE

Compound Condition Testing: Examples

Compound condition for (((A ∨ B) ∧ C) ∨ D) ∧ E

MC/DC Testing

Compound condition may require 2N test cases, if there are N
conditions

Compound condition heavily depends on the structure itself of
the condition

A ∧ B ∧ C ∧ D ∧ E requires 6 test cases
(((A ∨ B) ∧ C) ∨ D) ∧ E requires 13 test cases

Modified Condition/Decision Coverage (MC/DC) overcomes
this problem

It may be proved that, if N is the number of basic conditions,
then at most N + 1 test cases are needed for MC/DC testing

Thus, (((A ∨ B) ∧ C) ∨ D) ∧ E requires 6 test cases

Can be computed automatically, given the abstract evaluation
tree

Required by many testing standards, e.g., in Aviation

MC/DC Testing: Definition and Properties

Condition: atomic proposition

no boolean operators occur
e.g.: a <= b

Decision: a whole boolean expression

a boolean combination of conditions

Properties to be satisfied for the MC/DC adequacy criterion:

each decision in the program under test has taken all possible
outcomes at least once
each condition in a decision has taken all possible outcomes at
least once
each condition in a decision affects independently and correctly
the outcome of this decision

MC/DC Testing

Compound condition for A ∧ B ∧ C ∧ D ∧ E

MC/DC Testing

Compound condition for (((A ∨ B) ∧ C) ∨ D) ∧ E

MC/DC Testing

MC/DC condition for (((A ∨ B) ∧ C) ∨ D) ∧ E

Each condition in a decision has taken all possible outcomes at
least once → simply look at columns
Each condition in a decision affects independently and correctly
the outcome of this decision → row pairs corresponding to
underlined items only differs for exactly one condition (the
underlined one), and the result is the opposite

Algorithm for MC/DC Testing

GenMCDCCases(D) {

γ, C ← compoundCondition(D);

// C: set of conditions on which D depends

ok ← ∅;

for each condition C ∈ C {

for each pair (i , j) ∈ |γ|2, i < j {

let r1, r2 be the i and j -th row of γ;
// recall that don’t cares match all

i f (γ(r1,C) ̸= γ(r2,C) ∧ D(r1) ̸= D(r2) ∧
∀C ′ ∈ C. C ′ ̸= C → γ(r1,C

′) = γ(r2,C
′)) {

ok ← ok ∪ {r1, r2};
break;

}

}

}

return γ \ rows not in ok;

}

Path Testing

Suppose we have the CFG of a program: we may consider
paths in it

starting from the root and having some finite length
finite length is required as testing must provide an answer at
some time...

Path adequacy criterion: for each path p of P, there exists at
least one test case in T that causes the execution of p

That is, every path p is exercised by a test case in T

Path coverage is defined as CP = #execd paths
#all paths

If the CFG has loops, the denominator is infinite, thus CP = 0

all non-trivial CFGs have loops...

A form of path coverage may be achieved with model checking

Practical Path Coverage

Loop boundary adequacy criterion: for each loop p in P
containing a loop l , the following holds

in at least one execution, control reaches the loop, and then
the loop control condition evaluates to False the first time it is
evaluated
in at least one execution, control reaches the loop, and then
the body of the loop is executed exactly once before control
leaves the loop
in at least one execution, the body of the loop is repeated
more than once

Thus, we execute 0, 1 or many times the loop

The intuition is that the loop boundary coverage criteria
reflect a deeper structure in the design of a program

Recall: in the general case, impossible to automatically
generate in advance inputs fulfilling the criterion

From CFG to LCSAJ

Practical Path Coverage

Define and exercise sequences of LCSAJs

“from” and “to” coincide
sequences of length 1 are almost equivalent to branch coverage
(excluding some ill-based code)

TERN , for N ≥ 1, is the Test Effectiveness Ratio

TER1 = TS (statements)
TER2 = TB (branches)
TERi+2 =

#execd i consecutive LCSAJs
#all i consecutive LCSAJs

TERN = 1 implies TERi = 1 for all i < N

TERi with i > 3 only required by very critical systems

LDRAcover: commercial tool also considering LCSAJs

Recall: in the general case, impossible to automatically
generate in advance inputs exercizing sequences of LCSAJs

Practical Path Coverage

Cyclomatic testing, based on the definition of basis set

let P be the set of all paths
B ⊆ P is a basis set iff, for all p ∈ P, p is the concatenation
of some q ∈ B
it can be proved that |B| = e − n + 2c

e, n are number of edges and nodes
c is the number of strongly connected components

for a procedure, just connect the exit back to the entry to
obtain c = 1 so |B| = e − n + 2
this is the cyclomatic complexity of the program

Cyclomatic testing: exercise every path in the basis set at
least once

Procedure Call Testing

The previous techniques are ok for single procedures/functions

When it comes to integration or system testing, it is needed
to put the single pieces together

Call coverage: exercise all different calls to C

calling the same procedure twice in different points counts as
two
discard differences in the arguments

Good news: if C is called by A and B only, and statement
coverage of A and B has already been completed, then we are
done!

Bad news: for procedures with side effects, call sequences are
important

especially true for object oriented programming, we will be
back on this

Subsumptions

Test coverage criterion A subsumes test coverage criterion B iff,
for every program P, every test set satisfying A with respect to P
also satisfies B with respect to P.

