Igor Melatti

Universita degli Studi dell’Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

©

That is: embed testing in the software design process

o “quality” in the sense of errors being discovered and corrected
o both functional and non-functional errors

©

Quality planning involves deciding in advance when and how
to perform testing

o of course, intertwined with the overall software design process

©

Incremental development: a first draft is initially written and
then continuously revised

o again, the same usually happens for the software design process

o Better solution is to appoint someone for the software quality
process

Customer Requirements

Specification

Function

Incremental
> Development
Planning

rFunctionaI SpeciﬁcationsJ—Usage Specifications—¢

|| Statistical Test-Case
Generation

\—Source Code Test Case:

Improyement

Feadback Formal Design

l| Correctness Verification

Interfail Times

| Quality Certification
Model

MTTF statistics

o Developed in the 1980s
o Involves two cooperating teams:
o the development team is responsible for the software design
and implementation
o the quality team is responsible to find errors and certify that
the system is being developed in the right way

o Five major activities, continuously revised:

o specification: required behavior of the system (development
team) and usage scenarios for test suites (quality team)

o planning: design and update development and the quality plan

o design and verification: system increments are developed and
certified

o quality certification: test the system w.r.t. the specification

o feedback: both for errors (quality — develo) and aI
the whole process if the error rate |ncreases\ “m bl B

. . Next version —— | Incremental
R(EV](.:V-V, refine, Release
prioritize .

Passed all unit test A
\ Pass
1
Generate User Create Unit Pair Passed all Acceptance
S > > Programming [. Pt
Stories Tests . . unit tests Testing
+ Unit testing
Failed d
Create acceptance
Acceptance test
Tests

DISIM

o The extreme programming methodology emphasizes:
o global vision and communication over structured organization
o frequent changes over big releases
o continuous testing and analysis over separation of roles and
responsibilities
o continuous feedback over traditional planning
o User stories: requirements from customers
o test cases corresponding to scenarios in user stories serve as
partial specifications
o Test-first: test cases specifications are built before the actual
code to test
o Pair programming. developers work in pairs, incrementally
developing and testing a module

o For each release, run all the tests devised up te that point:
kind of merging of unit testing with mtegratl%nﬁ'@yste”“

testing

Actual Needs and -
Constraints User Acceptance (alpha, beta test) Delivered
Package

2

2

E System < System Test System

Specifications Integration
Analysis /
Review
4 Subsystem Integration Test
Design/Specs Subsystem
Analysis /
Review
Unit/Component Unit/
Specs Module Test | Components
User review of external behavior as itis
determined or becomes visible
o Validation
5
&
K 4
Verification ¢

DISIM

o Four degrees of granularity in testing:

module or unit: each part of program agains its specifications
integration: checks compatibility among selected modules
system: checks whole system against specifications
acceptance: checks whole system w.r.t user needs (validation)

© © 0 o

o Integration faults: faulty specifications or implementations of
interfaces, resource usage, or required properties

o Integration errors may reveal something flawn also at unit
testing

o In other cases, side-effects of module faults may become
apparent only in integration test

o “Incompatible” components: when they do not work together
for some reason

o Integration tests focus on checking compatlb b n

module interfaces

©

Inconsistent interpretation of parameters or values
o ok if taken separately, not ok when together
o typical case: different units used in different methods, e.g.,
meters vs feet
o Violations of value domains or of capacity or size limits
o violation of (implicit) assumptions on ranges of values or sizes
o buffer overflow
Side-effects on parameters or resources
o two modules writing on the same file
Missing or misunderstood functionality
o a module expects another module to return something, but it
is something else
o e.g., Web hits counted per unique IP address or per request
o Nonfunctional problems

o e.g., missed deadlines due to module call = |
o Dynamic mismatches T/ Bt e

o e.g., polymorphic calls bound to the wrong méthod

©

©

First thing to be decided: the sequence of modules integration
to be tested
o A, B and then B, C,D? or C, E first?
Better to follow the build plan: test modules integration as
soon as they are ready
o often, the viceversa also holds, i.e., integration testing drives
build plan
o In any case, an incremental strategy is followed
o when all modules are present, we have system testing
o even with incremental strategies, some modules may not be
available, thus scaffolding is needed for drivers and stubs
Sometimes, the big bang strategy may be used: directly go
with system testing
all modules are available
good for budget

not good for early errors discovery, which isdigwever a prqbfe
b ARG B
for budget... & BECAQUIA =

desperate tester strategy

()