Data Flow Testing

Again, white-box: it aids path coverage

paths are selected basing on how one syntactic element can
affect the computation of another
criteria based on control structure alone fail on considering
data interactions

Computing the wrong value leads to a failure only when that
value is subsequently used

Data flow testing ensures that each computed value is
actually used

Thus, paths more likely to lead to failures are considered

Definition-Use Associations

Data flow testing is based on definition-use pair

recall: a definition writes a value in a variable, a use reads a
value from a variable
a definition-use pair consider a definition and a following use
which is not killed by another definition

Each definition-use pair defines a definition-clear path

there may be several uses after the definition

A static data flow analyzer is needed

for not-too-big procedures, manual instrumentation is also
possible

Data Flow Testing Criteria

All DU pairs adequacy criterion: each DU pair must be
exercised in at least one program execution

an erroneous value in a definition might be revealed only by its
use

A test suite T for a program P satisfies the all DU pairs
adequacy criterion iff, for each DU pair (d , u) of P, at least
one test case in T exercises (d , u)

Unsurprisingly, CDU = #execd DU pairs
#all DU pairs

Finer than statement and branch coverage

Data Flow Testing Criteria: Example

Data Flow Testing Criteria: Example

char *ep = e, *dp = d;
int ok = 0;

int cgi_decode(char *e, *d)

while *ep

*dp = ’\0’;
return ok;

char c = *ep;
if (c == ’+’)

int dh = HV[*ep];

ep++;

if (dh == −1)

int dl = HV[*ep];

ep++;

if (dl == −1)

*dp = 16*dh + dl;

ok = 1;

*dp = *ep;

++dp;
++ep;

*dp = ’ ’;

True

if (c == ’%’)

False

False

True

True

True

False

False

True

14

15−17

18

39−40
False

20−22

24

25−27

27

31

29

34

23
36−37

Data Flow Testing Criteria: Example

One error: no use of *dptr at line 40 (actually, no use at all)
For pointers, the declaration defines both p and *p

Data Flow Testing Criteria: Example

List of all DU-pairs:

encoded → {(14, 15)}
decoded → {(14, 16)}
dptr → {(16, 36), (36, 36)}
eptr → {(26, 37), (25, 26), (15, 37), (37, 25), (15, 25), (37,
37)}
*eptr → {(37, 26), (37, 25), (15, 18), (37, 34), (37, 19-20),
(15, 25), (15, 26), (15, 34),

c → {(19-20, 22), (19-20, 24)} (15, 19-20), (37, 18)}
digit low → {(26, 31), (26, 27-2)}
digit high → {(25, 27-1), (25, 31)}

Data Flow Testing Criteria

All DU paths adequacy criterion: for each DU pair, each of
the corresponding DU paths must be exercised in at least one
program execution

if the path contains a loop, discard the loop (simple path)

A test suite T for a program P satisfies the all DU paths
adequacy criterion iff, for each DU pair (d , u) of P and simple
path p from d to u, at least one test case in T exercises p

Unsurprisingly, CDUP = #execdDU simple paths
#all DU simple paths

Of course, subsumes the all DU pairs coverage criterion

All DU pairs/path: Difference

char *ep = e, *dp = d;
int ok = 0;

int cgi_decode(char *e, *d)

while *ep

*dp = ’\0’;
return ok;

char c = *ep;
if (c == ’+’)

int dh = HV[*ep];

ep++;

if (dh == −1)

int dl = HV[*ep];

ep++;

if (dl == −1)

*dp = 16*dh + dl;

ok = 1;

*dp = *ep;

++dp;
++ep;

*dp = ’ ’;

True

if (c == ’%’)

False

False

True

True

True

False

False

True

14

15−17

18

39−40
False

20−22

24

25−27

27

31

29

34

23
36−37

All DU pairs/path: Difference

One DU pair for variable eptr is (15, 37)

For the all DU-pair criterion, it is enough that at least one
test case traverses both line 15 and line 37

For the all DU-paths criterion, this is not enough as there are
2 eptr-definition-free paths going from 15 to 37

one in which the current character is +, and another in which
it is neither + nor %

Thus, there must be a test case for the first path and another
for the second

Data Flow Testing Criteria

All definitions adequacy criterion: for each definition, at least
one corresponding use must be exercised in at least one
program execution

A test suite T for a program P satisfies the all definitions
adequacy criterion iff, for each definition d of P, there exists a
DU pair (d , u) s.t. at least one test case in T exercises (d , u)

Unsurprisingly, CD = #covered definition
#all definitions

Of course, it is subsumed by both the all DU pairs and all DU
paths coverage criterion

all defs ← all pairs ← add paths
increasingly better for testing quality

i.e., capability of findeing errors, if any

increasingly difficult to find values

Model Based Testing

Kind of black-box testing, where specifications have some
special form

or it is possible to extract a model from specifications
similar to model checking, but model is then used for testing

Used to aid black-box approaches to identify

meaningful values
(additional) constraints
(additional) significant combinations
especially useful for integration and system testing

Ideally, model based testing aims to generate inputs from
specifications, as much as software engineer wants to generate
code...