©

©

©

©

©

©

o So, let's go back to incremental integration testing; we have
two possibilities:
o structural oriented:
o order of integration is based on hierarchical structure in the
design
o feature oriented: derive the order of integration from
characteristics of the application
o more “important” and “critical” modules are tested first
o includes threads and critical modules testing strategies
o Within structural testing, both bottom-up and top-down
strategies are possible
o basing on the use/include hierarchy
o especially ok if the build plan follows the same order

o Sandwitch or backbone strategy: both bottom-up and

top-down ﬁ |
o start from both ends and go towards the mi BEGLISTUR! ;

Use/Include hierarchy from a class diagram

=

CustomerCare)|

Customer

Package

Account

Order

P_’1,

Model

R

Slot

Component

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

Top-down:

Q Integrate CustomerCare with Customer; use stubs for Account
and Order

Q Add Account

O Add Order and Package, stubbing Model and Component
Q Add Model, Slot, and Component in this order

o drivers are built only in the first step, then incrementally
updated

Bottom-up:

Q Integrate Slot with Component, using drivers for Model and
Order

O Add Model and Order, using a driver for Package

O Add Package, Account, Customer and Custo%,anem ‘

o no stub need in any point

Sandwitch: suppose we are reusing existing modules for Model,
Slot and Component, and developing CustomerCare and Customer
as part of an early prototype

Q Integrating CustomerCare and Customer, with stubs for
Account and Order

Q Integrate Model, Slot and Component with Order, using
drivers for Customer and Package

Q Integrate Account with Customer, and Package with Order,
before finally integrating the whole prototype system.

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Thread testing: choose one functionality and pick the
interested modules
o not necessarily “threads” as in parallel programming
o Critical module integration testing: first test modules that
represent a risk for the project
o modules may be sorted basing on the risk they pose in case of
failure
o both external risks (e.g., safety) and internal risks (e.g.,
missing project deadlines) must be considered

o Feature-oriented testing is more expensive than

structural-oriented testing
A B g

o used for bigger projects

reusable unit of deployment and composition

© may be used many times by different teams
o may have an internal state

may be composed by many objects

may use persistent storage

may require some communication layer (not
simply method calls)

© 0 ©

describes component access
points and parameters
o also specifies functional and non-functional
component behaviour
o also specifies required (assumed) conditions

o sometimes also called API (Appli tion Program
Interface) B/ B i

micro-architecture or skeleton of an application

o easy to add application-specific functionality or
configuration-specific components

o may be seen as a circuit board with empty slots
for components

o not to be confused with design patterns:

o patterns are logical design fragments,
frameworks are concrete elements of the
application

o frameworks often implement patterns

system built by assembling software
components

o connected by a framework or speciﬁc code

Commercial Off-The-Shelf (compon Hibuilt t ‘

sold to other developers “

©

©

©

Component built for general use are typically more complex
than components built ad-hoc for a given application

Main problem: developers do not know the context in which
their component will be used

o may be used also if it does not perfectly fit
Of course, better to start with applications of typical usage

Possible uses may be classifed in scenarios

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

©

©

©

All of them look at the whole software to be delivered

System testing: integration testing with all components
available

o also including properties about the whole system
Acceptance testing: aka validation

o instead of checking specifications, ask the final users

Regression testing: check if, when going from an old release
to a new one, some errors have been introduced
o code modifications may produce failures not experienced in
previous releases

System, Acceptance, and Regression Testing

System test | Acceptance test | Regression test

Checks against requirements | Checks suitability for user | Rechecks test cases passed by
specifications needs previous production versions
Performed by development | Performed by test group with | Performed by development
test group user involvement test group