Model Based Testing

Two types of models:
formal, i.e., with a precise syntax and semantics

finite state machines (usually) and grammars
test cases may be automatically generated

semiformal

state diagrams, class diagrams and finite state machines
(sometimes)
automation must be used with some care

Model Based Testing

Models may describe:
input structure

especially for grammars
typically formal models, thus used to directly generate test
cases

desired behaviour for the program, or a part of it

discrepancies from the model can be used as an implicit fault
model to help identify boundary and error cases

We will consider some models useful for testing

for each model, let us see how to generate test cases from
each of them

Finite States Machines

Common for control and reactive systems, such as

embedded systems (StateChart), communication protocols
(SDL), menu-driven applications
typically multiprocess or multithread

Many systems actually have infinite states, but often are
approximable with a finite state machine as well

for real, a port receiving a string message should have infinite
states...

Transitions are usually guarded by conditions or input events

conditions may be regarded as particular input events

Example

Semiformal Finite States Machines

Sometimes they are not memoryless as they should be

transitions from a state must only depend on the starting state
instead, often it depends also on the path leading to the state
(memory)
e.g., “Wait for component” need to remember which
component...

Some outgoing transitions may be missing, i.e. some input is
not considered from some state

Three possible cases:

don’t care transition, that input is impossible in that state,
e.g., because of some physical constraint
error transition, goes to some common error-handling
procedure
self transition

Though they may be “completed”, also a semiformal FSS may
be useful

From Finite States Machine To Test Case Specification

Each transition should be covered

could be seen as a (precondition, postcondition) pair...

Transition coverage: all transitions are covered

Unsurprisingly, CT = #execd transitions
#all transitions

Looks similar to white-box testing, but here:

it may be applied in advance, thus you decide an acceptable
CT , and generate test case specifications accordingly
this is not directly a CFG, as it may represent something at
much more higher level: ok also for integration or system
testing

Final result is test cases specifications involving transitions

obtaining test cases could be not simple
depends on the specific program under test

Example

Example

Though the book says it is complete, it is not: coverage is approx.
95% as transition (8, 6) is missing

From Finite States Machine To Test Case Specification

For small FSS, also paths may be considered, especially if they
are semiformal

single state path coverage criterion: all non-loop paths
single transition path coverage criterion: all paths in which
each transition is taken just once
interior boundary loop coverage: for all loops, exercise the loop
the minimum, the maximum, and some intermediate number
of times
the corresponding coverage ratios may be defined

Especially useful when states do not fully describe the system
status

Example

Example

single state path coverage criterion: e.g., 0-2-4-5-6 is missing

single transition path coverage criterion: e.g., 0-2-4-1-0-5-2 is
missing

interior boundary loop coverage: e.g., 0-2-4-1-0-2-4-1 is
missing

Transition Coverage: a Possible Algorithm

That is, an algorithm which outputs paths so that all
transitions in the FSM are covered (see previous slide)

Augmented DFS in which:

each time an already visited state is reached, the entire stack
is output, plus the visited state
maintain a set of all transitions visited
assume you have the set of all transitions
stop the DFS when desired coverage is reached

Of course, not on-the-fly, the graph is in memory in advance

not a problem, these are man-made (relatively) small models
composition between different FSMs is rarely used

Single State Path Coverage: a Possible Algorithm

That is, an algorithm which outputs paths so that all
non-looping paths are output

Augmented DFS in which:
each time an already visited state is reached, the entire stack
is saved in a set P

the visited state is appended only if it is not already in the
stack

post-process P so that π ∈ P implies ∀ρ ∈ P.π is not a prefix
of ρ
output P

might stop before if coverage is already enough

Single Transition Path Coverage: a Possible Algorithm

That is, an algorithm which outputs paths so that all paths
which do not contain the same transition twice are output

Augmented DFS in which:

visited states check is replaced with visited transitions check
each time an already visited transition is reached, the entire
stack is saved in a set P

the visited transition is appended only if it is not already in
the stack

post-process P so that π ∈ P implies ∀ρ ∈ P.π is not a prefix
of ρ
output P

might stop before if coverage is already enough

Interior Boundary Loop Coverage: a Possible Algorithm

That is, an algorithm which outputs 3 test cases for all
looping paths: avoiding the loop, going once in the loop,
going, e.g., 3 times through the loop

Augmented DFS in which:

visited states check is replaced with visited transitions check
each time an already visited transition is reached, the entire
stack is saved in a set P

the visited transition is appended only if it is not already in
the stack

post-process P so that π ∈ P implies ∀ρ ∈ P.π is not a prefix
of ρ
further post-process P so that, for each π ∈ P, the suffix for π
which is a loop is detected
repeat such loop as many times as given

From FSMs To Test Case Specification: A Different
Perspective

FSMs may be useful also for generating inputs values

In this case, they are designed by the test engineers and used
as a model for generating the inputs

Useful for sequences of inputs, thus either:

strings, which includes files and DB contents
some software service continuously accepting inputs (e.g.,
controllers or servers in client-server model)
in this latter case, also the input timing may be output
could also be used online, instead of performing a
pre-computation

Alternative to Category-Partition and Catalog-Based Testing

Similar to generating from a grammar (see below)

Collapsing Spaces Example

exit

s0s2

Any printable

space

s1

Any printable

space

Collapsing Spaces With Input k Example

exit

exit

s0

Any printable

sexit

space

s1

space

sn

space space

Any printable Any printable

Grammars

Sometimes it could be possible to derive a grammar from
specifications

regular expressions or annotated context-free grammars (in
BNF, Backus-Naur Form)
it could be already present as such: e.g., to describe a search
pattern
XML schema may be easily translated into BNF

Very good to represent inputs of varying and unbounded size,
with recursive structures

Want a test case specification? simply generate a string from
the grammar!