Verifies correctness and com- | Validates usefulness and satis- | Guards against unintended
pletion of the product faction with the product changes

| UNIVERSITA DISIM
\ | DEGLI STUDI pimerio i
\ DELL'AQUILA]

©

Ideally, no scaffolding: based on observable evidence of the
whole system

o design and implementation are not important, it must work
o more: it must be independent on design and implementation

o However, some scaffolding may be needed to test controllers
o a simulator is (initially) used instead of the system to be

controlled
o ... or to keep track of the test results (e.g., in a DB)
o System test suites may contain some test suites used for

integration or even unit test

o especially true if testing was feature oriented
o structural testing is not good for system testing, as it is not

independent on the implementation uke
% Rt pan..
\ DELL'AQUILA Sy

o How to obtain test suites independent on the
design /implementation:

o give the task to a different team
o design system tests very early, before any design choice has
been done

o Agile software development: develop a new functionality as
soon as it is specified
o in between specification and implementation, derive test cases
o System testing only looks at system-wide properties and usage
scenarios

o each desired behaviour must be taken into account by at least
one test case

o Additional test cases can be added during development if

unforeseen observable failures happen
o also considering final users annotations § BrETSHEY “”
t

o intertwined with acceptance and regression

©

The type of properties we want in system testing are the
harder to evaluate

o often non-functional: low latency, system response, mean time
between failures
o also functional like security or safety

©

For security or safety, better use model checking
o for security, have another team try to breach the system...

©

Performance testing: outside the scope of this course

©

Note that the environment is important

o impractible for a fast-response system to withstand too many
request

©

Stress test: repeat tests many times

©

Especially useful when the system is a server

o that is: in a never-ending loop, check if there is some request
and, if it is the case, handle it

o example: any Internet-based service such as Web, email etc.

o also ok for non-server software which request inputs at
different stages of execution

o e.g., highly interactive software

©

Fuzzing consist in feeding illegal inputs only
o and to feed them with high frequency
o Often combined with instrumented software to measure
coverage (fuzzing coverage) and with Property-based Testing
o it would be difficult to generate correct outputs to be
checked...
|

This can be seen as a special type of stress f;% vt

ITA DISIM
upI e
AQUILA]

©

Unit, Integration, and System Testing

Unit Test Integration Test System Test
Test cases module specifications architecture and design | requirements specifica-
derived from specifications tion

Visibility
required

Scaffolding
required

Focus on

all the details of the code

Potentially complex, to
simulate the activation
environment (drivers),
the modules called by
the module under test
(stubs) and test oracles

behavior of individual

modules

some details of the code,
mainly interfaces

Depends on architecture
and integration order.
Modules and subsystems
can be incrementally
integrated to reduce need
for drivers and stubs.

module integration and
interaction

no details of the code

Mostly limited to test
oracles, since the whole
system should not re-
quire additional drivers
or stubs to be executed.
Sometimes includes
a simulated execution
environment (e.g., for
embedded systems).

system functionality

o Tries to ask the question: “Should we release the product?”
o To this aim, we may:
o still perform some dedicated testing, in addition to system

testing
o ask the users (validation)

o easy for very specialized software commissioned by a small
group of users
o otherwise, a specific organization must be set up
o Dedicated testing for acceptance: must be separated from
system testing
o unit, integration and system testing: expose as many failures
as possible

o acceptance testing: understand if it is useful for the final user
\ / DEGLI STUDI ence dettn
\ BecLL it ;

o Validation: directly ask users

o Two main workhorses: alpha and beta testing
o as it may be guessed, alpha refers to early development releases
o where very few testing has been carried out
o beta is for more advanced development phases of a release

o Alpha testing may be performed by the software company

o Beta testing is usually performed by volunteering final users

o note that beta testing is not organized

o i.e., final users simply use the product, and report failures to
developers

o if different categories of final users are present, choose at least
a representative in each category

o in some sense, the users themselves are sampling their

operational profiles whe .
- : (I ey oo
o some scaffolding to send feedback is necessaggy/ "o !