Similar to a walk in a graph: how to choose from many
possible grammar productions?

Example

Example

Example: NOT(C2021*) AND C20*

Example

Example

Grammars

Productions may be different and guide the choice

want many short test cases? choose production with many
non-terminals first
want few long test cases? choose production with few
non-terminals first
of course, there are intermediate cases

Production adequacy criterion: each production must be
exercised at least once in generating the test case

of course, CP = #execd productions
#all productions

Grammars

Boundary condition grammar-based adequacy criterion: each
production must be exercised at least m and at most M times
in generating the test case

productions must be labeled by bounds

Probabilistic grammar-based adequacy criterion: a probability
is attached to each production

generation follows the given probability

Example

Decision Structures

From a functional specification to a decision table

Possible intermediate step: from the specification, write a
Boolean formula

first order logic: boolean combinations of propositions

To be done when a (part of a) specification is clearly based on
some complex Boolean formula

Decision Structures

Decision Structures

Output is “no discount” IFF

Corresponds to fourth column in the first table and second column
in the second table (next slide)

Example

Decision Structures

Decision Structures

A decision table directly corresponds to a Boolean formula of
the form ∧ni=1((∧mj=1βi ,j)→ v = xi)

v is a variable representing the output of some part of the
program, and xi the desired outcome

typically, some enumerated value

n + 1 columns, m + 1 rows

first column lists all “basic conditions” b1, . . . , bm
last row is for values of v
other heading are possible to ease table understanding

each βi,j is either

bi , if the entry i , j in the table is T
¬bi , if the entry i , j in the table is F
void, if the entry i , j in the table is don’t care

easy to transform in conjunctive normal form:
∧ni=1(∨

ki
j=1¬βi,j ∨ vi = xi)

each column i (rule) corresponds to ∧mj=1βi,j → vi = xi)

Decision Tables

Tables are typically augmented with constraints

other Boolean formulas on bi , typically excluding invalid
combinations
most typical constraint are abbreviated, e.g., at-most-one or
exactly one

Thus, the overall formula is
∧ni=1((∧mj=1βi ,j)→ v = xi) ∧ ∧ki=1Ci

e.g., if Ci is an at-most-one(B) constraint, being
B ⊂ {β1, . . . , βm} and βj ∈ {bj ,¬bj}, then
Ci ≡

∑
j | βj∈B(βj = 1) ≤ 1

A new table can be written by taking into account the
additional constraints

essentially, this entails fixing some don’t cares

Example

E.g.: BusAc
to F in the
first table
and EduAc
to F in the
second

Decision Tables Adequacy Criteria

Basic condition adequacy criterion: one test case specification
for each column in the table.

don’t cares replaced with any value, but without violating the
additional constraints
unless the table has already been completed

Compound condition adequacy criterion: one test case
specification for each combination of truth values of basic
conditions

entails 2m test cases specification, only for small tables
recall: m is the number of table rows
table is used only to compute the corresponding output value

Decision Tables Adequacy Criteria

Modified Condition/Decision Criterion (MC/DC)
similar, but not the same to the structural approach with the
same name
indeed, it cannot be the same as the result is not a boolean...

First, some new columns must be added to the original table
so that:

for each column c and for each bi in c which is not don’t care,
obtain a new column equal to c , but where bi is negated w.r.t.
c

only one value changes

if the new column is already present (also considering don’t
cares) do not add it, but replace don’t cares with values from
the new column, if any
if it is not present, the result is some error

Finally, one test case specification for each resulting column
similar to the basic condition, but on the augmented table

If some new column is added, then something was wrong with
the specification, good to test

Example

Example: Augmented Table

Many errors, but gives the idea

Control (or Data) Flow Graphs

Sometimes it could be possible to derive a control flow graph
from specifications

often with coarse granularity, e.g., nodes are single
computations or computation steps
example: interactions with a database
as opposed to before, where CFG is extracted from code
closer to implementation than state diagrams, e.g., multiple
outgoing edges are typically either true or false, or some
enumeration from a switch

The statement adequacy criterion becomes node adequacy
criterion

The branch adequacy criterion does not change name

Other criteria seen for code control flow graphs may be
applied as well

however, statement and branch are usually ok at this
granularity

Derive Test Cases from Control Flow Graphs

There is a very simple way: inputs are linked to branches

Thus, test case specification will be of the form:

“make this condition be true/false”
“make this enumeration be equal to this value”

As usual, choose actual values to “realize” such test cases will
not be easy

very program-dependent

However, it could account for executions which could be
missed by functional or structural testing

Example

Example

Example

Testing for Objected-Oriented Software

Of course, white-box testing...

however, for some of the following techniques a class or an
object file could be sufficient

Conceptually, same as procedural software
1 generate functional tests from specification
2 add selected structural test cases
3 work from unit testing (typically, single classes...) and

small-scale integration testing toward larger integration
4 system testing

However, some techniques are tailored for OO software, to
tackle OO software peculiarities

short methods (e.g., getters and setters)
sequences of same-class methods calls are important
polymorphism, dynamic binding, generics, overloading...

Objected-Oriented Software Characteristics

State-dependent behaviour

values for attributes of classes are important

inputs of methods do not tell the full story

often, methods may have no inputs at all!

e.g., the is right method of the Triangle class does not
have inputs

but the result depends on the current values of the attributes

thus, testing for is right does require generating input
values, even if it does not have any input

Objected-Oriented Software Characteristics

Encapsulation

suppose a scale method is present in class Triangle: how
to check if the result is ok?

as another example, suppose the Triangle class had
coordinates of points (as private)

suppose a rotate method is present

using some external class for testing, how to check the result
of rotate, given that attributes are private?

Objected-Oriented Software Characteristics

How to cope with these former problems?

Solution 1: modify the code

add friend functions (only C++, not available in Java)
add getter and/or setter methods
make (some) members public
should be avoided, unless such modifications are kept in
production
tested and released code should be the same

Solution 2: consider sequences of calls

very program-dependent
if not possible, then there is some error for sure...

Objected-Oriented Software Characteristics

Inheritance

here the problem is: supposing I tested the super class, should
I test all methods in the subclass?

new methods: of course, test is required

overridden inherited methods: same as new methods

however, may call ancestor in some cases, for which re-test
could be avoided

non-overridden inherited methods:

most does not require re-test
however, in some cases re-test is needed
e.g., for side effects: a protected member of the super class
may be used in the method, and be modified by the subclass...
may entail generating new test cases

Objected-Oriented Software Characteristics

Polymorphism

Objected-Oriented Software Characteristics

Polymorphism and dynamic binding

polymorphism: seems to call superclass methods, but subclass
methods are invoked

dynamic binding: again, which function is called is not known
at compilation time

Java: using reflection or lambdas
C++: using pointers (and lambdas)

need to test the same method on different class instances

actually same as for inherited overridden methods, but
invocation is different

Objected-Oriented Software Characteristics

Abstract classes may need to be tested

cannot be instantiated: only (non-abstract)
subclasses may
thus, contexts might be created for testing
purposes only

Overload functions with same name but different arguments

consider all possibilities

Generics/Templates functions and classes where arguments/return
types are parameters

consider all possibilities, given testing budget

Exception handling additional (exceptional) control flow

design test cases to raise exceptions

Impact of Objected Oriented Tailored Techniques

Objected-Oriented Software Testing

Mainly 3 stages, from single class to system integration

intraclass: testing each class in isolation

also called unit testing

interclass: testing class integration

also called integration testing

system and acceptance: independent of design

Objected-Oriented Software Testing Stages: Intraclass

Repeat the following for each class:

if it is abstract, derive a set of instantiations

if not available, do this for testing only

for each method in the class, determine whether to test it or
not

including constructors and inherited methods
do not consider polymorphism or dynamic binding here
inheritance allows re-use of test cases
inheritance allows to skip testing of some methods
inheritance allows to skip testing of some inputs of some
methods

for the more complex methods in the class, design tests as for
procedural software

may entail considering some members as further inputs

Objected-Oriented Software Testing Stages: Intraclass

Repeat the following for each class (continued):
derive test cases basing on a state machine model of the class
behaviour, if available

that is: consider sequence of calls to the class methods
state and transition coverage for testing
kind of black-box (functional) testing inside white-box testing

generate additional test cases considering structural testing
techniques

again for sequences of calls
methods may be added/removed in implementation w.r.t.
specification

derive test cases for exception handling
both exceptions which are only thrown and exceptions which
are caught and handled

derive test cases for polymorphic methods and for generics
as for abstract classes: may require to instantiate a superclass
for testing purposes only

Techniques for Inheritance

Inheritance cannot introduce errors per se

though it is the base for polymorphism

However, it can be exploited to understand when tests can be
reused

To this aim, distinguish methods of a subclass in:
new: not present in the superclass

present = same name & same parameters (implies same
return)

recursive: present in the superclass and left unchanged
redefined: present in the superclass and body changed

Also distinguish if the method was abstract in the superclass

abstract new, recursive, redefined

Techniques for Inheritance

To start with, you always begin testing from the superclass

if a hierarchy is present, go to the higher superclass
class diagram is needed

Thus, recursive methods need not to be retested

abstract recursive only tested with stubs, as an implementation
is lacking

(Abstract) redefined and new methods always need to be
retested

for non-abstract redefined, it may be possible to skip some
inputs

To keep track of what to retest, a testing history table may be
used

When a new subclass is considered, the table is scanned to
understand which methods needs retesting

Testing History Tables

Testing history tables are organized as follows:

rows are methods
columns are of 4 types:

intraclass functional
intraclass structural (not for abstract)
interclass functional (not for local)
interclass structural (not for local or abstract)

“local” methods are those which only call other methods of
the same class
entries are the corresponding test set, plus a flag

executable/not executable

Testing History Table Example

Testing History Table Example

Of course, to test the two with Y a subclass is needed, possibly
only for testing purposes

Testing History Table Example

Testing History Table Example

Testing History Table Example

Testing History Table Example

Objected-Oriented Software Testing Stages: Intraclass

Repeat the following for each class:

if it is abstract, derive a set of instantiations

if not available, do this for testing only

for each method in the class, determine whether to test it or
not

including constructors and inherited methods
do not consider polymorphism or dynamic binding here
inheritance allows re-use of test cases
inheritance allows to skip testing of some methods
inheritance allows to skip testing of some inputs of some
methods

for the more complex methods in the class, design tests as for
procedural software

may entail considering some members as further inputs

Objected-Oriented Software Testing Stages: Intraclass

Repeat the following for each class (continued):
derive test cases basing on a state machine model of the class
behaviour, if available

that is: consider sequence of calls to the class methods
state and transition coverage for testing
kind of black-box (functional) testing inside white-box testing

generate additional test cases considering structural testing
techniques

again for sequences of calls
methods may be added/removed in implementation w.r.t.
specification

derive test cases for exception handling
both exceptions which are only thrown and exceptions which
are caught and handled

derive test cases for polymorphic methods and for generics
as for abstract classes: may require to instantiate a superclass
for testing purposes only

Intraclass Testing: State Machines

Two cases:

no state machine in specification, thus draw one from informal
specifications

done for testing only, may need remapping for method names

state machine diagram present in specification
typically a UML statechart, may be more complicated because
of:

superstates: to be replaced with a flattening
considering all ingoing and outgoing transitions...

in both cases, transitions in state machine diagram are usually
labeled with class methods

thus, we obtain test cases based on sequences of calls
some sense, it is more than unit testing...