o Operational profiles: statistical models of usage

o available from previous similar projects
o e.g., how a new DBMS will be used should not be different

from how old ones were used
o Sensitivity testing: identify parameters of operational profiles
and determine which are the important ones
o repeat many times statistical testing, each time varying some

parameters
o e.g., vary the incoming load to see the effect in system

throughput
o This kind of validation is somewhat “statistical”: we want a

“measure” of the product reliability
j» NE “l\l\lk%!l\ DISIM
A B e

o Alpha and beta testing are for the final product, but users
may be involved earlier

o especially for the usability of the software

o Exploratory testing: investigate the "mental model” of end
users

o especially for GUI: first present a very simplified version and
see what users choose first
o useful when designing a product for a new population
o Comparison testing: evaluate different options
o observe users reactions to different proposals

o again, early stages of software design
U/ Bl o

o mainly to refine interaction patterns

o Validation testing: assess overall usability
o identify difficulties and obstacles for final users
o time to perform tasks
o error rate
o Overall, usability testing go through:
o preparation:
o define the objectives of the session
o identify the items to be tested

o select a representative population of end users
o plan the required actions

o execution:
o execute planned actions in a controlled environment
o review and analysis

® plan changes, if required % -
\ / DEGLI STUDI ento di
\ DELLAQUILA e

©

Users time is very expensive

Number of users must be chosen accordingly to project
budget
o representative of users classes, if any
o questionnaires should be prepared, also to verify class
belonging
o opinions from different classes of users could be weighted
differently

()

©

Alpha and beta testing are at users premises

©

Especially for usability, testing for users is instead in a
controlled environment

o users are given tasks to be completed
o their interactions are recorded, sometimes in a light (mouse

clicks) sometimes in a heavy (eye tracking aBfi&imilar) w o

DELL'AQUILA

o Accessibility: usability for users with disabilities
o legally required in some application domains
o e.g., Web sites of public institutions

o we also have a standard: Web Content Accessibility Guidelines
(WCAG)

| UNIVERSITA DISIM
\ | DEGLI STUDI unes s
\ DELL'AQUILA]

o Software applications are almost never built once and for all
o New releases may be required because of:

o removing faults (or security errors)

changing some functionalities (including changes in the code
only)

adding new functionalities

removing old functionalities

porting the system to a new platform

extending interoperability

©

© 06 0 o

o Where there are changes, there is trouble!

o May be needed to restart the whole testing phase, from unit
to acceptance

SLLSTUD!
AU

o Not necessarily a new release: a component | Iready ---
early tested, but modifications are now nece

Now we need to
figure out how
and why €

SIR, IT FINALLY
WORKED!

Now don't touch it or it
may never work again

IVERSITA
DEGLI STUDI
DELLAQUILA

%
\\ y
sl

@ DIsIM

o The smallest change may affect other software parts in
unintended ways
o e.g., a guard added to an array to fix an overflow problem may
cause a failure when the array is used in other contexts
o e.g., porting the software to a new platform may expose a
latent fault
o e.g., even compiling some C code with optimization options
may cause previously undected errors
o Regression: when a new release of the system introduces new
errors in previously working parts

o thus we want nonregression to happen

o Of course, this should be achieved at design time, but wanting
is not achieving

o Thus, we need (non)regression testing lf%J e,

o Solution 0: for a new release, retest all
o this is ok if we only changed the implementation of some
methods
o or if we made a porting
o for any other modification, old test cases may not work any
more
o in that case, try to select a working test cases subset, if any

o Solution 1: if we have scaffolding able to interpret test case
specifications, we simply modify the scaffolding

o e.g.: if we modify the collapsing strings example by adding the
further input k in a new release, we may still adapt the “old”
test cases generator

o still a problem for new functionalities

o also for old ones, but removing is easier than designing ne
test cases %‘ gErun

DELL'AQUILA

©

Note that some test cases may become redundant

o especially for structural testing: e.g., two tests covering
different paths now cover the same path

o may become redundant also for changes in the testing itself

o e.g., in the partition method, we change the partition, causing
two previously different tests to be now on the same partition

Redundant test cases do not reduce the overall effectiveness
of tests, but impact on the cost-benefits trade-off

o unlikely to reveal faults

o augment the costs of test execution and maintenance

©

©

However, redundant test cases are typically kept
o may become helpful in successive versions of the software

o Documentation is important, must include t%g info .
OB/ bl '@

o Often the retest all, even if “corrected”, is not viable for the
excessive cost
o large software may need to be tested in many different

platforms
o or however need scarce resources, e.g. users testing or

time-to-market
o Is it possible to reduce the size of the tests to be performed?
o e.g.: we changed the window management, no need to recheck
file usage

o Regression test selection techniques are based on either:
o code: select a test case if it exercises a portion of the code
that has been modified
o specification: select a test case if it is relevant to a portion of
the specification that has been changed
o Code-based selection may be done automatically
o especially ok for unit testing, not for integration or system

testing
o not ok if changes are huge

o Specification-based selection work well for all types of testing

o provided that specification are well written
o partly automatable if specifications are very well written and

organized e
\ RESHLRTNE! ;

o CFG regression test selection: based on differences between
the two CFGs

o before and after the change

o of course, we are in some unit for which the CFG can be
produced

o differences: missing nodes or edges, but also in single nodes
annotations

o for changes in single statements

o added nodes: selection may be useless, as there were not
previous test cases...

o Requires to record the path exercised by the tests
o must be done automatically

o Selects (past) tests exercising modified CFG parts
S ey

int cgi_decodefchar *encoded, char *decoded) |

{

else
“dptr

char “dptr = decoded;

char “eptr = encoded:

while (“eptr) {

intdigit_high = Hex_Values[*(++eptr); (G
intdigit_low = Hex_Values[*(++eptr}];
if (digit_high == -1 | digit_low ==-1) {

—False—F—True—,

aise {
*dptr = 16 * digit_high +

“dptr ="0;
return ok;

IVERSITA
1STUDI

Gl
LL'AQUILA

DISIM

Id Test case Path

TC1 | “” ABM

TC2 | “test+case%1Dadequacy” ABCDFL..BM

TC3 | “adequate+test%0Dexecution%7U” ABCDFL..BM

TC4 | “%3D” ABCDGHLBM

TCS | “%A” ABCDGILBM

TC6 | “a+b” ABCDFLBCELBCDFLBM

TC7 | “test” ABCDFLBCDFLBCDFLBCDFLBM
TC8 | “+%0D+%4J" ABCELBCDGIL..BM

TC9 | “first+test%9IKtest%K9” ABCDFL..BM

We may discard TC1
If we only look at X and Y, we may also discard TC6 and TC7

| 1 NIy DIsiM,
{ DEC i
\ DEL

o Data flow regression test selection: based on differences
between the DU pairs
o before and after the change, again in some given unit
o differences: DU pairs may be deleted, added, or modified
(definition and/or use were moved)
o for added ones, selection only is useless...

o Specification-based test selection techniques do not require
recording the control flow paths executed by tests

o Regression test cases can be identified from correspondence
between test cases and specification items
o if there was a model extracted from specification, simply
update the model and extract tests again

o code-based selection techniques may be used-en such mode
| “‘\‘\l\‘l‘l?‘\}l‘\‘ @ DISIM
\ | BECEAQUIEA o

o Instead of reducing, also giving priorities could be good

o

o

Qo

could be based on the code changes (see below)

or also on testing history for previous versions

e.g., give low priority to tests which never failed and are not
affected by current modifications

o All tests will be eventually executed, but...

o

there are many releases, so typically the same tests are
executed many times

in each release, execute only tests with priority above a given
threshold

o as a result, some tests will have higher frequency than other
o however, it is guaranteed that all tests will be eventually

executed

so high priority is also given to tests which haye been
“waiting” too much %‘ g

\ DELL'AQUILA

o Execution history priority schema: low priority to the recently
executed tests
o similar to round robin...
o Fault revealing priority schema: high priority to tests which
reveled faults
o faults are not evenly distributed...
o exercise the parts which needs most testing

o Structural priority schema: high priority to tests which cover
most “elements”

o statements, branchs, conditions for unit testing
o methods, features for integration/system testing

‘ UNIVERSITA DIsIM
\ | DEGLISTUDI
\ DELL'AQUILA 2