State Machines from Informal Specifications

State Machines from Informal Specifications

TC-1: incorporate, isBound, bind, isBound
TC-2: incorporate, unBind, bind, unBind, isBound
Transition coverage = 100%

State Machines in Specifications

addComponent etc are self-loops

State Machines in Specifications

Actions omitted for brevity
Two deselectModel, one selectModel

State Machines in Specifications

State Machines in Specifications

State Machines in Specifications

State Machines in Specifications

Objected-Oriented Software Testing Stages: Intraclass

Repeat the following for each class:

if it is abstract, derive a set of instantiations

if not available, do this for testing only

for each method in the class, determine whether to test it or
not

including constructors and inherited methods
do not consider polymorphism or dynamic binding here
inheritance allows re-use of test cases
inheritance allows to skip testing of some methods
inheritance allows to skip testing of some inputs of some
methods

for the more complex methods in the class, design tests as for
procedural software

may entail considering some members as further inputs

Objected-Oriented Software Testing Stages: Intraclass

Repeat the following for each class (continued):
derive test cases basing on a state machine model of the class
behaviour, if available

that is: consider sequence of calls to the class methods
state and transition coverage for testing
kind of black-box (functional) testing inside white-box testing

generate additional test cases considering structural testing
techniques

again for sequences of calls
methods may be added/removed in implementation w.r.t.
specification

derive test cases for exception handling
both exceptions which are only thrown and exceptions which
are caught and handled

derive test cases for polymorphic methods and for generics
as for abstract classes: may require to instantiate a superclass
for testing purposes only

Structural Intraclass Testing

Integrate “black-box” testing: did we miss something?

Intraclass CFG

CFGs for each method, connected by calls

For each add member value, consider all DU pairs in the
intraclass CFG

New test cases are of the form:

start with a constructor
pass through the definition
end with the use without going through any other definition

All DU pairs adequacy criterion is typically used

Intraclass CFG: Example

Objected-Oriented Software Testing Stages: Intraclass

Derive test cases basing on a state machine model of the class
behaviour, if available

that is: consider sequence of calls to the class methods
state and transition coverage for testing
kind of black-box (functional) testing inside white-box testing

Generate additional test cases considering structural testing
techniques

again for sequences of calls
methods may be added/removed in implementation w.r.t.
specification

Derive test cases for exception handling

both exceptions which are only thrown and exceptions which
are caught and handled

Derive test cases for polymorphic methods and for generics

instantiate a superclass in all possible ways

Techniques for Exceptions

Exceptions are by themselves an help to testing

in procedural programming, overlooking error codes returned
by functions ofter occurs
exceptions handling mitigates this problem, as an exception is
certain to interrupt normal control flow
cost: implict control flows are added

Building a CFG with exceptions is impracticable

also complicated by the fact that exception binding for
handlers is dynamic

Techniques for Exceptions

Techniques by Exception type:

Program errors (bad subscript or casts etc)

can usually by discarded: we are already looking for them in
the previous steps
if a custom handler is present, test it by creating a class which
forces the given error (stub)

Abnormal cases (memory exhausted, file not present etc)

raise them and check the handler if present
again, a stub might be necessary

Exception propagation

A calls B which raises E, but A does not handle E
E will go up in the calls stack, till when an handler is found (if
not, the application is closed, which is bad)
check at least some of such exception chains

Techniques for Polymorphism and Dynamic Binding

If the possible morphs or binding are just a few, simply
consider them all

However, in some cases there may be many combinations

cases explosion, cannot be considered exhaustively

You may need to imagine possible instations if you are testing
a library rather than a complete program

A variation of Pairwise Testing may be used!

Objected-Oriented Software Characteristics

Example

3 points of choice:

instantion of Credit

instantion of Account

instantion of CreditCard

Example

15 vs 45 (exhaustive)

Techniques for Parameterized Types

“Generics” in Java, “templates” in C++

typical example: an array where the type of each entry may be
decided when instantiating the object

Only class instantiations can be tested

as for abstract methods
cannot know in advance which type will be used
thus, some reasonable forecast should be used
use Pairwise Testing if the parametric types are more than one

Testing may be split in two parts:

showing that some instantiation is correct
showing that all permitted instantiations behave “identically”

Objected-Oriented Software Testing Stages: Interclass

Identify which classes should be tested together (cluster)

typically, because they call each other methods
either statically (on the class) or dynamically (on classes
instances)

The previous step is to be performed incrementally:

first consider pairs of classes, then triplets, etc
in some cases, there could be some minimum subset of classes
to be considered
we may say that OO helps in identifying units for unit and
integration testing...

Functional test for the given cluster

also considering data flow between calls

Integrate the previous intraclass exception handling test cases
with interclass exception handling test cases

Same for the polymorphism

Interclass Testing

Two main workhorses: use/include relation and
sequence/collaboration diagrams

Use/include is very simple to derive from UML Class
Diagrams

typically drawn with simple vertical lines: the class on the top
depends on the one on the bottom
either because of usage (aggregation) or inclusion (inheritance)
abstract classes not included

Once you have it, start testing from the bottom

difficult to generalize, experience helps
need to select a subset of interactions among the possible
combinations of method calls and class states

From UML...

... to Use/Include Diagram

Interclass Functional Testing

Sequence diagrams may be used to design test which cover all
possible exchanges

Furthermore, some interaction in the sequence diagram may
be replaced by another, to check if errors are handled correctly

State diagrams should cover all possible “relevant” behaviours

of course, if we have a state digram involving multiple classes,
that could be used for interclass testing in the very same way
as in intraclass testing

Instead, sequence diagrams are a selection made by designers

Thus, they are very valuable for testing

Example

Interclass Structural Testing

Classification of methods as:

inspectors: only read the class state
modifiers: only write the class state
inspectors/modifiers: both
getters are inspectors, setters are modifiers
“class state”: at least one variable in the class state

By going bottom-up in the whole class dependencies:

invocations of modifier methods and inspector/modifiers of
leaf classes are considered as definitions
invocations of inspectors and inspector/modifiers in other
classes are treated as uses

Proceed as in definition-use pairs

From Test Case Specifications to Test Cases

That is: we want the raw inputs

Keeping specification and generation separate aids in reducing
impact of small changes in the software development

Some test case specifications are relatively simple to be
completed

e.g., those coming from partition/category method
sometimes, they are already with raw inputs

Others may require some other effort

e.g. “a sorted sequence, length greater than 2, with items in
ascending order with no duplicates”

Two or more test cases specifications may be dependent on
each other

From Test Case Specifications to Test Cases

Some test case specifications may require an actual
computation to be translated into test cases

e.g., “traverse these transitions in this program state machine”
→ find the data which cause that transitions
model checking may be used!
say the transitions are impossible and collect the
counterexample...

Tools Which Generate Test Cases

Though it is indecidable, some tools are actually able to
output test cases for code

typically, for C code
typically, incomplete tools, but better than nothing

CBMC: given a C code, generates test cases for some types of
coverage

especially MC/DC
free, for any platform

Reactis: given a C code, generates test cases for all types of
coverage

commercial, for Windows

Unit testing only, with some support for call coverage

Tests Execution

Executing tests is not always straightforward

General goal: once we have test cases, we should perform the
last steps as automatically as possible

not always possible or practical, e.g., if we want to check a
GUI...

Mastering the following techniques is important:

creating scaffolding for test execution
(automatically) distinguishing between correct and incorrect
results
run-time support for generating and managing test data

e.g., a database storing information about each test case

Scaffolding

Literally, the temporary structures erected around a building
during construction or maintenance

Practically, it is any software which is developed to test some
other software

a software for scaffolding of Java programs is, e.g., JUnit
similar tools exist for other languages, e.g., phpUnit
for more complex testing, developing a dedicated software may
be needed
could require an high cost, up to half of the code developed for
the entire project

Deciding to create a new software for scaffolding or not
depends on budget

Scaffolding

Scaffolding may be divided into:

drivers for calling programs
stubs for functions called by the program

oracles to check results
program instrumentation adding statements for

monitoring/measuring
test support create a database to record info like:

test suites for different program releases
how many times (across different program
releases) a test case has been executed and
with which result
test suite creators
...

test harnesses for the overall testing environment

Scaffolding Techniques: Stubs

We want to test from early stages: very few components will
be available

may be avoided if design takes testing into consideration, so
components are implemented in an order which enables testing
cannot be done in all cases

Stubs replace (unavailable) portions of the program to be
tested

Easiest form of stub: mock

replace a function with another function taking the same
parameters and outputting a fixed value
“output” in a broad sense: also print a string or set global
variables
in some cases, mock can be generated automatically from
source code

Scaffolding Techniques: Drivers

For many cases, input for some ITF is provided from the
beginning

as in the examples of the collapsing spaces and the roots of a
second degree equation

Then, we simply have to wait for the ITF to return its output

Otherwise, the input must be provided with some given timing
(e.g., for controllers)

In both cases, a driver is needed to run the software with the
given input

program-dependent, though automatable for unit testing (e.g.,
JUnit)
may be easy: instantiate a class and call some methods
may be difficult: create a pool of processes to handle
inter-process communication in some integration or system
testing

Scaffolding Techniques: Harnesses

What about the cycle needed to take each test case T in the
test suite S and run the driver on T? We need test harnesses

sometimes, it may be written in such a case to take test case
specifications
see the black-box examples

They are responsible also for:
checking the result

we will be back on how to do this

any further input coming from the environment and not
provided since the beginning

e.g., a controller for an airplane reads air speed every t
milliseconds: the test harness must provide such info
e.g., a network traffic generator to check a Web application
resilience
also part of test case specification

Test Oracles

Again part of scaffolding (harness): how to check results of
test cases?

human intervention to be avoided whenever possible:
expensive and unreliable
unless we are testing usability of GUIs...

A test oracle is something distinguishing correct from
uncorrect test results

automated test oracles: it is a software

Partial oracle: one with false positives

sometimes good because cost-effective, especially for early
testing

Oracle with false negatives: to be avoided

requires manual inspection to understand it is a true or false
negative

Test Oracles Techniques

Comparison-based oracles
test cases are (input, output) pairs, so oracle simply check if
result is equal to expected output
may be not bit-to-bit equal and still be ok
this is typically the case for test harness

How to have correct (input, output) pairs?
could seem a self-referencing solution...
depends on the application and the problem

Solution 1: create an output and produce a corresponding
input

sorting: create a sorted list and permute it...
needs some adjustment w.r.t. Category-Partition and
Catalog-based Testing
e.g.: for the collapsing spaces, first generate a single-spaced
string, and then repeat some spaces...
e.g.: for the equation roots, generate at random r1, r2, a and
then put b = a(r1 + r2), c = ar1r2

Test Oracles Techniques

Solution 2: use some other software
may be already available, but not usable in production code

e.g., due to intellectual rights, or because it is too slow

may be written by test engineers

e.g., for the collapsing spaces, a (slower) function may be
written by only looking at the specification

the important thing is that it is independent by the program to
be tested
not necessarily better: it may be ok if both the program and
the oracle fail rarely enough

or if it is much slower

in such a way, there is time to inspect both programs to see
which is right whenever the output differs
but failures must be independent

Test Oracles Techniques: Capture and Replay

Solution 3: use humans, but only once

Especially ok for visual responses of graphical interfaces

The human judges the output, and its evaluation is recorded
together with the input

Starting from that point, any other re-execution of the test
remembers the human evaluation

Not always simple or cost-effective: small differences in a
graphical interface should be ok but may trigger a false
negative

Test Oracles Techniques

Oracles need not to be comparison-based: we may implement
some software able to check the output

using specifications, of course
often called Property-based Testing

Checking if an output is correct is often easier than producing
it

e.g., routing problem, but also the collapsing spaces and 2nd
order equation roots computation we saw before...

Special case of partial oracles: drop optimality

e.g., in optimal routing problem, we only check if the output
route is correct, not if it is optimal
often combined with comparison-based oracle:

cheap, partial oracle for large test suite
heavy test suite with precomputed outputs for a subset of the
suite

Test Oracles Techniques

Self-checks: assertions in the code

typically from the original designers, but could be added by
testers
better an assertion failure than a BSoD

Lightweight assertions may be left in production code

so, usable for testing

Heavyweight assertions may be left in code and compiler
directives can be used to optimize them out

use them in testing, then strip them out

Scaffolding Techniques: Harnesses

Scaffolding Techniques: Harnesses

Scaffolding for OO Software

Stubs only needed if we want to test a part of the program
when some other related part is not ready

Drivers actually launch the experiments

not different from procedural testing

Oracles are more difficult than procedural testing due to
incapsulation

Technique one: allow oracle to read private members

or add getters and setters
not a good idea: tested and delivered software would be
different!
exploit language features: friend classes in C++
or package visibility in Java (also putting oracles in the same
package)

Oracles for OO Software

Technique two: consider equivalence between objects

especially useful for arrays and similar
an array is similar to a linked list: important is that they have
the same values...
the oracle uses the equivalent data structure, if the original one
is not available bacause private

One sequence of method invocations is equivalent to another
if the two sequences lead to the same object state

This does not necessarily mean that their concrete
representation is bit-for-bit equal

Oracles for OO Software

Besides Testing: Inspection

Have a human inspect the code

of course, the code must be inspectable
something could be done also automatically, see, e.g., lint and
purify

Not too much, it is boring

two hours a day
valuable for juniors, they see production code
reinspection is as hard as the first one

Organize the work, perform the work, speak with developers

Perform the work: typically with checklists

Pair programming in Agile method: inspection included in
implementation phase

Example

Example

Documenting Test Cases (see IEEE #829-1998)

Of course, the overall testing strategy must be documented

exactly as it is the case for software

For software development, you have many frameworks
available

UML diagrams or similar

There does not exist a testing equivalent

Different companies represent their testing strategy using
proprietary methods

We can however say which elements are typically present in a
testing strategy or test plan

Test Plan Items

System Under Verification

may be composed by many subsystems
includes at least one between code and documentation

Testing objectives and rationale

which parts should be checked first and/or more thoroughly

Scope and limitation of the test plan

you cannot test everything

Test Plan Items

Sources of expertise for test planning and execution

both economic and technical

Sources of test data

may be automatically (randomly or deterministically)
generated, taken from some Web site and/or book, etc

Test environments and their management

scaffolding description

Test Plan Items

Testing strategy
given a development stage...

early, first prototype, first release, etc

... decide which testing methodology use

static testing, white-box testing, black-box testing,
performance testing

could also take into account not only the application, but its
environment, e.g., connectivity

Overall testing schedule

Test Plan Items

For each development phase defined in the testing strategy,
document the following:

the development phase

early, first prototype, first release, etc

requirements for starting testing

e.g.: software have successfully compiled

requirements for ending testing

e.g.: 10% coverage acquired, all test passed

test case specifications

together with writing schedule, executing schedule and
analysis/reporting schedule
will be back later on this
core of the testing phase

Test Plan Items

Many items will need refinement during the process itself, due
to:

errors being discovered at high stage: correcting them cause
changes in lower stages, also testing is affected
same for modifications not strictly coming from errors
new releases of software
for early drafts of the test plan, there may not be enough
information, thus many draft releases are needed

